de2104x: support for systems lacking cache coherence
[linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorc) },
50         { "tx_bytes", E1000_STAT(stats.gotc) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->phy.media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170
171         /* MDI-X => 2; MDI =>1; Invalid =>0 */
172         if ((hw->phy.media_type == e1000_media_type_copper) &&
173             !hw->mac.get_link_status)
174                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
175                                                       ETH_TP_MDI;
176         else
177                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
178
179         return 0;
180 }
181
182 static u32 e1000_get_link(struct net_device *netdev)
183 {
184         struct e1000_adapter *adapter = netdev_priv(netdev);
185
186         return e1000_has_link(adapter);
187 }
188
189 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
190 {
191         struct e1000_mac_info *mac = &adapter->hw.mac;
192
193         mac->autoneg = 0;
194
195         /* Fiber NICs only allow 1000 gbps Full duplex */
196         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
197                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
198                 e_err("Unsupported Speed/Duplex configuration\n");
199                 return -EINVAL;
200         }
201
202         switch (spddplx) {
203         case SPEED_10 + DUPLEX_HALF:
204                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
205                 break;
206         case SPEED_10 + DUPLEX_FULL:
207                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
208                 break;
209         case SPEED_100 + DUPLEX_HALF:
210                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
211                 break;
212         case SPEED_100 + DUPLEX_FULL:
213                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
214                 break;
215         case SPEED_1000 + DUPLEX_FULL:
216                 mac->autoneg = 1;
217                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
218                 break;
219         case SPEED_1000 + DUPLEX_HALF: /* not supported */
220         default:
221                 e_err("Unsupported Speed/Duplex configuration\n");
222                 return -EINVAL;
223         }
224         return 0;
225 }
226
227 static int e1000_set_settings(struct net_device *netdev,
228                               struct ethtool_cmd *ecmd)
229 {
230         struct e1000_adapter *adapter = netdev_priv(netdev);
231         struct e1000_hw *hw = &adapter->hw;
232
233         /*
234          * When SoL/IDER sessions are active, autoneg/speed/duplex
235          * cannot be changed
236          */
237         if (e1000_check_reset_block(hw)) {
238                 e_err("Cannot change link characteristics when SoL/IDER is "
239                       "active.\n");
240                 return -EINVAL;
241         }
242
243         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
244                 msleep(1);
245
246         if (ecmd->autoneg == AUTONEG_ENABLE) {
247                 hw->mac.autoneg = 1;
248                 if (hw->phy.media_type == e1000_media_type_fiber)
249                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
250                                                      ADVERTISED_FIBRE |
251                                                      ADVERTISED_Autoneg;
252                 else
253                         hw->phy.autoneg_advertised = ecmd->advertising |
254                                                      ADVERTISED_TP |
255                                                      ADVERTISED_Autoneg;
256                 ecmd->advertising = hw->phy.autoneg_advertised;
257                 if (adapter->fc_autoneg)
258                         hw->fc.requested_mode = e1000_fc_default;
259         } else {
260                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
261                         clear_bit(__E1000_RESETTING, &adapter->state);
262                         return -EINVAL;
263                 }
264         }
265
266         /* reset the link */
267
268         if (netif_running(adapter->netdev)) {
269                 e1000e_down(adapter);
270                 e1000e_up(adapter);
271         } else {
272                 e1000e_reset(adapter);
273         }
274
275         clear_bit(__E1000_RESETTING, &adapter->state);
276         return 0;
277 }
278
279 static void e1000_get_pauseparam(struct net_device *netdev,
280                                  struct ethtool_pauseparam *pause)
281 {
282         struct e1000_adapter *adapter = netdev_priv(netdev);
283         struct e1000_hw *hw = &adapter->hw;
284
285         pause->autoneg =
286                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
287
288         if (hw->fc.current_mode == e1000_fc_rx_pause) {
289                 pause->rx_pause = 1;
290         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
291                 pause->tx_pause = 1;
292         } else if (hw->fc.current_mode == e1000_fc_full) {
293                 pause->rx_pause = 1;
294                 pause->tx_pause = 1;
295         }
296 }
297
298 static int e1000_set_pauseparam(struct net_device *netdev,
299                                 struct ethtool_pauseparam *pause)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302         struct e1000_hw *hw = &adapter->hw;
303         int retval = 0;
304
305         adapter->fc_autoneg = pause->autoneg;
306
307         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
308                 msleep(1);
309
310         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311                 hw->fc.requested_mode = e1000_fc_default;
312                 if (netif_running(adapter->netdev)) {
313                         e1000e_down(adapter);
314                         e1000e_up(adapter);
315                 } else {
316                         e1000e_reset(adapter);
317                 }
318         } else {
319                 if (pause->rx_pause && pause->tx_pause)
320                         hw->fc.requested_mode = e1000_fc_full;
321                 else if (pause->rx_pause && !pause->tx_pause)
322                         hw->fc.requested_mode = e1000_fc_rx_pause;
323                 else if (!pause->rx_pause && pause->tx_pause)
324                         hw->fc.requested_mode = e1000_fc_tx_pause;
325                 else if (!pause->rx_pause && !pause->tx_pause)
326                         hw->fc.requested_mode = e1000_fc_none;
327
328                 hw->fc.current_mode = hw->fc.requested_mode;
329
330                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
331                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
332         }
333
334         clear_bit(__E1000_RESETTING, &adapter->state);
335         return retval;
336 }
337
338 static u32 e1000_get_rx_csum(struct net_device *netdev)
339 {
340         struct e1000_adapter *adapter = netdev_priv(netdev);
341         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
342 }
343
344 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
345 {
346         struct e1000_adapter *adapter = netdev_priv(netdev);
347
348         if (data)
349                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
350         else
351                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
352
353         if (netif_running(netdev))
354                 e1000e_reinit_locked(adapter);
355         else
356                 e1000e_reset(adapter);
357         return 0;
358 }
359
360 static u32 e1000_get_tx_csum(struct net_device *netdev)
361 {
362         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
363 }
364
365 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
366 {
367         if (data)
368                 netdev->features |= NETIF_F_HW_CSUM;
369         else
370                 netdev->features &= ~NETIF_F_HW_CSUM;
371
372         return 0;
373 }
374
375 static int e1000_set_tso(struct net_device *netdev, u32 data)
376 {
377         struct e1000_adapter *adapter = netdev_priv(netdev);
378
379         if (data) {
380                 netdev->features |= NETIF_F_TSO;
381                 netdev->features |= NETIF_F_TSO6;
382         } else {
383                 netdev->features &= ~NETIF_F_TSO;
384                 netdev->features &= ~NETIF_F_TSO6;
385         }
386
387         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
388         adapter->flags |= FLAG_TSO_FORCE;
389         return 0;
390 }
391
392 static u32 e1000_get_msglevel(struct net_device *netdev)
393 {
394         struct e1000_adapter *adapter = netdev_priv(netdev);
395         return adapter->msg_enable;
396 }
397
398 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
399 {
400         struct e1000_adapter *adapter = netdev_priv(netdev);
401         adapter->msg_enable = data;
402 }
403
404 static int e1000_get_regs_len(struct net_device *netdev)
405 {
406 #define E1000_REGS_LEN 32 /* overestimate */
407         return E1000_REGS_LEN * sizeof(u32);
408 }
409
410 static void e1000_get_regs(struct net_device *netdev,
411                            struct ethtool_regs *regs, void *p)
412 {
413         struct e1000_adapter *adapter = netdev_priv(netdev);
414         struct e1000_hw *hw = &adapter->hw;
415         u32 *regs_buff = p;
416         u16 phy_data;
417         u8 revision_id;
418
419         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
420
421         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
422
423         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
424
425         regs_buff[0]  = er32(CTRL);
426         regs_buff[1]  = er32(STATUS);
427
428         regs_buff[2]  = er32(RCTL);
429         regs_buff[3]  = er32(RDLEN);
430         regs_buff[4]  = er32(RDH);
431         regs_buff[5]  = er32(RDT);
432         regs_buff[6]  = er32(RDTR);
433
434         regs_buff[7]  = er32(TCTL);
435         regs_buff[8]  = er32(TDLEN);
436         regs_buff[9]  = er32(TDH);
437         regs_buff[10] = er32(TDT);
438         regs_buff[11] = er32(TIDV);
439
440         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
441
442         /* ethtool doesn't use anything past this point, so all this
443          * code is likely legacy junk for apps that may or may not
444          * exist */
