Merge branch 'master'
[linux-2.6] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32
33 #include <asm/prom.h>
34 #include <asm/rtas.h>
35 #include <asm/lmb.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/smp.h>
41 #include <asm/system.h>
42 #include <asm/mmu.h>
43 #include <asm/pgtable.h>
44 #include <asm/pci.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/machdep.h>
49 #include <asm/pSeries_reconfig.h>
50 #include <asm/pci-bridge.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/systemcfg.h>
53 #endif
54
55 #ifdef DEBUG
56 #define DBG(fmt...) printk(KERN_ERR fmt)
57 #else
58 #define DBG(fmt...)
59 #endif
60
61 struct pci_reg_property {
62         struct pci_address addr;
63         u32 size_hi;
64         u32 size_lo;
65 };
66
67 struct isa_reg_property {
68         u32 space;
69         u32 address;
70         u32 size;
71 };
72
73
74 typedef int interpret_func(struct device_node *, unsigned long *,
75                            int, int, int);
76
77 extern struct rtas_t rtas;
78 extern struct lmb lmb;
79 extern unsigned long klimit;
80
81 static int __initdata dt_root_addr_cells;
82 static int __initdata dt_root_size_cells;
83
84 #ifdef CONFIG_PPC64
85 static int __initdata iommu_is_off;
86 int __initdata iommu_force_on;
87 unsigned long tce_alloc_start, tce_alloc_end;
88 #endif
89
90 typedef u32 cell_t;
91
92 #if 0
93 static struct boot_param_header *initial_boot_params __initdata;
94 #else
95 struct boot_param_header *initial_boot_params;
96 #endif
97
98 static struct device_node *allnodes = NULL;
99
100 /* use when traversing tree through the allnext, child, sibling,
101  * or parent members of struct device_node.
102  */
103 static DEFINE_RWLOCK(devtree_lock);
104
105 /* export that to outside world */
106 struct device_node *of_chosen;
107
108 struct device_node *dflt_interrupt_controller;
109 int num_interrupt_controllers;
110
111 /*
112  * Wrapper for allocating memory for various data that needs to be
113  * attached to device nodes as they are processed at boot or when
114  * added to the device tree later (e.g. DLPAR).  At boot there is
115  * already a region reserved so we just increment *mem_start by size;
116  * otherwise we call kmalloc.
117  */
118 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
119 {
120         unsigned long tmp;
121
122         if (!mem_start)
123                 return kmalloc(size, GFP_KERNEL);
124
125         tmp = *mem_start;
126         *mem_start += size;
127         return (void *)tmp;
128 }
129
130 /*
131  * Find the device_node with a given phandle.
132  */
133 static struct device_node * find_phandle(phandle ph)
134 {
135         struct device_node *np;
136
137         for (np = allnodes; np != 0; np = np->allnext)
138                 if (np->linux_phandle == ph)
139                         return np;
140         return NULL;
141 }
142
143 /*
144  * Find the interrupt parent of a node.
145  */
146 static struct device_node * __devinit intr_parent(struct device_node *p)
147 {
148         phandle *parp;
149
150         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
151         if (parp == NULL)
152                 return p->parent;
153         p = find_phandle(*parp);
154         if (p != NULL)
155                 return p;
156         /*
157          * On a powermac booted with BootX, we don't get to know the
158          * phandles for any nodes, so find_phandle will return NULL.
159          * Fortunately these machines only have one interrupt controller
160          * so there isn't in fact any ambiguity.  -- paulus
161          */
162         if (num_interrupt_controllers == 1)
163                 p = dflt_interrupt_controller;
164         return p;
165 }
166
167 /*
168  * Find out the size of each entry of the interrupts property
169  * for a node.
