2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page *page)
113 return page->flags & FROZEN;
116 static inline void SetSlabFrozen(struct page *page)
118 page->flags |= FROZEN;
121 static inline void ClearSlabFrozen(struct page *page)
123 page->flags &= ~FROZEN;
126 static inline int SlabDebug(struct page *page)
128 return page->flags & SLABDEBUG;
131 static inline void SetSlabDebug(struct page *page)
133 page->flags |= SLABDEBUG;
136 static inline void ClearSlabDebug(struct page *page)
138 page->flags &= ~SLABDEBUG;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
163 * Large page machines are customarily able to handle larger
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 5
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
215 static int kmem_size = sizeof(struct kmem_cache);
218 static struct notifier_block slab_notifier;
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
224 UP, /* Everything works but does not show up in sysfs */
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock);
230 static LIST_HEAD(slab_caches);
233 * Tracking user of a slab.
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
242 enum track_item { TRACK_ALLOC, TRACK_FREE };
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache *);
246 static int sysfs_slab_alias(struct kmem_cache *, const char *);
247 static void sysfs_slab_remove(struct kmem_cache *);
250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
253 static inline void sysfs_slab_remove(struct kmem_cache *s)
260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
262 #ifdef CONFIG_SLUB_STATS
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
271 int slab_is_available(void)
273 return slab_state >= UP;
276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
279 return s->node[node];
281 return &s->local_node;
285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
288 return s->cpu_slab[cpu];
294 /* Verify that a pointer has an address that is valid within a slab page */
295 static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
303 base = page_address(page);
304 if (object < base || object >= base + s->objects * s->size ||
305 (object - base) % s->size) {
313 * Slow version of get and set free pointer.
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
319 static inline void *get_freepointer(struct kmem_cache *s, void *object)
321 return *(void **)(object + s->offset);
324 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
326 *(void **)(object + s->offset) = fp;
329 /* Loop over all objects in a slab */
330 #define for_each_object(__p, __s, __addr) \
331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
335 #define for_each_free_object(__p, __s, __free) \
336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
338 /* Determine object index from a given position */
339 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
341 return (p - addr) / s->size;
344 #ifdef CONFIG_SLUB_DEBUG
348 #ifdef CONFIG_SLUB_DEBUG_ON
349 static int slub_debug = DEBUG_DEFAULT_FLAGS;
351 static int slub_debug;
354 static char *slub_debug_slabs;
359 static void print_section(char *text, u8 *addr, unsigned int length)
367 for (i = 0; i < length; i++) {
369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
372 printk(KERN_CONT " %02x", addr[i]);
374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
376 printk(KERN_CONT " %s\n", ascii);
383 printk(KERN_CONT " ");
387 printk(KERN_CONT " %s\n", ascii);
391 static struct track *get_track(struct kmem_cache *s, void *object,
392 enum track_item alloc)
397 p = object + s->offset + sizeof(void *);
399 p = object + s->inuse;
404 static void set_track(struct kmem_cache *s, void *object,
405 enum track_item alloc, void *addr)
410 p = object + s->offset + sizeof(void *);
412 p = object + s->inuse;
417 p->cpu = smp_processor_id();
418 p->pid = current ? current->pid : -1;
421 memset(p, 0, sizeof(struct track));
424 static void init_tracking(struct kmem_cache *s, void *object)
426 if (!(s->flags & SLAB_STORE_USER))
429 set_track(s, object, TRACK_FREE, NULL);
430 set_track(s, object, TRACK_ALLOC, NULL);
433 static void print_track(const char *s, struct track *t)
438 printk(KERN_ERR "INFO: %s in ", s);
439 __print_symbol("%s", (unsigned long)t->addr);
440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
443 static void print_tracking(struct kmem_cache *s, void *object)
445 if (!(s->flags & SLAB_STORE_USER))
448 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
449 print_track("Freed", get_track(s, object, TRACK_FREE));
452 static void print_page_info(struct page *page)
454 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
455 page, page->inuse, page->freelist, page->flags);
459 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
465 vsnprintf(buf, sizeof(buf), fmt, args);
467 printk(KERN_ERR "========================================"
468 "=====================================\n");
469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
470 printk(KERN_ERR "----------------------------------------"
471 "-------------------------------------\n\n");
474 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
480 vsnprintf(buf, sizeof(buf), fmt, args);
482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
485 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
487 unsigned int off; /* Offset of last byte */
488 u8 *addr = page_address(page);
490 print_tracking(s, p);
492 print_page_info(page);
494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
495 p, p - addr, get_freepointer(s, p));
498 print_section("Bytes b4", p - 16, 16);
500 print_section("Object", p, min(s->objsize, 128));
502 if (s->flags & SLAB_RED_ZONE)
503 print_section("Redzone", p + s->objsize,
504 s->inuse - s->objsize);
507 off = s->offset + sizeof(void *);
511 if (s->flags & SLAB_STORE_USER)
512 off += 2 * sizeof(struct track);
515 /* Beginning of the filler is the free pointer */
516 print_section("Padding", p + off, s->size - off);
521 static void object_err(struct kmem_cache *s, struct page *page,
522 u8 *object, char *reason)
525 print_trailer(s, page, object);
528 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
534 vsnprintf(buf, sizeof(buf), fmt, args);
537 print_page_info(page);
541 static void init_object(struct kmem_cache *s, void *object, int active)
545 if (s->flags & __OBJECT_POISON) {
546 memset(p, POISON_FREE, s->objsize - 1);
547 p[s->objsize - 1] = POISON_END;
550 if (s->flags & SLAB_RED_ZONE)
551 memset(p + s->objsize,
552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
553 s->inuse - s->objsize);
556 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
559 if (*start != (u8)value)
567 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
568 void *from, void *to)
570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
571 memset(from, data, to - from);
574 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
575 u8 *object, char *what,
576 u8 *start, unsigned int value, unsigned int bytes)
581 fault = check_bytes(start, value, bytes);
586 while (end > fault && end[-1] == value)
589 slab_bug(s, "%s overwritten", what);
590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
591 fault, end - 1, fault[0], value);
592 print_trailer(s, page, object);
594 restore_bytes(s, what, value, fault, end);
602 * Bytes of the object to be managed.
603 * If the freepointer may overlay the object then the free
604 * pointer is the first word of the object.
606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
609 * object + s->objsize
610 * Padding to reach word boundary. This is also used for Redzoning.
611 * Padding is extended by another word if Redzoning is enabled and
614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
615 * 0xcc (RED_ACTIVE) for objects in use.
618 * Meta data starts here.
620 * A. Free pointer (if we cannot overwrite object on free)
621 * B. Tracking data for SLAB_STORE_USER
622 * C. Padding to reach required alignment boundary or at mininum
623 * one word if debugging is on to be able to detect writes
624 * before the word boundary.
626 * Padding is done using 0x5a (POISON_INUSE)
629 * Nothing is used beyond s->size.
631 * If slabcaches are merged then the objsize and inuse boundaries are mostly
632 * ignored. And therefore no slab options that rely on these boundaries
633 * may be used with merged slabcaches.
636 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
638 unsigned long off = s->inuse; /* The end of info */
641 /* Freepointer is placed after the object. */
642 off += sizeof(void *);
644 if (s->flags & SLAB_STORE_USER)
645 /* We also have user information there */
646 off += 2 * sizeof(struct track);
651 return check_bytes_and_report(s, page, p, "Object padding",
652 p + off, POISON_INUSE, s->size - off);
655 static int slab_pad_check(struct kmem_cache *s, struct page *page)
663 if (!(s->flags & SLAB_POISON))
666 start = page_address(page);
667 end = start + (PAGE_SIZE << s->order);
668 length = s->objects * s->size;
669 remainder = end - (start + length);
673 fault = check_bytes(start + length, POISON_INUSE, remainder);
676 while (end > fault && end[-1] == POISON_INUSE)
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", start, length);
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
686 static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
690 u8 *endobject = object + s->objsize;
692 if (s->flags & SLAB_RED_ZONE) {
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
711 p + s->objsize - 1, POISON_END, 1)))
714 * check_pad_bytes cleans up on its own.
716 check_pad_bytes(s, page, p);
719 if (!s->offset && active)
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
732 * another error because the object count is now wrong.
734 set_freepointer(s, p, NULL);
740 static int check_slab(struct kmem_cache *s, struct page *page)
742 VM_BUG_ON(!irqs_disabled());
744 if (!PageSlab(page)) {
745 slab_err(s, page, "Not a valid slab page");
748 if (page->inuse > s->objects) {
749 slab_err(s, page, "inuse %u > max %u",
750 s->name, page->inuse, s->objects);
753 /* Slab_pad_check fixes things up after itself */
754 slab_pad_check(s, page);
759 * Determine if a certain object on a page is on the freelist. Must hold the
760 * slab lock to guarantee that the chains are in a consistent state.
762 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
765 void *fp = page->freelist;
768 while (fp && nr <= s->objects) {
771 if (!check_valid_pointer(s, page, fp)) {
773 object_err(s, page, object,
774 "Freechain corrupt");
775 set_freepointer(s, object, NULL);
778 slab_err(s, page, "Freepointer corrupt");
779 page->freelist = NULL;
780 page->inuse = s->objects;
781 slab_fix(s, "Freelist cleared");
787 fp = get_freepointer(s, object);
791 if (page->inuse != s->objects - nr) {
792 slab_err(s, page, "Wrong object count. Counter is %d but "
793 "counted were %d", page->inuse, s->objects - nr);
794 page->inuse = s->objects - nr;
795 slab_fix(s, "Object count adjusted.");
797 return search == NULL;
800 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
805 alloc ? "alloc" : "free",
810 print_section("Object", (void *)object, s->objsize);
817 * Tracking of fully allocated slabs for debugging purposes.