445         if (hw->phy.type == e1000_phy_m88) {
446                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
447                 regs_buff[13] = (u32)phy_data; /* cable length */
448                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
449                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
450                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
451                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
452                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
453                 regs_buff[18] = regs_buff[13]; /* cable polarity */
454                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
455                 regs_buff[20] = regs_buff[17]; /* polarity correction */
456                 /* phy receive errors */
457                 regs_buff[22] = adapter->phy_stats.receive_errors;
458                 regs_buff[23] = regs_buff[13]; /* mdix mode */
459         }
460         regs_buff[21] = 0; /* was idle_errors */
461         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
462         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
463         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
464 }
465
466 static int e1000_get_eeprom_len(struct net_device *netdev)
467 {
468         struct e1000_adapter *adapter = netdev_priv(netdev);
469         return adapter->hw.nvm.word_size * 2;
470 }
471
472 static int e1000_get_eeprom(struct net_device *netdev,
473                             struct ethtool_eeprom *eeprom, u8 *bytes)
474 {
475         struct e1000_adapter *adapter = netdev_priv(netdev);
476         struct e1000_hw *hw = &adapter->hw;
477         u16 *eeprom_buff;
478         int first_word;
479         int last_word;
480         int ret_val = 0;
481         u16 i;
482
483         if (eeprom->len == 0)
484                 return -EINVAL;
485
486         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
487
488         first_word = eeprom->offset >> 1;
489         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
490
491         eeprom_buff = kmalloc(sizeof(u16) *
492                         (last_word - first_word + 1), GFP_KERNEL);
493         if (!eeprom_buff)
494                 return -ENOMEM;
495
496         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
497                 ret_val = e1000_read_nvm(hw, first_word,
498                                          last_word - first_word + 1,
499                                          eeprom_buff);
500         } else {
501                 for (i = 0; i < last_word - first_word + 1; i++) {
502                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
503                                                       &eeprom_buff[i]);
504                         if (ret_val)
505                                 break;
506                 }
507         }
508
509         if (ret_val) {
510                 /* a read error occurred, throw away the result */
511                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
512         } else {
513                 /* Device's eeprom is always little-endian, word addressable */
514                 for (i = 0; i < last_word - first_word + 1; i++)
515                         le16_to_cpus(&eeprom_buff[i]);
516         }
517
518         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
519         kfree(eeprom_buff);
520
521         return ret_val;
522 }
523
524 static int e1000_set_eeprom(struct net_device *netdev,
525                             struct ethtool_eeprom *eeprom, u8 *bytes)
526 {
527         struct e1000_adapter *adapter = netdev_priv(netdev);
528         struct e1000_hw *hw = &adapter->hw;
529         u16 *eeprom_buff;
530         void *ptr;
531         int max_len;
532         int first_word;
533         int last_word;
534         int ret_val = 0;
535         u16 i;
536
537         if (eeprom->len == 0)
538                 return -EOPNOTSUPP;
539
540         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
541                 return -EFAULT;
542
543         if (adapter->flags & FLAG_READ_ONLY_NVM)
544                 return -EINVAL;
545
546         max_len = hw->nvm.word_size * 2;
547
548         first_word = eeprom->offset >> 1;
549         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
550         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
551         if (!eeprom_buff)
552                 return -ENOMEM;
553
554         ptr = (void *)eeprom_buff;
555
556         if (eeprom->offset & 1) {
557                 /* need read/modify/write of first changed EEPROM word */
558                 /* only the second byte of the word is being modified */
559                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
560                 ptr++;
561         }
562         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
563                 /* need read/modify/write of last changed EEPROM word */
564                 /* only the first byte of the word is being modified */
565                 ret_val = e1000_read_nvm(hw, last_word, 1,
566                                   &eeprom_buff[last_word - first_word]);
567
568         if (ret_val)
569                 goto out;
570
571         /* Device's eeprom is always little-endian, word addressable */
572         for (i = 0; i < last_word - first_word + 1; i++)
573                 le16_to_cpus(&eeprom_buff[i]);
574
575         memcpy(ptr, bytes, eeprom->len);
576
577         for (i = 0; i < last_word - first_word + 1; i++)
578                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
579
580         ret_val = e1000_write_nvm(hw, first_word,
581                                   last_word - first_word + 1, eeprom_buff);
582
583         if (ret_val)
584                 goto out;
585
586         /*
587          * Update the checksum over the first part of the EEPROM if needed
588          * and flush shadow RAM for applicable controllers
589          */
590         if ((first_word <= NVM_CHECKSUM_REG) ||
591             (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
592                 ret_val = e1000e_update_nvm_checksum(hw);
593
594 out:
595         kfree(eeprom_buff);
596         return ret_val;
597 }
598
599 static void e1000_get_drvinfo(struct net_device *netdev,
600                               struct ethtool_drvinfo *drvinfo)
601 {
602         struct e1000_adapter *adapter = netdev_priv(netdev);
603         char firmware_version[32];
604
605         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
606         strncpy(drvinfo->version, e1000e_driver_version, 32);
607
608         /*
609          * EEPROM image version # is reported as firmware version # for
610          * PCI-E controllers
611          */
612         sprintf(firmware_version, "%d.%d-%d",
613                 (adapter->eeprom_vers & 0xF000) >> 12,
614                 (adapter->eeprom_vers & 0x0FF0) >> 4,
615                 (adapter->eeprom_vers & 0x000F));
616
617         strncpy(drvinfo->fw_version, firmware_version, 32);
618         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
619         drvinfo->regdump_len = e1000_get_regs_len(netdev);
620         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
621 }
622
623 static void e1000_get_ringparam(struct net_device *netdev,
624                                 struct ethtool_ringparam *ring)
625 {
626         struct e1000_adapter *adapter = netdev_priv(netdev);
627         struct e1000_ring *tx_ring = adapter->tx_ring;
628         struct e1000_ring *rx_ring = adapter->rx_ring;
629
630         ring->rx_max_pending = E1000_MAX_RXD;
631         ring->tx_max_pending = E1000_MAX_TXD;
632         ring->rx_mini_max_pending = 0;
633         ring->rx_jumbo_max_pending = 0;
634         ring->rx_pending = rx_ring->count;
635         ring->tx_pending = tx_ring->count;
636         ring->rx_mini_pending = 0;
637         ring->rx_jumbo_pending = 0;
638 }
639
640 static int e1000_set_ringparam(struct net_device *netdev,
641                                struct ethtool_ringparam *ring)
642 {
643         struct e1000_adapter *adapter = netdev_priv(netdev);
644         struct e1000_ring *tx_ring, *tx_old;
645         struct e1000_ring *rx_ring, *rx_old;
646         int err;
647
648         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
649                 return -EINVAL;
650
651         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
652                 msleep(1);
653
654         if (netif_running(adapter->netdev))
655                 e1000e_down(adapter);
656
657         tx_old = adapter->tx_ring;
658         rx_old = adapter->rx_ring;
659
660         err = -ENOMEM;
661         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
662         if (!tx_ring)
663                 goto err_alloc_tx;
664         /*
665          * use a memcpy to save any previously configured
666          * items like napi structs from having to be
667          * reinitialized
668          */
669         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
670
671         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
672         if (!rx_ring)
673                 goto err_alloc_rx;
674         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
675
676         adapter->tx_ring = tx_ring;
677         adapter->rx_ring = rx_ring;
678
679         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
680         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
681         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
682
683         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
684         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
685         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
686
687         if (netif_running(adapter->netdev)) {
688                 /* Try to get new resources before deleting old */
689                 err = e1000e_setup_rx_resources(adapter);
690                 if (err)
691                         goto err_setup_rx;
692                 err = e1000e_setup_tx_resources(adapter);
693                 if (err)
694                         goto err_setup_tx;
695
696                 /*
697                  * restore the old in order to free it,
698                  * then add in the new
699                  */
700                 adapter->rx_ring = rx_old;
701                 adapter->tx_ring = tx_old;
702                 e1000e_free_rx_resources(adapter);
