Merge commit 'gcl/merge' into next
[linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
94 #include <linux/of.h>
95
96 #include "gianfar.h"
97 #include "fsl_pq_mdio.h"
98
99 #define TX_TIMEOUT      (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113                 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123                 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
132 #endif
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136                               int amount_pull);
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138                                 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static const struct net_device_ops gfar_netdev_ops = {
151         .ndo_open = gfar_enet_open,
152         .ndo_start_xmit = gfar_start_xmit,
153         .ndo_stop = gfar_close,
154         .ndo_change_mtu = gfar_change_mtu,
155         .ndo_set_multicast_list = gfar_set_multi,
156         .ndo_tx_timeout = gfar_timeout,
157         .ndo_do_ioctl = gfar_ioctl,
158         .ndo_vlan_rx_register = gfar_vlan_rx_register,
159 #ifdef CONFIG_NET_POLL_CONTROLLER
160         .ndo_poll_controller = gfar_netpoll,
161 #endif
162 };
163
164 /* Returns 1 if incoming frames use an FCB */
165 static inline int gfar_uses_fcb(struct gfar_private *priv)
166 {
167         return priv->vlgrp || priv->rx_csum_enable;
168 }
169
170 static int gfar_of_init(struct net_device *dev)
171 {
172         const char *model;
173         const char *ctype;
174         const void *mac_addr;
175         u64 addr, size;
176         int err = 0;
177         struct gfar_private *priv = netdev_priv(dev);
178         struct device_node *np = priv->node;
179         const u32 *stash;
180         const u32 *stash_len;
181         const u32 *stash_idx;
182
183         if (!np || !of_device_is_available(np))
184                 return -ENODEV;
185
186         /* get a pointer to the register memory */
187         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
188         priv->regs = ioremap(addr, size);
189
190         if (priv->regs == NULL)
191                 return -ENOMEM;
192
193         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
194
195         model = of_get_property(np, "model", NULL);
196
197         /* If we aren't the FEC we have multiple interrupts */
198         if (model && strcasecmp(model, "FEC")) {
199                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
200
201                 priv->interruptError = irq_of_parse_and_map(np, 2);
202
203                 if (priv->interruptTransmit < 0 ||
204                                 priv->interruptReceive < 0 ||
205                                 priv->interruptError < 0) {
206                         err = -EINVAL;
207                         goto err_out;
208                 }
209         }
210
211         stash = of_get_property(np, "bd-stash", NULL);
212
213         if(stash) {
214                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
215                 priv->bd_stash_en = 1;
216         }
217
218         stash_len = of_get_property(np, "rx-stash-len", NULL);
219
220         if (stash_len)
221                 priv->rx_stash_size = *stash_len;
222
223         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
224
225         if (stash_idx)
226                 priv->rx_stash_index = *stash_idx;
227
228         if (stash_len || stash_idx)
229                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
230
231         mac_addr = of_get_mac_address(np);
232         if (mac_addr)
233                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
234
235         if (model && !strcasecmp(model, "TSEC"))
236                 priv->device_flags =
237                         FSL_GIANFAR_DEV_HAS_GIGABIT |
238                         FSL_GIANFAR_DEV_HAS_COALESCE |
239                         FSL_GIANFAR_DEV_HAS_RMON |
240                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
241         if (model && !strcasecmp(model, "eTSEC"))
242                 priv->device_flags =
243                         FSL_GIANFAR_DEV_HAS_GIGABIT |
244                         FSL_GIANFAR_DEV_HAS_COALESCE |
245                         FSL_GIANFAR_DEV_HAS_RMON |
246                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
247                         FSL_GIANFAR_DEV_HAS_PADDING |
248                         FSL_GIANFAR_DEV_HAS_CSUM |
249                         FSL_GIANFAR_DEV_HAS_VLAN |
250                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
251                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
252
253         ctype = of_get_property(np, "phy-connection-type", NULL);
254
255         /* We only care about rgmii-id.  The rest are autodetected */
256         if (ctype && !strcmp(ctype, "rgmii-id"))
257                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
258         else
259                 priv->interface = PHY_INTERFACE_MODE_MII;
260
261         if (of_get_property(np, "fsl,magic-packet", NULL))
262                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
263
264         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
265         if (!priv->phy_node) {
266                 u32 *fixed_link;
267
268                 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
269                 if (!fixed_link) {
270                         err = -ENODEV;
271                         goto err_out;
272                 }
273         }
274
275         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
276         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
277
278         return 0;
279
280 err_out:
281         iounmap(priv->regs);
282         return err;
283 }
284
285 /* Ioctl MII Interface */
286 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
287 {
288         struct gfar_private *priv = netdev_priv(dev);
289
290         if (!netif_running(dev))
291                 return -EINVAL;
292
293         if (!priv->phydev)
294                 return -ENODEV;
295
296         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
297 }
298
299 /* Set up the ethernet device structure, private data,
300  * and anything else we need before we start */
301 static int gfar_probe(struct of_device *ofdev,
302                 const struct of_device_id *match)
303 {
304         u32 tempval;
305         struct net_device *dev = NULL;
306         struct gfar_private *priv = NULL;
307         DECLARE_MAC_BUF(mac);
308         int err = 0;
309         int len_devname;
310
311         /* Create an ethernet device instance */
312         dev = alloc_etherdev(sizeof (*priv));
313
314         if (NULL == dev)
315                 return -ENOMEM;
316
317         priv = netdev_priv(dev);
318         priv->ndev = dev;
319         priv->ofdev = ofdev;
320         priv->node = ofdev->node;
321         SET_NETDEV_DEV(dev, &ofdev->dev);
322
323         err = gfar_of_init(dev);
324
325         if (err)
326                 goto regs_fail;
327
328         spin_lock_init(&priv->txlock);
329         spin_lock_init(&priv->rxlock);
330         spin_lock_init(&priv->bflock);
331         INIT_WORK(&priv->reset_task, gfar_reset_task);
332
333         dev_set_drvdata(&ofdev->dev, priv);
334
335         /* Stop the DMA engine now, in case it was running before */
336         /* (The firmware could have used it, and left it running). */
337         gfar_halt(dev);
338
339         /* Reset MAC layer */
340         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
341
342         /* We need to delay at least 3 TX clocks */
343         udelay(2);
344
345         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
346         gfar_write(&priv->regs->maccfg1, tempval);
347
348         /* Initialize MACCFG2. */
349         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
350
351         /* Initialize ECNTRL */
352         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
353
354         /* Set the dev->base_addr to the gfar reg region */
355         dev->base_addr = (unsigned long) (priv->regs);
356
357         SET_NETDEV_DEV(dev, &ofdev->dev);
358
359         /* Fill in the dev structure */
360         dev->watchdog_timeo = TX_TIMEOUT;
361         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
362         dev->mtu = 1500;
363
364         dev->netdev_ops = &gfar_netdev_ops;
365         dev->ethtool_ops = &gfar_ethtool_ops;
366
367         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
368                 priv->rx_csum_enable = 1;
369                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
370         } else
371                 priv->rx_csum_enable = 0;
372
373         priv->vlgrp = NULL;
374
375         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
376                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
377
378         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
379                 priv->extended_hash = 1;
380                 priv->hash_width = 9;
381
382                 priv->hash_regs[0] = &priv->regs->igaddr0;
383                 priv->hash_regs[1] = &priv->regs->igaddr1;
384                 priv->hash_regs[2] = &priv->regs->igaddr2;
385                 priv->hash_regs[3] = &priv->regs->igaddr3;
386                 priv->hash_regs[4] = &priv->regs->igaddr4;
387                 priv->hash_regs[5] = &priv->regs->igaddr5;
388                 priv->hash_regs[6] = &priv->regs->igaddr6;
389                 priv->hash_regs[7] = &priv->regs->igaddr7;
390                 priv->hash_regs[8] = &priv->regs->gaddr0;
391                 priv->hash_regs[9] = &priv->regs->gaddr1;
392                 priv->hash_regs[10] = &priv->regs->gaddr2;
393                 priv->hash_regs[11] = &priv->regs->gaddr3;
394                 priv->hash_regs[12] = &priv->regs->gaddr4;
395                 priv->hash_regs[13] = &priv->regs->gaddr5;
396                 priv->hash_regs[14] = &priv->regs->gaddr6;
397                 priv->hash_regs[15] = &priv->regs->gaddr7;
398
399         } else {
400                 priv->extended_hash = 0;
401                 priv->hash_width = 8;
402
403                 priv->hash_regs[0] = &priv->regs->gaddr0;
404                 priv->hash_regs[1] = &priv->regs->gaddr1;
405                 priv->hash_regs[2] = &priv->regs->gaddr2;
406                 priv->hash_regs[3] = &priv->regs->gaddr3;
407                 priv->hash_regs[4] = &priv->regs->gaddr4;
408                 priv->hash_regs[5] = &priv->regs->gaddr5;
409                 priv->hash_regs[6] = &priv->regs->gaddr6;
410                 priv->hash_regs[7] = &priv->regs->gaddr7;
411         }
412
413         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