170  */
171 int __devinit prom_n_intr_cells(struct device_node *np)
172 {
173         struct device_node *p;
174         unsigned int *icp;
175
176         for (p = np; (p = intr_parent(p)) != NULL; ) {
177                 icp = (unsigned int *)
178                         get_property(p, "#interrupt-cells", NULL);
179                 if (icp != NULL)
180                         return *icp;
181                 if (get_property(p, "interrupt-controller", NULL) != NULL
182                     || get_property(p, "interrupt-map", NULL) != NULL) {
183                         printk("oops, node %s doesn't have #interrupt-cells\n",
184                                p->full_name);
185                         return 1;
186                 }
187         }
188 #ifdef DEBUG_IRQ
189         printk("prom_n_intr_cells failed for %s\n", np->full_name);
190 #endif
191         return 1;
192 }
193
194 /*
195  * Map an interrupt from a device up to the platform interrupt
196  * descriptor.
197  */
198 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
199                                    struct device_node *np, unsigned int *ints,
200                                    int nintrc)
201 {
202         struct device_node *p, *ipar;
203         unsigned int *imap, *imask, *ip;
204         int i, imaplen, match;
205         int newintrc = 0, newaddrc = 0;
206         unsigned int *reg;
207         int naddrc;
208
209         reg = (unsigned int *) get_property(np, "reg", NULL);
210         naddrc = prom_n_addr_cells(np);
211         p = intr_parent(np);
212         while (p != NULL) {
213                 if (get_property(p, "interrupt-controller", NULL) != NULL)
214                         /* this node is an interrupt controller, stop here */
215                         break;
216                 imap = (unsigned int *)
217                         get_property(p, "interrupt-map", &imaplen);
218                 if (imap == NULL) {
219                         p = intr_parent(p);
220                         continue;
221                 }
222                 imask = (unsigned int *)
223                         get_property(p, "interrupt-map-mask", NULL);
224                 if (imask == NULL) {
225                         printk("oops, %s has interrupt-map but no mask\n",
226                                p->full_name);
227                         return 0;
228                 }
229                 imaplen /= sizeof(unsigned int);
230                 match = 0;
231                 ipar = NULL;
232                 while (imaplen > 0 && !match) {
233                         /* check the child-interrupt field */
234                         match = 1;
235                         for (i = 0; i < naddrc && match; ++i)
236                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
237                         for (; i < naddrc + nintrc && match; ++i)
238                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
239                         imap += naddrc + nintrc;
240                         imaplen -= naddrc + nintrc;
241                         /* grab the interrupt parent */
242                         ipar = find_phandle((phandle) *imap++);
243                         --imaplen;
244                         if (ipar == NULL && num_interrupt_controllers == 1)
245                                 /* cope with BootX not giving us phandles */
246                                 ipar = dflt_interrupt_controller;
247                         if (ipar == NULL) {
248                                 printk("oops, no int parent %x in map of %s\n",
249                                        imap[-1], p->full_name);
250                                 return 0;
251                         }
252                         /* find the parent's # addr and intr cells */
253                         ip = (unsigned int *)
254                                 get_property(ipar, "#interrupt-cells", NULL);
255                         if (ip == NULL) {
256                                 printk("oops, no #interrupt-cells on %s\n",
257                                        ipar->full_name);
258                                 return 0;
259                         }
260                         newintrc = *ip;
261                         ip = (unsigned int *)
262                                 get_property(ipar, "#address-cells", NULL);
263                         newaddrc = (ip == NULL)? 0: *ip;
264                         imap += newaddrc + newintrc;
265                         imaplen -= newaddrc + newintrc;
266                 }
267                 if (imaplen < 0) {
268                         printk("oops, error decoding int-map on %s, len=%d\n",
269                                p->full_name, imaplen);
270                         return 0;
271                 }
272                 if (!match) {
273 #ifdef DEBUG_IRQ
274                         printk("oops, no match in %s int-map for %s\n",
275                                p->full_name, np->full_name);
276 #endif
277                         return 0;
278                 }
279                 p = ipar;
280                 naddrc = newaddrc;
281                 nintrc = newintrc;
282                 ints = imap - nintrc;
283                 reg = ints - naddrc;
284         }
285         if (p == NULL) {
286 #ifdef DEBUG_IRQ
287                 printk("hmmm, int tree for %s doesn't have ctrler\n",
288                        np->full_name);
289 #endif
290                 return 0;
291         }
292         *irq = ints;
293         *ictrler = p;
294         return nintrc;
295 }
296
297 static unsigned char map_isa_senses[4] = {
298         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
299         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
300         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
301         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
302 };
303
304 static unsigned char map_mpic_senses[4] = {
305         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
306         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
307         /* 2 seems to be used for the 8259 cascade... */
308         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
309         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
310 };
311
312 static int __devinit finish_node_interrupts(struct device_node *np,
313                                             unsigned long *mem_start,
314                                             int measure_only)
315 {
316         unsigned int *ints;
317         int intlen, intrcells, intrcount;
318         int i, j, n, sense;
319         unsigned int *irq, virq;
320         struct device_node *ic;
321
322         if (num_interrupt_controllers == 0) {
323                 /*
324                  * Old machines just have a list of interrupt numbers
325                  * and no interrupt-controller nodes.