819 static void add_full(struct kmem_cache_node *n, struct page *page)
821 spin_lock(&n->list_lock);
822 list_add(&page->lru, &n->full);
823 spin_unlock(&n->list_lock);
826 static void remove_full(struct kmem_cache *s, struct page *page)
828 struct kmem_cache_node *n;
830 if (!(s->flags & SLAB_STORE_USER))
833 n = get_node(s, page_to_nid(page));
835 spin_lock(&n->list_lock);
836 list_del(&page->lru);
837 spin_unlock(&n->list_lock);
840 static void setup_object_debug(struct kmem_cache *s, struct page *page,
843 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
846 init_object(s, object, 0);
847 init_tracking(s, object);
850 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
851 void *object, void *addr)
853 if (!check_slab(s, page))
856 if (!on_freelist(s, page, object)) {
857 object_err(s, page, object, "Object already allocated");
861 if (!check_valid_pointer(s, page, object)) {
862 object_err(s, page, object, "Freelist Pointer check fails");
866 if (!check_object(s, page, object, 0))
869 /* Success perform special debug activities for allocs */
870 if (s->flags & SLAB_STORE_USER)
871 set_track(s, object, TRACK_ALLOC, addr);
872 trace(s, page, object, 1);
873 init_object(s, object, 1);
877 if (PageSlab(page)) {
879 * If this is a slab page then lets do the best we can
880 * to avoid issues in the future. Marking all objects
881 * as used avoids touching the remaining objects.
883 slab_fix(s, "Marking all objects used");
884 page->inuse = s->objects;
885 page->freelist = NULL;
890 static int free_debug_processing(struct kmem_cache *s, struct page *page,
891 void *object, void *addr)
893 if (!check_slab(s, page))
896 if (!check_valid_pointer(s, page, object)) {
897 slab_err(s, page, "Invalid object pointer 0x%p", object);
901 if (on_freelist(s, page, object)) {
902 object_err(s, page, object, "Object already free");
906 if (!check_object(s, page, object, 1))
909 if (unlikely(s != page->slab)) {
910 if (!PageSlab(page)) {
911 slab_err(s, page, "Attempt to free object(0x%p) "
912 "outside of slab", object);
913 } else if (!page->slab) {
915 "SLUB <none>: no slab for object 0x%p.\n",
919 object_err(s, page, object,
920 "page slab pointer corrupt.");
924 /* Special debug activities for freeing objects */
925 if (!SlabFrozen(page) && !page->freelist)
926 remove_full(s, page);
927 if (s->flags & SLAB_STORE_USER)
928 set_track(s, object, TRACK_FREE, addr);
929 trace(s, page, object, 0);
930 init_object(s, object, 0);
934 slab_fix(s, "Object at 0x%p not freed", object);
938 static int __init setup_slub_debug(char *str)
940 slub_debug = DEBUG_DEFAULT_FLAGS;
941 if (*str++ != '=' || !*str)
943 * No options specified. Switch on full debugging.
949 * No options but restriction on slabs. This means full
950 * debugging for slabs matching a pattern.
957 * Switch off all debugging measures.
962 * Determine which debug features should be switched on
964 for (; *str && *str != ','; str++) {
965 switch (tolower(*str)) {
967 slub_debug |= SLAB_DEBUG_FREE;
970 slub_debug |= SLAB_RED_ZONE;
973 slub_debug |= SLAB_POISON;
976 slub_debug |= SLAB_STORE_USER;
979 slub_debug |= SLAB_TRACE;
982 printk(KERN_ERR "slub_debug option '%c' "
983 "unknown. skipped\n", *str);
989 slub_debug_slabs = str + 1;
994 __setup("slub_debug", setup_slub_debug);
996 static unsigned long kmem_cache_flags(unsigned long objsize,
997 unsigned long flags, const char *name,
998 void (*ctor)(struct kmem_cache *, void *))
1001 * Enable debugging if selected on the kernel commandline.
1003 if (slub_debug && (!slub_debug_slabs ||
1004 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1005 flags |= slub_debug;
1010 static inline void setup_object_debug(struct kmem_cache *s,
1011 struct page *page, void *object) {}
1013 static inline int alloc_debug_processing(struct kmem_cache *s,
1014 struct page *page, void *object, void *addr) { return 0; }
1016 static inline int free_debug_processing(struct kmem_cache *s,
1017 struct page *page, void *object, void *addr) { return 0; }
1019 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1021 static inline int check_object(struct kmem_cache *s, struct page *page,
1022 void *object, int active) { return 1; }
1023 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1024 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1025 unsigned long flags, const char *name,
1026 void (*ctor)(struct kmem_cache *, void *))
1030 #define slub_debug 0
1033 * Slab allocation and freeing
1035 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1038 int pages = 1 << s->order;
1040 flags |= s->allocflags;
1043 page = alloc_pages(flags, s->order);
1045 page = alloc_pages_node(node, flags, s->order);
1050 mod_zone_page_state(page_zone(page),
1051 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1052 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1058 static void setup_object(struct kmem_cache *s, struct page *page,
1061 setup_object_debug(s, page, object);
1062 if (unlikely(s->ctor))
1066 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1069 struct kmem_cache_node *n;
1074 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1076 page = allocate_slab(s,
1077 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1081 n = get_node(s, page_to_nid(page));
1083 atomic_long_inc(&n->nr_slabs);
1085 page->flags |= 1 << PG_slab;
1086 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1087 SLAB_STORE_USER | SLAB_TRACE))
1090 start = page_address(page);
1092 if (unlikely(s->flags & SLAB_POISON))
1093 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1096 for_each_object(p, s, start) {
1097 setup_object(s, page, last);
1098 set_freepointer(s, last, p);
1101 setup_object(s, page, last);
1102 set_freepointer(s, last, NULL);
1104 page->freelist = start;
1110 static void __free_slab(struct kmem_cache *s, struct page *page)
1112 int pages = 1 << s->order;
1114 if (unlikely(SlabDebug(page))) {
1117 slab_pad_check(s, page);
1118 for_each_object(p, s, page_address(page))
1119 check_object(s, page, p, 0);
1120 ClearSlabDebug(page);
1123 mod_zone_page_state(page_zone(page),
1124 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1125 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1128 __free_pages(page, s->order);
1131 static void rcu_free_slab(struct rcu_head *h)
1135 page = container_of((struct list_head *)h, struct page, lru);
1136 __free_slab(page->slab, page);
1139 static void free_slab(struct kmem_cache *s, struct page *page)
1141 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1143 * RCU free overloads the RCU head over the LRU
1145 struct rcu_head *head = (void *)&page->lru;
1147 call_rcu(head, rcu_free_slab);
1149 __free_slab(s, page);
1152 static void discard_slab(struct kmem_cache *s, struct page *page)
1154 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1156 atomic_long_dec(&n->nr_slabs);
1157 reset_page_mapcount(page);
1158 __ClearPageSlab(page);
1163 * Per slab locking using the pagelock
1165 static __always_inline void slab_lock(struct page *page)
1167 bit_spin_lock(PG_locked, &page->flags);
1170 static __always_inline void slab_unlock(struct page *page)
1172 __bit_spin_unlock(PG_locked, &page->flags);
1175 static __always_inline int slab_trylock(struct page *page)
1179 rc = bit_spin_trylock(PG_locked, &page->flags);
1184 * Management of partially allocated slabs
1186 static void add_partial(struct kmem_cache_node *n,
1187 struct page *page, int tail)
1189 spin_lock(&n->list_lock);
1192 list_add_tail(&page->lru, &n->partial);
1194 list_add(&page->lru, &n->partial);
1195 spin_unlock(&n->list_lock);
1198 static void remove_partial(struct kmem_cache *s,
1201 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1203 spin_lock(&n->list_lock);
1204 list_del(&page->lru);
1206 spin_unlock(&n->list_lock);
1210 * Lock slab and remove from the partial list.
1212 * Must hold list_lock.
1214 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1216 if (slab_trylock(page)) {
1217 list_del(&page->lru);
1219 SetSlabFrozen(page);
1226 * Try to allocate a partial slab from a specific node.
1228 static struct page *get_partial_node(struct kmem_cache_node *n)
1233 * Racy check. If we mistakenly see no partial slabs then we
1234 * just allocate an empty slab. If we mistakenly try to get a
1235 * partial slab and there is none available then get_partials()
1238 if (!n || !n->nr_partial)
1241 spin_lock(&n->list_lock);
1242 list_for_each_entry(page, &n->partial, lru)
1243 if (lock_and_freeze_slab(n, page))
1247 spin_unlock(&n->list_lock);
1252 * Get a page from somewhere. Search in increasing NUMA distances.
1254 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1257 struct zonelist *zonelist;
1262 * The defrag ratio allows a configuration of the tradeoffs between
1263 * inter node defragmentation and node local allocations. A lower
1264 * defrag_ratio increases the tendency to do local allocations
1265 * instead of attempting to obtain partial slabs from other nodes.
1267 * If the defrag_ratio is set to 0 then kmalloc() always
1268 * returns node local objects. If the ratio is higher then kmalloc()
1269 * may return off node objects because partial slabs are obtained
1270 * from other nodes and filled up.
1272 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1273 * defrag_ratio = 1000) then every (well almost) allocation will
1274 * first attempt to defrag slab caches on other nodes. This means
1275 * scanning over all nodes to look for partial slabs which may be
1276 * expensive if we do it every time we are trying to find a slab
1277 * with available objects.
1279 if (!s->remote_node_defrag_ratio ||
1280 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1283 zonelist = &NODE_DATA(
1284 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1285 for (z = zonelist->zones; *z; z++) {
1286 struct kmem_cache_node *n;
1288 n = get_node(s, zone_to_nid(*z));
1290 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1291 n->nr_partial > MIN_PARTIAL) {
1292 page = get_partial_node(n);
1302 * Get a partial page, lock it and return it.
1304 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1307 int searchnode = (node == -1) ? numa_node_id() : node;
1309 page = get_partial_node(get_node(s, searchnode));
1310 if (page || (flags & __GFP_THISNODE))
1313 return get_any_partial(s, flags);
1317 * Move a page back to the lists.
1319 * Must be called with the slab lock held.
1321 * On exit the slab lock will have been dropped.
1323 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1325 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1326 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1328 ClearSlabFrozen(page);
1331 if (page->freelist) {
1332 add_partial(n, page, tail);
1333 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1335 stat(c, DEACTIVATE_FULL);
1336 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1341 stat(c, DEACTIVATE_EMPTY);
1342 if (n->nr_partial < MIN_PARTIAL) {
1344 * Adding an empty slab to the partial slabs in order
1345 * to avoid page allocator overhead. This slab needs
1346 * to come after the other slabs with objects in
1347 * so that the others get filled first. That way the
1348 * size of the partial list stays small.