414                 priv->padding = DEFAULT_PADDING;
415         else
416                 priv->padding = 0;
417
418         if (dev->features & NETIF_F_IP_CSUM)
419                 dev->hard_header_len += GMAC_FCB_LEN;
420
421         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
422         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
423         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
424         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
425
426         priv->txcoalescing = DEFAULT_TX_COALESCE;
427         priv->txic = DEFAULT_TXIC;
428         priv->rxcoalescing = DEFAULT_RX_COALESCE;
429         priv->rxic = DEFAULT_RXIC;
430
431         /* Enable most messages by default */
432         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
433
434         /* Carrier starts down, phylib will bring it up */
435         netif_carrier_off(dev);
436
437         err = register_netdev(dev);
438
439         if (err) {
440                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
441                                 dev->name);
442                 goto register_fail;
443         }
444
445         device_init_wakeup(&dev->dev,
446                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
447
448         /* fill out IRQ number and name fields */
449         len_devname = strlen(dev->name);
450         strncpy(&priv->int_name_tx[0], dev->name, len_devname);
451         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
452                 strncpy(&priv->int_name_tx[len_devname],
453                         "_tx", sizeof("_tx") + 1);
454
455                 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
456                 strncpy(&priv->int_name_rx[len_devname],
457                         "_rx", sizeof("_rx") + 1);
458
459                 strncpy(&priv->int_name_er[0], dev->name, len_devname);
460                 strncpy(&priv->int_name_er[len_devname],
461                         "_er", sizeof("_er") + 1);
462         } else
463                 priv->int_name_tx[len_devname] = '\0';
464
465         /* Create all the sysfs files */
466         gfar_init_sysfs(dev);
467
468         /* Print out the device info */
469         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
470
471         /* Even more device info helps when determining which kernel */
472         /* provided which set of benchmarks. */
473         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
474         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
475                dev->name, priv->rx_ring_size, priv->tx_ring_size);
476
477         return 0;
478
479 register_fail:
480         iounmap(priv->regs);
481 regs_fail:
482         if (priv->phy_node)
483                 of_node_put(priv->phy_node);
484         if (priv->tbi_node)
485                 of_node_put(priv->tbi_node);
486         free_netdev(dev);
487         return err;
488 }
489
490 static int gfar_remove(struct of_device *ofdev)
491 {
492         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
493
494         if (priv->phy_node)
495                 of_node_put(priv->phy_node);
496         if (priv->tbi_node)
497                 of_node_put(priv->tbi_node);
498
499         dev_set_drvdata(&ofdev->dev, NULL);
500
501         iounmap(priv->regs);
502         free_netdev(priv->ndev);
503
504         return 0;
505 }
506
507 #ifdef CONFIG_PM
508 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
509 {
510         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
511         struct net_device *dev = priv->ndev;
512         unsigned long flags;
513         u32 tempval;
514
515         int magic_packet = priv->wol_en &&
516                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
517
518         netif_device_detach(dev);
519
520         if (netif_running(dev)) {
521                 spin_lock_irqsave(&priv->txlock, flags);
522                 spin_lock(&priv->rxlock);
523
524                 gfar_halt_nodisable(dev);
525
526                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
527                 tempval = gfar_read(&priv->regs->maccfg1);
528
529                 tempval &= ~MACCFG1_TX_EN;
530
531                 if (!magic_packet)
532                         tempval &= ~MACCFG1_RX_EN;
533
534                 gfar_write(&priv->regs->maccfg1, tempval);
535
536                 spin_unlock(&priv->rxlock);
537                 spin_unlock_irqrestore(&priv->txlock, flags);
538
539                 napi_disable(&priv->napi);
540
541                 if (magic_packet) {
542                         /* Enable interrupt on Magic Packet */
543                         gfar_write(&priv->regs->imask, IMASK_MAG);
544
545                         /* Enable Magic Packet mode */
546                         tempval = gfar_read(&priv->regs->maccfg2);
547                         tempval |= MACCFG2_MPEN;
548                         gfar_write(&priv->regs->maccfg2, tempval);
549                 } else {
550                         phy_stop(priv->phydev);
551                 }
552         }
553
554         return 0;
555 }
556
557 static int gfar_resume(struct of_device *ofdev)
558 {
559         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
560         struct net_device *dev = priv->ndev;
561         unsigned long flags;
562         u32 tempval;
563         int magic_packet = priv->wol_en &&
564                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
565
566         if (!netif_running(dev)) {
567                 netif_device_attach(dev);
568                 return 0;
569         }
570
571         if (!magic_packet && priv->phydev)
572                 phy_start(priv->phydev);
573
574         /* Disable Magic Packet mode, in case something
575          * else woke us up.
576          */
577
578         spin_lock_irqsave(&priv->txlock, flags);
579         spin_lock(&priv->rxlock);
580
581         tempval = gfar_read(&priv->regs->maccfg2);
582         tempval &= ~MACCFG2_MPEN;
583         gfar_write(&priv->regs->maccfg2, tempval);
584
585         gfar_start(dev);
586
587         spin_unlock(&priv->rxlock);
588         spin_unlock_irqrestore(&priv->txlock, flags);
589
590         netif_device_attach(dev);
591
592         napi_enable(&priv->napi);
593
594         return 0;
595 }
596 #else
597 #define gfar_suspend NULL
598 #define gfar_resume NULL
599 #endif
600
601 /* Reads the controller's registers to determine what interface
602  * connects it to the PHY.
603  */
604 static phy_interface_t gfar_get_interface(struct net_device *dev)
605 {
606         struct gfar_private *priv = netdev_priv(dev);
607         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
608
609         if (ecntrl & ECNTRL_SGMII_MODE)
610                 return PHY_INTERFACE_MODE_SGMII;
611
612         if (ecntrl & ECNTRL_TBI_MODE) {
613                 if (ecntrl & ECNTRL_REDUCED_MODE)
614                         return PHY_INTERFACE_MODE_RTBI;
615                 else
616                         return PHY_INTERFACE_MODE_TBI;
617         }
618
619         if (ecntrl & ECNTRL_REDUCED_MODE) {
620                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
621                         return PHY_INTERFACE_MODE_RMII;
622                 else {
623                         phy_interface_t interface = priv->interface;
624
625                         /*
626                          * This isn't autodetected right now, so it must
627                          * be set by the device tree or platform code.
628                          */
629                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
630                                 return PHY_INTERFACE_MODE_RGMII_ID;
631
632                         return PHY_INTERFACE_MODE_RGMII;
633                 }
634         }
635
636         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
637                 return PHY_INTERFACE_MODE_GMII;
638
639         return PHY_INTERFACE_MODE_MII;
640 }
641
642
643 /* Initializes driver's PHY state, and attaches to the PHY.
644  * Returns 0 on success.
645  */
646 static int init_phy(struct net_device *dev)
647 {
648         struct gfar_private *priv = netdev_priv(dev);
649         uint gigabit_support =
650                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
651                 SUPPORTED_1000baseT_Full : 0;
652         phy_interface_t interface;
653
654         priv->oldlink = 0;
655         priv->oldspeed = 0;
656         priv->oldduplex = -1;
657
658         interface = gfar_get_interface(dev);
659
660         if (priv->phy_node) {
661                 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link,
662                                               0, interface);
663                 if (!priv->phydev) {
664                         dev_err(&dev->dev, "error: Could not attach to PHY\n");
665                         return -ENODEV;
666                 }
667         }
668
669         if (interface == PHY_INTERFACE_MODE_SGMII)
670                 gfar_configure_serdes(dev);
671
672         /* Remove any features not supported by the controller */
673         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
674         priv->phydev->advertising = priv->phydev->supported;
675
676         return 0;
677 }
678
679 /*
680  * Initialize TBI PHY interface for communicating with the
681  * SERDES lynx PHY on the chip.  We communicate with this PHY
682  * through the MDIO bus on each controller, treating it as a
683  * "normal" PHY at the address found in the TBIPA register.  We assume
684  * that the TBIPA register is valid.  Either the MDIO bus code will set
685  * it to a value that doesn't conflict with other PHYs on the bus, or the
686  * value doesn't matter, as there are no other PHYs on the bus.
687  */
688 static void gfar_configure_serdes(struct net_device *dev)
689 {
690         struct gfar_private *priv = netdev_priv(dev);
691         struct phy_device *tbiphy;
692
693         if (!priv->tbi_node) {
694                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
695                                     "device tree specify a tbi-handle\n");
696                 return;
697         }
698
699         tbiphy = of_phy_find_device(priv->tbi_node);
700         if (!tbiphy) {
701                 dev_err(&dev->dev, "error: Could not get TBI device\n");
702                 return;
703         }
704
705         /*
706          * If the link is already up, we must already be ok, and don't need to
707          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
708          * everything for us?  Resetting it takes the link down and requires
709          * several seconds for it to come back.