326                  */
327                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
328                                                      &intlen);
329                 /* XXX old interpret_pci_props looked in parent too */
330                 /* XXX old interpret_macio_props looked for interrupts
331                    before AAPL,interrupts */
332                 if (ints == NULL)
333                         ints = (unsigned int *) get_property(np, "interrupts",
334                                                              &intlen);
335                 if (ints == NULL)
336                         return 0;
337
338                 np->n_intrs = intlen / sizeof(unsigned int);
339                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
340                                        mem_start);
341                 if (!np->intrs)
342                         return -ENOMEM;
343                 if (measure_only)
344                         return 0;
345
346                 for (i = 0; i < np->n_intrs; ++i) {
347                         np->intrs[i].line = *ints++;
348                         np->intrs[i].sense = IRQ_SENSE_LEVEL
349                                 | IRQ_POLARITY_NEGATIVE;
350                 }
351                 return 0;
352         }
353
354         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
355         if (ints == NULL)
356                 return 0;
357         intrcells = prom_n_intr_cells(np);
358         intlen /= intrcells * sizeof(unsigned int);
359
360         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
361         if (!np->intrs)
362                 return -ENOMEM;
363
364         if (measure_only)
365                 return 0;
366
367         intrcount = 0;
368         for (i = 0; i < intlen; ++i, ints += intrcells) {
369                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
370                 if (n <= 0)
371                         continue;
372
373                 /* don't map IRQ numbers under a cascaded 8259 controller */
374                 if (ic && device_is_compatible(ic, "chrp,iic")) {
375                         np->intrs[intrcount].line = irq[0];
376                         sense = (n > 1)? (irq[1] & 3): 3;
377                         np->intrs[intrcount].sense = map_isa_senses[sense];
378                 } else {
379                         virq = virt_irq_create_mapping(irq[0]);
380 #ifdef CONFIG_PPC64
381                         if (virq == NO_IRQ) {
382                                 printk(KERN_CRIT "Could not allocate interrupt"
383                                        " number for %s\n", np->full_name);
384                                 continue;
385                         }
386 #endif
387                         np->intrs[intrcount].line = irq_offset_up(virq);
388                         sense = (n > 1)? (irq[1] & 3): 1;
389                         np->intrs[intrcount].sense = map_mpic_senses[sense];
390                 }
391
392 #ifdef CONFIG_PPC64
393                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
394                 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
395                         char *name = get_property(ic->parent, "name", NULL);
396                         if (name && !strcmp(name, "u3"))
397                                 np->intrs[intrcount].line += 128;
398                         else if (!(name && !strcmp(name, "mac-io")))
399                                 /* ignore other cascaded controllers, such as
400                                    the k2-sata-root */
401                                 break;
402                 }
403 #endif
404                 if (n > 2) {
405                         printk("hmmm, got %d intr cells for %s:", n,
406                                np->full_name);
407                         for (j = 0; j < n; ++j)
408                                 printk(" %d", irq[j]);
409                         printk("\n");
410                 }
411                 ++intrcount;
412         }
413         np->n_intrs = intrcount;
414
415         return 0;
416 }
417
418 static int __devinit interpret_pci_props(struct device_node *np,
419                                          unsigned long *mem_start,
420                                          int naddrc, int nsizec,
421                                          int measure_only)
422 {
423         struct address_range *adr;
424         struct pci_reg_property *pci_addrs;
425         int i, l, n_addrs;
426
427         pci_addrs = (struct pci_reg_property *)
428                 get_property(np, "assigned-addresses", &l);
429         if (!pci_addrs)
430                 return 0;
431
432         n_addrs = l / sizeof(*pci_addrs);
433
434         adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
435         if (!adr)
436                 return -ENOMEM;
437
438         if (measure_only)
439                 return 0;
440
441         np->addrs = adr;