1350 * kmem_cache_shrink can reclaim any empty slabs from the
1353 add_partial(n, page, 1);
1357 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1358 discard_slab(s, page);
1364 * Remove the cpu slab
1366 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1368 struct page *page = c->page;
1372 stat(c, DEACTIVATE_REMOTE_FREES);
1374 * Merge cpu freelist into slab freelist. Typically we get here
1375 * because both freelists are empty. So this is unlikely
1378 while (unlikely(c->freelist)) {
1381 tail = 0; /* Hot objects. Put the slab first */
1383 /* Retrieve object from cpu_freelist */
1384 object = c->freelist;
1385 c->freelist = c->freelist[c->offset];
1387 /* And put onto the regular freelist */
1388 object[c->offset] = page->freelist;
1389 page->freelist = object;
1393 unfreeze_slab(s, page, tail);
1396 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1398 stat(c, CPUSLAB_FLUSH);
1400 deactivate_slab(s, c);
1406 * Called from IPI handler with interrupts disabled.
1408 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1410 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1412 if (likely(c && c->page))
1416 static void flush_cpu_slab(void *d)
1418 struct kmem_cache *s = d;
1420 __flush_cpu_slab(s, smp_processor_id());
1423 static void flush_all(struct kmem_cache *s)
1426 on_each_cpu(flush_cpu_slab, s, 1, 1);
1428 unsigned long flags;
1430 local_irq_save(flags);
1432 local_irq_restore(flags);
1437 * Check if the objects in a per cpu structure fit numa
1438 * locality expectations.
1440 static inline int node_match(struct kmem_cache_cpu *c, int node)
1443 if (node != -1 && c->node != node)
1450 * Slow path. The lockless freelist is empty or we need to perform
1453 * Interrupts are disabled.
1455 * Processing is still very fast if new objects have been freed to the
1456 * regular freelist. In that case we simply take over the regular freelist
1457 * as the lockless freelist and zap the regular freelist.
1459 * If that is not working then we fall back to the partial lists. We take the
1460 * first element of the freelist as the object to allocate now and move the
1461 * rest of the freelist to the lockless freelist.
1463 * And if we were unable to get a new slab from the partial slab lists then
1464 * we need to allocate a new slab. This is the slowest path since it involves
1465 * a call to the page allocator and the setup of a new slab.
1467 static void *__slab_alloc(struct kmem_cache *s,
1468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1477 if (unlikely(!node_match(c, node)))
1480 stat(c, ALLOC_REFILL);
1483 object = c->page->freelist;
1484 if (unlikely(!object))
1486 if (unlikely(SlabDebug(c->page)))
1489 c->freelist = object[c->offset];
1490 c->page->inuse = s->objects;
1491 c->page->freelist = NULL;
1492 c->node = page_to_nid(c->page);
1494 slab_unlock(c->page);
1495 stat(c, ALLOC_SLOWPATH);
1499 deactivate_slab(s, c);
1502 new = get_partial(s, gfpflags, node);
1505 stat(c, ALLOC_FROM_PARTIAL);
1509 if (gfpflags & __GFP_WAIT)
1512 new = new_slab(s, gfpflags, node);
1514 if (gfpflags & __GFP_WAIT)
1515 local_irq_disable();
1518 c = get_cpu_slab(s, smp_processor_id());
1519 stat(c, ALLOC_SLAB);
1529 * No memory available.
1531 * If the slab uses higher order allocs but the object is
1532 * smaller than a page size then we can fallback in emergencies
1533 * to the page allocator via kmalloc_large. The page allocator may
1534 * have failed to obtain a higher order page and we can try to
1535 * allocate a single page if the object fits into a single page.
1536 * That is only possible if certain conditions are met that are being
1537 * checked when a slab is created.
1539 if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
1540 return kmalloc_large(s->objsize, gfpflags);
1544 if (!alloc_debug_processing(s, c->page, object, addr))
1548 c->page->freelist = object[c->offset];
1554 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1555 * have the fastpath folded into their functions. So no function call
1556 * overhead for requests that can be satisfied on the fastpath.
1558 * The fastpath works by first checking if the lockless freelist can be used.
1559 * If not then __slab_alloc is called for slow processing.
1561 * Otherwise we can simply pick the next object from the lockless free list.
1563 static __always_inline void *slab_alloc(struct kmem_cache *s,
1564 gfp_t gfpflags, int node, void *addr)
1567 struct kmem_cache_cpu *c;
1568 unsigned long flags;
1570 local_irq_save(flags);
1571 c = get_cpu_slab(s, smp_processor_id());
1572 if (unlikely(!c->freelist || !node_match(c, node)))
1574 object = __slab_alloc(s, gfpflags, node, addr, c);
1577 object = c->freelist;
1578 c->freelist = object[c->offset];
1579 stat(c, ALLOC_FASTPATH);
1581 local_irq_restore(flags);
1583 if (unlikely((gfpflags & __GFP_ZERO) && object))
1584 memset(object, 0, c->objsize);
1589 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1591 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1593 EXPORT_SYMBOL(kmem_cache_alloc);
1596 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1598 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1600 EXPORT_SYMBOL(kmem_cache_alloc_node);
1604 * Slow patch handling. This may still be called frequently since objects
1605 * have a longer lifetime than the cpu slabs in most processing loads.
1607 * So we still attempt to reduce cache line usage. Just take the slab
1608 * lock and free the item. If there is no additional partial page
1609 * handling required then we can return immediately.
1611 static void __slab_free(struct kmem_cache *s, struct page *page,
1612 void *x, void *addr, unsigned int offset)
1615 void **object = (void *)x;
1616 struct kmem_cache_cpu *c;
1618 c = get_cpu_slab(s, raw_smp_processor_id());
1619 stat(c, FREE_SLOWPATH);
1622 if (unlikely(SlabDebug(page)))
1626 prior = object[offset] = page->freelist;
1627 page->freelist = object;
1630 if (unlikely(SlabFrozen(page))) {
1631 stat(c, FREE_FROZEN);
1635 if (unlikely(!page->inuse))
1639 * Objects left in the slab. If it was not on the partial list before
1642 if (unlikely(!prior)) {
1643 add_partial(get_node(s, page_to_nid(page)), page, 1);
1644 stat(c, FREE_ADD_PARTIAL);
1654 * Slab still on the partial list.
1656 remove_partial(s, page);
1657 stat(c, FREE_REMOVE_PARTIAL);
1661 discard_slab(s, page);
1665 if (!free_debug_processing(s, page, x, addr))
1671 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1672 * can perform fastpath freeing without additional function calls.
1674 * The fastpath is only possible if we are freeing to the current cpu slab
1675 * of this processor. This typically the case if we have just allocated
1678 * If fastpath is not possible then fall back to __slab_free where we deal
1679 * with all sorts of special processing.
1681 static __always_inline void slab_free(struct kmem_cache *s,
1682 struct page *page, void *x, void *addr)
1684 void **object = (void *)x;
1685 struct kmem_cache_cpu *c;
1686 unsigned long flags;
1688 local_irq_save(flags);
1689 c = get_cpu_slab(s, smp_processor_id());
1690 debug_check_no_locks_freed(object, c->objsize);
1691 if (likely(page == c->page && c->node >= 0)) {
1692 object[c->offset] = c->freelist;
1693 c->freelist = object;
1694 stat(c, FREE_FASTPATH);
1696 __slab_free(s, page, x, addr, c->offset);
1698 local_irq_restore(flags);
1701 void kmem_cache_free(struct kmem_cache *s, void *x)
1705 page = virt_to_head_page(x);
1707 slab_free(s, page, x, __builtin_return_address(0));
1709 EXPORT_SYMBOL(kmem_cache_free);
1711 /* Figure out on which slab object the object resides */
1712 static struct page *get_object_page(const void *x)
1714 struct page *page = virt_to_head_page(x);
1716 if (!PageSlab(page))
1723 * Object placement in a slab is made very easy because we always start at
1724 * offset 0. If we tune the size of the object to the alignment then we can
1725 * get the required alignment by putting one properly sized object after
1728 * Notice that the allocation order determines the sizes of the per cpu
1729 * caches. Each processor has always one slab available for allocations.
1730 * Increasing the allocation order reduces the number of times that slabs
1731 * must be moved on and off the partial lists and is therefore a factor in
1736 * Mininum / Maximum order of slab pages. This influences locking overhead
1737 * and slab fragmentation. A higher order reduces the number of partial slabs
1738 * and increases the number of allocations possible without having to
1739 * take the list_lock.
1741 static int slub_min_order;
1742 static int slub_max_order = DEFAULT_MAX_ORDER;
1743 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1746 * Merge control. If this is set then no merging of slab caches will occur.
1747 * (Could be removed. This was introduced to pacify the merge skeptics.)
1749 static int slub_nomerge;
1752 * Calculate the order of allocation given an slab object size.
1754 * The order of allocation has significant impact on performance and other
1755 * system components. Generally order 0 allocations should be preferred since
1756 * order 0 does not cause fragmentation in the page allocator. Larger objects
1757 * be problematic to put into order 0 slabs because there may be too much
1758 * unused space left. We go to a higher order if more than 1/8th of the slab
1761 * In order to reach satisfactory performance we must ensure that a minimum
1762 * number of objects is in one slab. Otherwise we may generate too much
1763 * activity on the partial lists which requires taking the list_lock. This is
1764 * less a concern for large slabs though which are rarely used.
1766 * slub_max_order specifies the order where we begin to stop considering the
1767 * number of objects in a slab as critical. If we reach slub_max_order then
1768 * we try to keep the page order as low as possible. So we accept more waste
1769 * of space in favor of a small page order.
1771 * Higher order allocations also allow the placement of more objects in a
1772 * slab and thereby reduce object handling overhead. If the user has
1773 * requested a higher mininum order then we start with that one instead of
1774 * the smallest order which will fit the object.