710          */
711         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
712                 return;
713
714         /* Single clk mode, mii mode off(for serdes communication) */
715         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
716
717         phy_write(tbiphy, MII_ADVERTISE,
718                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
719                         ADVERTISE_1000XPSE_ASYM);
720
721         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
722                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
723 }
724
725 static void init_registers(struct net_device *dev)
726 {
727         struct gfar_private *priv = netdev_priv(dev);
728
729         /* Clear IEVENT */
730         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
731
732         /* Initialize IMASK */
733         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
734
735         /* Init hash registers to zero */
736         gfar_write(&priv->regs->igaddr0, 0);
737         gfar_write(&priv->regs->igaddr1, 0);
738         gfar_write(&priv->regs->igaddr2, 0);
739         gfar_write(&priv->regs->igaddr3, 0);
740         gfar_write(&priv->regs->igaddr4, 0);
741         gfar_write(&priv->regs->igaddr5, 0);
742         gfar_write(&priv->regs->igaddr6, 0);
743         gfar_write(&priv->regs->igaddr7, 0);
744
745         gfar_write(&priv->regs->gaddr0, 0);
746         gfar_write(&priv->regs->gaddr1, 0);
747         gfar_write(&priv->regs->gaddr2, 0);
748         gfar_write(&priv->regs->gaddr3, 0);
749         gfar_write(&priv->regs->gaddr4, 0);
750         gfar_write(&priv->regs->gaddr5, 0);
751         gfar_write(&priv->regs->gaddr6, 0);
752         gfar_write(&priv->regs->gaddr7, 0);
753
754         /* Zero out the rmon mib registers if it has them */
755         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
756                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
757
758                 /* Mask off the CAM interrupts */
759                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
760                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
761         }
762
763         /* Initialize the max receive buffer length */
764         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
765
766         /* Initialize the Minimum Frame Length Register */
767         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
768 }
769
770
771 /* Halt the receive and transmit queues */
772 static void gfar_halt_nodisable(struct net_device *dev)
773 {
774         struct gfar_private *priv = netdev_priv(dev);
775         struct gfar __iomem *regs = priv->regs;
776         u32 tempval;
777
778         /* Mask all interrupts */
779         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
780
781         /* Clear all interrupts */
782         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
783
784         /* Stop the DMA, and wait for it to stop */
785         tempval = gfar_read(&priv->regs->dmactrl);
786         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
787             != (DMACTRL_GRS | DMACTRL_GTS)) {
788                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
789                 gfar_write(&priv->regs->dmactrl, tempval);
790
791                 while (!(gfar_read(&priv->regs->ievent) &
792                          (IEVENT_GRSC | IEVENT_GTSC)))
793                         cpu_relax();
794         }
795 }
796
797 /* Halt the receive and transmit queues */
798 void gfar_halt(struct net_device *dev)
799 {
800         struct gfar_private *priv = netdev_priv(dev);
801         struct gfar __iomem *regs = priv->regs;
802         u32 tempval;
803
804         gfar_halt_nodisable(dev);
805
806         /* Disable Rx and Tx */
807         tempval = gfar_read(&regs->maccfg1);
808         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
809         gfar_write(&regs->maccfg1, tempval);
810 }
811
812 void stop_gfar(struct net_device *dev)
813 {
814         struct gfar_private *priv = netdev_priv(dev);
815         struct gfar __iomem *regs = priv->regs;
816         unsigned long flags;
817
818         phy_stop(priv->phydev);
819
820         /* Lock it down */
821         spin_lock_irqsave(&priv->txlock, flags);
822         spin_lock(&priv->rxlock);
823
824         gfar_halt(dev);
825
826         spin_unlock(&priv->rxlock);
827         spin_unlock_irqrestore(&priv->txlock, flags);
828
829         /* Free the IRQs */
830         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
831                 free_irq(priv->interruptError, dev);
832                 free_irq(priv->interruptTransmit, dev);
833                 free_irq(priv->interruptReceive, dev);
834         } else {
835                 free_irq(priv->interruptTransmit, dev);
836         }
837
838         free_skb_resources(priv);
839
840         dma_free_coherent(&priv->ofdev->dev,
841                         sizeof(struct txbd8)*priv->tx_ring_size
842                         + sizeof(struct rxbd8)*priv->rx_ring_size,
843                         priv->tx_bd_base,
844                         gfar_read(&regs->tbase0));
845 }
846
847 /* If there are any tx skbs or rx skbs still around, free them.
848  * Then free tx_skbuff and rx_skbuff */
849 static void free_skb_resources(struct gfar_private *priv)
850 {
851         struct rxbd8 *rxbdp;
852         struct txbd8 *txbdp;
853         int i, j;
854
855         /* Go through all the buffer descriptors and free their data buffers */
856         txbdp = priv->tx_bd_base;
857
858         for (i = 0; i < priv->tx_ring_size; i++) {
859                 if (!priv->tx_skbuff[i])
860                         continue;
861
862                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
863                                 txbdp->length, DMA_TO_DEVICE);
864                 txbdp->lstatus = 0;
865                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
866                         txbdp++;
867                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
868                                         txbdp->length, DMA_TO_DEVICE);
869                 }
870                 txbdp++;
871                 dev_kfree_skb_any(priv->tx_skbuff[i]);
872                 priv->tx_skbuff[i] = NULL;
873         }
874
875         kfree(priv->tx_skbuff);
876
877         rxbdp = priv->rx_bd_base;
878
879         /* rx_skbuff is not guaranteed to be allocated, so only
880          * free it and its contents if it is allocated */
881         if(priv->rx_skbuff != NULL) {
882                 for (i = 0; i < priv->rx_ring_size; i++) {
883                         if (priv->rx_skbuff[i]) {
884                                 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
885                                                 priv->rx_buffer_size,
886                                                 DMA_FROM_DEVICE);
887
888                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
889                                 priv->rx_skbuff[i] = NULL;
890                         }
891
892                         rxbdp->lstatus = 0;
893                         rxbdp->bufPtr = 0;
894
895                         rxbdp++;
896                 }
897
898                 kfree(priv->rx_skbuff);
899         }
900 }
901
902 void gfar_start(struct net_device *dev)
903 {
904         struct gfar_private *priv = netdev_priv(dev);
905         struct gfar __iomem *regs = priv->regs;
906         u32 tempval;
907
908         /* Enable Rx and Tx in MACCFG1 */
909         tempval = gfar_read(&regs->maccfg1);
910         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
911         gfar_write(&regs->maccfg1, tempval);
912
913         /* Initialize DMACTRL to have WWR and WOP */
914         tempval = gfar_read(&priv->regs->dmactrl);
915         tempval |= DMACTRL_INIT_SETTINGS;
916         gfar_write(&priv->regs->dmactrl, tempval);
917
918         /* Make sure we aren't stopped */
919         tempval = gfar_read(&priv->regs->dmactrl);
920         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
921         gfar_write(&priv->regs->dmactrl, tempval);
922
923         /* Clear THLT/RHLT, so that the DMA starts polling now */
924         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
925         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
926
927         /* Unmask the interrupts we look for */
928         gfar_write(&regs->imask, IMASK_DEFAULT);
929
930         dev->trans_start = jiffies;
931 }
932
933 /* Bring the controller up and running */
934 int startup_gfar(struct net_device *dev)
935 {
936         struct txbd8 *txbdp;
937         struct rxbd8 *rxbdp;
938         dma_addr_t addr = 0;
939         unsigned long vaddr;
940         int i;
941         struct gfar_private *priv = netdev_priv(dev);
942         struct gfar __iomem *regs = priv->regs;
943         int err = 0;
944         u32 rctrl = 0;
945         u32 attrs = 0;
946
947         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
948
949         /* Allocate memory for the buffer descriptors */
950         vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
951                         sizeof (struct txbd8) * priv->tx_ring_size +
952                         sizeof (struct rxbd8) * priv->rx_ring_size,
953                         &addr, GFP_KERNEL);
954
955         if (vaddr == 0) {
956                 if (netif_msg_ifup(priv))
957                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
958                                         dev->name);
959                 return -ENOMEM;
960         }
961
962         priv->tx_bd_base = (struct txbd8 *) vaddr;
963
964         /* enet DMA only understands physical addresses */
965         gfar_write(&regs->tbase0, addr);
966