442         np->n_addrs = n_addrs;
443
444         for (i = 0; i < n_addrs; i++) {
445                 adr[i].space = pci_addrs[i].addr.a_hi;
446                 adr[i].address = pci_addrs[i].addr.a_lo |
447                         ((u64)pci_addrs[i].addr.a_mid << 32);
448                 adr[i].size = pci_addrs[i].size_lo;
449         }
450
451         return 0;
452 }
453
454 static int __init interpret_dbdma_props(struct device_node *np,
455                                         unsigned long *mem_start,
456                                         int naddrc, int nsizec,
457                                         int measure_only)
458 {
459         struct reg_property32 *rp;
460         struct address_range *adr;
461         unsigned long base_address;
462         int i, l;
463         struct device_node *db;
464
465         base_address = 0;
466         if (!measure_only) {
467                 for (db = np->parent; db != NULL; db = db->parent) {
468                         if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
469                                 base_address = db->addrs[0].address;
470                                 break;
471                         }
472                 }
473         }
474
475         rp = (struct reg_property32 *) get_property(np, "reg", &l);
476         if (rp != 0 && l >= sizeof(struct reg_property32)) {
477                 i = 0;
478                 adr = (struct address_range *) (*mem_start);
479                 while ((l -= sizeof(struct reg_property32)) >= 0) {
480                         if (!measure_only) {
481                                 adr[i].space = 2;
482                                 adr[i].address = rp[i].address + base_address;
483                                 adr[i].size = rp[i].size;
484                         }
485                         ++i;
486                 }
487                 np->addrs = adr;
488                 np->n_addrs = i;
489                 (*mem_start) += i * sizeof(struct address_range);
490         }
491
492         return 0;
493 }
494
495 static int __init interpret_macio_props(struct device_node *np,
496                                         unsigned long *mem_start,
497                                         int naddrc, int nsizec,
498                                         int measure_only)
499 {
500         struct reg_property32 *rp;
501         struct address_range *adr;
502         unsigned long base_address;
503         int i, l;
504         struct device_node *db;
505
506         base_address = 0;
507         if (!measure_only) {
508                 for (db = np->parent; db != NULL; db = db->parent) {
509                         if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
510                                 base_address = db->addrs[0].address;
511                                 break;
512                         }
513                 }
514         }
515
516         rp = (struct reg_property32 *) get_property(np, "reg", &l);
517         if (rp != 0 && l >= sizeof(struct reg_property32)) {
518                 i = 0;
519                 adr = (struct address_range *) (*mem_start);
520                 while ((l -= sizeof(struct reg_property32)) >= 0) {
521                         if (!measure_only) {
522                                 adr[i].space = 2;
523                                 adr[i].address = rp[i].address + base_address;
524                                 adr[i].size = rp[i].size;
525                         }
526                         ++i;
527                 }
528                 np->addrs = adr;
529                 np->n_addrs = i;
530                 (*mem_start) += i * sizeof(struct address_range);
531         }
532
533         return 0;
534 }
535
536 static int __init interpret_isa_props(struct device_node *np,
537                                       unsigned long *mem_start,
538                                       int naddrc, int nsizec,
539                                       int measure_only)
540 {
541         struct isa_reg_property *rp;
542         struct address_range *adr;
543         int i, l;
544
545         rp = (struct isa_reg_property *) get_property(np, "reg", &l);
546         if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
547                 i = 0;
548                 adr = (struct address_range *) (*mem_start);
549                 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
550                         if (!measure_only) {
551                                 adr[i].space = rp[i].space;
552                                 adr[i].address = rp[i].address;
553                                 adr[i].size = rp[i].size;
554                         }
555                         ++i;
556                 }
557                 np->addrs = adr;
558                 np->n_addrs = i;
559                 (*mem_start) += i * sizeof(struct address_range);
560         }
561
562         return 0;