1776 static inline int slab_order(int size, int min_objects,
1777 int max_order, int fract_leftover)
1781 int min_order = slub_min_order;
1783 for (order = max(min_order,
1784 fls(min_objects * size - 1) - PAGE_SHIFT);
1785 order <= max_order; order++) {
1787 unsigned long slab_size = PAGE_SIZE << order;
1789 if (slab_size < min_objects * size)
1792 rem = slab_size % size;
1794 if (rem <= slab_size / fract_leftover)
1802 static inline int calculate_order(int size)
1809 * Attempt to find best configuration for a slab. This
1810 * works by first attempting to generate a layout with
1811 * the best configuration and backing off gradually.
1813 * First we reduce the acceptable waste in a slab. Then
1814 * we reduce the minimum objects required in a slab.
1816 min_objects = slub_min_objects;
1817 while (min_objects > 1) {
1819 while (fraction >= 4) {
1820 order = slab_order(size, min_objects,
1821 slub_max_order, fraction);
1822 if (order <= slub_max_order)
1830 * We were unable to place multiple objects in a slab. Now
1831 * lets see if we can place a single object there.
1833 order = slab_order(size, 1, slub_max_order, 1);
1834 if (order <= slub_max_order)
1838 * Doh this slab cannot be placed using slub_max_order.
1840 order = slab_order(size, 1, MAX_ORDER, 1);
1841 if (order <= MAX_ORDER)
1847 * Figure out what the alignment of the objects will be.
1849 static unsigned long calculate_alignment(unsigned long flags,
1850 unsigned long align, unsigned long size)
1853 * If the user wants hardware cache aligned objects then follow that
1854 * suggestion if the object is sufficiently large.
1856 * The hardware cache alignment cannot override the specified
1857 * alignment though. If that is greater then use it.
1859 if ((flags & SLAB_HWCACHE_ALIGN) &&
1860 size > cache_line_size() / 2)
1861 return max_t(unsigned long, align, cache_line_size());
1863 if (align < ARCH_SLAB_MINALIGN)
1864 return ARCH_SLAB_MINALIGN;
1866 return ALIGN(align, sizeof(void *));
1869 static void init_kmem_cache_cpu(struct kmem_cache *s,
1870 struct kmem_cache_cpu *c)
1875 c->offset = s->offset / sizeof(void *);
1876 c->objsize = s->objsize;
1879 static void init_kmem_cache_node(struct kmem_cache_node *n)
1882 atomic_long_set(&n->nr_slabs, 0);
1883 spin_lock_init(&n->list_lock);
1884 INIT_LIST_HEAD(&n->partial);
1885 #ifdef CONFIG_SLUB_DEBUG
1886 INIT_LIST_HEAD(&n->full);
1892 * Per cpu array for per cpu structures.
1894 * The per cpu array places all kmem_cache_cpu structures from one processor
1895 * close together meaning that it becomes possible that multiple per cpu
1896 * structures are contained in one cacheline. This may be particularly
1897 * beneficial for the kmalloc caches.
1899 * A desktop system typically has around 60-80 slabs. With 100 here we are
1900 * likely able to get per cpu structures for all caches from the array defined
1901 * here. We must be able to cover all kmalloc caches during bootstrap.
1903 * If the per cpu array is exhausted then fall back to kmalloc
1904 * of individual cachelines. No sharing is possible then.
1906 #define NR_KMEM_CACHE_CPU 100
1908 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1909 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1911 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1912 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1914 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1915 int cpu, gfp_t flags)
1917 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1920 per_cpu(kmem_cache_cpu_free, cpu) =
1921 (void *)c->freelist;
1923 /* Table overflow: So allocate ourselves */
1925 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1926 flags, cpu_to_node(cpu));
1931 init_kmem_cache_cpu(s, c);
1935 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1937 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1938 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1942 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1943 per_cpu(kmem_cache_cpu_free, cpu) = c;
1946 static void free_kmem_cache_cpus(struct kmem_cache *s)
1950 for_each_online_cpu(cpu) {
1951 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1954 s->cpu_slab[cpu] = NULL;
1955 free_kmem_cache_cpu(c, cpu);
1960 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1964 for_each_online_cpu(cpu) {
1965 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1970 c = alloc_kmem_cache_cpu(s, cpu, flags);
1972 free_kmem_cache_cpus(s);
1975 s->cpu_slab[cpu] = c;
1981 * Initialize the per cpu array.
1983 static void init_alloc_cpu_cpu(int cpu)
1987 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1990 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1991 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1993 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1996 static void __init init_alloc_cpu(void)
2000 for_each_online_cpu(cpu)
2001 init_alloc_cpu_cpu(cpu);
2005 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2006 static inline void init_alloc_cpu(void) {}
2008 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2010 init_kmem_cache_cpu(s, &s->cpu_slab);
2017 * No kmalloc_node yet so do it by hand. We know that this is the first
2018 * slab on the node for this slabcache. There are no concurrent accesses
2021 * Note that this function only works on the kmalloc_node_cache
2022 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2023 * memory on a fresh node that has no slab structures yet.
2025 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2029 struct kmem_cache_node *n;
2030 unsigned long flags;
2032 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2034 page = new_slab(kmalloc_caches, gfpflags, node);
2037 if (page_to_nid(page) != node) {
2038 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2040 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2041 "in order to be able to continue\n");
2046 page->freelist = get_freepointer(kmalloc_caches, n);
2048 kmalloc_caches->node[node] = n;
2049 #ifdef CONFIG_SLUB_DEBUG
2050 init_object(kmalloc_caches, n, 1);
2051 init_tracking(kmalloc_caches, n);
2053 init_kmem_cache_node(n);
2054 atomic_long_inc(&n->nr_slabs);
2057 * lockdep requires consistent irq usage for each lock
2058 * so even though there cannot be a race this early in
2059 * the boot sequence, we still disable irqs.
2061 local_irq_save(flags);
2062 add_partial(n, page, 0);
2063 local_irq_restore(flags);
2067 static void free_kmem_cache_nodes(struct kmem_cache *s)
2071 for_each_node_state(node, N_NORMAL_MEMORY) {
2072 struct kmem_cache_node *n = s->node[node];
2073 if (n && n != &s->local_node)
2074 kmem_cache_free(kmalloc_caches, n);
2075 s->node[node] = NULL;
2079 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2084 if (slab_state >= UP)
2085 local_node = page_to_nid(virt_to_page(s));
2089 for_each_node_state(node, N_NORMAL_MEMORY) {
2090 struct kmem_cache_node *n;
2092 if (local_node == node)
2095 if (slab_state == DOWN) {
2096 n = early_kmem_cache_node_alloc(gfpflags,
2100 n = kmem_cache_alloc_node(kmalloc_caches,
2104 free_kmem_cache_nodes(s);
2110 init_kmem_cache_node(n);
2115 static void free_kmem_cache_nodes(struct kmem_cache *s)
2119 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2121 init_kmem_cache_node(&s->local_node);
2127 * calculate_sizes() determines the order and the distribution of data within
2130 static int calculate_sizes(struct kmem_cache *s)
2132 unsigned long flags = s->flags;
2133 unsigned long size = s->objsize;
2134 unsigned long align = s->align;
2137 * Round up object size to the next word boundary. We can only
2138 * place the free pointer at word boundaries and this determines
2139 * the possible location of the free pointer.
2141 size = ALIGN(size, sizeof(void *));
2143 #ifdef CONFIG_SLUB_DEBUG
2145 * Determine if we can poison the object itself. If the user of
2146 * the slab may touch the object after free or before allocation
2147 * then we should never poison the object itself.
2149 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2151 s->flags |= __OBJECT_POISON;
2153 s->flags &= ~__OBJECT_POISON;
2157 * If we are Redzoning then check if there is some space between the
2158 * end of the object and the free pointer. If not then add an
2159 * additional word to have some bytes to store Redzone information.
2161 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2162 size += sizeof(void *);
2166 * With that we have determined the number of bytes in actual use
2167 * by the object. This is the potential offset to the free pointer.
2171 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2174 * Relocate free pointer after the object if it is not
2175 * permitted to overwrite the first word of the object on
2178 * This is the case if we do RCU, have a constructor or
2179 * destructor or are poisoning the objects.
2182 size += sizeof(void *);
2185 #ifdef CONFIG_SLUB_DEBUG
2186 if (flags & SLAB_STORE_USER)
2188 * Need to store information about allocs and frees after
2191 size += 2 * sizeof(struct track);
2193 if (flags & SLAB_RED_ZONE)
2195 * Add some empty padding so that we can catch
2196 * overwrites from earlier objects rather than let
2197 * tracking information or the free pointer be
2198 * corrupted if an user writes before the start
2201 size += sizeof(void *);
2205 * Determine the alignment based on various parameters that the
2206 * user specified and the dynamic determination of cache line size
2209 align = calculate_alignment(flags, align, s->objsize);
2212 * SLUB stores one object immediately after another beginning from
2213 * offset 0. In order to align the objects we have to simply size
2214 * each object to conform to the alignment.
2216 size = ALIGN(size, align);
2219 if ((flags & __KMALLOC_CACHE) &&
2220 PAGE_SIZE / size < slub_min_objects) {
2222 * Kmalloc cache that would not have enough objects in
2223 * an order 0 page. Kmalloc slabs can fallback to
2224 * page allocator order 0 allocs so take a reasonably large
2225 * order that will allows us a good number of objects.
2227 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2228 s->flags |= __PAGE_ALLOC_FALLBACK;
2229 s->allocflags |= __GFP_NOWARN;
2231 s->order = calculate_order(size);
2238 s->allocflags |= __GFP_COMP;
2240 if (s->flags & SLAB_CACHE_DMA)
2241 s->allocflags |= SLUB_DMA;
2243 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2244 s->allocflags |= __GFP_RECLAIMABLE;
2247 * Determine the number of objects per slab
2249 s->objects = (PAGE_SIZE << s->order) / size;
2251 return !!s->objects;
2255 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2256 const char *name, size_t size,
2257 size_t align, unsigned long flags,
2258 void (*ctor)(struct kmem_cache *, void *))
2260 memset(s, 0, kmem_size);
2265 s->flags = kmem_cache_flags(size, flags, name, ctor);
2267 if (!calculate_sizes(s))
2272 s->remote_node_defrag_ratio = 100;
2274 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2277 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2279 free_kmem_cache_nodes(s);
2281 if (flags & SLAB_PANIC)
2282 panic("Cannot create slab %s size=%lu realsize=%u "
2283 "order=%u offset=%u flags=%lx\n",
2284 s->name, (unsigned long)size, s->size, s->order,
2290 * Check if a given pointer is valid
2292 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2296 page = get_object_page(object);
2298 if (!page || s != page->slab)
2299 /* No slab or wrong slab */
2302 if (!check_valid_pointer(s, page, object))
2306 * We could also check if the object is on the slabs freelist.