967         /* Start the rx descriptor ring where the tx ring leaves off */
968         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
969         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
970         priv->rx_bd_base = (struct rxbd8 *) vaddr;
971         gfar_write(&regs->rbase0, addr);
972
973         /* Setup the skbuff rings */
974         priv->tx_skbuff =
975             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
976                                         priv->tx_ring_size, GFP_KERNEL);
977
978         if (NULL == priv->tx_skbuff) {
979                 if (netif_msg_ifup(priv))
980                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
981                                         dev->name);
982                 err = -ENOMEM;
983                 goto tx_skb_fail;
984         }
985
986         for (i = 0; i < priv->tx_ring_size; i++)
987                 priv->tx_skbuff[i] = NULL;
988
989         priv->rx_skbuff =
990             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
991                                         priv->rx_ring_size, GFP_KERNEL);
992
993         if (NULL == priv->rx_skbuff) {
994                 if (netif_msg_ifup(priv))
995                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
996                                         dev->name);
997                 err = -ENOMEM;
998                 goto rx_skb_fail;
999         }
1000
1001         for (i = 0; i < priv->rx_ring_size; i++)
1002                 priv->rx_skbuff[i] = NULL;
1003
1004         /* Initialize some variables in our dev structure */
1005         priv->num_txbdfree = priv->tx_ring_size;
1006         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1007         priv->cur_rx = priv->rx_bd_base;
1008         priv->skb_curtx = priv->skb_dirtytx = 0;
1009         priv->skb_currx = 0;
1010
1011         /* Initialize Transmit Descriptor Ring */
1012         txbdp = priv->tx_bd_base;
1013         for (i = 0; i < priv->tx_ring_size; i++) {
1014                 txbdp->lstatus = 0;
1015                 txbdp->bufPtr = 0;
1016                 txbdp++;
1017         }
1018
1019         /* Set the last descriptor in the ring to indicate wrap */
1020         txbdp--;
1021         txbdp->status |= TXBD_WRAP;
1022
1023         rxbdp = priv->rx_bd_base;
1024         for (i = 0; i < priv->rx_ring_size; i++) {
1025                 struct sk_buff *skb;
1026
1027                 skb = gfar_new_skb(dev);
1028
1029                 if (!skb) {
1030                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1031                                         dev->name);
1032
1033                         goto err_rxalloc_fail;
1034                 }
1035
1036                 priv->rx_skbuff[i] = skb;
1037
1038                 gfar_new_rxbdp(dev, rxbdp, skb);
1039
1040                 rxbdp++;
1041         }
1042
1043         /* Set the last descriptor in the ring to wrap */
1044         rxbdp--;
1045         rxbdp->status |= RXBD_WRAP;
1046
1047         /* If the device has multiple interrupts, register for
1048          * them.  Otherwise, only register for the one */
1049         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1050                 /* Install our interrupt handlers for Error,
1051                  * Transmit, and Receive */
1052                 if (request_irq(priv->interruptError, gfar_error,
1053                                 0, priv->int_name_er, dev) < 0) {
1054                         if (netif_msg_intr(priv))
1055                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1056                                         dev->name, priv->interruptError);
1057
1058                         err = -1;
1059                         goto err_irq_fail;
1060                 }
1061
1062                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1063                                 0, priv->int_name_tx, dev) < 0) {
1064                         if (netif_msg_intr(priv))
1065                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1066                                         dev->name, priv->interruptTransmit);
1067
1068                         err = -1;
1069
1070                         goto tx_irq_fail;
1071                 }
1072
1073                 if (request_irq(priv->interruptReceive, gfar_receive,
1074                                 0, priv->int_name_rx, dev) < 0) {
1075                         if (netif_msg_intr(priv))
1076                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1077                                                 dev->name, priv->interruptReceive);
1078
1079                         err = -1;
1080                         goto rx_irq_fail;
1081                 }
1082         } else {
1083                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1084                                 0, priv->int_name_tx, dev) < 0) {
1085                         if (netif_msg_intr(priv))
1086                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1087                                         dev->name, priv->interruptTransmit);
1088
1089                         err = -1;
1090                         goto err_irq_fail;
1091                 }
1092         }
1093
1094         phy_start(priv->phydev);
1095
1096         /* Configure the coalescing support */
1097         gfar_write(&regs->txic, 0);
1098         if (priv->txcoalescing)
1099                 gfar_write(&regs->txic, priv->txic);
1100
1101         gfar_write(&regs->rxic, 0);
1102         if (priv->rxcoalescing)
1103                 gfar_write(&regs->rxic, priv->rxic);
1104
1105         if (priv->rx_csum_enable)
1106                 rctrl |= RCTRL_CHECKSUMMING;
1107
1108         if (priv->extended_hash) {
1109                 rctrl |= RCTRL_EXTHASH;
1110
1111                 gfar_clear_exact_match(dev);
1112                 rctrl |= RCTRL_EMEN;
1113         }
1114
1115         if (priv->padding) {
1116                 rctrl &= ~RCTRL_PAL_MASK;
1117                 rctrl |= RCTRL_PADDING(priv->padding);
1118         }
1119
1120         /* Init rctrl based on our settings */
1121         gfar_write(&priv->regs->rctrl, rctrl);
1122
1123         if (dev->features & NETIF_F_IP_CSUM)
1124                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1125
1126         /* Set the extraction length and index */
1127         attrs = ATTRELI_EL(priv->rx_stash_size) |
1128                 ATTRELI_EI(priv->rx_stash_index);
1129
1130         gfar_write(&priv->regs->attreli, attrs);
1131
1132         /* Start with defaults, and add stashing or locking
1133          * depending on the approprate variables */
1134         attrs = ATTR_INIT_SETTINGS;
1135
1136         if (priv->bd_stash_en)
1137                 attrs |= ATTR_BDSTASH;
1138
1139         if (priv->rx_stash_size != 0)
1140                 attrs |= ATTR_BUFSTASH;
1141
1142         gfar_write(&priv->regs->attr, attrs);
1143
1144         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1145         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1146         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1147
1148         /* Start the controller */
1149         gfar_start(dev);
1150
1151         return 0;
1152
1153 rx_irq_fail:
1154         free_irq(priv->interruptTransmit, dev);
1155 tx_irq_fail:
1156         free_irq(priv->interruptError, dev);
1157 err_irq_fail:
1158 err_rxalloc_fail:
1159 rx_skb_fail:
1160         free_skb_resources(priv);
1161 tx_skb_fail:
1162         dma_free_coherent(&priv->ofdev->dev,
1163                         sizeof(struct txbd8)*priv->tx_ring_size
1164                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1165                         priv->tx_bd_base,
1166                         gfar_read(&regs->tbase0));
1167
1168         return err;
1169 }
1170
1171 /* Called when something needs to use the ethernet device */
1172 /* Returns 0 for success. */
1173 static int gfar_enet_open(struct net_device *dev)
1174 {
1175         struct gfar_private *priv = netdev_priv(dev);
1176         int err;
1177
1178         napi_enable(&priv->napi);
1179
1180         skb_queue_head_init(&priv->rx_recycle);
1181
1182         /* Initialize a bunch of registers */
1183         init_registers(dev);
1184
1185         gfar_set_mac_address(dev);
1186
1187         err = init_phy(dev);
1188
1189         if(err) {
1190                 napi_disable(&priv->napi);
1191                 return err;
1192         }
1193
1194         err = startup_gfar(dev);
1195         if (err) {
1196                 napi_disable(&priv->napi);
1197                 return err;
1198         }
1199
1200         netif_start_queue(dev);
1201
1202         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1203
1204         return err;
1205 }
1206
1207 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1208 {
1209         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1210
1211         memset(fcb, 0, GMAC_FCB_LEN);
1212
1213         return fcb;
1214 }
1215
1216 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1217 {
1218         u8 flags = 0;
1219
1220         /* If we're here, it's a IP packet with a TCP or UDP
1221          * payload.  We set it to checksum, using a pseudo-header
1222          * we provide
1223          */
1224         flags = TXFCB_DEFAULT;
1225
1226         /* Tell the controller what the protocol is */
1227         /* And provide the already calculated phcs */
1228         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1229                 flags |= TXFCB_UDP;
1230                 fcb->phcs = udp_hdr(skb)->check;
1231         } else
1232                 fcb->phcs = tcp_hdr(skb)->check;
1233
1234         /* l3os is the distance between the start of the
1235          * frame (skb->data) and the start of the IP hdr.