563 }
564
565 static int __init interpret_root_props(struct device_node *np,
566                                        unsigned long *mem_start,
567                                        int naddrc, int nsizec,
568                                        int measure_only)
569 {
570         struct address_range *adr;
571         int i, l;
572         unsigned int *rp;
573         int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
574
575         rp = (unsigned int *) get_property(np, "reg", &l);
576         if (rp != 0 && l >= rpsize) {
577                 i = 0;
578                 adr = (struct address_range *) (*mem_start);
579                 while ((l -= rpsize) >= 0) {
580                         if (!measure_only) {
581                                 adr[i].space = 0;
582                                 adr[i].address = rp[naddrc - 1];
583                                 adr[i].size = rp[naddrc + nsizec - 1];
584                         }
585                         ++i;
586                         rp += naddrc + nsizec;
587                 }
588                 np->addrs = adr;
589                 np->n_addrs = i;
590                 (*mem_start) += i * sizeof(struct address_range);
591         }
592
593         return 0;
594 }
595
596 static int __devinit finish_node(struct device_node *np,
597                                  unsigned long *mem_start,
598                                  interpret_func *ifunc,
599                                  int naddrc, int nsizec,
600                                  int measure_only)
601 {
602         struct device_node *child;
603         int *ip, rc = 0;
604
605         /* get the device addresses and interrupts */
606         if (ifunc != NULL)
607                 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
608         if (rc)
609                 goto out;
610
611         rc = finish_node_interrupts(np, mem_start, measure_only);
612         if (rc)
613                 goto out;
614
615         /* Look for #address-cells and #size-cells properties. */
616         ip = (int *) get_property(np, "#address-cells", NULL);
617         if (ip != NULL)
618                 naddrc = *ip;
619         ip = (int *) get_property(np, "#size-cells", NULL);
620         if (ip != NULL)
621                 nsizec = *ip;
622
623         if (!strcmp(np->name, "device-tree") || np->parent == NULL)
624                 ifunc = interpret_root_props;
625         else if (np->type == 0)
626                 ifunc = NULL;
627         else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
628                 ifunc = interpret_pci_props;
629         else if (!strcmp(np->type, "dbdma"))
630                 ifunc = interpret_dbdma_props;
631         else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
632                 ifunc = interpret_macio_props;
633         else if (!strcmp(np->type, "isa"))
634                 ifunc = interpret_isa_props;
635         else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
636                 ifunc = interpret_root_props;
637         else if (!((ifunc == interpret_dbdma_props
638                     || ifunc == interpret_macio_props)
639                    && (!strcmp(np->type, "escc")
640                        || !strcmp(np->type, "media-bay"))))
641                 ifunc = NULL;
642
643         for (child = np->child; child != NULL; child = child->sibling) {
644                 rc = finish_node(child, mem_start, ifunc,
645                                  naddrc, nsizec, measure_only);
646                 if (rc)
647                         goto out;
648         }
649 out:
650         return rc;
651 }
652
653 static void __init scan_interrupt_controllers(void)
654 {
655         struct device_node *np;
656         int n = 0;
657         char *name, *ic;
658         int iclen;
659
660         for (np = allnodes; np != NULL; np = np->allnext) {
661                 ic = get_property(np, "interrupt-controller", &iclen);
662                 name = get_property(np, "name", NULL);
663                 /* checking iclen makes sure we don't get a false
664                    match on /chosen.interrupt_controller */
665                 if ((name != NULL
666                      && strcmp(name, "interrupt-controller") == 0)
667                     || (ic != NULL && iclen == 0
668                         && strcmp(name, "AppleKiwi"))) {
669                         if (n == 0)
670                                 dflt_interrupt_controller = np;
671                         ++n;
672                 }
673         }
674         num_interrupt_controllers = n;
675 }
676
677 /**
678  * finish_device_tree is called once things are running normally
679  * (i.e. with text and data mapped to the address they were linked at).
680  * It traverses the device tree and fills in some of the additional,
681  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
682  * mapping is also initialized at this point.