703                 e1000e_free_tx_resources(adapter);
704                 kfree(tx_old);
705                 kfree(rx_old);
706                 adapter->rx_ring = rx_ring;
707                 adapter->tx_ring = tx_ring;
708                 err = e1000e_up(adapter);
709                 if (err)
710                         goto err_setup;
711         }
712
713         clear_bit(__E1000_RESETTING, &adapter->state);
714         return 0;
715 err_setup_tx:
716         e1000e_free_rx_resources(adapter);
717 err_setup_rx:
718         adapter->rx_ring = rx_old;
719         adapter->tx_ring = tx_old;
720         kfree(rx_ring);
721 err_alloc_rx:
722         kfree(tx_ring);
723 err_alloc_tx:
724         e1000e_up(adapter);
725 err_setup:
726         clear_bit(__E1000_RESETTING, &adapter->state);
727         return err;
728 }
729
730 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
731                              int reg, int offset, u32 mask, u32 write)
732 {
733         u32 pat, val;
734         static const u32 test[] =
735                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
736         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
737                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
738                                       (test[pat] & write));
739                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
740                 if (val != (test[pat] & write & mask)) {
741                         e_err("pattern test reg %04X failed: got 0x%08X "
742                               "expected 0x%08X\n", reg + offset, val,
743                               (test[pat] & write & mask));
744                         *data = reg;
745                         return 1;
746                 }
747         }
748         return 0;
749 }
750
751 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
752                               int reg, u32 mask, u32 write)
753 {
754         u32 val;
755         __ew32(&adapter->hw, reg, write & mask);
756         val = __er32(&adapter->hw, reg);
757         if ((write & mask) != (val & mask)) {
758                 e_err("set/check reg %04X test failed: got 0x%08X "
759                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
760                 *data = reg;
761                 return 1;
762         }
763         return 0;
764 }
765 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
766         do {                                                                   \
767                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
768                         return 1;                                              \
769         } while (0)
770 #define REG_PATTERN_TEST(reg, mask, write)                                     \
771         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
772
773 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
774         do {                                                                   \
775                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
776                         return 1;                                              \
777         } while (0)
778
779 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
780 {
781         struct e1000_hw *hw = &adapter->hw;
782         struct e1000_mac_info *mac = &adapter->hw.mac;
783         u32 value;
784         u32 before;
785         u32 after;
786         u32 i;
787         u32 toggle;
788         u32 mask;
789
790         /*
791          * The status register is Read Only, so a write should fail.
792          * Some bits that get toggled are ignored.
793          */
794         switch (mac->type) {
795         /* there are several bits on newer hardware that are r/w */
796         case e1000_82571:
797         case e1000_82572:
798         case e1000_80003es2lan:
799                 toggle = 0x7FFFF3FF;
800                 break;
801         default:
802                 toggle = 0x7FFFF033;
803                 break;
804         }
805
806         before = er32(STATUS);
807         value = (er32(STATUS) & toggle);
808         ew32(STATUS, toggle);
809         after = er32(STATUS) & toggle;
810         if (value != after) {
811                 e_err("failed STATUS register test got: 0x%08X expected: "
812                       "0x%08X\n", after, value);
813                 *data = 1;
814                 return 1;
815         }
816         /* restore previous status */
817         ew32(STATUS, before);
818
819         if (!(adapter->flags & FLAG_IS_ICH)) {
820                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
821                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
822                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
823                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
824         }
825
826         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
827         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
828         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
829         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
830         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
831         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
832         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
833         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
834         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
835         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
836
837         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
838
839         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
840         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
841         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
842
843         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
844         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
845         if (!(adapter->flags & FLAG_IS_ICH))
846                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
847         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
848         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
849         mask = 0x8003FFFF;
850         switch (mac->type) {
851         case e1000_ich10lan:
852         case e1000_pchlan:
853                 mask |= (1 << 18);
854                 break;
855         default:
856                 break;
857         }
858         for (i = 0; i < mac->rar_entry_count; i++)
859                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
860                                        mask, 0xFFFFFFFF);
861
862         for (i = 0; i < mac->mta_reg_count; i++)
863                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
864
865         *data = 0;
866         return 0;
867 }
868
869 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
870 {
871         u16 temp;
872         u16 checksum = 0;
873         u16 i;
874
875         *data = 0;
876         /* Read and add up the contents of the EEPROM */
877         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
878                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
879                         *data = 1;
880                         return *data;
881                 }
882                 checksum += temp;
883         }
884
885         /* If Checksum is not Correct return error else test passed */
886         if ((checksum != (u16) NVM_SUM) && !(*data))
887                 *data = 2;
888
889         return *data;
890 }
891
892 static irqreturn_t e1000_test_intr(int irq, void *data)
893 {
894         struct net_device *netdev = (struct net_device *) data;
895         struct e1000_adapter *adapter = netdev_priv(netdev);
896         struct e1000_hw *hw = &adapter->hw;
897
898         adapter->test_icr |= er32(ICR);
899
900         return IRQ_HANDLED;
901 }
902
903 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
904 {
905         struct net_device *netdev = adapter->netdev;
906         struct e1000_hw *hw = &adapter->hw;
907         u32 mask;
908         u32 shared_int = 1;
909         u32 irq = adapter->pdev->irq;
910         int i;
911         int ret_val = 0;
912         int int_mode = E1000E_INT_MODE_LEGACY;
913
914         *data = 0;
915
916         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
917         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
918                 int_mode = adapter->int_mode;
919                 e1000e_reset_interrupt_capability(adapter);
920                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
921                 e1000e_set_interrupt_capability(adapter);
922         }
923         /* Hook up test interrupt handler just for this test */
924         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
925                          netdev)) {
926                 shared_int = 0;
927         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
928                  netdev->name, netdev)) {
929                 *data = 1;
930                 ret_val = -1;
931                 goto out;
932         }
933         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
934
935         /* Disable all the interrupts */
936         ew32(IMC, 0xFFFFFFFF);
937         msleep(10);
938
939         /* Test each interrupt */
940         for (i = 0; i < 10; i++) {
941                 /* Interrupt to test */
942                 mask = 1 << i;
943
944                 if (adapter->flags & FLAG_IS_ICH) {
945                         switch (mask) {
946                         case E1000_ICR_RXSEQ:
947                                 continue;
948                         case 0x00000100:
949                                 if (adapter->hw.mac.type == e1000_ich8lan ||
950                                     adapter->hw.mac.type == e1000_ich9lan)
951                                         continue;
952                                 break;
953                         default:
954                                 break;
955                         }
956                 }
957
958                 if (!shared_int) {
959                         /*
960                          * Disable the interrupt to be reported in
961                          * the cause register and then force the same
962                          * interrupt and see if one gets posted.  If
963                          * an interrupt was posted to the bus, the
964                          * test failed.