1236          * l4os is the distance between the start of the
1237          * l3 hdr and the l4 hdr */
1238         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1239         fcb->l4os = skb_network_header_len(skb);
1240
1241         fcb->flags = flags;
1242 }
1243
1244 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1245 {
1246         fcb->flags |= TXFCB_VLN;
1247         fcb->vlctl = vlan_tx_tag_get(skb);
1248 }
1249
1250 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1251                                struct txbd8 *base, int ring_size)
1252 {
1253         struct txbd8 *new_bd = bdp + stride;
1254
1255         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1256 }
1257
1258 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1259                 int ring_size)
1260 {
1261         return skip_txbd(bdp, 1, base, ring_size);
1262 }
1263
1264 /* This is called by the kernel when a frame is ready for transmission. */
1265 /* It is pointed to by the dev->hard_start_xmit function pointer */
1266 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1267 {
1268         struct gfar_private *priv = netdev_priv(dev);
1269         struct txfcb *fcb = NULL;
1270         struct txbd8 *txbdp, *txbdp_start, *base;
1271         u32 lstatus;
1272         int i;
1273         u32 bufaddr;
1274         unsigned long flags;
1275         unsigned int nr_frags, length;
1276
1277         base = priv->tx_bd_base;
1278
1279         /* make space for additional header when fcb is needed */
1280         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1281                         (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1282                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
1283                 struct sk_buff *skb_new;
1284
1285                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1286                 if (!skb_new) {
1287                         dev->stats.tx_errors++;
1288                         kfree_skb(skb);
1289                         return NETDEV_TX_OK;
1290                 }
1291                 kfree_skb(skb);
1292                 skb = skb_new;
1293         }
1294
1295         /* total number of fragments in the SKB */
1296         nr_frags = skb_shinfo(skb)->nr_frags;
1297
1298         spin_lock_irqsave(&priv->txlock, flags);
1299
1300         /* check if there is space to queue this packet */
1301         if ((nr_frags+1) > priv->num_txbdfree) {
1302                 /* no space, stop the queue */
1303                 netif_stop_queue(dev);
1304                 dev->stats.tx_fifo_errors++;
1305                 spin_unlock_irqrestore(&priv->txlock, flags);
1306                 return NETDEV_TX_BUSY;
1307         }
1308
1309         /* Update transmit stats */
1310         dev->stats.tx_bytes += skb->len;
1311
1312         txbdp = txbdp_start = priv->cur_tx;
1313
1314         if (nr_frags == 0) {
1315                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1316         } else {
1317                 /* Place the fragment addresses and lengths into the TxBDs */
1318                 for (i = 0; i < nr_frags; i++) {
1319                         /* Point at the next BD, wrapping as needed */
1320                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1321
1322                         length = skb_shinfo(skb)->frags[i].size;
1323
1324                         lstatus = txbdp->lstatus | length |
1325                                 BD_LFLAG(TXBD_READY);
1326
1327                         /* Handle the last BD specially */
1328                         if (i == nr_frags - 1)
1329                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1330
1331                         bufaddr = dma_map_page(&priv->ofdev->dev,
1332                                         skb_shinfo(skb)->frags[i].page,
1333                                         skb_shinfo(skb)->frags[i].page_offset,
1334                                         length,
1335                                         DMA_TO_DEVICE);
1336
1337                         /* set the TxBD length and buffer pointer */
1338                         txbdp->bufPtr = bufaddr;
1339                         txbdp->lstatus = lstatus;
1340                 }
1341
1342                 lstatus = txbdp_start->lstatus;
1343         }
1344
1345         /* Set up checksumming */
1346         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1347                 fcb = gfar_add_fcb(skb);
1348                 lstatus |= BD_LFLAG(TXBD_TOE);
1349                 gfar_tx_checksum(skb, fcb);
1350         }
1351
1352         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1353                 if (unlikely(NULL == fcb)) {
1354                         fcb = gfar_add_fcb(skb);
1355                         lstatus |= BD_LFLAG(TXBD_TOE);
1356                 }
1357
1358                 gfar_tx_vlan(skb, fcb);
1359         }
1360
1361         /* setup the TxBD length and buffer pointer for the first BD */
1362         priv->tx_skbuff[priv->skb_curtx] = skb;
1363         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1364                         skb_headlen(skb), DMA_TO_DEVICE);
1365
1366         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1367
1368         /*
1369          * The powerpc-specific eieio() is used, as wmb() has too strong
1370          * semantics (it requires synchronization between cacheable and
1371          * uncacheable mappings, which eieio doesn't provide and which we
1372          * don't need), thus requiring a more expensive sync instruction.  At
1373          * some point, the set of architecture-independent barrier functions
1374          * should be expanded to include weaker barriers.
1375          */
1376         eieio();
1377
1378         txbdp_start->lstatus = lstatus;
1379
1380         /* Update the current skb pointer to the next entry we will use
1381          * (wrapping if necessary) */
1382         priv->skb_curtx = (priv->skb_curtx + 1) &
1383                 TX_RING_MOD_MASK(priv->tx_ring_size);
1384
1385         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1386
1387         /* reduce TxBD free count */
1388         priv->num_txbdfree -= (nr_frags + 1);
1389
1390         dev->trans_start = jiffies;
1391
1392         /* If the next BD still needs to be cleaned up, then the bds
1393            are full.  We need to tell the kernel to stop sending us stuff. */
1394         if (!priv->num_txbdfree) {
1395                 netif_stop_queue(dev);
1396
1397                 dev->stats.tx_fifo_errors++;
1398         }
1399
1400         /* Tell the DMA to go go go */
1401         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1402
1403         /* Unlock priv */
1404         spin_unlock_irqrestore(&priv->txlock, flags);
1405
1406         return NETDEV_TX_OK;
1407 }
1408
1409 /* Stops the kernel queue, and halts the controller */
1410 static int gfar_close(struct net_device *dev)
1411 {
1412         struct gfar_private *priv = netdev_priv(dev);
1413
1414         napi_disable(&priv->napi);
1415
1416         skb_queue_purge(&priv->rx_recycle);
1417         cancel_work_sync(&priv->reset_task);
1418         stop_gfar(dev);
1419
1420         /* Disconnect from the PHY */
1421         phy_disconnect(priv->phydev);
1422         priv->phydev = NULL;
1423
1424         netif_stop_queue(dev);
1425
1426         return 0;
1427 }
1428
1429 /* Changes the mac address if the controller is not running. */
1430 static int gfar_set_mac_address(struct net_device *dev)
1431 {
1432         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1433
1434         return 0;
1435 }
1436
1437
1438 /* Enables and disables VLAN insertion/extraction */
1439 static void gfar_vlan_rx_register(struct net_device *dev,
1440                 struct vlan_group *grp)
1441 {
1442         struct gfar_private *priv = netdev_priv(dev);
1443         unsigned long flags;
1444         u32 tempval;
1445
1446         spin_lock_irqsave(&priv->rxlock, flags);
1447
1448         priv->vlgrp = grp;
1449
1450         if (grp) {
1451                 /* Enable VLAN tag insertion */
1452                 tempval = gfar_read(&priv->regs->tctrl);
1453                 tempval |= TCTRL_VLINS;
1454
1455                 gfar_write(&priv->regs->tctrl, tempval);
1456
1457                 /* Enable VLAN tag extraction */
1458                 tempval = gfar_read(&priv->regs->rctrl);
1459                 tempval |= RCTRL_VLEX;
1460                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1461                 gfar_write(&priv->regs->rctrl, tempval);
1462         } else {
1463                 /* Disable VLAN tag insertion */
1464                 tempval = gfar_read(&priv->regs->tctrl);
1465                 tempval &= ~TCTRL_VLINS;
1466                 gfar_write(&priv->regs->tctrl, tempval);
1467
1468                 /* Disable VLAN tag extraction */
1469                 tempval = gfar_read(&priv->regs->rctrl);
1470                 tempval &= ~RCTRL_VLEX;
1471                 /* If parse is no longer required, then disable parser */
1472                 if (tempval & RCTRL_REQ_PARSER)
1473                         tempval |= RCTRL_PRSDEP_INIT;
1474                 else
1475                         tempval &= ~RCTRL_PRSDEP_INIT;
1476                 gfar_write(&priv->regs->rctrl, tempval);
1477         }
1478
1479         gfar_change_mtu(dev, dev->mtu);
1480
1481         spin_unlock_irqrestore(&priv->rxlock, flags);
1482 }
1483
1484 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1485 {
1486         int tempsize, tempval;
1487         struct gfar_private *priv = netdev_priv(dev);
1488         int oldsize = priv->rx_buffer_size;
1489         int frame_size = new_mtu + ETH_HLEN;
1490
1491         if (priv->vlgrp)
1492                 frame_size += VLAN_HLEN;
1493
1494         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1495                 if (netif_msg_drv(priv))
1496                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1497                                         dev->name);
1498                 return -EINVAL;
1499         }
1500
1501         if (gfar_uses_fcb(priv))
1502                 frame_size += GMAC_FCB_LEN;
1503
1504         frame_size += priv->padding;
1505
1506         tempsize =
1507             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1508             INCREMENTAL_BUFFER_SIZE;
1509
1510         /* Only stop and start the controller if it isn't already
1511          * stopped, and we changed something */
1512         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1513                 stop_gfar(dev);
1514
1515         priv->rx_buffer_size = tempsize;
1516
1517         dev->mtu = new_mtu;
1518
1519         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1520         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1521
1522         /* If the mtu is larger than the max size for standard
1523          * ethernet frames (ie, a jumbo frame), then set maccfg2
1524          * to allow huge frames, and to check the length */
1525         tempval = gfar_read(&priv->regs->maccfg2);
1526
1527         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1528                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1529         else
1530                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1531
1532         gfar_write(&priv->regs->maccfg2, tempval);
1533
1534         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1535                 startup_gfar(dev);
1536
1537         return 0;
1538 }
1539
1540 /* gfar_reset_task gets scheduled when a packet has not been
1541  * transmitted after a set amount of time.
1542  * For now, assume that clearing out all the structures, and
1543  * starting over will fix the problem.