683  */
684 void __init finish_device_tree(void)
685 {
686         unsigned long start, end, size = 0;
687
688         DBG(" -> finish_device_tree\n");
689
690 #ifdef CONFIG_PPC64
691         /* Initialize virtual IRQ map */
692         virt_irq_init();
693 #endif
694         scan_interrupt_controllers();
695
696         /*
697          * Finish device-tree (pre-parsing some properties etc...)
698          * We do this in 2 passes. One with "measure_only" set, which
699          * will only measure the amount of memory needed, then we can
700          * allocate that memory, and call finish_node again. However,
701          * we must be careful as most routines will fail nowadays when
702          * prom_alloc() returns 0, so we must make sure our first pass
703          * doesn't start at 0. We pre-initialize size to 16 for that
704          * reason and then remove those additional 16 bytes
705          */
706         size = 16;
707         finish_node(allnodes, &size, NULL, 0, 0, 1);
708         size -= 16;
709         end = start = (unsigned long) __va(lmb_alloc(size, 128));
710         finish_node(allnodes, &end, NULL, 0, 0, 0);
711         BUG_ON(end != start + size);
712
713         DBG(" <- finish_device_tree\n");
714 }
715
716 static inline char *find_flat_dt_string(u32 offset)
717 {
718         return ((char *)initial_boot_params) +
719                 initial_boot_params->off_dt_strings + offset;
720 }
721
722 /**
723  * This function is used to scan the flattened device-tree, it is
724  * used to extract the memory informations at boot before we can
725  * unflatten the tree
726  */
727 int __init of_scan_flat_dt(int (*it)(unsigned long node,
728                                      const char *uname, int depth,
729                                      void *data),
730                            void *data)
731 {
732         unsigned long p = ((unsigned long)initial_boot_params) +
733                 initial_boot_params->off_dt_struct;
734         int rc = 0;
735         int depth = -1;
736
737         do {
738                 u32 tag = *((u32 *)p);
739                 char *pathp;
740                 
741                 p += 4;
742                 if (tag == OF_DT_END_NODE) {
743                         depth --;
744                         continue;
745                 }
746                 if (tag == OF_DT_NOP)
747                         continue;
748                 if (tag == OF_DT_END)
749                         break;
750                 if (tag == OF_DT_PROP) {
751                         u32 sz = *((u32 *)p);
752                         p += 8;
753                         if (initial_boot_params->version < 0x10)
754                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
755                         p += sz;
756                         p = _ALIGN(p, 4);
757                         continue;
758                 }
759                 if (tag != OF_DT_BEGIN_NODE) {
760                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
761                                " device tree !\n", tag);
762                         return -EINVAL;
763                 }
764                 depth++;
765                 pathp = (char *)p;
766                 p = _ALIGN(p + strlen(pathp) + 1, 4);
767                 if ((*pathp) == '/') {
768                         char *lp, *np;
769                         for (lp = NULL, np = pathp; *np; np++)
770                                 if ((*np) == '/')
771                                         lp = np+1;
772                         if (lp != NULL)
773                                 pathp = lp;
774                 }
775                 rc = it(p, pathp, depth, data);
776                 if (rc != 0)
777                         break;          
778         } while(1);
779
780         return rc;
781 }
782
783 /**
784  * This  function can be used within scan_flattened_dt callback to get
785  * access to properties
786  */
787 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
788                                  unsigned long *size)
789 {
790         unsigned long p = node;
791
792         do {
793                 u32 tag = *((u32 *)p);
794                 u32 sz, noff;
795                 const char *nstr;
796
797                 p += 4;
798                 if (tag == OF_DT_NOP)
799                         continue;
800                 if (tag != OF_DT_PROP)
801                         return NULL;
802
803                 sz = *((u32 *)p);
804                 noff = *((u32 *)(p + 4));
805                 p += 8;
806                 if (initial_boot_params->version < 0x10)
807                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
808
809                 nstr = find_flat_dt_string(noff);
810                 if (nstr == NULL) {
811                         printk(KERN_WARNING "Can't find property index"
812                                " name !\n");
813                         return NULL;
814                 }
815                 if (strcmp(name, nstr) == 0) {
816                         if (size)
817                                 *size = sz;
818                         return (void *)p;
819                 }
820                 p += sz;
821                 p = _ALIGN(p, 4);
822         } while(1);
823 }
824