2307 * But this would be too expensive and it seems that the main
2308 * purpose of kmem_ptr_valid() is to check if the object belongs
2309 * to a certain slab.
2313 EXPORT_SYMBOL(kmem_ptr_validate);
2316 * Determine the size of a slab object
2318 unsigned int kmem_cache_size(struct kmem_cache *s)
2322 EXPORT_SYMBOL(kmem_cache_size);
2324 const char *kmem_cache_name(struct kmem_cache *s)
2328 EXPORT_SYMBOL(kmem_cache_name);
2331 * Attempt to free all slabs on a node. Return the number of slabs we
2332 * were unable to free.
2334 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2335 struct list_head *list)
2337 int slabs_inuse = 0;
2338 unsigned long flags;
2339 struct page *page, *h;
2341 spin_lock_irqsave(&n->list_lock, flags);
2342 list_for_each_entry_safe(page, h, list, lru)
2344 list_del(&page->lru);
2345 discard_slab(s, page);
2348 spin_unlock_irqrestore(&n->list_lock, flags);
2353 * Release all resources used by a slab cache.
2355 static inline int kmem_cache_close(struct kmem_cache *s)
2361 /* Attempt to free all objects */
2362 free_kmem_cache_cpus(s);
2363 for_each_node_state(node, N_NORMAL_MEMORY) {
2364 struct kmem_cache_node *n = get_node(s, node);
2366 n->nr_partial -= free_list(s, n, &n->partial);
2367 if (atomic_long_read(&n->nr_slabs))
2370 free_kmem_cache_nodes(s);
2375 * Close a cache and release the kmem_cache structure
2376 * (must be used for caches created using kmem_cache_create)
2378 void kmem_cache_destroy(struct kmem_cache *s)
2380 down_write(&slub_lock);
2384 up_write(&slub_lock);
2385 if (kmem_cache_close(s))
2387 sysfs_slab_remove(s);
2389 up_write(&slub_lock);
2391 EXPORT_SYMBOL(kmem_cache_destroy);
2393 /********************************************************************
2395 *******************************************************************/
2397 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2398 EXPORT_SYMBOL(kmalloc_caches);
2400 #ifdef CONFIG_ZONE_DMA
2401 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2404 static int __init setup_slub_min_order(char *str)
2406 get_option(&str, &slub_min_order);
2411 __setup("slub_min_order=", setup_slub_min_order);
2413 static int __init setup_slub_max_order(char *str)
2415 get_option(&str, &slub_max_order);
2420 __setup("slub_max_order=", setup_slub_max_order);
2422 static int __init setup_slub_min_objects(char *str)
2424 get_option(&str, &slub_min_objects);
2429 __setup("slub_min_objects=", setup_slub_min_objects);
2431 static int __init setup_slub_nomerge(char *str)
2437 __setup("slub_nomerge", setup_slub_nomerge);
2439 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2440 const char *name, int size, gfp_t gfp_flags)
2442 unsigned int flags = 0;
2444 if (gfp_flags & SLUB_DMA)
2445 flags = SLAB_CACHE_DMA;
2447 down_write(&slub_lock);
2448 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2449 flags | __KMALLOC_CACHE, NULL))
2452 list_add(&s->list, &slab_caches);
2453 up_write(&slub_lock);
2454 if (sysfs_slab_add(s))
2459 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2462 #ifdef CONFIG_ZONE_DMA
2464 static void sysfs_add_func(struct work_struct *w)
2466 struct kmem_cache *s;
2468 down_write(&slub_lock);
2469 list_for_each_entry(s, &slab_caches, list) {
2470 if (s->flags & __SYSFS_ADD_DEFERRED) {
2471 s->flags &= ~__SYSFS_ADD_DEFERRED;
2475 up_write(&slub_lock);
2478 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2480 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2482 struct kmem_cache *s;
2486 s = kmalloc_caches_dma[index];
2490 /* Dynamically create dma cache */
2491 if (flags & __GFP_WAIT)
2492 down_write(&slub_lock);
2494 if (!down_write_trylock(&slub_lock))
2498 if (kmalloc_caches_dma[index])
2501 realsize = kmalloc_caches[index].objsize;
2502 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2503 (unsigned int)realsize);
2504 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2506 if (!s || !text || !kmem_cache_open(s, flags, text,
2507 realsize, ARCH_KMALLOC_MINALIGN,
2508 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2514 list_add(&s->list, &slab_caches);
2515 kmalloc_caches_dma[index] = s;
2517 schedule_work(&sysfs_add_work);
2520 up_write(&slub_lock);
2522 return kmalloc_caches_dma[index];
2527 * Conversion table for small slabs sizes / 8 to the index in the
2528 * kmalloc array. This is necessary for slabs < 192 since we have non power
2529 * of two cache sizes there. The size of larger slabs can be determined using
2532 static s8 size_index[24] = {
2559 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2565 return ZERO_SIZE_PTR;
2567 index = size_index[(size - 1) / 8];
2569 index = fls(size - 1);
2571 #ifdef CONFIG_ZONE_DMA
2572 if (unlikely((flags & SLUB_DMA)))
2573 return dma_kmalloc_cache(index, flags);
2576 return &kmalloc_caches[index];
2579 void *__kmalloc(size_t size, gfp_t flags)
2581 struct kmem_cache *s;
2583 if (unlikely(size > PAGE_SIZE))
2584 return kmalloc_large(size, flags);
2586 s = get_slab(size, flags);
2588 if (unlikely(ZERO_OR_NULL_PTR(s)))
2591 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2593 EXPORT_SYMBOL(__kmalloc);
2595 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2597 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2601 return page_address(page);
2607 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2609 struct kmem_cache *s;
2611 if (unlikely(size > PAGE_SIZE))
2612 return kmalloc_large_node(size, flags, node);
2614 s = get_slab(size, flags);
2616 if (unlikely(ZERO_OR_NULL_PTR(s)))
2619 return slab_alloc(s, flags, node, __builtin_return_address(0));
2621 EXPORT_SYMBOL(__kmalloc_node);
2624 size_t ksize(const void *object)
2627 struct kmem_cache *s;
2629 if (unlikely(object == ZERO_SIZE_PTR))
2632 page = virt_to_head_page(object);
2634 if (unlikely(!PageSlab(page)))
2635 return PAGE_SIZE << compound_order(page);
2639 #ifdef CONFIG_SLUB_DEBUG
2641 * Debugging requires use of the padding between object
2642 * and whatever may come after it.
2644 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2649 * If we have the need to store the freelist pointer
2650 * back there or track user information then we can
2651 * only use the space before that information.
2653 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2656 * Else we can use all the padding etc for the allocation
2660 EXPORT_SYMBOL(ksize);
2662 void kfree(const void *x)
2665 void *object = (void *)x;
2667 if (unlikely(ZERO_OR_NULL_PTR(x)))
2670 page = virt_to_head_page(x);
2671 if (unlikely(!PageSlab(page))) {
2675 slab_free(page->slab, page, object, __builtin_return_address(0));
2677 EXPORT_SYMBOL(kfree);
2679 static unsigned long count_partial(struct kmem_cache_node *n)
2681 unsigned long flags;
2682 unsigned long x = 0;
2685 spin_lock_irqsave(&n->list_lock, flags);
2686 list_for_each_entry(page, &n->partial, lru)
2688 spin_unlock_irqrestore(&n->list_lock, flags);
2693 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2694 * the remaining slabs by the number of items in use. The slabs with the
2695 * most items in use come first. New allocations will then fill those up
2696 * and thus they can be removed from the partial lists.
2698 * The slabs with the least items are placed last. This results in them
2699 * being allocated from last increasing the chance that the last objects
2700 * are freed in them.
2702 int kmem_cache_shrink(struct kmem_cache *s)
2706 struct kmem_cache_node *n;
2709 struct list_head *slabs_by_inuse =
2710 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2711 unsigned long flags;
2713 if (!slabs_by_inuse)
2717 for_each_node_state(node, N_NORMAL_MEMORY) {
2718 n = get_node(s, node);
2723 for (i = 0; i < s->objects; i++)
2724 INIT_LIST_HEAD(slabs_by_inuse + i);
2726 spin_lock_irqsave(&n->list_lock, flags);
2729 * Build lists indexed by the items in use in each slab.
2731 * Note that concurrent frees may occur while we hold the
2732 * list_lock. page->inuse here is the upper limit.
2734 list_for_each_entry_safe(page, t, &n->partial, lru) {
2735 if (!page->inuse && slab_trylock(page)) {
2737 * Must hold slab lock here because slab_free
2738 * may have freed the last object and be
2739 * waiting to release the slab.
2741 list_del(&page->lru);
2744 discard_slab(s, page);
2746 list_move(&page->lru,
2747 slabs_by_inuse + page->inuse);
2752 * Rebuild the partial list with the slabs filled up most
2753 * first and the least used slabs at the end.
2755 for (i = s->objects - 1; i >= 0; i--)
2756 list_splice(slabs_by_inuse + i, n->partial.prev);
2758 spin_unlock_irqrestore(&n->list_lock, flags);
2761 kfree(slabs_by_inuse);
2764 EXPORT_SYMBOL(kmem_cache_shrink);
2766 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2767 static int slab_mem_going_offline_callback(void *arg)
2769 struct kmem_cache *s;
2771 down_read(&slub_lock);
2772 list_for_each_entry(s, &slab_caches, list)
2773 kmem_cache_shrink(s);
2774 up_read(&slub_lock);
2779 static void slab_mem_offline_callback(void *arg)
2781 struct kmem_cache_node *n;
2782 struct kmem_cache *s;
2783 struct memory_notify *marg = arg;
2786 offline_node = marg->status_change_nid;
2789 * If the node still has available memory. we need kmem_cache_node
2792 if (offline_node < 0)
2795 down_read(&slub_lock);
2796 list_for_each_entry(s, &slab_caches, list) {
2797 n = get_node(s, offline_node);
2800 * if n->nr_slabs > 0, slabs still exist on the node
2801 * that is going down. We were unable to free them,
2802 * and offline_pages() function shoudn't call this
2803 * callback. So, we must fail.
