2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
22 #define ATH_PCI_VERSION "0.1"
24 static char *dev_info = "ath9k";
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32 { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
33 { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34 { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
35 { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
36 { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37 { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
41 static void ath_detach(struct ath_softc *sc);
43 /* return bus cachesize in 4B word units */
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
49 pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
53 * This check was put in to avoid "unplesant" consequences if
54 * the bootrom has not fully initialized all PCI devices.
55 * Sometimes the cache line size register is not set
59 *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
62 static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
65 sc->cur_rate_table = sc->hw_rate_table[mode];
67 * All protection frames are transmited at 2Mb/s for
68 * 11g, otherwise at 1Mb/s.
69 * XXX select protection rate index from rate table.
71 sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
74 static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
76 if (chan->chanmode == CHANNEL_A)
77 return ATH9K_MODE_11A;
78 else if (chan->chanmode == CHANNEL_G)
79 return ATH9K_MODE_11G;
80 else if (chan->chanmode == CHANNEL_B)
81 return ATH9K_MODE_11B;
82 else if (chan->chanmode == CHANNEL_A_HT20)
83 return ATH9K_MODE_11NA_HT20;
84 else if (chan->chanmode == CHANNEL_G_HT20)
85 return ATH9K_MODE_11NG_HT20;
86 else if (chan->chanmode == CHANNEL_A_HT40PLUS)
87 return ATH9K_MODE_11NA_HT40PLUS;
88 else if (chan->chanmode == CHANNEL_A_HT40MINUS)
89 return ATH9K_MODE_11NA_HT40MINUS;
90 else if (chan->chanmode == CHANNEL_G_HT40PLUS)
91 return ATH9K_MODE_11NG_HT40PLUS;
92 else if (chan->chanmode == CHANNEL_G_HT40MINUS)
93 return ATH9K_MODE_11NG_HT40MINUS;
95 WARN_ON(1); /* should not get here */
97 return ATH9K_MODE_11B;
100 static void ath_update_txpow(struct ath_softc *sc)
102 struct ath_hal *ah = sc->sc_ah;
105 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
106 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
107 /* read back in case value is clamped */
108 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
109 sc->sc_curtxpow = txpow;
113 static u8 parse_mpdudensity(u8 mpdudensity)
116 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
117 * 0 for no restriction
126 switch (mpdudensity) {
132 /* Our lower layer calculations limit our precision to
148 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
150 struct ath_rate_table *rate_table = NULL;
151 struct ieee80211_supported_band *sband;
152 struct ieee80211_rate *rate;
156 case IEEE80211_BAND_2GHZ:
157 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
159 case IEEE80211_BAND_5GHZ:
160 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
166 if (rate_table == NULL)
169 sband = &sc->sbands[band];
170 rate = sc->rates[band];
172 if (rate_table->rate_cnt > ATH_RATE_MAX)
173 maxrates = ATH_RATE_MAX;
175 maxrates = rate_table->rate_cnt;
177 for (i = 0; i < maxrates; i++) {
178 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
179 rate[i].hw_value = rate_table->info[i].ratecode;
181 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
182 rate[i].bitrate / 10, rate[i].hw_value);
186 static int ath_setup_channels(struct ath_softc *sc)
188 struct ath_hal *ah = sc->sc_ah;
189 int nchan, i, a = 0, b = 0;
190 u8 regclassids[ATH_REGCLASSIDS_MAX];
192 struct ieee80211_supported_band *band_2ghz;
193 struct ieee80211_supported_band *band_5ghz;
194 struct ieee80211_channel *chan_2ghz;
195 struct ieee80211_channel *chan_5ghz;
196 struct ath9k_channel *c;
198 /* Fill in ah->ah_channels */
199 if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
200 regclassids, ATH_REGCLASSIDS_MAX,
201 &nregclass, CTRY_DEFAULT, false, 1)) {
202 u32 rd = ah->ah_currentRD;
203 DPRINTF(sc, ATH_DBG_FATAL,
204 "Unable to collect channel list; "
205 "regdomain likely %u country code %u\n",
210 band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
211 band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
212 chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
213 chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
215 for (i = 0; i < nchan; i++) {
216 c = &ah->ah_channels[i];
217 if (IS_CHAN_2GHZ(c)) {
218 chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
219 chan_2ghz[a].center_freq = c->channel;
220 chan_2ghz[a].max_power = c->maxTxPower;
222 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
223 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
224 if (c->channelFlags & CHANNEL_PASSIVE)
225 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
227 band_2ghz->n_channels = ++a;
229 DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
230 "channelFlags: 0x%x\n",
231 c->channel, c->channelFlags);
232 } else if (IS_CHAN_5GHZ(c)) {
233 chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
234 chan_5ghz[b].center_freq = c->channel;
235 chan_5ghz[b].max_power = c->maxTxPower;
237 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
238 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
239 if (c->channelFlags & CHANNEL_PASSIVE)
240 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
242 band_5ghz->n_channels = ++b;
244 DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
245 "channelFlags: 0x%x\n",
246 c->channel, c->channelFlags);
254 * Set/change channels. If the channel is really being changed, it's done
255 * by reseting the chip. To accomplish this we must first cleanup any pending
256 * DMA, then restart stuff.
258 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
260 struct ath_hal *ah = sc->sc_ah;
261 bool fastcc = true, stopped;
263 if (sc->sc_flags & SC_OP_INVALID)
266 if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
267 hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
268 (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
269 (sc->sc_flags & SC_OP_FULL_RESET)) {
272 * This is only performed if the channel settings have
275 * To switch channels clear any pending DMA operations;
276 * wait long enough for the RX fifo to drain, reset the
277 * hardware at the new frequency, and then re-enable
278 * the relevant bits of the h/w.
280 ath9k_hw_set_interrupts(ah, 0);
281 ath_draintxq(sc, false);
282 stopped = ath_stoprecv(sc);
284 /* XXX: do not flush receive queue here. We don't want
285 * to flush data frames already in queue because of
286 * changing channel. */
288 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
291 DPRINTF(sc, ATH_DBG_CONFIG,
292 "(%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
293 sc->sc_ah->ah_curchan->channel,
294 hchan->channel, hchan->channelFlags, sc->tx_chan_width);
296 spin_lock_bh(&sc->sc_resetlock);
297 if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
298 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
299 sc->sc_ht_extprotspacing, fastcc, &status)) {
300 DPRINTF(sc, ATH_DBG_FATAL,
301 "Unable to reset channel %u (%uMhz) "
302 "flags 0x%x hal status %u\n",
303 ath9k_hw_mhz2ieee(ah, hchan->channel,
304 hchan->channelFlags),
305 hchan->channel, hchan->channelFlags, status);
306 spin_unlock_bh(&sc->sc_resetlock);
309 spin_unlock_bh(&sc->sc_resetlock);
311 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
312 sc->sc_flags &= ~SC_OP_FULL_RESET;
314 if (ath_startrecv(sc) != 0) {
315 DPRINTF(sc, ATH_DBG_FATAL,
316 "Unable to restart recv logic\n");
320 ath_setcurmode(sc, ath_chan2mode(hchan));
321 ath_update_txpow(sc);
322 ath9k_hw_set_interrupts(ah, sc->sc_imask);
328 * This routine performs the periodic noise floor calibration function
329 * that is used to adjust and optimize the chip performance. This
330 * takes environmental changes (location, temperature) into account.
331 * When the task is complete, it reschedules itself depending on the
332 * appropriate interval that was calculated.
334 static void ath_ani_calibrate(unsigned long data)
336 struct ath_softc *sc;
338 bool longcal = false;
339 bool shortcal = false;
340 bool aniflag = false;
341 unsigned int timestamp = jiffies_to_msecs(jiffies);
344 sc = (struct ath_softc *)data;
348 * don't calibrate when we're scanning.
349 * we are most likely not on our home channel.