1544  */
1545 static void gfar_reset_task(struct work_struct *work)
1546 {
1547         struct gfar_private *priv = container_of(work, struct gfar_private,
1548                         reset_task);
1549         struct net_device *dev = priv->ndev;
1550
1551         if (dev->flags & IFF_UP) {
1552                 netif_stop_queue(dev);
1553                 stop_gfar(dev);
1554                 startup_gfar(dev);
1555                 netif_start_queue(dev);
1556         }
1557
1558         netif_tx_schedule_all(dev);
1559 }
1560
1561 static void gfar_timeout(struct net_device *dev)
1562 {
1563         struct gfar_private *priv = netdev_priv(dev);
1564
1565         dev->stats.tx_errors++;
1566         schedule_work(&priv->reset_task);
1567 }
1568
1569 /* Interrupt Handler for Transmit complete */
1570 static int gfar_clean_tx_ring(struct net_device *dev)
1571 {
1572         struct gfar_private *priv = netdev_priv(dev);
1573         struct txbd8 *bdp;
1574         struct txbd8 *lbdp = NULL;
1575         struct txbd8 *base = priv->tx_bd_base;
1576         struct sk_buff *skb;
1577         int skb_dirtytx;
1578         int tx_ring_size = priv->tx_ring_size;
1579         int frags = 0;
1580         int i;
1581         int howmany = 0;
1582         u32 lstatus;
1583
1584         bdp = priv->dirty_tx;
1585         skb_dirtytx = priv->skb_dirtytx;
1586
1587         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1588                 frags = skb_shinfo(skb)->nr_frags;
1589                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1590
1591                 lstatus = lbdp->lstatus;
1592
1593                 /* Only clean completed frames */
1594                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1595                                 (lstatus & BD_LENGTH_MASK))
1596                         break;
1597
1598                 dma_unmap_single(&priv->ofdev->dev,
1599                                 bdp->bufPtr,
1600                                 bdp->length,
1601                                 DMA_TO_DEVICE);
1602
1603                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1604                 bdp = next_txbd(bdp, base, tx_ring_size);
1605
1606                 for (i = 0; i < frags; i++) {
1607                         dma_unmap_page(&priv->ofdev->dev,
1608                                         bdp->bufPtr,
1609                                         bdp->length,
1610                                         DMA_TO_DEVICE);
1611                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1612                         bdp = next_txbd(bdp, base, tx_ring_size);
1613                 }
1614
1615                 /*
1616                  * If there's room in the queue (limit it to rx_buffer_size)
1617                  * we add this skb back into the pool, if it's the right size
1618                  */
1619                 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1620                                 skb_recycle_check(skb, priv->rx_buffer_size +
1621                                         RXBUF_ALIGNMENT))
1622                         __skb_queue_head(&priv->rx_recycle, skb);
1623                 else
1624                         dev_kfree_skb_any(skb);
1625
1626                 priv->tx_skbuff[skb_dirtytx] = NULL;
1627
1628                 skb_dirtytx = (skb_dirtytx + 1) &
1629                         TX_RING_MOD_MASK(tx_ring_size);
1630
1631                 howmany++;
1632                 priv->num_txbdfree += frags + 1;
1633         }
1634
1635         /* If we freed a buffer, we can restart transmission, if necessary */
1636         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1637                 netif_wake_queue(dev);
1638
1639         /* Update dirty indicators */
1640         priv->skb_dirtytx = skb_dirtytx;
1641         priv->dirty_tx = bdp;
1642
1643         dev->stats.tx_packets += howmany;
1644
1645         return howmany;
1646 }
1647
1648 static void gfar_schedule_cleanup(struct net_device *dev)
1649 {
1650         struct gfar_private *priv = netdev_priv(dev);
1651         unsigned long flags;
1652
1653         spin_lock_irqsave(&priv->txlock, flags);
1654         spin_lock(&priv->rxlock);
1655
1656         if (napi_schedule_prep(&priv->napi)) {
1657                 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1658                 __napi_schedule(&priv->napi);
1659         } else {
1660                 /*
1661                  * Clear IEVENT, so interrupts aren't called again
1662                  * because of the packets that have already arrived.
1663                  */
1664                 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1665         }
1666
1667         spin_unlock(&priv->rxlock);
1668         spin_unlock_irqrestore(&priv->txlock, flags);
1669 }
1670
1671 /* Interrupt Handler for Transmit complete */
1672 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1673 {
1674         gfar_schedule_cleanup((struct net_device *)dev_id);
1675         return IRQ_HANDLED;
1676 }
1677
1678 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1679                 struct sk_buff *skb)
1680 {
1681         struct gfar_private *priv = netdev_priv(dev);
1682         u32 lstatus;
1683
1684         bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1685                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1686
1687         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1688
1689         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1690                 lstatus |= BD_LFLAG(RXBD_WRAP);
1691
1692         eieio();
1693
1694         bdp->lstatus = lstatus;
1695 }
1696
1697
1698 struct sk_buff * gfar_new_skb(struct net_device *dev)
1699 {
1700         unsigned int alignamount;
1701         struct gfar_private *priv = netdev_priv(dev);
1702         struct sk_buff *skb = NULL;
1703
1704         skb = __skb_dequeue(&priv->rx_recycle);
1705         if (!skb)
1706                 skb = netdev_alloc_skb(dev,
1707                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1708
1709         if (!skb)
1710                 return NULL;
1711
1712         alignamount = RXBUF_ALIGNMENT -
1713                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1714
1715         /* We need the data buffer to be aligned properly.  We will reserve
1716          * as many bytes as needed to align the data properly
1717          */
1718         skb_reserve(skb, alignamount);
1719
1720         return skb;
1721 }
1722
1723 static inline void count_errors(unsigned short status, struct net_device *dev)
1724 {
1725         struct gfar_private *priv = netdev_priv(dev);
1726         struct net_device_stats *stats = &dev->stats;
1727         struct gfar_extra_stats *estats = &priv->extra_stats;
1728
1729         /* If the packet was truncated, none of the other errors
1730          * matter */
1731         if (status & RXBD_TRUNCATED) {
1732                 stats->rx_length_errors++;
1733
1734                 estats->rx_trunc++;
1735
1736                 return;
1737         }
1738         /* Count the errors, if there were any */
1739         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1740                 stats->rx_length_errors++;
1741
1742                 if (status & RXBD_LARGE)
1743                         estats->rx_large++;
1744                 else
1745                         estats->rx_short++;
1746         }
1747         if (status & RXBD_NONOCTET) {
1748                 stats->rx_frame_errors++;
1749                 estats->rx_nonoctet++;
1750         }
1751         if (status & RXBD_CRCERR) {
1752                 estats->rx_crcerr++;
1753                 stats->rx_crc_errors++;
1754         }
1755         if (status & RXBD_OVERRUN) {
1756                 estats->rx_overrun++;
1757                 stats->rx_crc_errors++;
1758         }
1759 }
1760
1761 irqreturn_t gfar_receive(int irq, void *dev_id)
1762 {
1763         gfar_schedule_cleanup((struct net_device *)dev_id);
1764         return IRQ_HANDLED;
1765 }
1766
1767 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1768 {
1769         /* If valid headers were found, and valid sums
1770          * were verified, then we tell the kernel that no
1771          * checksumming is necessary.  Otherwise, it is */
1772         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1773                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1774         else
1775                 skb->ip_summed = CHECKSUM_NONE;
1776 }
1777
1778
1779 /* gfar_process_frame() -- handle one incoming packet if skb
1780  * isn't NULL.  */
1781 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1782                               int amount_pull)
1783 {
1784         struct gfar_private *priv = netdev_priv(dev);
1785         struct rxfcb *fcb = NULL;
1786
1787         int ret;
1788
1789         /* fcb is at the beginning if exists */
1790         fcb = (struct rxfcb *)skb->data;
1791
1792         /* Remove the FCB from the skb */
1793         /* Remove the padded bytes, if there are any */
1794         if (amount_pull)
1795                 skb_pull(skb, amount_pull);
1796
1797         if (priv->rx_csum_enable)
1798                 gfar_rx_checksum(skb, fcb);
1799
1800         /* Tell the skb what kind of packet this is */
1801         skb->protocol = eth_type_trans(skb, dev);
1802
1803         /* Send the packet up the stack */
1804         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1805                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1806         else
1807                 ret = netif_receive_skb(skb);
1808
1809         if (NET_RX_DROP == ret)
1810                 priv->extra_stats.kernel_dropped++;
1811
1812         return 0;
1813 }
1814
1815 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1816  *   until the budget/quota has been reached. Returns the number
1817  *   of frames handled
1818  */
1819 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1820 {
1821         struct rxbd8 *bdp, *base;
1822         struct sk_buff *skb;
1823         int pkt_len;
1824         int amount_pull;
1825         int howmany = 0;
1826         struct gfar_private *priv = netdev_priv(dev);
1827
1828         /* Get the first full descriptor */
1829         bdp = priv->cur_rx;
1830         base = priv->rx_bd_base;
1831
1832         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1833                 priv->padding;
1834
1835         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1836                 struct sk_buff *newskb;
1837                 rmb();
1838
1839                 /* Add another skb for the future */
1840                 newskb = gfar_new_skb(dev);
1841
1842                 skb = priv->rx_skbuff[priv->skb_currx];
1843
1844                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1845                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1846
1847                 /* We drop the frame if we failed to allocate a new buffer */
1848                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1849                                  bdp->status & RXBD_ERR)) {
1850                         count_errors(bdp->status, dev);
1851
1852                         if (unlikely(!newskb))
1853                                 newskb = skb;
1854                         else if (skb) {
1855                                 /*
1856                                  * We need to reset ->data to what it
1857                                  * was before gfar_new_skb() re-aligned
1858                                  * it to an RXBUF_ALIGNMENT boundary
1859                                  * before we put the skb back on the
1860                                  * recycle list.