2805 BUG_ON(atomic_long_read(&n->nr_slabs));
2807 s->node[offline_node] = NULL;
2808 kmem_cache_free(kmalloc_caches, n);
2811 up_read(&slub_lock);
2814 static int slab_mem_going_online_callback(void *arg)
2816 struct kmem_cache_node *n;
2817 struct kmem_cache *s;
2818 struct memory_notify *marg = arg;
2819 int nid = marg->status_change_nid;
2823 * If the node's memory is already available, then kmem_cache_node is
2824 * already created. Nothing to do.
2830 * We are bringing a node online. No memory is availabe yet. We must
2831 * allocate a kmem_cache_node structure in order to bring the node
2834 down_read(&slub_lock);
2835 list_for_each_entry(s, &slab_caches, list) {
2837 * XXX: kmem_cache_alloc_node will fallback to other nodes
2838 * since memory is not yet available from the node that
2841 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2846 init_kmem_cache_node(n);
2850 up_read(&slub_lock);
2854 static int slab_memory_callback(struct notifier_block *self,
2855 unsigned long action, void *arg)
2860 case MEM_GOING_ONLINE:
2861 ret = slab_mem_going_online_callback(arg);
2863 case MEM_GOING_OFFLINE:
2864 ret = slab_mem_going_offline_callback(arg);
2867 case MEM_CANCEL_ONLINE:
2868 slab_mem_offline_callback(arg);
2871 case MEM_CANCEL_OFFLINE:
2875 ret = notifier_from_errno(ret);
2879 #endif /* CONFIG_MEMORY_HOTPLUG */
2881 /********************************************************************
2882 * Basic setup of slabs
2883 *******************************************************************/
2885 void __init kmem_cache_init(void)
2894 * Must first have the slab cache available for the allocations of the
2895 * struct kmem_cache_node's. There is special bootstrap code in
2896 * kmem_cache_open for slab_state == DOWN.
2898 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2899 sizeof(struct kmem_cache_node), GFP_KERNEL);
2900 kmalloc_caches[0].refcount = -1;
2903 hotplug_memory_notifier(slab_memory_callback, 1);
2906 /* Able to allocate the per node structures */
2907 slab_state = PARTIAL;
2909 /* Caches that are not of the two-to-the-power-of size */
2910 if (KMALLOC_MIN_SIZE <= 64) {
2911 create_kmalloc_cache(&kmalloc_caches[1],
2912 "kmalloc-96", 96, GFP_KERNEL);
2915 if (KMALLOC_MIN_SIZE <= 128) {
2916 create_kmalloc_cache(&kmalloc_caches[2],
2917 "kmalloc-192", 192, GFP_KERNEL);
2921 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2922 create_kmalloc_cache(&kmalloc_caches[i],
2923 "kmalloc", 1 << i, GFP_KERNEL);
2929 * Patch up the size_index table if we have strange large alignment
2930 * requirements for the kmalloc array. This is only the case for
2931 * MIPS it seems. The standard arches will not generate any code here.
2933 * Largest permitted alignment is 256 bytes due to the way we
2934 * handle the index determination for the smaller caches.
2936 * Make sure that nothing crazy happens if someone starts tinkering
2937 * around with ARCH_KMALLOC_MINALIGN
2939 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2940 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2942 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2943 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2947 /* Provide the correct kmalloc names now that the caches are up */
2948 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
2949 kmalloc_caches[i]. name =
2950 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2953 register_cpu_notifier(&slab_notifier);
2954 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2955 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2957 kmem_size = sizeof(struct kmem_cache);
2961 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2962 " CPUs=%d, Nodes=%d\n",
2963 caches, cache_line_size(),
2964 slub_min_order, slub_max_order, slub_min_objects,
2965 nr_cpu_ids, nr_node_ids);
2969 * Find a mergeable slab cache
2971 static int slab_unmergeable(struct kmem_cache *s)
2973 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2976 if ((s->flags & __PAGE_ALLOC_FALLBACK))
2983 * We may have set a slab to be unmergeable during bootstrap.
2985 if (s->refcount < 0)
2991 static struct kmem_cache *find_mergeable(size_t size,
2992 size_t align, unsigned long flags, const char *name,
2993 void (*ctor)(struct kmem_cache *, void *))
2995 struct kmem_cache *s;
2997 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3003 size = ALIGN(size, sizeof(void *));
3004 align = calculate_alignment(flags, align, size);
3005 size = ALIGN(size, align);
3006 flags = kmem_cache_flags(size, flags, name, NULL);
3008 list_for_each_entry(s, &slab_caches, list) {
3009 if (slab_unmergeable(s))
3015 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3018 * Check if alignment is compatible.
3019 * Courtesy of Adrian Drzewiecki
3021 if ((s->size & ~(align - 1)) != s->size)
3024 if (s->size - size >= sizeof(void *))
3032 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3033 size_t align, unsigned long flags,
3034 void (*ctor)(struct kmem_cache *, void *))
3036 struct kmem_cache *s;
3038 down_write(&slub_lock);
3039 s = find_mergeable(size, align, flags, name, ctor);
3045 * Adjust the object sizes so that we clear
3046 * the complete object on kzalloc.
3048 s->objsize = max(s->objsize, (int)size);
3051 * And then we need to update the object size in the
3052 * per cpu structures
3054 for_each_online_cpu(cpu)
3055 get_cpu_slab(s, cpu)->objsize = s->objsize;
3057 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3058 up_write(&slub_lock);
3060 if (sysfs_slab_alias(s, name))
3065 s = kmalloc(kmem_size, GFP_KERNEL);
3067 if (kmem_cache_open(s, GFP_KERNEL, name,
3068 size, align, flags, ctor)) {
3069 list_add(&s->list, &slab_caches);
3070 up_write(&slub_lock);
3071 if (sysfs_slab_add(s))
3077 up_write(&slub_lock);
3080 if (flags & SLAB_PANIC)
3081 panic("Cannot create slabcache %s\n", name);
3086 EXPORT_SYMBOL(kmem_cache_create);
3090 * Use the cpu notifier to insure that the cpu slabs are flushed when
3093 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3094 unsigned long action, void *hcpu)
3096 long cpu = (long)hcpu;
3097 struct kmem_cache *s;
3098 unsigned long flags;
3101 case CPU_UP_PREPARE:
3102 case CPU_UP_PREPARE_FROZEN:
3103 init_alloc_cpu_cpu(cpu);
3104 down_read(&slub_lock);
3105 list_for_each_entry(s, &slab_caches, list)
3106 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3108 up_read(&slub_lock);
3111 case CPU_UP_CANCELED:
3112 case CPU_UP_CANCELED_FROZEN:
3114 case CPU_DEAD_FROZEN:
3115 down_read(&slub_lock);
3116 list_for_each_entry(s, &slab_caches, list) {
3117 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3119 local_irq_save(flags);
3120 __flush_cpu_slab(s, cpu);
3121 local_irq_restore(flags);
3122 free_kmem_cache_cpu(c, cpu);
3123 s->cpu_slab[cpu] = NULL;
3125 up_read(&slub_lock);
3133 static struct notifier_block __cpuinitdata slab_notifier = {
3134 .notifier_call = slab_cpuup_callback
3139 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3141 struct kmem_cache *s;
3143 if (unlikely(size > PAGE_SIZE))
3144 return kmalloc_large(size, gfpflags);
3146 s = get_slab(size, gfpflags);
3148 if (unlikely(ZERO_OR_NULL_PTR(s)))
3151 return slab_alloc(s, gfpflags, -1, caller);
3154 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3155 int node, void *caller)
3157 struct kmem_cache *s;
3159 if (unlikely(size > PAGE_SIZE))
3160 return kmalloc_large_node(size, gfpflags, node);
3162 s = get_slab(size, gfpflags);
3164 if (unlikely(ZERO_OR_NULL_PTR(s)))
3167 return slab_alloc(s, gfpflags, node, caller);
3170 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3171 static int validate_slab(struct kmem_cache *s, struct page *page,
3175 void *addr = page_address(page);
3177 if (!check_slab(s, page) ||
3178 !on_freelist(s, page, NULL))
3181 /* Now we know that a valid freelist exists */
3182 bitmap_zero(map, s->objects);
3184 for_each_free_object(p, s, page->freelist) {
3185 set_bit(slab_index(p, s, addr), map);
3186 if (!check_object(s, page, p, 0))
3190 for_each_object(p, s, addr)
3191 if (!test_bit(slab_index(p, s, addr), map))
3192 if (!check_object(s, page, p, 1))
3197 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3200 if (slab_trylock(page)) {
3201 validate_slab(s, page, map);
3204 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3207 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3208 if (!SlabDebug(page))
3209 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3210 "on slab 0x%p\n", s->name, page);
3212 if (SlabDebug(page))
3213 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3214 "slab 0x%p\n", s->name, page);
3218 static int validate_slab_node(struct kmem_cache *s,
3219 struct kmem_cache_node *n, unsigned long *map)
3221 unsigned long count = 0;
3223 unsigned long flags;
3225 spin_lock_irqsave(&n->list_lock, flags);
3227 list_for_each_entry(page, &n->partial, lru) {
3228 validate_slab_slab(s, page, map);
3231 if (count != n->nr_partial)
3232 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3233 "counter=%ld\n", s->name, count, n->nr_partial);
3235 if (!(s->flags & SLAB_STORE_USER))
3238 list_for_each_entry(page, &n->full, lru) {
3239 validate_slab_slab(s, page, map);
3242 if (count != atomic_long_read(&n->nr_slabs))
3243 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3244 "counter=%ld\n", s->name, count,
3245 atomic_long_read(&n->nr_slabs));
3248 spin_unlock_irqrestore(&n->list_lock, flags);
3252 static long validate_slab_cache(struct kmem_cache *s)
3255 unsigned long count = 0;
3256 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3257 sizeof(unsigned long), GFP_KERNEL);
3263 for_each_node_state(node, N_NORMAL_MEMORY) {
3264 struct kmem_cache_node *n = get_node(s, node);
3266 count += validate_slab_node(s, n, map);
3272 #ifdef SLUB_RESILIENCY_TEST
3273 static void resiliency_test(void)
3277 printk(KERN_ERR "SLUB resiliency testing\n");
3278 printk(KERN_ERR "-----------------------\n");
3279 printk(KERN_ERR "A. Corruption after allocation\n");
3281 p = kzalloc(16, GFP_KERNEL);
3283 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3284 " 0x12->0x%p\n\n", p + 16);
3286 validate_slab_cache(kmalloc_caches + 4);
3288 /* Hmmm... The next two are dangerous */
3289 p = kzalloc(32, GFP_KERNEL);
3290 p[32 + sizeof(void *)] = 0x34;
3291 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3292 " 0x34 -> -0x%p\n", p);
3294 "If allocated object is overwritten then not detectable\n\n");
3296 validate_slab_cache(kmalloc_caches + 5);
3297 p = kzalloc(64, GFP_KERNEL);
3298 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3300 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3303 "If allocated object is overwritten then not detectable\n\n");
3304 validate_slab_cache(kmalloc_caches + 6);
3306 printk(KERN_ERR "\nB. Corruption after free\n");
3307 p = kzalloc(128, GFP_KERNEL);
3310 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3311 validate_slab_cache(kmalloc_caches + 7);
3313 p = kzalloc(256, GFP_KERNEL);
3316 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3318 validate_slab_cache(kmalloc_caches + 8);
3320 p = kzalloc(512, GFP_KERNEL);
3323 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3324 validate_slab_cache(kmalloc_caches + 9);
3327 static void resiliency_test(void) {};
3331 * Generate lists of code addresses where slabcache objects are allocated
3336 unsigned long count;
3349 unsigned long count;
3350 struct location *loc;
3353 static void free_loc_track(struct loc_track *t)
3356 free_pages((unsigned long)t->loc,
3357 get_order(sizeof(struct location) * t->max));
3360 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3365 order = get_order(sizeof(struct location) * max);
3367 l = (void *)__get_free_pages(flags, order);
3372 memcpy(l, t->loc, sizeof(struct location) * t->count);
3380 static int add_location(struct loc_track *t, struct kmem_cache *s,
3381 const struct track *track)
3383 long start, end, pos;
3386 unsigned long age = jiffies - track->when;
3392 pos = start + (end - start + 1) / 2;
3395 * There is nothing at "end". If we end up there
3396 * we need to add something to before end.