351 if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
354 /* Long calibration runs independently of short calibration. */
355 if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
357 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
358 sc->sc_ani.sc_longcal_timer = timestamp;
361 /* Short calibration applies only while sc_caldone is false */
362 if (!sc->sc_ani.sc_caldone) {
363 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
364 ATH_SHORT_CALINTERVAL) {
366 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
367 sc->sc_ani.sc_shortcal_timer = timestamp;
368 sc->sc_ani.sc_resetcal_timer = timestamp;
371 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
372 ATH_RESTART_CALINTERVAL) {
373 ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
374 &sc->sc_ani.sc_caldone);
375 if (sc->sc_ani.sc_caldone)
376 sc->sc_ani.sc_resetcal_timer = timestamp;
380 /* Verify whether we must check ANI */
381 if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
382 ATH_ANI_POLLINTERVAL) {
384 sc->sc_ani.sc_checkani_timer = timestamp;
387 /* Skip all processing if there's nothing to do. */
388 if (longcal || shortcal || aniflag) {
389 /* Call ANI routine if necessary */
391 ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
394 /* Perform calibration if necessary */
395 if (longcal || shortcal) {
396 bool iscaldone = false;
398 if (ath9k_hw_calibrate(ah, ah->ah_curchan,
399 sc->sc_rx_chainmask, longcal,
402 sc->sc_ani.sc_noise_floor =
403 ath9k_hw_getchan_noise(ah,
406 DPRINTF(sc, ATH_DBG_ANI,
407 "calibrate chan %u/%x nf: %d\n",
408 ah->ah_curchan->channel,
409 ah->ah_curchan->channelFlags,
410 sc->sc_ani.sc_noise_floor);
412 DPRINTF(sc, ATH_DBG_ANY,
413 "calibrate chan %u/%x failed\n",
414 ah->ah_curchan->channel,
415 ah->ah_curchan->channelFlags);
417 sc->sc_ani.sc_caldone = iscaldone;
422 * Set timer interval based on previous results.
423 * The interval must be the shortest necessary to satisfy ANI,
424 * short calibration and long calibration.
426 cal_interval = ATH_LONG_CALINTERVAL;
427 if (sc->sc_ah->ah_config.enable_ani)
428 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
429 if (!sc->sc_ani.sc_caldone)
430 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
432 mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
436 * Update tx/rx chainmask. For legacy association,
437 * hard code chainmask to 1x1, for 11n association, use
438 * the chainmask configuration.
440 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
442 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
444 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
445 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
447 sc->sc_tx_chainmask = 1;
448 sc->sc_rx_chainmask = 1;
451 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
459 an = (struct ath_node *)sta->drv_priv;
461 if (sc->sc_flags & SC_OP_TXAGGR)
462 ath_tx_node_init(sc, an);
464 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
465 sta->ht_cap.ampdu_factor);
466 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
469 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
471 struct ath_node *an = (struct ath_node *)sta->drv_priv;
473 if (sc->sc_flags & SC_OP_TXAGGR)
474 ath_tx_node_cleanup(sc, an);
477 static void ath9k_tasklet(unsigned long data)
479 struct ath_softc *sc = (struct ath_softc *)data;
480 u32 status = sc->sc_intrstatus;
482 if (status & ATH9K_INT_FATAL) {
483 /* need a chip reset */
484 ath_reset(sc, false);
489 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
490 spin_lock_bh(&sc->rx.rxflushlock);
491 ath_rx_tasklet(sc, 0);
492 spin_unlock_bh(&sc->rx.rxflushlock);
494 /* XXX: optimize this */
495 if (status & ATH9K_INT_TX)
499 /* re-enable hardware interrupt */
500 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
503 static irqreturn_t ath_isr(int irq, void *dev)
505 struct ath_softc *sc = dev;
506 struct ath_hal *ah = sc->sc_ah;
507 enum ath9k_int status;
511 if (sc->sc_flags & SC_OP_INVALID) {
513 * The hardware is not ready/present, don't
514 * touch anything. Note this can happen early
515 * on if the IRQ is shared.
519 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
524 * Figure out the reason(s) for the interrupt. Note
525 * that the hal returns a pseudo-ISR that may include
526 * bits we haven't explicitly enabled so we mask the
527 * value to insure we only process bits we requested.
529 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
531 status &= sc->sc_imask; /* discard unasked-for bits */
534 * If there are no status bits set, then this interrupt was not
535 * for me (should have been caught above).
540 sc->sc_intrstatus = status;
542 if (status & ATH9K_INT_FATAL) {
543 /* need a chip reset */
545 } else if (status & ATH9K_INT_RXORN) {
546 /* need a chip reset */
549 if (status & ATH9K_INT_SWBA) {
550 /* schedule a tasklet for beacon handling */
551 tasklet_schedule(&sc->bcon_tasklet);
553 if (status & ATH9K_INT_RXEOL) {
555 * NB: the hardware should re-read the link when
556 * RXE bit is written, but it doesn't work
557 * at least on older hardware revs.
562 if (status & ATH9K_INT_TXURN)
563 /* bump tx trigger level */
564 ath9k_hw_updatetxtriglevel(ah, true);
565 /* XXX: optimize this */
566 if (status & ATH9K_INT_RX)
568 if (status & ATH9K_INT_TX)
570 if (status & ATH9K_INT_BMISS)
572 /* carrier sense timeout */
573 if (status & ATH9K_INT_CST)
575 if (status & ATH9K_INT_MIB) {
577 * Disable interrupts until we service the MIB
578 * interrupt; otherwise it will continue to
581 ath9k_hw_set_interrupts(ah, 0);
583 * Let the hal handle the event. We assume
584 * it will clear whatever condition caused
587 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
588 ath9k_hw_set_interrupts(ah, sc->sc_imask);
590 if (status & ATH9K_INT_TIM_TIMER) {
591 if (!(ah->ah_caps.hw_caps &
592 ATH9K_HW_CAP_AUTOSLEEP)) {
593 /* Clear RxAbort bit so that we can
595 ath9k_hw_setrxabort(ah, 0);
602 ath_debug_stat_interrupt(sc, status);
605 /* turn off every interrupt except SWBA */
606 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
607 tasklet_schedule(&sc->intr_tq);
613 static int ath_get_channel(struct ath_softc *sc,
614 struct ieee80211_channel *chan)
618 for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
619 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
626 /* ext_chan_offset: (-1, 0, 1) (below, none, above) */
628 static u32 ath_get_extchanmode(struct ath_softc *sc,
629 struct ieee80211_channel *chan,
631 enum ath9k_ht_macmode tx_chan_width)
635 switch (chan->band) {
636 case IEEE80211_BAND_2GHZ:
637 if ((ext_chan_offset == 0) &&
638 (tx_chan_width == ATH9K_HT_MACMODE_20))
639 chanmode = CHANNEL_G_HT20;
640 if ((ext_chan_offset == 1) &&
641 (tx_chan_width == ATH9K_HT_MACMODE_2040))
642 chanmode = CHANNEL_G_HT40PLUS;
643 if ((ext_chan_offset == -1) &&
644 (tx_chan_width == ATH9K_HT_MACMODE_2040))
645 chanmode = CHANNEL_G_HT40MINUS;
647 case IEEE80211_BAND_5GHZ:
648 if ((ext_chan_offset == 0) &&
649 (tx_chan_width == ATH9K_HT_MACMODE_20))
650 chanmode = CHANNEL_A_HT20;
651 if ((ext_chan_offset == 1) &&
652 (tx_chan_width == ATH9K_HT_MACMODE_2040))
653 chanmode = CHANNEL_A_HT40PLUS;
654 if ((ext_chan_offset == -1) &&
655 (tx_chan_width == ATH9K_HT_MACMODE_2040))
656 chanmode = CHANNEL_A_HT40MINUS;
665 static void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
667 ath9k_hw_keyreset(sc->sc_ah, keyix);
669 clear_bit(keyix, sc->sc_keymap);
672 static int ath_keyset(struct ath_softc *sc, u16 keyix,
673 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
677 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
678 keyix, hk, mac, false);
680 return status != false;
683 static int ath_setkey_tkip(struct ath_softc *sc,
684 struct ieee80211_key_conf *key,
685 struct ath9k_keyval *hk,
688 u8 *key_rxmic = NULL;
689 u8 *key_txmic = NULL;
691 key_txmic = key->key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
692 key_rxmic = key->key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
695 /* Group key installation */
696 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
697 return ath_keyset(sc, key->keyidx, hk, addr);
699 if (!sc->sc_splitmic) {
701 * data key goes at first index,
702 * the hal handles the MIC keys at index+64.