965                          */
966                         adapter->test_icr = 0;
967                         ew32(IMC, mask);
968                         ew32(ICS, mask);
969                         msleep(10);
970
971                         if (adapter->test_icr & mask) {
972                                 *data = 3;
973                                 break;
974                         }
975                 }
976
977                 /*
978                  * Enable the interrupt to be reported in
979                  * the cause register and then force the same
980                  * interrupt and see if one gets posted.  If
981                  * an interrupt was not posted to the bus, the
982                  * test failed.
983                  */
984                 adapter->test_icr = 0;
985                 ew32(IMS, mask);
986                 ew32(ICS, mask);
987                 msleep(10);
988
989                 if (!(adapter->test_icr & mask)) {
990                         *data = 4;
991                         break;
992                 }
993
994                 if (!shared_int) {
995                         /*
996                          * Disable the other interrupts to be reported in
997                          * the cause register and then force the other
998                          * interrupts and see if any get posted.  If
999                          * an interrupt was posted to the bus, the
1000                          * test failed.
1001                          */
1002                         adapter->test_icr = 0;
1003                         ew32(IMC, ~mask & 0x00007FFF);
1004                         ew32(ICS, ~mask & 0x00007FFF);
1005                         msleep(10);
1006
1007                         if (adapter->test_icr) {
1008                                 *data = 5;
1009                                 break;
1010                         }
1011                 }
1012         }
1013
1014         /* Disable all the interrupts */
1015         ew32(IMC, 0xFFFFFFFF);
1016         msleep(10);
1017
1018         /* Unhook test interrupt handler */
1019         free_irq(irq, netdev);
1020
1021 out:
1022         if (int_mode == E1000E_INT_MODE_MSIX) {
1023                 e1000e_reset_interrupt_capability(adapter);
1024                 adapter->int_mode = int_mode;
1025                 e1000e_set_interrupt_capability(adapter);
1026         }
1027
1028         return ret_val;
1029 }
1030
1031 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1032 {
1033         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1034         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1035         struct pci_dev *pdev = adapter->pdev;
1036         int i;
1037
1038         if (tx_ring->desc && tx_ring->buffer_info) {
1039                 for (i = 0; i < tx_ring->count; i++) {
1040                         if (tx_ring->buffer_info[i].dma)
1041                                 pci_unmap_single(pdev,
1042                                         tx_ring->buffer_info[i].dma,
1043                                         tx_ring->buffer_info[i].length,
1044                                         PCI_DMA_TODEVICE);
1045                         if (tx_ring->buffer_info[i].skb)
1046                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1047                 }
1048         }
1049
1050         if (rx_ring->desc && rx_ring->buffer_info) {
1051                 for (i = 0; i < rx_ring->count; i++) {
1052                         if (rx_ring->buffer_info[i].dma)
1053                                 pci_unmap_single(pdev,
1054                                         rx_ring->buffer_info[i].dma,
1055                                         2048, PCI_DMA_FROMDEVICE);
1056                         if (rx_ring->buffer_info[i].skb)
1057                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1058                 }
1059         }
1060
1061         if (tx_ring->desc) {
1062                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1063                                   tx_ring->dma);
1064                 tx_ring->desc = NULL;
1065         }
1066         if (rx_ring->desc) {
1067                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1068                                   rx_ring->dma);
1069                 rx_ring->desc = NULL;
1070         }
1071
1072         kfree(tx_ring->buffer_info);
1073         tx_ring->buffer_info = NULL;
1074         kfree(rx_ring->buffer_info);
1075         rx_ring->buffer_info = NULL;
1076 }
1077
1078 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1079 {
1080         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1081         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1082         struct pci_dev *pdev = adapter->pdev;
1083         struct e1000_hw *hw = &adapter->hw;
1084         u32 rctl;
1085         int i;
1086         int ret_val;
1087
1088         /* Setup Tx descriptor ring and Tx buffers */
1089
1090         if (!tx_ring->count)
1091                 tx_ring->count = E1000_DEFAULT_TXD;
1092
1093         tx_ring->buffer_info = kcalloc(tx_ring->count,
1094                                        sizeof(struct e1000_buffer),
1095                                        GFP_KERNEL);
1096         if (!(tx_ring->buffer_info)) {
1097                 ret_val = 1;
1098                 goto err_nomem;
1099         }
1100
1101         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1102         tx_ring->size = ALIGN(tx_ring->size, 4096);
1103         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1104                                            &tx_ring->dma, GFP_KERNEL);
1105         if (!tx_ring->desc) {
1106                 ret_val = 2;
1107                 goto err_nomem;
1108         }
1109         tx_ring->next_to_use = 0;
1110         tx_ring->next_to_clean = 0;
1111
1112         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1113         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1114         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1115         ew32(TDH, 0);
1116         ew32(TDT, 0);
1117         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1118              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1119              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1120
1121         for (i = 0; i < tx_ring->count; i++) {
1122                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1123                 struct sk_buff *skb;
1124                 unsigned int skb_size = 1024;
1125
1126                 skb = alloc_skb(skb_size, GFP_KERNEL);
1127                 if (!skb) {
1128                         ret_val = 3;
1129                         goto err_nomem;
1130                 }
1131                 skb_put(skb, skb_size);
1132                 tx_ring->buffer_info[i].skb = skb;
1133                 tx_ring->buffer_info[i].length = skb->len;
1134                 tx_ring->buffer_info[i].dma =
1135                         pci_map_single(pdev, skb->data, skb->len,
1136                                        PCI_DMA_TODEVICE);
1137                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1138                         ret_val = 4;
1139                         goto err_nomem;
1140                 }
1141                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1142                 tx_desc->lower.data = cpu_to_le32(skb->len);