3401 caddr = t->loc[pos].addr;
3402 if (track->addr == caddr) {
3408 if (age < l->min_time)
3410 if (age > l->max_time)
3413 if (track->pid < l->min_pid)
3414 l->min_pid = track->pid;
3415 if (track->pid > l->max_pid)
3416 l->max_pid = track->pid;
3418 cpu_set(track->cpu, l->cpus);
3420 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3424 if (track->addr < caddr)
3431 * Not found. Insert new tracking element.
3433 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3439 (t->count - pos) * sizeof(struct location));
3442 l->addr = track->addr;
3446 l->min_pid = track->pid;
3447 l->max_pid = track->pid;
3448 cpus_clear(l->cpus);
3449 cpu_set(track->cpu, l->cpus);
3450 nodes_clear(l->nodes);
3451 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3455 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3456 struct page *page, enum track_item alloc)
3458 void *addr = page_address(page);
3459 DECLARE_BITMAP(map, s->objects);
3462 bitmap_zero(map, s->objects);
3463 for_each_free_object(p, s, page->freelist)
3464 set_bit(slab_index(p, s, addr), map);
3466 for_each_object(p, s, addr)
3467 if (!test_bit(slab_index(p, s, addr), map))
3468 add_location(t, s, get_track(s, p, alloc));
3471 static int list_locations(struct kmem_cache *s, char *buf,
3472 enum track_item alloc)
3476 struct loc_track t = { 0, 0, NULL };
3479 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3481 return sprintf(buf, "Out of memory\n");
3483 /* Push back cpu slabs */
3486 for_each_node_state(node, N_NORMAL_MEMORY) {
3487 struct kmem_cache_node *n = get_node(s, node);
3488 unsigned long flags;
3491 if (!atomic_long_read(&n->nr_slabs))
3494 spin_lock_irqsave(&n->list_lock, flags);
3495 list_for_each_entry(page, &n->partial, lru)
3496 process_slab(&t, s, page, alloc);
3497 list_for_each_entry(page, &n->full, lru)
3498 process_slab(&t, s, page, alloc);
3499 spin_unlock_irqrestore(&n->list_lock, flags);
3502 for (i = 0; i < t.count; i++) {
3503 struct location *l = &t.loc[i];
3505 if (len > PAGE_SIZE - 100)
3507 len += sprintf(buf + len, "%7ld ", l->count);
3510 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3512 len += sprintf(buf + len, "<not-available>");
3514 if (l->sum_time != l->min_time) {
3515 unsigned long remainder;
3517 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3519 div_long_long_rem(l->sum_time, l->count, &remainder),
3522 len += sprintf(buf + len, " age=%ld",
3525 if (l->min_pid != l->max_pid)
3526 len += sprintf(buf + len, " pid=%ld-%ld",
3527 l->min_pid, l->max_pid);
3529 len += sprintf(buf + len, " pid=%ld",
3532 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3533 len < PAGE_SIZE - 60) {
3534 len += sprintf(buf + len, " cpus=");
3535 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3539 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3540 len < PAGE_SIZE - 60) {
3541 len += sprintf(buf + len, " nodes=");
3542 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3546 len += sprintf(buf + len, "\n");
3551 len += sprintf(buf, "No data\n");
3555 enum slab_stat_type {
3562 #define SO_FULL (1 << SL_FULL)
3563 #define SO_PARTIAL (1 << SL_PARTIAL)
3564 #define SO_CPU (1 << SL_CPU)
3565 #define SO_OBJECTS (1 << SL_OBJECTS)
3567 static ssize_t show_slab_objects(struct kmem_cache *s,
3568 char *buf, unsigned long flags)
3570 unsigned long total = 0;
3574 unsigned long *nodes;
3575 unsigned long *per_cpu;
3577 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3580 per_cpu = nodes + nr_node_ids;
3582 for_each_possible_cpu(cpu) {
3584 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3594 if (flags & SO_CPU) {
3595 if (flags & SO_OBJECTS)
3606 for_each_node_state(node, N_NORMAL_MEMORY) {
3607 struct kmem_cache_node *n = get_node(s, node);
3609 if (flags & SO_PARTIAL) {
3610 if (flags & SO_OBJECTS)
3611 x = count_partial(n);
3618 if (flags & SO_FULL) {
3619 int full_slabs = atomic_long_read(&n->nr_slabs)
3623 if (flags & SO_OBJECTS)
3624 x = full_slabs * s->objects;
3632 x = sprintf(buf, "%lu", total);
3634 for_each_node_state(node, N_NORMAL_MEMORY)
3636 x += sprintf(buf + x, " N%d=%lu",
3640 return x + sprintf(buf + x, "\n");
3643 static int any_slab_objects(struct kmem_cache *s)
3648 for_each_possible_cpu(cpu) {
3649 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3655 for_each_online_node(node) {
3656 struct kmem_cache_node *n = get_node(s, node);
3661 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3667 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3668 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3670 struct slab_attribute {
3671 struct attribute attr;
3672 ssize_t (*show)(struct kmem_cache *s, char *buf);
3673 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3676 #define SLAB_ATTR_RO(_name) \
3677 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3679 #define SLAB_ATTR(_name) \
3680 static struct slab_attribute _name##_attr = \
3681 __ATTR(_name, 0644, _name##_show, _name##_store)
3683 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3685 return sprintf(buf, "%d\n", s->size);
3687 SLAB_ATTR_RO(slab_size);
3689 static ssize_t align_show(struct kmem_cache *s, char *buf)
3691 return sprintf(buf, "%d\n", s->align);
3693 SLAB_ATTR_RO(align);
3695 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3697 return sprintf(buf, "%d\n", s->objsize);
3699 SLAB_ATTR_RO(object_size);
3701 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3703 return sprintf(buf, "%d\n", s->objects);
3705 SLAB_ATTR_RO(objs_per_slab);
3707 static ssize_t order_show(struct kmem_cache *s, char *buf)
3709 return sprintf(buf, "%d\n", s->order);
3711 SLAB_ATTR_RO(order);
3713 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3716 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3718 return n + sprintf(buf + n, "\n");
3724 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3726 return sprintf(buf, "%d\n", s->refcount - 1);
3728 SLAB_ATTR_RO(aliases);
3730 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3732 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3734 SLAB_ATTR_RO(slabs);
3736 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3738 return show_slab_objects(s, buf, SO_PARTIAL);
3740 SLAB_ATTR_RO(partial);
3742 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3744 return show_slab_objects(s, buf, SO_CPU);
3746 SLAB_ATTR_RO(cpu_slabs);
3748 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3750 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3752 SLAB_ATTR_RO(objects);
3754 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3756 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3759 static ssize_t sanity_checks_store(struct kmem_cache *s,
3760 const char *buf, size_t length)
3762 s->flags &= ~SLAB_DEBUG_FREE;
3764 s->flags |= SLAB_DEBUG_FREE;
3767 SLAB_ATTR(sanity_checks);
3769 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3771 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3774 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3777 s->flags &= ~SLAB_TRACE;
3779 s->flags |= SLAB_TRACE;
3784 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3786 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3789 static ssize_t reclaim_account_store(struct kmem_cache *s,
3790 const char *buf, size_t length)
3792 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3794 s->flags |= SLAB_RECLAIM_ACCOUNT;
3797 SLAB_ATTR(reclaim_account);
3799 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3801 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3803 SLAB_ATTR_RO(hwcache_align);
3805 #ifdef CONFIG_ZONE_DMA
3806 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3808 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3810 SLAB_ATTR_RO(cache_dma);
3813 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3815 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3817 SLAB_ATTR_RO(destroy_by_rcu);
3819 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3824 static ssize_t red_zone_store(struct kmem_cache *s,
3825 const char *buf, size_t length)
3827 if (any_slab_objects(s))
3830 s->flags &= ~SLAB_RED_ZONE;
3832 s->flags |= SLAB_RED_ZONE;
3836 SLAB_ATTR(red_zone);
3838 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3840 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3843 static ssize_t poison_store(struct kmem_cache *s,
3844 const char *buf, size_t length)
3846 if (any_slab_objects(s))
3849 s->flags &= ~SLAB_POISON;
3851 s->flags |= SLAB_POISON;
3857 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3862 static ssize_t store_user_store(struct kmem_cache *s,
3863 const char *buf, size_t length)
3865 if (any_slab_objects(s))
3868 s->flags &= ~SLAB_STORE_USER;
3870 s->flags |= SLAB_STORE_USER;
3874 SLAB_ATTR(store_user);
3876 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3881 static ssize_t validate_store(struct kmem_cache *s,
3882 const char *buf, size_t length)
3886 if (buf[0] == '1') {
3887 ret = validate_slab_cache(s);
3893 SLAB_ATTR(validate);
3895 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3900 static ssize_t shrink_store(struct kmem_cache *s,
3901 const char *buf, size_t length)
3903 if (buf[0] == '1') {
3904 int rc = kmem_cache_shrink(s);