704 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
705 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
706 return ath_keyset(sc, key->keyidx, hk, addr);
709 * TX key goes at first index, RX key at +32.
710 * The hal handles the MIC keys at index+64.
712 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
713 if (!ath_keyset(sc, key->keyidx, hk, NULL)) {
714 /* Txmic entry failed. No need to proceed further */
715 DPRINTF(sc, ATH_DBG_KEYCACHE,
716 "Setting TX MIC Key Failed\n");
720 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
721 /* XXX delete tx key on failure? */
722 return ath_keyset(sc, key->keyidx+32, hk, addr);
725 static int ath_key_config(struct ath_softc *sc,
727 struct ieee80211_key_conf *key)
729 struct ieee80211_vif *vif;
730 struct ath9k_keyval hk;
731 const u8 *mac = NULL;
733 enum nl80211_iftype opmode;
735 memset(&hk, 0, sizeof(hk));
739 hk.kv_type = ATH9K_CIPHER_WEP;
742 hk.kv_type = ATH9K_CIPHER_TKIP;
745 hk.kv_type = ATH9K_CIPHER_AES_CCM;
751 hk.kv_len = key->keylen;
752 memcpy(hk.kv_val, key->key, key->keylen);
757 vif = sc->sc_vaps[0];
762 * For STA mc tx, we will not setup a key at
763 * all since we never tx mc.
765 * For STA mc rx, we will use the keyID.
767 * For ADHOC mc tx, we will use the keyID, and no macaddr.
769 * For ADHOC mc rx, we will alloc a slot and plumb the mac of
771 * BUT we will plumb a cleartext key so that we can do
772 * per-Sta default key table lookup in software.
774 if (is_broadcast_ether_addr(addr)) {
776 case NL80211_IFTYPE_STATION:
777 /* default key: could be group WPA key
778 * or could be static WEP key */
781 case NL80211_IFTYPE_ADHOC:
783 case NL80211_IFTYPE_AP:
793 if (key->alg == ALG_TKIP)
794 ret = ath_setkey_tkip(sc, key, &hk, mac);
796 ret = ath_keyset(sc, key->keyidx, &hk, mac);
804 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
808 freeslot = (key->keyidx >= 4) ? 1 : 0;
809 ath_key_reset(sc, key->keyidx, freeslot);
812 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
814 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
815 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
817 ht_info->ht_supported = true;
818 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
819 IEEE80211_HT_CAP_SM_PS |
820 IEEE80211_HT_CAP_SGI_40 |
821 IEEE80211_HT_CAP_DSSSCCK40;
823 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
824 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
825 /* set up supported mcs set */
826 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
827 ht_info->mcs.rx_mask[0] = 0xff;
828 ht_info->mcs.rx_mask[1] = 0xff;
829 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
832 static void ath9k_ht_conf(struct ath_softc *sc,
833 struct ieee80211_bss_conf *bss_conf)
835 if (sc->hw->conf.ht.enabled) {
836 if (bss_conf->ht.width_40_ok)
837 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
839 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
841 ath9k_hw_set11nmac2040(sc->sc_ah, sc->tx_chan_width);
843 DPRINTF(sc, ATH_DBG_CONFIG,
844 "BSS Changed HT, chanwidth: %d\n", sc->tx_chan_width);
848 static inline int ath_sec_offset(u8 ext_offset)
850 if (ext_offset == IEEE80211_HT_PARAM_CHA_SEC_NONE)
852 else if (ext_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
854 else if (ext_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
860 static void ath9k_bss_assoc_info(struct ath_softc *sc,
861 struct ieee80211_vif *vif,
862 struct ieee80211_bss_conf *bss_conf)
864 struct ieee80211_hw *hw = sc->hw;
865 struct ieee80211_channel *curchan = hw->conf.channel;
866 struct ath_vap *avp = (void *)vif->drv_priv;
869 if (bss_conf->assoc) {
870 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d\n", bss_conf->aid);
872 /* New association, store aid */
873 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
874 sc->sc_curaid = bss_conf->aid;
875 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
879 /* Configure the beacon */
880 ath_beacon_config(sc, 0);
881 sc->sc_flags |= SC_OP_BEACONS;
883 /* Reset rssi stats */
884 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
885 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
886 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
887 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
889 /* Update chainmask */
890 ath_update_chainmask(sc, hw->conf.ht.enabled);
892 DPRINTF(sc, ATH_DBG_CONFIG,
893 "bssid %pM aid 0x%x\n",
894 sc->sc_curbssid, sc->sc_curaid);
896 pos = ath_get_channel(sc, curchan);
898 DPRINTF(sc, ATH_DBG_FATAL,
899 "Invalid channel: %d\n", curchan->center_freq);
903 if (hw->conf.ht.enabled) {
905 ath_sec_offset(bss_conf->ht.secondary_channel_offset);
906 sc->tx_chan_width = (bss_conf->ht.width_40_ok) ?
907 ATH9K_HT_MACMODE_2040 : ATH9K_HT_MACMODE_20;
909 sc->sc_ah->ah_channels[pos].chanmode =
910 ath_get_extchanmode(sc, curchan,
911 offset, sc->tx_chan_width);
913 sc->sc_ah->ah_channels[pos].chanmode =
914 (curchan->band == IEEE80211_BAND_2GHZ) ?