1143                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1144                                                    E1000_TXD_CMD_IFCS |
1145                                                    E1000_TXD_CMD_RS);
1146                 tx_desc->upper.data = 0;
1147         }
1148
1149         /* Setup Rx descriptor ring and Rx buffers */
1150
1151         if (!rx_ring->count)
1152                 rx_ring->count = E1000_DEFAULT_RXD;
1153
1154         rx_ring->buffer_info = kcalloc(rx_ring->count,
1155                                        sizeof(struct e1000_buffer),
1156                                        GFP_KERNEL);
1157         if (!(rx_ring->buffer_info)) {
1158                 ret_val = 5;
1159                 goto err_nomem;
1160         }
1161
1162         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1163         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1164                                            &rx_ring->dma, GFP_KERNEL);
1165         if (!rx_ring->desc) {
1166                 ret_val = 6;
1167                 goto err_nomem;
1168         }
1169         rx_ring->next_to_use = 0;
1170         rx_ring->next_to_clean = 0;
1171
1172         rctl = er32(RCTL);
1173         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1174         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1175         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1176         ew32(RDLEN, rx_ring->size);
1177         ew32(RDH, 0);
1178         ew32(RDT, 0);
1179         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1180                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1181                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1182                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1183                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1184         ew32(RCTL, rctl);
1185
1186         for (i = 0; i < rx_ring->count; i++) {
1187                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1188                 struct sk_buff *skb;
1189
1190                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1191                 if (!skb) {
1192                         ret_val = 7;
1193                         goto err_nomem;
1194                 }
1195                 skb_reserve(skb, NET_IP_ALIGN);
1196                 rx_ring->buffer_info[i].skb = skb;
1197                 rx_ring->buffer_info[i].dma =
1198                         pci_map_single(pdev, skb->data, 2048,
1199                                        PCI_DMA_FROMDEVICE);
1200                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1201                         ret_val = 8;
1202                         goto err_nomem;
1203                 }
1204                 rx_desc->buffer_addr =
1205                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1206                 memset(skb->data, 0x00, skb->len);
1207         }
1208
1209         return 0;
1210
1211 err_nomem:
1212         e1000_free_desc_rings(adapter);
1213         return ret_val;
1214 }
1215
1216 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1217 {
1218         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1219         e1e_wphy(&adapter->hw, 29, 0x001F);
1220         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1221         e1e_wphy(&adapter->hw, 29, 0x001A);
1222         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1223 }
1224
1225 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1226 {
1227         struct e1000_hw *hw = &adapter->hw;
1228         u32 ctrl_reg = 0;
1229         u32 stat_reg = 0;
1230         u16 phy_reg = 0;
1231
1232         hw->mac.autoneg = 0;
1233
1234         if (hw->phy.type == e1000_phy_m88) {
1235                 /* Auto-MDI/MDIX Off */
1236                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1237                 /* reset to update Auto-MDI/MDIX */
1238                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1239                 /* autoneg off */
1240                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1241         } else if (hw->phy.type == e1000_phy_gg82563)
1242                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1243
1244         ctrl_reg = er32(CTRL);
1245
1246         switch (hw->phy.type) {
1247         case e1000_phy_ife:
1248                 /* force 100, set loopback */
1249                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1250
1251                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1252                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1253                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1254                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1255                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1256                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1257                 break;
1258         case e1000_phy_bm:
1259                 /* Set Default MAC Interface speed to 1GB */
1260                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1261                 phy_reg &= ~0x0007;
1262                 phy_reg |= 0x006;
1263                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1264                 /* Assert SW reset for above settings to take effect */
1265                 e1000e_commit_phy(hw);
1266                 mdelay(1);
1267                 /* Force Full Duplex */
1268                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1269                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1270                 /* Set Link Up (in force link) */
1271                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1272                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1273                 /* Force Link */
1274                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1275                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1276                 /* Set Early Link Enable */
1277                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1278                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1279                 /* fall through */
1280         default:
1281                 /* force 1000, set loopback */
1282                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1283                 mdelay(250);
1284
1285                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1286                 ctrl_reg = er32(CTRL);
1287                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1288                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1289                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1290                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1291                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1292
1293                 if (adapter->flags & FLAG_IS_ICH)
1294                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1295         }
1296
1297         if (hw->phy.media_type == e1000_media_type_copper &&
1298             hw->phy.type == e1000_phy_m88) {
1299                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1300         } else {
1301                 /*
1302                  * Set the ILOS bit on the fiber Nic if half duplex link is
1303                  * detected.