3914 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3916 if (!(s->flags & SLAB_STORE_USER))
3918 return list_locations(s, buf, TRACK_ALLOC);
3920 SLAB_ATTR_RO(alloc_calls);
3922 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3924 if (!(s->flags & SLAB_STORE_USER))
3926 return list_locations(s, buf, TRACK_FREE);
3928 SLAB_ATTR_RO(free_calls);
3931 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
3933 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
3936 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
3937 const char *buf, size_t length)
3939 int n = simple_strtoul(buf, NULL, 10);
3942 s->remote_node_defrag_ratio = n * 10;
3945 SLAB_ATTR(remote_node_defrag_ratio);
3948 #ifdef CONFIG_SLUB_STATS
3949 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3951 unsigned long sum = 0;
3954 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3959 for_each_online_cpu(cpu) {
3960 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3966 len = sprintf(buf, "%lu", sum);
3968 for_each_online_cpu(cpu) {
3969 if (data[cpu] && len < PAGE_SIZE - 20)
3970 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3973 return len + sprintf(buf + len, "\n");
3976 #define STAT_ATTR(si, text) \
3977 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
3979 return show_stat(s, buf, si); \
3981 SLAB_ATTR_RO(text); \
3983 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
3984 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
3985 STAT_ATTR(FREE_FASTPATH, free_fastpath);
3986 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
3987 STAT_ATTR(FREE_FROZEN, free_frozen);
3988 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
3989 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
3990 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
3991 STAT_ATTR(ALLOC_SLAB, alloc_slab);
3992 STAT_ATTR(ALLOC_REFILL, alloc_refill);
3993 STAT_ATTR(FREE_SLAB, free_slab);
3994 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
3995 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
3996 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
3997 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
3998 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
3999 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4003 static struct attribute *slab_attrs[] = {
4004 &slab_size_attr.attr,
4005 &object_size_attr.attr,
4006 &objs_per_slab_attr.attr,
4011 &cpu_slabs_attr.attr,
4015 &sanity_checks_attr.attr,
4017 &hwcache_align_attr.attr,
4018 &reclaim_account_attr.attr,
4019 &destroy_by_rcu_attr.attr,
4020 &red_zone_attr.attr,
4022 &store_user_attr.attr,
4023 &validate_attr.attr,
4025 &alloc_calls_attr.attr,
4026 &free_calls_attr.attr,
4027 #ifdef CONFIG_ZONE_DMA
4028 &cache_dma_attr.attr,
4031 &remote_node_defrag_ratio_attr.attr,
4033 #ifdef CONFIG_SLUB_STATS
4034 &alloc_fastpath_attr.attr,
4035 &alloc_slowpath_attr.attr,
4036 &free_fastpath_attr.attr,
4037 &free_slowpath_attr.attr,
4038 &free_frozen_attr.attr,
4039 &free_add_partial_attr.attr,
4040 &free_remove_partial_attr.attr,
4041 &alloc_from_partial_attr.attr,
4042 &alloc_slab_attr.attr,
4043 &alloc_refill_attr.attr,
4044 &free_slab_attr.attr,
4045 &cpuslab_flush_attr.attr,
4046 &deactivate_full_attr.attr,
4047 &deactivate_empty_attr.attr,
4048 &deactivate_to_head_attr.attr,
4049 &deactivate_to_tail_attr.attr,
4050 &deactivate_remote_frees_attr.attr,
4055 static struct attribute_group slab_attr_group = {
4056 .attrs = slab_attrs,
4059 static ssize_t slab_attr_show(struct kobject *kobj,
4060 struct attribute *attr,
4063 struct slab_attribute *attribute;
4064 struct kmem_cache *s;
4067 attribute = to_slab_attr(attr);
4070 if (!attribute->show)
4073 err = attribute->show(s, buf);
4078 static ssize_t slab_attr_store(struct kobject *kobj,
4079 struct attribute *attr,
4080 const char *buf, size_t len)
4082 struct slab_attribute *attribute;
4083 struct kmem_cache *s;
4086 attribute = to_slab_attr(attr);
4089 if (!attribute->store)
4092 err = attribute->store(s, buf, len);
4097 static void kmem_cache_release(struct kobject *kobj)
4099 struct kmem_cache *s = to_slab(kobj);
4104 static struct sysfs_ops slab_sysfs_ops = {
4105 .show = slab_attr_show,
4106 .store = slab_attr_store,
4109 static struct kobj_type slab_ktype = {
4110 .sysfs_ops = &slab_sysfs_ops,
4111 .release = kmem_cache_release
4114 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4116 struct kobj_type *ktype = get_ktype(kobj);
4118 if (ktype == &slab_ktype)
4123 static struct kset_uevent_ops slab_uevent_ops = {
4124 .filter = uevent_filter,
4127 static struct kset *slab_kset;
4129 #define ID_STR_LENGTH 64
4131 /* Create a unique string id for a slab cache:
4133 * Format :[flags-]size
4135 static char *create_unique_id(struct kmem_cache *s)
4137 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4144 * First flags affecting slabcache operations. We will only
4145 * get here for aliasable slabs so we do not need to support
4146 * too many flags. The flags here must cover all flags that
4147 * are matched during merging to guarantee that the id is
4150 if (s->flags & SLAB_CACHE_DMA)
4152 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4154 if (s->flags & SLAB_DEBUG_FREE)
4158 p += sprintf(p, "%07d", s->size);
4159 BUG_ON(p > name + ID_STR_LENGTH - 1);
4163 static int sysfs_slab_add(struct kmem_cache *s)
4169 if (slab_state < SYSFS)
4170 /* Defer until later */
4173 unmergeable = slab_unmergeable(s);
4176 * Slabcache can never be merged so we can use the name proper.
4177 * This is typically the case for debug situations. In that
4178 * case we can catch duplicate names easily.
4180 sysfs_remove_link(&slab_kset->kobj, s->name);
4184 * Create a unique name for the slab as a target
4187 name = create_unique_id(s);
4190 s->kobj.kset = slab_kset;
4191 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4193 kobject_put(&s->kobj);
4197 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4200 kobject_uevent(&s->kobj, KOBJ_ADD);
4202 /* Setup first alias */
4203 sysfs_slab_alias(s, s->name);
4209 static void sysfs_slab_remove(struct kmem_cache *s)
4211 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4212 kobject_del(&s->kobj);
4213 kobject_put(&s->kobj);
4217 * Need to buffer aliases during bootup until sysfs becomes
4218 * available lest we loose that information.
4220 struct saved_alias {
4221 struct kmem_cache *s;
4223 struct saved_alias *next;
4226 static struct saved_alias *alias_list;
4228 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4230 struct saved_alias *al;
4232 if (slab_state == SYSFS) {
4234 * If we have a leftover link then remove it.
4236 sysfs_remove_link(&slab_kset->kobj, name);
4237 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4240 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4246 al->next = alias_list;
4251 static int __init slab_sysfs_init(void)
4253 struct kmem_cache *s;
4256 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4258 printk(KERN_ERR "Cannot register slab subsystem.\n");
4264 list_for_each_entry(s, &slab_caches, list) {
4265 err = sysfs_slab_add(s);
4267 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4268 " to sysfs\n", s->name);
4271 while (alias_list) {
4272 struct saved_alias *al = alias_list;
4274 alias_list = alias_list->next;
4275 err = sysfs_slab_alias(al->s, al->name);
4277 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4278 " %s to sysfs\n", s->name);
4286 __initcall(slab_sysfs_init);
4290 * The /proc/slabinfo ABI
4292 #ifdef CONFIG_SLABINFO
4294 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4295 size_t count, loff_t *ppos)
4301 static void print_slabinfo_header(struct seq_file *m)
4303 seq_puts(m, "slabinfo - version: 2.1\n");
4304 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4305 "<objperslab> <pagesperslab>");
4306 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4307 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4311 static void *s_start(struct seq_file *m, loff_t *pos)
4315 down_read(&slub_lock);
4317 print_slabinfo_header(m);
4319 return seq_list_start(&slab_caches, *pos);
4322 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4324 return seq_list_next(p, &slab_caches, pos);
4327 static void s_stop(struct seq_file *m, void *p)
4329 up_read(&slub_lock);
4332 static int s_show(struct seq_file *m, void *p)
4334 unsigned long nr_partials = 0;
4335 unsigned long nr_slabs = 0;
4336 unsigned long nr_inuse = 0;
4337 unsigned long nr_objs;
4338 struct kmem_cache *s;
4341 s = list_entry(p, struct kmem_cache, list);
4343 for_each_online_node(node) {
4344 struct kmem_cache_node *n = get_node(s, node);
4349 nr_partials += n->nr_partial;
4350 nr_slabs += atomic_long_read(&n->nr_slabs);
4351 nr_inuse += count_partial(n);
4354 nr_objs = nr_slabs * s->objects;
4355 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4357 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4358 nr_objs, s->size, s->objects, (1 << s->order));
4359 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4360 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4366 const struct seq_operations slabinfo_op = {
4373 #endif /* CONFIG_SLABINFO */