1861                                  */
1862                                 skb->data = skb->head + NET_SKB_PAD;
1863                                 __skb_queue_head(&priv->rx_recycle, skb);
1864                         }
1865                 } else {
1866                         /* Increment the number of packets */
1867                         dev->stats.rx_packets++;
1868                         howmany++;
1869
1870                         if (likely(skb)) {
1871                                 pkt_len = bdp->length - ETH_FCS_LEN;
1872                                 /* Remove the FCS from the packet length */
1873                                 skb_put(skb, pkt_len);
1874                                 dev->stats.rx_bytes += pkt_len;
1875
1876                                 if (in_irq() || irqs_disabled())
1877                                         printk("Interrupt problem!\n");
1878                                 gfar_process_frame(dev, skb, amount_pull);
1879
1880                         } else {
1881                                 if (netif_msg_rx_err(priv))
1882                                         printk(KERN_WARNING
1883                                                "%s: Missing skb!\n", dev->name);
1884                                 dev->stats.rx_dropped++;
1885                                 priv->extra_stats.rx_skbmissing++;
1886                         }
1887
1888                 }
1889
1890                 priv->rx_skbuff[priv->skb_currx] = newskb;
1891
1892                 /* Setup the new bdp */
1893                 gfar_new_rxbdp(dev, bdp, newskb);
1894
1895                 /* Update to the next pointer */
1896                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1897
1898                 /* update to point at the next skb */
1899                 priv->skb_currx =
1900                     (priv->skb_currx + 1) &
1901                     RX_RING_MOD_MASK(priv->rx_ring_size);
1902         }
1903
1904         /* Update the current rxbd pointer to be the next one */
1905         priv->cur_rx = bdp;
1906
1907         return howmany;
1908 }
1909
1910 static int gfar_poll(struct napi_struct *napi, int budget)
1911 {
1912         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1913         struct net_device *dev = priv->ndev;
1914         int tx_cleaned = 0;
1915         int rx_cleaned = 0;
1916         unsigned long flags;
1917
1918         /* Clear IEVENT, so interrupts aren't called again
1919          * because of the packets that have already arrived */
1920         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1921
1922         /* If we fail to get the lock, don't bother with the TX BDs */
1923         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1924                 tx_cleaned = gfar_clean_tx_ring(dev);
1925                 spin_unlock_irqrestore(&priv->txlock, flags);
1926         }
1927
1928         rx_cleaned = gfar_clean_rx_ring(dev, budget);
1929
1930         if (tx_cleaned)
1931                 return budget;
1932
1933         if (rx_cleaned < budget) {
1934                 napi_complete(napi);
1935
1936                 /* Clear the halt bit in RSTAT */
1937                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1938
1939                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1940
1941                 /* If we are coalescing interrupts, update the timer */
1942                 /* Otherwise, clear it */
1943                 if (likely(priv->rxcoalescing)) {
1944                         gfar_write(&priv->regs->rxic, 0);
1945                         gfar_write(&priv->regs->rxic, priv->rxic);
1946                 }
1947                 if (likely(priv->txcoalescing)) {
1948                         gfar_write(&priv->regs->txic, 0);
1949                         gfar_write(&priv->regs->txic, priv->txic);
1950                 }
1951         }
1952
1953         return rx_cleaned;
1954 }
1955
1956 #ifdef CONFIG_NET_POLL_CONTROLLER
1957 /*
1958  * Polling 'interrupt' - used by things like netconsole to send skbs
1959  * without having to re-enable interrupts. It's not called while
1960  * the interrupt routine is executing.
1961  */
1962 static void gfar_netpoll(struct net_device *dev)
1963 {
1964         struct gfar_private *priv = netdev_priv(dev);
1965
1966         /* If the device has multiple interrupts, run tx/rx */
1967         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1968                 disable_irq(priv->interruptTransmit);
1969                 disable_irq(priv->interruptReceive);
1970                 disable_irq(priv->interruptError);
1971                 gfar_interrupt(priv->interruptTransmit, dev);
1972                 enable_irq(priv->interruptError);
1973                 enable_irq(priv->interruptReceive);
1974                 enable_irq(priv->interruptTransmit);
1975         } else {
1976                 disable_irq(priv->interruptTransmit);
1977                 gfar_interrupt(priv->interruptTransmit, dev);
1978                 enable_irq(priv->interruptTransmit);
1979         }
1980 }
1981 #endif
1982
1983 /* The interrupt handler for devices with one interrupt */
1984 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1985 {
1986         struct net_device *dev = dev_id;
1987         struct gfar_private *priv = netdev_priv(dev);
1988
1989         /* Save ievent for future reference */
1990         u32 events = gfar_read(&priv->regs->ievent);
1991
1992         /* Check for reception */
1993         if (events & IEVENT_RX_MASK)
1994                 gfar_receive(irq, dev_id);
1995
1996         /* Check for transmit completion */
1997         if (events & IEVENT_TX_MASK)
1998                 gfar_transmit(irq, dev_id);
1999
2000         /* Check for errors */
2001         if (events & IEVENT_ERR_MASK)
2002                 gfar_error(irq, dev_id);
2003
2004         return IRQ_HANDLED;
2005 }
2006
2007 /* Called every time the controller might need to be made
2008  * aware of new link state.  The PHY code conveys this
2009  * information through variables in the phydev structure, and this
2010  * function converts those variables into the appropriate
2011  * register values, and can bring down the device if needed.
2012  */
2013 static void adjust_link(struct net_device *dev)
2014 {
2015         struct gfar_private *priv = netdev_priv(dev);
2016         struct gfar __iomem *regs = priv->regs;
2017         unsigned long flags;
2018         struct phy_device *phydev = priv->phydev;
2019         int new_state = 0;
2020
2021         spin_lock_irqsave(&priv->txlock, flags);
2022         if (phydev->link) {
2023                 u32 tempval = gfar_read(&regs->maccfg2);
2024                 u32 ecntrl = gfar_read(&regs->ecntrl);
2025
2026                 /* Now we make sure that we can be in full duplex mode.
2027                  * If not, we operate in half-duplex mode. */
2028                 if (phydev->duplex != priv->oldduplex) {
2029                         new_state = 1;
2030                         if (!(phydev->duplex))
2031                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2032                         else
2033                                 tempval |= MACCFG2_FULL_DUPLEX;
2034
2035                         priv->oldduplex = phydev->duplex;
2036                 }
2037
2038                 if (phydev->speed != priv->oldspeed) {
2039                         new_state = 1;
2040                         switch (phydev->speed) {
2041                         case 1000:
2042                                 tempval =
2043                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2044
2045                                 ecntrl &= ~(ECNTRL_R100);
2046                                 break;
2047                         case 100:
2048                         case 10:
2049                                 tempval =
2050                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2051
2052                                 /* Reduced mode distinguishes
2053                                  * between 10 and 100 */
2054                                 if (phydev->speed == SPEED_100)
2055                                         ecntrl |= ECNTRL_R100;
2056                                 else
2057                                         ecntrl &= ~(ECNTRL_R100);
2058                                 break;
2059                         default:
2060                                 if (netif_msg_link(priv))
2061                                         printk(KERN_WARNING
2062                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2063                                                 dev->name, phydev->speed);
2064                                 break;
2065                         }
2066
2067                         priv->oldspeed = phydev->speed;
2068                 }
2069
2070                 gfar_write(&regs->maccfg2, tempval);
2071                 gfar_write(&regs->ecntrl, ecntrl);
2072
2073                 if (!priv->oldlink) {
2074                         new_state = 1;
2075                         priv->oldlink = 1;
2076                 }
2077         } else if (priv->oldlink) {
2078                 new_state = 1;
2079                 priv->oldlink = 0;
2080                 priv->oldspeed = 0;
2081                 priv->oldduplex = -1;
2082         }
2083
2084         if (new_state && netif_msg_link(priv))
2085                 phy_print_status(phydev);
2086
2087         spin_unlock_irqrestore(&priv->txlock, flags);
2088 }
2089
2090 /* Update the hash table based on the current list of multicast
2091  * addresses we subscribe to.  Also, change the promiscuity of
2092  * the device based on the flags (this function is called
2093  * whenever dev->flags is changed */
2094 static void gfar_set_multi(struct net_device *dev)
2095 {
2096         struct dev_mc_list *mc_ptr;
2097         struct gfar_private *priv = netdev_priv(dev);
2098         struct gfar __iomem *regs = priv->regs;
2099         u32 tempval;
2100
2101         if(dev->flags & IFF_PROMISC) {
2102                 /* Set RCTRL to PROM */
2103                 tempval = gfar_read(&regs->rctrl);
2104                 tempval |= RCTRL_PROM;
2105                 gfar_write(&regs->rctrl, tempval);
2106         } else {