1304                  */
1305                 stat_reg = er32(STATUS);
1306                 if ((stat_reg & E1000_STATUS_FD) == 0)
1307                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1308         }
1309
1310         ew32(CTRL, ctrl_reg);
1311
1312         /*
1313          * Disable the receiver on the PHY so when a cable is plugged in, the
1314          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1315          */
1316         if (hw->phy.type == e1000_phy_m88)
1317                 e1000_phy_disable_receiver(adapter);
1318
1319         udelay(500);
1320
1321         return 0;
1322 }
1323
1324 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1325 {
1326         struct e1000_hw *hw = &adapter->hw;
1327         u32 ctrl = er32(CTRL);
1328         int link = 0;
1329
1330         /* special requirements for 82571/82572 fiber adapters */
1331
1332         /*
1333          * jump through hoops to make sure link is up because serdes
1334          * link is hardwired up
1335          */
1336         ctrl |= E1000_CTRL_SLU;
1337         ew32(CTRL, ctrl);
1338
1339         /* disable autoneg */
1340         ctrl = er32(TXCW);
1341         ctrl &= ~(1 << 31);
1342         ew32(TXCW, ctrl);
1343
1344         link = (er32(STATUS) & E1000_STATUS_LU);
1345
1346         if (!link) {
1347                 /* set invert loss of signal */
1348                 ctrl = er32(CTRL);
1349                 ctrl |= E1000_CTRL_ILOS;
1350                 ew32(CTRL, ctrl);
1351         }
1352
1353         /*
1354          * special write to serdes control register to enable SerDes analog
1355          * loopback
1356          */
1357 #define E1000_SERDES_LB_ON 0x410
1358         ew32(SCTL, E1000_SERDES_LB_ON);
1359         msleep(10);
1360
1361         return 0;
1362 }
1363
1364 /* only call this for fiber/serdes connections to es2lan */
1365 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1366 {
1367         struct e1000_hw *hw = &adapter->hw;
1368         u32 ctrlext = er32(CTRL_EXT);
1369         u32 ctrl = er32(CTRL);
1370
1371         /*
1372          * save CTRL_EXT to restore later, reuse an empty variable (unused
1373          * on mac_type 80003es2lan)
1374          */
1375         adapter->tx_fifo_head = ctrlext;
1376
1377         /* clear the serdes mode bits, putting the device into mac loopback */
1378         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1379         ew32(CTRL_EXT, ctrlext);
1380
1381         /* force speed to 1000/FD, link up */
1382         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1383         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1384                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1385         ew32(CTRL, ctrl);
1386
1387         /* set mac loopback */
1388         ctrl = er32(RCTL);
1389         ctrl |= E1000_RCTL_LBM_MAC;
1390         ew32(RCTL, ctrl);
1391
1392         /* set testing mode parameters (no need to reset later) */
1393 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1394 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1395         ew32(KMRNCTRLSTA,
1396              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1397
1398         return 0;
1399 }
1400
1401 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1402 {
1403         struct e1000_hw *hw = &adapter->hw;
1404         u32 rctl;
1405
1406         if (hw->phy.media_type == e1000_media_type_fiber ||
1407             hw->phy.media_type == e1000_media_type_internal_serdes) {
1408                 switch (hw->mac.type) {
1409                 case e1000_80003es2lan:
1410                         return e1000_set_es2lan_mac_loopback(adapter);
1411                         break;
1412                 case e1000_82571:
1413                 case e1000_82572:
1414                         return e1000_set_82571_fiber_loopback(adapter);
1415                         break;
1416                 default:
1417                         rctl = er32(RCTL);
1418                         rctl |= E1000_RCTL_LBM_TCVR;
1419                         ew32(RCTL, rctl);
1420                         return 0;
1421                 }
1422         } else if (hw->phy.media_type == e1000_media_type_copper) {
1423                 return e1000_integrated_phy_loopback(adapter);
1424         }
1425
1426         return 7;
1427 }
1428
1429 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1430 {
1431         struct e1000_hw *hw = &adapter->hw;
1432         u32 rctl;
1433         u16 phy_reg;
1434
1435         rctl = er32(RCTL);
1436         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1437         ew32(RCTL, rctl);
1438
1439         switch (hw->mac.type) {
1440         case e1000_80003es2lan:
1441                 if (hw->phy.media_type == e1000_media_type_fiber ||
1442                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1443                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1444                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1445                         adapter->tx_fifo_head = 0;
1446                 }
1447                 /* fall through */
1448         case e1000_82571:
1449         case e1000_82572:
1450                 if (hw->phy.media_type == e1000_media_type_fiber ||
1451                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1452 #define E1000_SERDES_LB_OFF 0x400
1453                         ew32(SCTL, E1000_SERDES_LB_OFF);
1454                         msleep(10);
1455                         break;
1456                 }
1457                 /* Fall Through */
1458         default:
1459                 hw->mac.autoneg = 1;
1460                 if (hw->phy.type == e1000_phy_gg82563)
1461                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1462                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1463                 if (phy_reg & MII_CR_LOOPBACK) {
1464                         phy_reg &= ~MII_CR_LOOPBACK;
1465                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1466                         e1000e_commit_phy(hw);
1467                 }
1468                 break;
1469         }
1470 }
1471
1472 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1473                                       unsigned int frame_size)
1474 {
1475         memset(skb->data, 0xFF, frame_size);
1476         frame_size &= ~1;
1477         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1478         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1479         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1480 }
1481
1482 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1483                                     unsigned int frame_size)
1484 {
1485         frame_size &= ~1;
1486         if (*(skb->data + 3) == 0xFF)
1487                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1488                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1489                         return 0;
1490         return 13;
1491 }
1492
1493 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1494 {
1495         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1496         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1497         struct pci_dev *pdev = adapter->pdev;
1498         struct e1000_hw *hw = &adapter->hw;
1499         int i, j, k, l;
1500         int lc;
1501         int good_cnt;
1502         int ret_val = 0;
1503         unsigned long time;
1504
1505         ew32(RDT, rx_ring->count - 1);
1506
1507         /*
1508          * Calculate the loop count based on the largest descriptor ring
1509          * The idea is to wrap the largest ring a number of times using 64
1510          * send/receive pairs during each loop
1511          */
1512
1513         if (rx_ring->count <= tx_ring->count)
1514                 lc = ((tx_ring->count / 64) * 2) + 1;
1515         else
1516                 lc = ((rx_ring->count / 64) * 2) + 1;
1517
1518         k = 0;
1519         l = 0;
1520         for (j = 0; j <= lc; j++) { /* loop count loop */
1521                 for (i = 0; i < 64; i++) { /* send the packets */
1522                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1523                                                   1024);
1524                         pci_dma_sync_single_for_device(pdev,
1525                                         tx_ring->buffer_info[k].dma,
1526                                         tx_ring->buffer_info[k].length,
1527                                         PCI_DMA_TODEVICE);
1528                         k++;
1529                         if (k == tx_ring->count)
1530                                 k = 0;
1531                 }
1532                 ew32(TDT, k);
1533                 msleep(200);
1534                 time = jiffies; /* set the start time for the receive */
1535                 good_cnt = 0;