915 CHANNEL_G : CHANNEL_A;
918 /* set h/w channel */
919 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
920 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel: %d\n",
921 curchan->center_freq);
924 mod_timer(&sc->sc_ani.timer,
925 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
928 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
933 /********************************/
935 /********************************/
937 static void ath_led_brightness(struct led_classdev *led_cdev,
938 enum led_brightness brightness)
940 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
941 struct ath_softc *sc = led->sc;
943 switch (brightness) {
945 if (led->led_type == ATH_LED_ASSOC ||
946 led->led_type == ATH_LED_RADIO)
947 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
948 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
949 (led->led_type == ATH_LED_RADIO) ? 1 :
950 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
953 if (led->led_type == ATH_LED_ASSOC)
954 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
955 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
962 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
968 led->led_cdev.name = led->name;
969 led->led_cdev.default_trigger = trigger;
970 led->led_cdev.brightness_set = ath_led_brightness;
972 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
974 DPRINTF(sc, ATH_DBG_FATAL,
975 "Failed to register led:%s", led->name);
981 static void ath_unregister_led(struct ath_led *led)
983 if (led->registered) {
984 led_classdev_unregister(&led->led_cdev);
989 static void ath_deinit_leds(struct ath_softc *sc)
991 ath_unregister_led(&sc->assoc_led);
992 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
993 ath_unregister_led(&sc->tx_led);
994 ath_unregister_led(&sc->rx_led);
995 ath_unregister_led(&sc->radio_led);
996 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
999 static void ath_init_leds(struct ath_softc *sc)
1004 /* Configure gpio 1 for output */
1005 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1006 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1007 /* LED off, active low */
1008 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1010 trigger = ieee80211_get_radio_led_name(sc->hw);
1011 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1012 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1013 ret = ath_register_led(sc, &sc->radio_led, trigger);
1014 sc->radio_led.led_type = ATH_LED_RADIO;
1018 trigger = ieee80211_get_assoc_led_name(sc->hw);
1019 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1020 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1021 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1022 sc->assoc_led.led_type = ATH_LED_ASSOC;
1026 trigger = ieee80211_get_tx_led_name(sc->hw);
1027 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1028 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1029 ret = ath_register_led(sc, &sc->tx_led, trigger);
1030 sc->tx_led.led_type = ATH_LED_TX;
1034 trigger = ieee80211_get_rx_led_name(sc->hw);
1035 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1036 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1037 ret = ath_register_led(sc, &sc->rx_led, trigger);
1038 sc->rx_led.led_type = ATH_LED_RX;
1045 ath_deinit_leds(sc);
1048 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1050 /*******************/
1052 /*******************/
1054 static void ath_radio_enable(struct ath_softc *sc)
1056 struct ath_hal *ah = sc->sc_ah;
1059 spin_lock_bh(&sc->sc_resetlock);
1060 if (!ath9k_hw_reset(ah, ah->ah_curchan,
1062 sc->sc_tx_chainmask,
1063 sc->sc_rx_chainmask,
1064 sc->sc_ht_extprotspacing,
1066 DPRINTF(sc, ATH_DBG_FATAL,
1067 "Unable to reset channel %u (%uMhz) "
1068 "flags 0x%x hal status %u\n",
1069 ath9k_hw_mhz2ieee(ah,
1070 ah->ah_curchan->channel,
1071 ah->ah_curchan->channelFlags),
1072 ah->ah_curchan->channel,
1073 ah->ah_curchan->channelFlags, status);
1075 spin_unlock_bh(&sc->sc_resetlock);
1077 ath_update_txpow(sc);
1078 if (ath_startrecv(sc) != 0) {
1079 DPRINTF(sc, ATH_DBG_FATAL,
1080 "Unable to restart recv logic\n");
1084 if (sc->sc_flags & SC_OP_BEACONS)
1085 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1087 /* Re-Enable interrupts */
1088 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1091 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1092 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1093 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1095 ieee80211_wake_queues(sc->hw);
1098 static void ath_radio_disable(struct ath_softc *sc)
1100 struct ath_hal *ah = sc->sc_ah;
1104 ieee80211_stop_queues(sc->hw);
1107 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1108 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1110 /* Disable interrupts */
1111 ath9k_hw_set_interrupts(ah, 0);
1113 ath_draintxq(sc, false); /* clear pending tx frames */
1114 ath_stoprecv(sc); /* turn off frame recv */
1115 ath_flushrecv(sc); /* flush recv queue */
1117 spin_lock_bh(&sc->sc_resetlock);
1118 if (!ath9k_hw_reset(ah, ah->ah_curchan,
1120 sc->sc_tx_chainmask,
1121 sc->sc_rx_chainmask,
1122 sc->sc_ht_extprotspacing,
1124 DPRINTF(sc, ATH_DBG_FATAL,
1125 "Unable to reset channel %u (%uMhz) "
1126 "flags 0x%x hal status %u\n",
1127 ath9k_hw_mhz2ieee(ah,
1128 ah->ah_curchan->channel,
1129 ah->ah_curchan->channelFlags),
1130 ah->ah_curchan->channel,
1131 ah->ah_curchan->channelFlags, status);
1133 spin_unlock_bh(&sc->sc_resetlock);
1135 ath9k_hw_phy_disable(ah);
1136 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1139 static bool ath_is_rfkill_set(struct ath_softc *sc)
1141 struct ath_hal *ah = sc->sc_ah;
1143 return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1144 ah->ah_rfkill_polarity;
1147 /* h/w rfkill poll function */
1148 static void ath_rfkill_poll(struct work_struct *work)
1150 struct ath_softc *sc = container_of(work, struct ath_softc,
1151 rf_kill.rfkill_poll.work);
1154 if (sc->sc_flags & SC_OP_INVALID)
1157 radio_on = !ath_is_rfkill_set(sc);
1160 * enable/disable radio only when there is a
1161 * state change in RF switch
1163 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1164 enum rfkill_state state;
1166 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1167 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1168 : RFKILL_STATE_HARD_BLOCKED;
1169 } else if (radio_on) {
1170 ath_radio_enable(sc);
1171 state = RFKILL_STATE_UNBLOCKED;
1173 ath_radio_disable(sc);
1174 state = RFKILL_STATE_HARD_BLOCKED;
1177 if (state == RFKILL_STATE_HARD_BLOCKED)
1178 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1180 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1182 rfkill_force_state(sc->rf_kill.rfkill, state);
1185 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1186 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1189 /* s/w rfkill handler */
1190 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1192 struct ath_softc *sc = data;
1195 case RFKILL_STATE_SOFT_BLOCKED:
1196 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1197 SC_OP_RFKILL_SW_BLOCKED)))
1198 ath_radio_disable(sc);
1199 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1201 case RFKILL_STATE_UNBLOCKED:
1202 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1203 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1204 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1205 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1206 "radio as it is disabled by h/w\n");
1209 ath_radio_enable(sc);
1217 /* Init s/w rfkill */
1218 static int ath_init_sw_rfkill(struct ath_softc *sc)
1220 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1222 if (!sc->rf_kill.rfkill) {
1223 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1227 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1228 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1229 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1230 sc->rf_kill.rfkill->data = sc;
1231 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1232 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1233 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1238 /* Deinitialize rfkill */
1239 static void ath_deinit_rfkill(struct ath_softc *sc)
1241 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1242 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1244 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1245 rfkill_unregister(sc->rf_kill.rfkill);
1246 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1247 sc->rf_kill.rfkill = NULL;
1251 static int ath_start_rfkill_poll(struct ath_softc *sc)
1253 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1254 queue_delayed_work(sc->hw->workqueue,
1255 &sc->rf_kill.rfkill_poll, 0);
1257 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1258 if (rfkill_register(sc->rf_kill.rfkill)) {
1259 DPRINTF(sc, ATH_DBG_FATAL,
1260 "Unable to register rfkill\n");
1261 rfkill_free(sc->rf_kill.rfkill);
1263 /* Deinitialize the device */
1266 free_irq(sc->pdev->irq, sc);
1267 pci_iounmap(sc->pdev, sc->mem);
1268 pci_release_region(sc->pdev, 0);
1269 pci_disable_device(sc->pdev);
1270 ieee80211_free_hw(sc->hw);
1273 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1279 #endif /* CONFIG_RFKILL */
1281 static void ath_detach(struct ath_softc *sc)
1283 struct ieee80211_hw *hw = sc->hw;
1286 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1288 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1289 ath_deinit_rfkill(sc);
1291 ath_deinit_leds(sc);
1293 ieee80211_unregister_hw(hw);
1295 ath_rate_control_unregister();
1300 tasklet_kill(&sc->intr_tq);
1301 tasklet_kill(&sc->bcon_tasklet);
1303 if (!(sc->sc_flags & SC_OP_INVALID))
1304 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1306 /* cleanup tx queues */
1307 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1308 if (ATH_TXQ_SETUP(sc, i))
1309 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1311 ath9k_hw_detach(sc->sc_ah);
1312 ath9k_exit_debug(sc);
1315 static int ath_init(u16 devid, struct ath_softc *sc)
1317 struct ath_hal *ah = NULL;
1322 /* XXX: hardware will not be ready until ath_open() being called */
1323 sc->sc_flags |= SC_OP_INVALID;
1325 if (ath9k_init_debug(sc) < 0)
1326 printk(KERN_ERR "Unable to create debugfs files\n");
1328 spin_lock_init(&sc->sc_resetlock);
1329 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1330 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1334 * Cache line size is used to size and align various
1335 * structures used to communicate with the hardware.