2107                 /* Set RCTRL to not PROM */
2108                 tempval = gfar_read(&regs->rctrl);
2109                 tempval &= ~(RCTRL_PROM);
2110                 gfar_write(&regs->rctrl, tempval);
2111         }
2112
2113         if(dev->flags & IFF_ALLMULTI) {
2114                 /* Set the hash to rx all multicast frames */
2115                 gfar_write(&regs->igaddr0, 0xffffffff);
2116                 gfar_write(&regs->igaddr1, 0xffffffff);
2117                 gfar_write(&regs->igaddr2, 0xffffffff);
2118                 gfar_write(&regs->igaddr3, 0xffffffff);
2119                 gfar_write(&regs->igaddr4, 0xffffffff);
2120                 gfar_write(&regs->igaddr5, 0xffffffff);
2121                 gfar_write(&regs->igaddr6, 0xffffffff);
2122                 gfar_write(&regs->igaddr7, 0xffffffff);
2123                 gfar_write(&regs->gaddr0, 0xffffffff);
2124                 gfar_write(&regs->gaddr1, 0xffffffff);
2125                 gfar_write(&regs->gaddr2, 0xffffffff);
2126                 gfar_write(&regs->gaddr3, 0xffffffff);
2127                 gfar_write(&regs->gaddr4, 0xffffffff);
2128                 gfar_write(&regs->gaddr5, 0xffffffff);
2129                 gfar_write(&regs->gaddr6, 0xffffffff);
2130                 gfar_write(&regs->gaddr7, 0xffffffff);
2131         } else {
2132                 int em_num;
2133                 int idx;
2134
2135                 /* zero out the hash */
2136                 gfar_write(&regs->igaddr0, 0x0);
2137                 gfar_write(&regs->igaddr1, 0x0);
2138                 gfar_write(&regs->igaddr2, 0x0);
2139                 gfar_write(&regs->igaddr3, 0x0);
2140                 gfar_write(&regs->igaddr4, 0x0);
2141                 gfar_write(&regs->igaddr5, 0x0);
2142                 gfar_write(&regs->igaddr6, 0x0);
2143                 gfar_write(&regs->igaddr7, 0x0);
2144                 gfar_write(&regs->gaddr0, 0x0);
2145                 gfar_write(&regs->gaddr1, 0x0);
2146                 gfar_write(&regs->gaddr2, 0x0);
2147                 gfar_write(&regs->gaddr3, 0x0);
2148                 gfar_write(&regs->gaddr4, 0x0);
2149                 gfar_write(&regs->gaddr5, 0x0);
2150                 gfar_write(&regs->gaddr6, 0x0);
2151                 gfar_write(&regs->gaddr7, 0x0);
2152
2153                 /* If we have extended hash tables, we need to
2154                  * clear the exact match registers to prepare for
2155                  * setting them */
2156                 if (priv->extended_hash) {
2157                         em_num = GFAR_EM_NUM + 1;
2158                         gfar_clear_exact_match(dev);
2159                         idx = 1;
2160                 } else {
2161                         idx = 0;
2162                         em_num = 0;
2163                 }
2164
2165                 if(dev->mc_count == 0)
2166                         return;
2167
2168                 /* Parse the list, and set the appropriate bits */
2169                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2170                         if (idx < em_num) {
2171                                 gfar_set_mac_for_addr(dev, idx,
2172                                                 mc_ptr->dmi_addr);
2173                                 idx++;
2174                         } else
2175                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2176                 }
2177         }
2178
2179         return;
2180 }
2181
2182
2183 /* Clears each of the exact match registers to zero, so they
2184  * don't interfere with normal reception */
2185 static void gfar_clear_exact_match(struct net_device *dev)
2186 {
2187         int idx;
2188         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2189
2190         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2191                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2192 }
2193
2194 /* Set the appropriate hash bit for the given addr */
2195 /* The algorithm works like so:
2196  * 1) Take the Destination Address (ie the multicast address), and
2197  * do a CRC on it (little endian), and reverse the bits of the
2198  * result.
2199  * 2) Use the 8 most significant bits as a hash into a 256-entry
2200  * table.  The table is controlled through 8 32-bit registers:
2201  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2202  * gaddr7.  This means that the 3 most significant bits in the
2203  * hash index which gaddr register to use, and the 5 other bits
2204  * indicate which bit (assuming an IBM numbering scheme, which
2205  * for PowerPC (tm) is usually the case) in the register holds
2206  * the entry. */
2207 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2208 {
2209         u32 tempval;
2210         struct gfar_private *priv = netdev_priv(dev);
2211         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2212         int width = priv->hash_width;
2213         u8 whichbit = (result >> (32 - width)) & 0x1f;
2214         u8 whichreg = result >> (32 - width + 5);
2215         u32 value = (1 << (31-whichbit));
2216
2217         tempval = gfar_read(priv->hash_regs[whichreg]);
2218         tempval |= value;
2219         gfar_write(priv->hash_regs[whichreg], tempval);
2220
2221         return;
2222 }
2223
2224
2225 /* There are multiple MAC Address register pairs on some controllers
2226  * This function sets the numth pair to a given address
2227  */
2228 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2229 {
2230         struct gfar_private *priv = netdev_priv(dev);
2231         int idx;
2232         char tmpbuf[MAC_ADDR_LEN];
2233         u32 tempval;
2234         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2235
2236         macptr += num*2;
2237
2238         /* Now copy it into the mac registers backwards, cuz */
2239         /* little endian is silly */
2240         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2241                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2242
2243         gfar_write(macptr, *((u32 *) (tmpbuf)));
2244
2245         tempval = *((u32 *) (tmpbuf + 4));
2246
2247         gfar_write(macptr+1, tempval);
2248 }
2249
2250 /* GFAR error interrupt handler */
2251 static irqreturn_t gfar_error(int irq, void *dev_id)
2252 {
2253         struct net_device *dev = dev_id;
2254         struct gfar_private *priv = netdev_priv(dev);
2255
2256         /* Save ievent for future reference */
2257         u32 events = gfar_read(&priv->regs->ievent);
2258
2259         /* Clear IEVENT */
2260         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2261
2262         /* Magic Packet is not an error. */
2263         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2264             (events & IEVENT_MAG))
2265                 events &= ~IEVENT_MAG;
2266
2267         /* Hmm... */
2268         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2269                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2270                        dev->name, events, gfar_read(&priv->regs->imask));
2271
2272         /* Update the error counters */
2273         if (events & IEVENT_TXE) {
2274                 dev->stats.tx_errors++;
2275
2276                 if (events & IEVENT_LC)
2277                         dev->stats.tx_window_errors++;
2278                 if (events & IEVENT_CRL)
2279                         dev->stats.tx_aborted_errors++;
2280                 if (events & IEVENT_XFUN) {
2281                         if (netif_msg_tx_err(priv))
2282                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2283                                        "packet dropped.\n", dev->name);
2284                         dev->stats.tx_dropped++;
2285                         priv->extra_stats.tx_underrun++;
2286
2287                         /* Reactivate the Tx Queues */
2288                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2289                 }
2290                 if (netif_msg_tx_err(priv))
2291                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2292         }
2293         if (events & IEVENT_BSY) {
2294                 dev->stats.rx_errors++;
2295                 priv->extra_stats.rx_bsy++;
2296
2297                 gfar_receive(irq, dev_id);
2298
2299                 if (netif_msg_rx_err(priv))
2300                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2301                                dev->name, gfar_read(&priv->regs->rstat));
2302         }
2303         if (events & IEVENT_BABR) {
2304                 dev->stats.rx_errors++;
2305                 priv->extra_stats.rx_babr++;
2306
2307                 if (netif_msg_rx_err(priv))
2308                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2309         }
2310         if (events & IEVENT_EBERR) {
2311                 priv->extra_stats.eberr++;
2312                 if (netif_msg_rx_err(priv))
2313                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2314         }
2315         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2316                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2317
2318         if (events & IEVENT_BABT) {
2319                 priv->extra_stats.tx_babt++;
2320                 if (netif_msg_tx_err(priv))
2321                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2322         }
2323         return IRQ_HANDLED;
2324 }
2325
2326 /* work with hotplug and coldplug */
2327 MODULE_ALIAS("platform:fsl-gianfar");
2328
2329 static struct of_device_id gfar_match[] =
2330 {
2331         {
2332                 .type = "network",
2333                 .compatible = "gianfar",
2334         },
2335         {},
2336 };
2337
2338 /* Structure for a device driver */
2339 static struct of_platform_driver gfar_driver = {
2340         .name = "fsl-gianfar",
2341         .match_table = gfar_match,
2342
2343         .probe = gfar_probe,
2344         .remove = gfar_remove,
2345         .suspend = gfar_suspend,
2346         .resume = gfar_resume,
2347 };
2348
2349 static int __init gfar_init(void)
2350 {
2351         return of_register_platform_driver(&gfar_driver);
2352 }
2353
2354 static void __exit gfar_exit(void)
2355 {
2356         of_unregister_platform_driver(&gfar_driver);
2357 }
2358
2359 module_init(gfar_init);
2360 module_exit(gfar_exit);
2361