1536                 do { /* receive the sent packets */
1537                         pci_dma_sync_single_for_cpu(pdev,
1538                                         rx_ring->buffer_info[l].dma, 2048,
1539                                         PCI_DMA_FROMDEVICE);
1540
1541                         ret_val = e1000_check_lbtest_frame(
1542                                         rx_ring->buffer_info[l].skb, 1024);
1543                         if (!ret_val)
1544                                 good_cnt++;
1545                         l++;
1546                         if (l == rx_ring->count)
1547                                 l = 0;
1548                         /*
1549                          * time + 20 msecs (200 msecs on 2.4) is more than
1550                          * enough time to complete the receives, if it's
1551                          * exceeded, break and error off
1552                          */
1553                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1554                 if (good_cnt != 64) {
1555                         ret_val = 13; /* ret_val is the same as mis-compare */
1556                         break;
1557                 }
1558                 if (jiffies >= (time + 20)) {
1559                         ret_val = 14; /* error code for time out error */
1560                         break;
1561                 }
1562         } /* end loop count loop */
1563         return ret_val;
1564 }
1565
1566 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1567 {
1568         /*
1569          * PHY loopback cannot be performed if SoL/IDER
1570          * sessions are active
1571          */
1572         if (e1000_check_reset_block(&adapter->hw)) {
1573                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1574                 *data = 0;
1575                 goto out;
1576         }
1577
1578         *data = e1000_setup_desc_rings(adapter);
1579         if (*data)
1580                 goto out;
1581
1582         *data = e1000_setup_loopback_test(adapter);
1583         if (*data)
1584                 goto err_loopback;
1585
1586         *data = e1000_run_loopback_test(adapter);
1587         e1000_loopback_cleanup(adapter);
1588
1589 err_loopback:
1590         e1000_free_desc_rings(adapter);
1591 out:
1592         return *data;
1593 }
1594
1595 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1596 {
1597         struct e1000_hw *hw = &adapter->hw;
1598
1599         *data = 0;
1600         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1601                 int i = 0;
1602                 hw->mac.serdes_has_link = false;
1603
1604                 /*
1605                  * On some blade server designs, link establishment
1606                  * could take as long as 2-3 minutes
1607                  */
1608                 do {
1609                         hw->mac.ops.check_for_link(hw);
1610                         if (hw->mac.serdes_has_link)
1611                                 return *data;
1612                         msleep(20);
1613                 } while (i++ < 3750);
1614
1615                 *data = 1;
1616         } else {
1617                 hw->mac.ops.check_for_link(hw);
1618                 if (hw->mac.autoneg)
1619                         msleep(4000);
1620
1621                 if (!(er32(STATUS) &
1622                       E1000_STATUS_LU))
1623                         *data = 1;
1624         }
1625         return *data;
1626 }
1627
1628 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1629 {
1630         switch (sset) {
1631         case ETH_SS_TEST:
1632                 return E1000_TEST_LEN;
1633         case ETH_SS_STATS:
1634                 return E1000_STATS_LEN;
1635         default:
1636                 return -EOPNOTSUPP;
1637         }
1638 }
1639
1640 static void e1000_diag_test(struct net_device *netdev,
1641                             struct ethtool_test *eth_test, u64 *data)
1642 {
1643         struct e1000_adapter *adapter = netdev_priv(netdev);
1644         u16 autoneg_advertised;
1645         u8 forced_speed_duplex;
1646         u8 autoneg;
1647         bool if_running = netif_running(netdev);
1648
1649         set_bit(__E1000_TESTING, &adapter->state);
1650         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1651                 /* Offline tests */
1652
1653                 /* save speed, duplex, autoneg settings */
1654                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1655                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1656                 autoneg = adapter->hw.mac.autoneg;
1657
1658                 e_info("offline testing starting\n");
1659
1660                 /*
1661                  * Link test performed before hardware reset so autoneg doesn't
1662                  * interfere with test result
1663                  */
1664                 if (e1000_link_test(adapter, &data[4]))
1665                         eth_test->flags |= ETH_TEST_FL_FAILED;
1666
1667                 if (if_running)
1668                         /* indicate we're in test mode */
1669                         dev_close(netdev);
1670                 else
1671                         e1000e_reset(adapter);
1672
1673                 if (e1000_reg_test(adapter, &data[0]))
1674                         eth_test->flags |= ETH_TEST_FL_FAILED;
1675
1676                 e1000e_reset(adapter);
1677                 if (e1000_eeprom_test(adapter, &data[1]))
1678                         eth_test->flags |= ETH_TEST_FL_FAILED;
1679
1680                 e1000e_reset(adapter);
1681                 if (e1000_intr_test(adapter, &data[2]))
1682                         eth_test->flags |= ETH_TEST_FL_FAILED;
1683
1684                 e1000e_reset(adapter);
1685                 /* make sure the phy is powered up */
1686                 e1000e_power_up_phy(adapter);
1687                 if (e1000_loopback_test(adapter, &data[3]))
1688                         eth_test->flags |= ETH_TEST_FL_FAILED;
1689
1690                 /* restore speed, duplex, autoneg settings */
1691                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1692                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1693                 adapter->hw.mac.autoneg = autoneg;
1694
1695                 /* force this routine to wait until autoneg complete/timeout */
1696                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1697                 e1000e_reset(adapter);
1698                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1699
1700                 clear_bit(__E1000_TESTING, &adapter->state);
1701                 if (if_running)
1702                         dev_open(netdev);
1703         } else {
1704                 e_info("online testing starting\n");
1705                 /* Online tests */
1706                 if (e1000_link_test(adapter, &data[4]))
1707                         eth_test->flags |= ETH_TEST_FL_FAILED;
1708
1709                 /* Online tests aren't run; pass by default */
1710                 data[0] = 0;
1711                 data[1] = 0;
1712                 data[2] = 0;
1713                 data[3] = 0;
1714
1715                 clear_bit(__E1000_TESTING, &adapter->state);
1716         }
1717         msleep_interruptible(4 * 1000);
1718 }
1719
1720 static void e1000_get_wol(struct net_device *netdev,
1721                           struct ethtool_wolinfo *wol)
1722 {
1723         struct e1000_adapter *adapter = netdev_priv(netdev);
1724
1725         wol->supported = 0;
1726         wol->wolopts = 0;
1727
1728         if (!(adapter->flags & FLAG_HAS_WOL) ||
1729             !device_can_wakeup(&adapter->pdev->dev))
1730                 return;
1731
1732         wol->supported = WAKE_UCAST | WAKE_MCAST |
1733                          WAKE_BCAST | WAKE_MAGIC |
1734                          WAKE_PHY | WAKE_ARP;
1735
1736         /* apply any specific unsupported masks here */
1737         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1738                 wol->supported &= ~WAKE_UCAST;
1739
1740                 if (adapter->wol & E1000_WUFC_EX)
1741                         e_err("Interface does not support directed (unicast) "
1742                               "frame wake-up packets\n");
1743         }
1744
1745         if (adapter->wol & E1000_WUFC_EX)
1746                 wol->wolopts |= WAKE_UCAST;
1747         if (adapter->wol & E1000_WUFC_MC)
1748                 wol->wolopts |= WAKE_MCAST;
1749         if (adapter->wol & E1000_WUFC_BC)
1750                 wol->wolopts |= WAKE_BCAST;
1751         if (adapter->wol & E1000_WUFC_MAG)
1752                 wol->wolopts |= WAKE_MAGIC;
1753         if (adapter->wol & E1000_WUFC_LNKC)
1754                 wol->wolopts |= WAKE_PHY;
1755         if (adapter->wol & E1000_WUFC_ARP)
1756                 wol->wolopts |= WAKE_ARP;
1757 }
1758