1337 bus_read_cachesize(sc, &csz);
1338 /* XXX assert csz is non-zero */
1339 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1341 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1343 DPRINTF(sc, ATH_DBG_FATAL,
1344 "Unable to attach hardware; HAL status %u\n", status);
1350 /* Get the hardware key cache size. */
1351 sc->sc_keymax = ah->ah_caps.keycache_size;
1352 if (sc->sc_keymax > ATH_KEYMAX) {
1353 DPRINTF(sc, ATH_DBG_KEYCACHE,
1354 "Warning, using only %u entries in %u key cache\n",
1355 ATH_KEYMAX, sc->sc_keymax);
1356 sc->sc_keymax = ATH_KEYMAX;
1360 * Reset the key cache since some parts do not
1361 * reset the contents on initial power up.
1363 for (i = 0; i < sc->sc_keymax; i++)
1364 ath9k_hw_keyreset(ah, (u16) i);
1366 * Mark key cache slots associated with global keys
1367 * as in use. If we knew TKIP was not to be used we
1368 * could leave the +32, +64, and +32+64 slots free.
1369 * XXX only for splitmic.
1371 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1372 set_bit(i, sc->sc_keymap);
1373 set_bit(i + 32, sc->sc_keymap);
1374 set_bit(i + 64, sc->sc_keymap);
1375 set_bit(i + 32 + 64, sc->sc_keymap);
1378 /* Collect the channel list using the default country code */
1380 error = ath_setup_channels(sc);
1384 /* default to MONITOR mode */
1385 sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1388 /* Setup rate tables */
1390 ath_rate_attach(sc);
1391 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1392 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1395 * Allocate hardware transmit queues: one queue for
1396 * beacon frames and one data queue for each QoS
1397 * priority. Note that the hal handles reseting
1398 * these queues at the needed time.
1400 sc->beacon.beaconq = ath_beaconq_setup(ah);
1401 if (sc->beacon.beaconq == -1) {
1402 DPRINTF(sc, ATH_DBG_FATAL,
1403 "Unable to setup a beacon xmit queue\n");
1407 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1408 if (sc->beacon.cabq == NULL) {
1409 DPRINTF(sc, ATH_DBG_FATAL,
1410 "Unable to setup CAB xmit queue\n");
1415 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1416 ath_cabq_update(sc);
1418 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1419 sc->tx.hwq_map[i] = -1;
1421 /* Setup data queues */
1422 /* NB: ensure BK queue is the lowest priority h/w queue */
1423 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1424 DPRINTF(sc, ATH_DBG_FATAL,
1425 "Unable to setup xmit queue for BK traffic\n");
1430 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1431 DPRINTF(sc, ATH_DBG_FATAL,
1432 "Unable to setup xmit queue for BE traffic\n");
1436 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1437 DPRINTF(sc, ATH_DBG_FATAL,
1438 "Unable to setup xmit queue for VI traffic\n");
1442 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1443 DPRINTF(sc, ATH_DBG_FATAL,
1444 "Unable to setup xmit queue for VO traffic\n");
1449 /* Initializes the noise floor to a reasonable default value.
1450 * Later on this will be updated during ANI processing. */
1452 sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1453 setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1455 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1456 ATH9K_CIPHER_TKIP, NULL)) {
1458 * Whether we should enable h/w TKIP MIC.
1459 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1460 * report WMM capable, so it's always safe to turn on
1461 * TKIP MIC in this case.
1463 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1468 * Check whether the separate key cache entries
1469 * are required to handle both tx+rx MIC keys.
1470 * With split mic keys the number of stations is limited
1471 * to 27 otherwise 59.
1473 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1474 ATH9K_CIPHER_TKIP, NULL)
1475 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1476 ATH9K_CIPHER_MIC, NULL)
1477 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1479 sc->sc_splitmic = 1;
1481 /* turn on mcast key search if possible */
1482 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1483 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1486 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1487 sc->sc_config.txpowlimit_override = 0;
1489 /* 11n Capabilities */
1490 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1491 sc->sc_flags |= SC_OP_TXAGGR;
1492 sc->sc_flags |= SC_OP_RXAGGR;
1495 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1496 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1498 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1499 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1501 ath9k_hw_getmac(ah, sc->sc_myaddr);
1502 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1503 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1504 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1505 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1508 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1510 /* initialize beacon slots */
1511 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1512 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1514 /* save MISC configurations */
1515 sc->sc_config.swBeaconProcess = 1;
1517 /* setup channels and rates */
1519 sc->sbands[IEEE80211_BAND_2GHZ].channels =
1520 sc->channels[IEEE80211_BAND_2GHZ];
1521 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1522 sc->rates[IEEE80211_BAND_2GHZ];
1523 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1525 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1526 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1527 sc->channels[IEEE80211_BAND_5GHZ];
1528 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1529 sc->rates[IEEE80211_BAND_5GHZ];
1530 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1535 /* cleanup tx queues */
1536 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1537 if (ATH_TXQ_SETUP(sc, i))
1538 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1541 ath9k_hw_detach(ah);
1546 static int ath_attach(u16 devid, struct ath_softc *sc)
1548 struct ieee80211_hw *hw = sc->hw;
1551 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1553 error = ath_init(devid, sc);
1557 /* get mac address from hardware and set in mac80211 */
1559 SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1561 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1562 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1563 IEEE80211_HW_SIGNAL_DBM |
1564 IEEE80211_HW_AMPDU_AGGREGATION;
1566 hw->wiphy->interface_modes =
1567 BIT(NL80211_IFTYPE_AP) |
1568 BIT(NL80211_IFTYPE_STATION) |
1569 BIT(NL80211_IFTYPE_ADHOC);
1573 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1574 hw->sta_data_size = sizeof(struct ath_node);
1575 hw->vif_data_size = sizeof(struct ath_vap);
1577 /* Register rate control */
1578 hw->rate_control_algorithm = "ath9k_rate_control";
1579 error = ath_rate_control_register();
1581 DPRINTF(sc, ATH_DBG_FATAL,
1582 "Unable to register rate control algorithm: %d\n", error);
1583 ath_rate_control_unregister();
1587 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1588 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1589 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1590 setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1593 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1594 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1595 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1596 &sc->sbands[IEEE80211_BAND_5GHZ];
1598 /* initialize tx/rx engine */
1599 error = ath_tx_init(sc, ATH_TXBUF);
1603 error = ath_rx_init(sc, ATH_RXBUF);
1607 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1608 /* Initialze h/w Rfkill */
1609 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1610 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1612 /* Initialize s/w rfkill */
1613 if (ath_init_sw_rfkill(sc))
1617 error = ieee80211_register_hw(hw);
1619 ath_rate_control_unregister();
1623 /* Initialize LED control */
1633 int ath_reset(struct ath_softc *sc, bool retry_tx)
1635 struct ath_hal *ah = sc->sc_ah;
1639 ath9k_hw_set_interrupts(ah, 0);
1640 ath_draintxq(sc, retry_tx);
1644 spin_lock_bh(&sc->sc_resetlock);
1645 if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
1647 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1648 sc->sc_ht_extprotspacing, false, &status)) {
1649 DPRINTF(sc, ATH_DBG_FATAL,
1650 "Unable to reset hardware; hal status %u\n", status);
1653 spin_unlock_bh(&sc->sc_resetlock);
1655 if (ath_startrecv(sc) != 0)
1656 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1659 * We may be doing a reset in response to a request
1660 * that changes the channel so update any state that
1661 * might change as a result.
1663 ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
1665 ath_update_txpow(sc);
1667 if (sc->sc_flags & SC_OP_BEACONS)
1668 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1670 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1674 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1675 if (ATH_TXQ_SETUP(sc, i)) {
1676 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1677 ath_txq_schedule(sc, &sc->tx.txq[i]);
1678 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1687 * This function will allocate both the DMA descriptor structure, and the
1688 * buffers it contains. These are used to contain the descriptors used
1691 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1692 struct list_head *head, const char *name,
1693 int nbuf, int ndesc)
1695 #define DS2PHYS(_dd, _ds) \
1696 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1697 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1698 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1700 struct ath_desc *ds;
1702 int i, bsize, error;
1704 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1707 /* ath_desc must be a multiple of DWORDs */
1708 if ((sizeof(struct ath_desc) % 4) != 0) {
1709 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1710 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1716 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1719 * Need additional DMA memory because we can't use
1720 * descriptors that cross the 4K page boundary. Assume
1721 * one skipped descriptor per 4K page.