1759 static int e1000_set_wol(struct net_device *netdev,
1760                          struct ethtool_wolinfo *wol)
1761 {
1762         struct e1000_adapter *adapter = netdev_priv(netdev);
1763
1764         if (wol->wolopts & WAKE_MAGICSECURE)
1765                 return -EOPNOTSUPP;
1766
1767         if (!(adapter->flags & FLAG_HAS_WOL) ||
1768             !device_can_wakeup(&adapter->pdev->dev))
1769                 return wol->wolopts ? -EOPNOTSUPP : 0;
1770
1771         /* these settings will always override what we currently have */
1772         adapter->wol = 0;
1773
1774         if (wol->wolopts & WAKE_UCAST)
1775                 adapter->wol |= E1000_WUFC_EX;
1776         if (wol->wolopts & WAKE_MCAST)
1777                 adapter->wol |= E1000_WUFC_MC;
1778         if (wol->wolopts & WAKE_BCAST)
1779                 adapter->wol |= E1000_WUFC_BC;
1780         if (wol->wolopts & WAKE_MAGIC)
1781                 adapter->wol |= E1000_WUFC_MAG;
1782         if (wol->wolopts & WAKE_PHY)
1783                 adapter->wol |= E1000_WUFC_LNKC;
1784         if (wol->wolopts & WAKE_ARP)
1785                 adapter->wol |= E1000_WUFC_ARP;
1786
1787         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1788
1789         return 0;
1790 }
1791
1792 /* toggle LED 4 times per second = 2 "blinks" per second */
1793 #define E1000_ID_INTERVAL       (HZ/4)
1794
1795 /* bit defines for adapter->led_status */
1796 #define E1000_LED_ON            0
1797
1798 static void e1000e_led_blink_task(struct work_struct *work)
1799 {
1800         struct e1000_adapter *adapter = container_of(work,
1801                                         struct e1000_adapter, led_blink_task);
1802
1803         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1804                 adapter->hw.mac.ops.led_off(&adapter->hw);
1805         else
1806                 adapter->hw.mac.ops.led_on(&adapter->hw);
1807 }
1808
1809 static void e1000_led_blink_callback(unsigned long data)
1810 {
1811         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1812
1813         schedule_work(&adapter->led_blink_task);
1814         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1815 }
1816
1817 static int e1000_phys_id(struct net_device *netdev, u32 data)
1818 {
1819         struct e1000_adapter *adapter = netdev_priv(netdev);
1820         struct e1000_hw *hw = &adapter->hw;
1821
1822         if (!data)
1823                 data = INT_MAX;
1824
1825         if ((hw->phy.type == e1000_phy_ife) ||
1826             (hw->mac.type == e1000_pchlan) ||
1827             (hw->mac.type == e1000_82574)) {
1828                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1829                 if (!adapter->blink_timer.function) {
1830                         init_timer(&adapter->blink_timer);
1831                         adapter->blink_timer.function =
1832                                 e1000_led_blink_callback;
1833                         adapter->blink_timer.data = (unsigned long) adapter;
1834                 }
1835                 mod_timer(&adapter->blink_timer, jiffies);
1836                 msleep_interruptible(data * 1000);
1837                 del_timer_sync(&adapter->blink_timer);
1838                 if (hw->phy.type == e1000_phy_ife)
1839                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1840         } else {
1841                 e1000e_blink_led(hw);
1842                 msleep_interruptible(data * 1000);
1843         }
1844
1845         hw->mac.ops.led_off(hw);
1846         clear_bit(E1000_LED_ON, &adapter->led_status);
1847         hw->mac.ops.cleanup_led(hw);
1848
1849         return 0;
1850 }
1851
1852 static int e1000_get_coalesce(struct net_device *netdev,
1853                               struct ethtool_coalesce *ec)
1854 {
1855         struct e1000_adapter *adapter = netdev_priv(netdev);
1856
1857         if (adapter->itr_setting <= 3)
1858                 ec->rx_coalesce_usecs = adapter->itr_setting;
1859         else
1860                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1861
1862         return 0;
1863 }
1864
1865 static int e1000_set_coalesce(struct net_device *netdev,
1866                               struct ethtool_coalesce *ec)
1867 {
1868         struct e1000_adapter *adapter = netdev_priv(netdev);
1869         struct e1000_hw *hw = &adapter->hw;
1870
1871         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1872             ((ec->rx_coalesce_usecs > 3) &&
1873              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1874             (ec->rx_coalesce_usecs == 2))
1875                 return -EINVAL;
1876
1877         if (ec->rx_coalesce_usecs <= 3) {
1878                 adapter->itr = 20000;
1879                 adapter->itr_setting = ec->rx_coalesce_usecs;
1880         } else {
1881                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1882                 adapter->itr_setting = adapter->itr & ~3;
1883         }
1884
1885         if (adapter->itr_setting != 0)
1886                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1887         else
1888                 ew32(ITR, 0);
1889
1890         return 0;
1891 }
1892
1893 static int e1000_nway_reset(struct net_device *netdev)
1894 {
1895         struct e1000_adapter *adapter = netdev_priv(netdev);
1896         if (netif_running(netdev))
1897                 e1000e_reinit_locked(adapter);
1898         return 0;
1899 }
1900
1901 static void e1000_get_ethtool_stats(struct net_device *netdev,
1902                                     struct ethtool_stats *stats,
1903                                     u64 *data)
1904 {
1905         struct e1000_adapter *adapter = netdev_priv(netdev);
1906         int i;
1907
1908         e1000e_update_stats(adapter);
1909         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1910                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1911                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1912                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1913         }
1914 }
1915
1916 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1917                               u8 *data)
1918 {
1919         u8 *p = data;
1920         int i;
1921
1922         switch (stringset) {
1923         case ETH_SS_TEST:
1924                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1925                 break;
1926         case ETH_SS_STATS:
1927                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1928                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1929                                ETH_GSTRING_LEN);
1930                         p += ETH_GSTRING_LEN;
1931                 }
1932                 break;
1933         }
1934 }
1935
1936 static const struct ethtool_ops e1000_ethtool_ops = {
1937         .get_settings           = e1000_get_settings,
1938         .set_settings           = e1000_set_settings,
1939         .get_drvinfo            = e1000_get_drvinfo,
1940         .get_regs_len           = e1000_get_regs_len,
1941         .get_regs               = e1000_get_regs,
1942         .get_wol                = e1000_get_wol,
1943         .set_wol                = e1000_set_wol,
1944         .get_msglevel           = e1000_get_msglevel,
1945         .set_msglevel           = e1000_set_msglevel,
1946         .nway_reset             = e1000_nway_reset,
1947         .get_link               = e1000_get_link,
1948         .get_eeprom_len         = e1000_get_eeprom_len,
1949         .get_eeprom             = e1000_get_eeprom,
1950         .set_eeprom             = e1000_set_eeprom,
1951         .get_ringparam          = e1000_get_ringparam,
1952         .set_ringparam          = e1000_set_ringparam,
1953         .get_pauseparam         = e1000_get_pauseparam,
1954         .set_pauseparam         = e1000_set_pauseparam,
1955         .get_rx_csum            = e1000_get_rx_csum,
1956         .set_rx_csum            = e1000_set_rx_csum,
1957         .get_tx_csum            = e1000_get_tx_csum,
1958         .set_tx_csum            = e1000_set_tx_csum,
1959         .get_sg                 = ethtool_op_get_sg,
1960         .set_sg                 = ethtool_op_set_sg,
1961         .get_tso                = ethtool_op_get_tso,
1962         .set_tso                = e1000_set_tso,
1963         .self_test              = e1000_diag_test,
1964         .get_strings            = e1000_get_strings,
1965         .phys_id                = e1000_phys_id,
1966         .get_ethtool_stats      = e1000_get_ethtool_stats,
1967         .get_sset_count         = e1000e_get_sset_count,
1968         .get_coalesce           = e1000_get_coalesce,
1969         .set_coalesce           = e1000_set_coalesce,
1970 };
1971
1972 void e1000e_set_ethtool_ops(struct net_device *netdev)
1973 {
1974         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1975 }