1723 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1725 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1728 while (ndesc_skipped) {
1729 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1730 dd->dd_desc_len += dma_len;
1732 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1736 /* allocate descriptors */
1737 dd->dd_desc = pci_alloc_consistent(sc->pdev,
1739 &dd->dd_desc_paddr);
1740 if (dd->dd_desc == NULL) {
1745 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1746 dd->dd_name, ds, (u32) dd->dd_desc_len,
1747 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1749 /* allocate buffers */
1750 bsize = sizeof(struct ath_buf) * nbuf;
1751 bf = kmalloc(bsize, GFP_KERNEL);
1756 memset(bf, 0, bsize);
1759 INIT_LIST_HEAD(head);
1760 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1762 bf->bf_daddr = DS2PHYS(dd, ds);
1764 if (!(sc->sc_ah->ah_caps.hw_caps &
1765 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1767 * Skip descriptor addresses which can cause 4KB
1768 * boundary crossing (addr + length) with a 32 dword
1771 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1772 ASSERT((caddr_t) bf->bf_desc <
1773 ((caddr_t) dd->dd_desc +
1778 bf->bf_daddr = DS2PHYS(dd, ds);
1781 list_add_tail(&bf->list, head);
1785 pci_free_consistent(sc->pdev,
1786 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1788 memset(dd, 0, sizeof(*dd));
1790 #undef ATH_DESC_4KB_BOUND_CHECK
1791 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1795 void ath_descdma_cleanup(struct ath_softc *sc,
1796 struct ath_descdma *dd,
1797 struct list_head *head)
1799 pci_free_consistent(sc->pdev,
1800 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1802 INIT_LIST_HEAD(head);
1803 kfree(dd->dd_bufptr);
1804 memset(dd, 0, sizeof(*dd));
1807 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1813 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1816 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1819 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1822 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1825 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1832 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1837 case ATH9K_WME_AC_VO:
1840 case ATH9K_WME_AC_VI:
1843 case ATH9K_WME_AC_BE:
1846 case ATH9K_WME_AC_BK:
1857 /**********************/
1858 /* mac80211 callbacks */
1859 /**********************/
1861 static int ath9k_start(struct ieee80211_hw *hw)
1863 struct ath_softc *sc = hw->priv;
1864 struct ieee80211_channel *curchan = hw->conf.channel;
1865 struct ath9k_channel *init_channel;
1866 int error = 0, pos, status;
1868 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1869 "initial channel: %d MHz\n", curchan->center_freq);
1871 /* setup initial channel */
1873 pos = ath_get_channel(sc, curchan);
1875 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1880 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1881 sc->sc_ah->ah_channels[pos].chanmode =
1882 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1883 init_channel = &sc->sc_ah->ah_channels[pos];
1885 /* Reset SERDES registers */
1886 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1889 * The basic interface to setting the hardware in a good
1890 * state is ``reset''. On return the hardware is known to
1891 * be powered up and with interrupts disabled. This must
1892 * be followed by initialization of the appropriate bits
1893 * and then setup of the interrupt mask.
1895 spin_lock_bh(&sc->sc_resetlock);
1896 if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1898 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1899 sc->sc_ht_extprotspacing, false, &status)) {
1900 DPRINTF(sc, ATH_DBG_FATAL,
1901 "Unable to reset hardware; hal status %u "
1902 "(freq %u flags 0x%x)\n", status,
1903 init_channel->channel, init_channel->channelFlags);
1905 spin_unlock_bh(&sc->sc_resetlock);
1908 spin_unlock_bh(&sc->sc_resetlock);
1911 * This is needed only to setup initial state
1912 * but it's best done after a reset.
1914 ath_update_txpow(sc);
1917 * Setup the hardware after reset:
1918 * The receive engine is set going.
1919 * Frame transmit is handled entirely
1920 * in the frame output path; there's nothing to do
1921 * here except setup the interrupt mask.
1923 if (ath_startrecv(sc) != 0) {
1924 DPRINTF(sc, ATH_DBG_FATAL,
1925 "Unable to start recv logic\n");
1930 /* Setup our intr mask. */
1931 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1932 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1933 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1935 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1936 sc->sc_imask |= ATH9K_INT_GTT;
1938 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1939 sc->sc_imask |= ATH9K_INT_CST;
1942 * Enable MIB interrupts when there are hardware phy counters.
1943 * Note we only do this (at the moment) for station mode.
1945 if (ath9k_hw_phycounters(sc->sc_ah) &&
1946 ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1947 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1948 sc->sc_imask |= ATH9K_INT_MIB;
1950 * Some hardware processes the TIM IE and fires an
1951 * interrupt when the TIM bit is set. For hardware
1952 * that does, if not overridden by configuration,
1953 * enable the TIM interrupt when operating as station.
1955 if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1956 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1957 !sc->sc_config.swBeaconProcess)
1958 sc->sc_imask |= ATH9K_INT_TIM;
1960 ath_setcurmode(sc, ath_chan2mode(init_channel));
1962 sc->sc_flags &= ~SC_OP_INVALID;
1964 /* Disable BMISS interrupt when we're not associated */
1965 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1966 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1968 ieee80211_wake_queues(sc->hw);
1970 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1971 error = ath_start_rfkill_poll(sc);
1978 static int ath9k_tx(struct ieee80211_hw *hw,
1979 struct sk_buff *skb)
1981 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1982 struct ath_softc *sc = hw->priv;
1983 struct ath_tx_control txctl;
1984 int hdrlen, padsize;
1986 memset(&txctl, 0, sizeof(struct ath_tx_control));
1989 * As a temporary workaround, assign seq# here; this will likely need
1990 * to be cleaned up to work better with Beacon transmission and virtual
1993 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1994 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1995 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1996 sc->tx.seq_no += 0x10;
1997 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1998 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2001 /* Add the padding after the header if this is not already done */
2002 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2004 padsize = hdrlen % 4;
2005 if (skb_headroom(skb) < padsize)
2007 skb_push(skb, padsize);
2008 memmove(skb->data, skb->data + padsize, hdrlen);
2011 /* Check if a tx queue is available */
2013 txctl.txq = ath_test_get_txq(sc, skb);
2017 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2019 if (ath_tx_start(sc, skb, &txctl) != 0) {
2020 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2026 dev_kfree_skb_any(skb);
2030 static void ath9k_stop(struct ieee80211_hw *hw)
2032 struct ath_softc *sc = hw->priv;
2034 if (sc->sc_flags & SC_OP_INVALID) {
2035 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2039 DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2041 ieee80211_stop_queues(sc->hw);
2043 /* make sure h/w will not generate any interrupt
2044 * before setting the invalid flag. */
2045 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2047 if (!(sc->sc_flags & SC_OP_INVALID)) {
2048 ath_draintxq(sc, false);
2050 ath9k_hw_phy_disable(sc->sc_ah);
2052 sc->rx.rxlink = NULL;
2054 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2055 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2056 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2058 /* disable HAL and put h/w to sleep */
2059 ath9k_hw_disable(sc->sc_ah);
2060 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2062 sc->sc_flags |= SC_OP_INVALID;
2064 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2067 static int ath9k_add_interface(struct ieee80211_hw *hw,
2068 struct ieee80211_if_init_conf *conf)
2070 struct ath_softc *sc = hw->priv;
2071 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2072 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2074 /* Support only vap for now */
2079 switch (conf->type) {
2080 case NL80211_IFTYPE_STATION:
2081 ic_opmode = NL80211_IFTYPE_STATION;
2083 case NL80211_IFTYPE_ADHOC:
2084 ic_opmode = NL80211_IFTYPE_ADHOC;
2086 case NL80211_IFTYPE_AP:
2087 ic_opmode = NL80211_IFTYPE_AP;
2090 DPRINTF(sc, ATH_DBG_FATAL,
2091 "Interface type %d not yet supported\n", conf->type);
2095 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2097 /* Set the VAP opmode */
2098 avp->av_opmode = ic_opmode;
2101 if (ic_opmode == NL80211_IFTYPE_AP)
2102 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2104 sc->sc_vaps[0] = conf->vif;
2107 /* Set the device opmode */
2108 sc->sc_ah->ah_opmode = ic_opmode;
2110 if (conf->type == NL80211_IFTYPE_AP) {
2111 /* TODO: is this a suitable place to start ANI for AP mode? */
2113 mod_timer(&sc->sc_ani.timer,
2114 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2120 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2121 struct ieee80211_if_init_conf *conf)
2123 struct ath_softc *sc = hw->priv;
2124 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2126 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2129 del_timer_sync(&sc->sc_ani.timer);
2131 /* Reclaim beacon resources */
2132 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2133 sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2134 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2135 ath_beacon_return(sc, avp);
2138 sc->sc_flags &= ~SC_OP_BEACONS;
2140 sc->sc_vaps[0] = NULL;
2144 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2146 struct ath_softc *sc = hw->priv;
2147 struct ieee80211_conf *conf = &hw->conf;
2149 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2150 struct ieee80211_channel *curchan = hw->conf.channel;
2153 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2154 curchan->center_freq);
2156 pos = ath_get_channel(sc, curchan);
2158 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2159 curchan->center_freq);
2163 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2164 sc->sc_ah->ah_channels[pos].chanmode =
2165 (curchan->band == IEEE80211_BAND_2GHZ) ?
2166 CHANNEL_G : CHANNEL_A;
2168 if ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP) &&
2169 (conf->ht.enabled)) {
2170 sc->tx_chan_width = (!!conf->ht.sec_chan_offset) ?
2171 ATH9K_HT_MACMODE_2040 : ATH9K_HT_MACMODE_20;
2173 sc->sc_ah->ah_channels[pos].chanmode =
2174 ath_get_extchanmode(sc, curchan,
2175 conf->ht.sec_chan_offset,
2179 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2180 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2185 if (changed & IEEE80211_CONF_CHANGE_HT)
2186 ath_update_chainmask(sc, conf->ht.enabled);
2188 if (changed & IEEE80211_CONF_CHANGE_POWER)
2189 sc->sc_config.txpowlimit = 2 * conf->power_level;
2194 static int ath9k_config_interface(struct ieee80211_hw *hw,
2195 struct ieee80211_vif *vif,
2196 struct ieee80211_if_conf *conf)
2198 struct ath_softc *sc = hw->priv;
2199 struct ath_hal *ah = sc->sc_ah;
2200 struct ath_vap *avp = (void *)vif->drv_priv;
2204 /* TODO: Need to decide which hw opmode to use for multi-interface
2206 if (vif->type == NL80211_IFTYPE_AP &&
2207 ah->ah_opmode != NL80211_IFTYPE_AP) {
2208 ah->ah_opmode = NL80211_IFTYPE_STATION;
2209 ath9k_hw_setopmode(ah);
2210 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2211 /* Request full reset to get hw opmode changed properly */
2212 sc->sc_flags |= SC_OP_FULL_RESET;
2215 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2216 !is_zero_ether_addr(conf->bssid)) {
2217 switch (vif->type) {
2218 case NL80211_IFTYPE_STATION:
2219 case NL80211_IFTYPE_ADHOC:
2221 memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2223 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2226 /* Set aggregation protection mode parameters */
2227 sc->sc_config.ath_aggr_prot = 0;
2229 DPRINTF(sc, ATH_DBG_CONFIG,
2230 "RX filter 0x%x bssid %pM aid 0x%x\n",
2231 rfilt, sc->sc_curbssid, sc->sc_curaid);
2233 /* need to reconfigure the beacon */
2234 sc->sc_flags &= ~SC_OP_BEACONS ;
2242 if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2243 ((vif->type == NL80211_IFTYPE_ADHOC) ||
2244 (vif->type == NL80211_IFTYPE_AP))) {
2246 * Allocate and setup the beacon frame.
2248 * Stop any previous beacon DMA. This may be
2249 * necessary, for example, when an ibss merge
2250 * causes reconfiguration; we may be called
2251 * with beacon transmission active.
2253 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2255 error = ath_beacon_alloc(sc, 0);
2259 ath_beacon_sync(sc, 0);
2262 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2263 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2264 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2265 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2266 ath9k_hw_keysetmac(sc->sc_ah,
2271 /* Only legacy IBSS for now */
2272 if (vif->type == NL80211_IFTYPE_ADHOC)
2273 ath_update_chainmask(sc, 0);
2278 #define SUPPORTED_FILTERS \
2279 (FIF_PROMISC_IN_BSS | \
2283 FIF_BCN_PRBRESP_PROMISC | \
2286 /* FIXME: sc->sc_full_reset ? */
2287 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2288 unsigned int changed_flags,
2289 unsigned int *total_flags,
2291 struct dev_mc_list *mclist)
2293 struct ath_softc *sc = hw->priv;
2296 changed_flags &= SUPPORTED_FILTERS;
2297 *total_flags &= SUPPORTED_FILTERS;
2299 sc->rx.rxfilter = *total_flags;
2300 rfilt = ath_calcrxfilter(sc);
2301 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2303 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2304 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2305 ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2308 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2311 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2312 struct ieee80211_vif *vif,
2313 enum sta_notify_cmd cmd,
2314 struct ieee80211_sta *sta)
2316 struct ath_softc *sc = hw->priv;
2319 case STA_NOTIFY_ADD:
2320 ath_node_attach(sc, sta);
2322 case STA_NOTIFY_REMOVE:
2323 ath_node_detach(sc, sta);
2330 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2332 const struct ieee80211_tx_queue_params *params)
2334 struct ath_softc *sc = hw->priv;
2335 struct ath9k_tx_queue_info qi;
2338 if (queue >= WME_NUM_AC)
2341 qi.tqi_aifs = params->aifs;
2342 qi.tqi_cwmin = params->cw_min;
2343 qi.tqi_cwmax = params->cw_max;
2344 qi.tqi_burstTime = params->txop;
2345 qnum = ath_get_hal_qnum(queue, sc);
2347 DPRINTF(sc, ATH_DBG_CONFIG,
2348 "Configure tx [queue/halq] [%d/%d], "
2349 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2350 queue, qnum, params->aifs, params->cw_min,
2351 params->cw_max, params->txop);
2353 ret = ath_txq_update(sc, qnum, &qi);
2355 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2360 static int ath9k_set_key(struct ieee80211_hw *hw,
2361 enum set_key_cmd cmd,
2362 const u8 *local_addr,
2364 struct ieee80211_key_conf *key)
2366 struct ath_softc *sc = hw->priv;
2369 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2373 ret = ath_key_config(sc, addr, key);
2375 set_bit(key->keyidx, sc->sc_keymap);
2376 key->hw_key_idx = key->keyidx;
2377 /* push IV and Michael MIC generation to stack */
2378 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2379 if (key->alg == ALG_TKIP)
2380 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2384 ath_key_delete(sc, key);
2385 clear_bit(key->keyidx, sc->sc_keymap);
2394 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2395 struct ieee80211_vif *vif,
2396 struct ieee80211_bss_conf *bss_conf,
2399 struct ath_softc *sc = hw->priv;
2401 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2402 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2403 bss_conf->use_short_preamble);
2404 if (bss_conf->use_short_preamble)
2405 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2407 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2410 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2411 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2412 bss_conf->use_cts_prot);
2413 if (bss_conf->use_cts_prot &&
2414 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2415 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2417 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2420 if (changed & BSS_CHANGED_HT)
2421 ath9k_ht_conf(sc, bss_conf);
2423 if (changed & BSS_CHANGED_ASSOC) {
2424 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2426 ath9k_bss_assoc_info(sc, vif, bss_conf);
2430 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2433 struct ath_softc *sc = hw->priv;
2434 struct ath_hal *ah = sc->sc_ah;
2436 tsf = ath9k_hw_gettsf64(ah);
2441 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2443 struct ath_softc *sc = hw->priv;
2444 struct ath_hal *ah = sc->sc_ah;
2446 ath9k_hw_reset_tsf(ah);
2449 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2450 enum ieee80211_ampdu_mlme_action action,
2451 struct ieee80211_sta *sta,
2454 struct ath_softc *sc = hw->priv;
2458 case IEEE80211_AMPDU_RX_START:
2459 if (!(sc->sc_flags & SC_OP_RXAGGR))
2462 case IEEE80211_AMPDU_RX_STOP:
2464 case IEEE80211_AMPDU_TX_START:
2465 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2467 DPRINTF(sc, ATH_DBG_FATAL,
2468 "Unable to start TX aggregation\n");
2470 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2472 case IEEE80211_AMPDU_TX_STOP:
2473 ret = ath_tx_aggr_stop(sc, sta, tid);
2475 DPRINTF(sc, ATH_DBG_FATAL,
2476 "Unable to stop TX aggregation\n");
2478 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2480 case IEEE80211_AMPDU_TX_RESUME:
2481 ath_tx_aggr_resume(sc, sta, tid);
2484 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2490 static struct ieee80211_ops ath9k_ops = {
2492 .start = ath9k_start,
2494 .add_interface = ath9k_add_interface,
2495 .remove_interface = ath9k_remove_interface,
2496 .config = ath9k_config,
2497 .config_interface = ath9k_config_interface,
2498 .configure_filter = ath9k_configure_filter,
2499 .sta_notify = ath9k_sta_notify,
2500 .conf_tx = ath9k_conf_tx,
2501 .bss_info_changed = ath9k_bss_info_changed,
2502 .set_key = ath9k_set_key,
2503 .get_tsf = ath9k_get_tsf,
2504 .reset_tsf = ath9k_reset_tsf,
2505 .ampdu_action = ath9k_ampdu_action,
2511 } ath_mac_bb_names[] = {
2512 { AR_SREV_VERSION_5416_PCI, "5416" },
2513 { AR_SREV_VERSION_5416_PCIE, "5418" },
2514 { AR_SREV_VERSION_9100, "9100" },
2515 { AR_SREV_VERSION_9160, "9160" },
2516 { AR_SREV_VERSION_9280, "9280" },
2517 { AR_SREV_VERSION_9285, "9285" }
2523 } ath_rf_names[] = {
2525 { AR_RAD5133_SREV_MAJOR, "5133" },
2526 { AR_RAD5122_SREV_MAJOR, "5122" },
2527 { AR_RAD2133_SREV_MAJOR, "2133" },
2528 { AR_RAD2122_SREV_MAJOR, "2122" }
2532 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2535 ath_mac_bb_name(u32 mac_bb_version)
2539 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2540 if (ath_mac_bb_names[i].version == mac_bb_version) {
2541 return ath_mac_bb_names[i].name;
2549 * Return the RF name. "????" is returned if the RF is unknown.
2552 ath_rf_name(u16 rf_version)
2556 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2557 if (ath_rf_names[i].version == rf_version) {
2558 return ath_rf_names[i].name;
2565 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2568 struct ath_softc *sc;
2569 struct ieee80211_hw *hw;
2575 if (pci_enable_device(pdev))
2578 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2581 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2585 ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2588 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2589 "DMA enable failed\n");
2594 * Cache line size is used to size and align various
2595 * structures used to communicate with the hardware.
2597 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2600 * Linux 2.4.18 (at least) writes the cache line size
2601 * register as a 16-bit wide register which is wrong.
2602 * We must have this setup properly for rx buffer
2603 * DMA to work so force a reasonable value here if it
2606 csz = L1_CACHE_BYTES / sizeof(u32);
2607 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2610 * The default setting of latency timer yields poor results,
2611 * set it to the value used by other systems. It may be worth
2612 * tweaking this setting more.
2614 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2616 pci_set_master(pdev);
2619 * Disable the RETRY_TIMEOUT register (0x41) to keep
2620 * PCI Tx retries from interfering with C3 CPU state.
2622 pci_read_config_dword(pdev, 0x40, &val);
2623 if ((val & 0x0000ff00) != 0)
2624 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2626 ret = pci_request_region(pdev, 0, "ath9k");
2628 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2633 mem = pci_iomap(pdev, 0, 0);
2635 printk(KERN_ERR "PCI memory map error\n") ;
2640 hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2642 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2646 SET_IEEE80211_DEV(hw, &pdev->dev);
2647 pci_set_drvdata(pdev, hw);
2654 if (ath_attach(id->device, sc) != 0) {
2659 /* setup interrupt service routine */
2661 if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2662 printk(KERN_ERR "%s: request_irq failed\n",
2663 wiphy_name(hw->wiphy));
2670 "%s: Atheros AR%s MAC/BB Rev:%x "
2671 "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2672 wiphy_name(hw->wiphy),
2673 ath_mac_bb_name(ah->ah_macVersion),
2675 ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2677 (unsigned long)mem, pdev->irq);
2683 ieee80211_free_hw(hw);
2685 pci_iounmap(pdev, mem);
2687 pci_release_region(pdev, 0);
2689 pci_disable_device(pdev);
2693 static void ath_pci_remove(struct pci_dev *pdev)
2695 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2696 struct ath_softc *sc = hw->priv;
2700 free_irq(pdev->irq, sc);
2701 pci_iounmap(pdev, sc->mem);
2702 pci_release_region(pdev, 0);
2703 pci_disable_device(pdev);
2704 ieee80211_free_hw(hw);
2709 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2711 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2712 struct ath_softc *sc = hw->priv;
2714 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2716 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2717 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2718 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2721 pci_save_state(pdev);
2722 pci_disable_device(pdev);
2723 pci_set_power_state(pdev, 3);
2728 static int ath_pci_resume(struct pci_dev *pdev)
2730 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2731 struct ath_softc *sc = hw->priv;
2735 err = pci_enable_device(pdev);
2738 pci_restore_state(pdev);
2740 * Suspend/Resume resets the PCI configuration space, so we have to
2741 * re-disable the RETRY_TIMEOUT register (0x41) to keep
2742 * PCI Tx retries from interfering with C3 CPU state
2744 pci_read_config_dword(pdev, 0x40, &val);
2745 if ((val & 0x0000ff00) != 0)
2746 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2749 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2750 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2751 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2753 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2755 * check the h/w rfkill state on resume
2756 * and start the rfkill poll timer
2758 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2759 queue_delayed_work(sc->hw->workqueue,
2760 &sc->rf_kill.rfkill_poll, 0);
2766 #endif /* CONFIG_PM */
2768 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2770 static struct pci_driver ath_pci_driver = {
2772 .id_table = ath_pci_id_table,
2773 .probe = ath_pci_probe,
2774 .remove = ath_pci_remove,
2776 .suspend = ath_pci_suspend,
2777 .resume = ath_pci_resume,
2778 #endif /* CONFIG_PM */
2781 static int __init init_ath_pci(void)
2783 printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2785 if (pci_register_driver(&ath_pci_driver) < 0) {
2787 "ath_pci: No devices found, driver not installed.\n");
2788 pci_unregister_driver(&ath_pci_driver);
2794 module_init(init_ath_pci);
2796 static void __exit exit_ath_pci(void)
2798 pci_unregister_driver(&ath_pci_driver);
2799 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2801 module_exit(exit_ath_pci);