825 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
826                                        unsigned long align)
827 {
828         void *res;
829
830         *mem = _ALIGN(*mem, align);
831         res = (void *)*mem;
832         *mem += size;
833
834         return res;
835 }
836
837 static unsigned long __init unflatten_dt_node(unsigned long mem,
838                                               unsigned long *p,
839                                               struct device_node *dad,
840                                               struct device_node ***allnextpp,
841                                               unsigned long fpsize)
842 {
843         struct device_node *np;
844         struct property *pp, **prev_pp = NULL;
845         char *pathp;
846         u32 tag;
847         unsigned int l, allocl;
848         int has_name = 0;
849         int new_format = 0;
850
851         tag = *((u32 *)(*p));
852         if (tag != OF_DT_BEGIN_NODE) {
853                 printk("Weird tag at start of node: %x\n", tag);
854                 return mem;
855         }
856         *p += 4;
857         pathp = (char *)*p;
858         l = allocl = strlen(pathp) + 1;
859         *p = _ALIGN(*p + l, 4);
860
861         /* version 0x10 has a more compact unit name here instead of the full
862          * path. we accumulate the full path size using "fpsize", we'll rebuild
863          * it later. We detect this because the first character of the name is
864          * not '/'.
865          */
866         if ((*pathp) != '/') {
867                 new_format = 1;
868                 if (fpsize == 0) {
869                         /* root node: special case. fpsize accounts for path
870                          * plus terminating zero. root node only has '/', so
871                          * fpsize should be 2, but we want to avoid the first
872                          * level nodes to have two '/' so we use fpsize 1 here
873                          */
874                         fpsize = 1;
875                         allocl = 2;
876                 } else {
877                         /* account for '/' and path size minus terminal 0
878                          * already in 'l'
879                          */
880                         fpsize += l;
881                         allocl = fpsize;
882                 }
883         }
884
885
886         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
887                                 __alignof__(struct device_node));
888         if (allnextpp) {
889                 memset(np, 0, sizeof(*np));
890                 np->full_name = ((char*)np) + sizeof(struct device_node);
891                 if (new_format) {
892                         char *p = np->full_name;
893                         /* rebuild full path for new format */
894                         if (dad && dad->parent) {
895                                 strcpy(p, dad->full_name);
896 #ifdef DEBUG
897                                 if ((strlen(p) + l + 1) != allocl) {
898                                         DBG("%s: p: %d, l: %d, a: %d\n",
899                                             pathp, strlen(p), l, allocl);
900                                 }
901 #endif
902                                 p += strlen(p);
903                         }
904                         *(p++) = '/';
905                         memcpy(p, pathp, l);
906                 } else
907                         memcpy(np->full_name, pathp, l);
908                 prev_pp = &np->properties;
909                 **allnextpp = np;
910                 *allnextpp = &np->allnext;
911                 if (dad != NULL) {
912                         np->parent = dad;
913                         /* we temporarily use the next field as `last_child'*/
914                         if (dad->next == 0)
915                                 dad->child = np;
916                         else
917                                 dad->next->sibling = np;
918                         dad->next = np;
919                 }
920                 kref_init(&np->kref);
921         }
922         while(1) {
923                 u32 sz, noff;
924                 char *pname;
925
926                 tag = *((u32 *)(*p));
927                 if (tag == OF_DT_NOP) {
928                         *p += 4;
929                         continue;
930                 }
931                 if (tag != OF_DT_PROP)
932                         break;
933                 *p += 4;
934                 sz = *((u32 *)(*p));
935                 noff = *((u32 *)((*p) + 4));
936                 *p += 8;
937                 if (initial_boot_params->version < 0x10)
938                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
939
940                 pname = find_flat_dt_string(noff);
941                 if (pname == NULL) {
942                         printk("Can't find property name in list !\n");
943                         break;
944                 }
945                 if (strcmp(pname, "name") == 0)
946                         has_name = 1;
947                 l = strlen(pname) + 1;
948                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
949                                         __alignof__(struct property));
950                 if (allnextpp) {
951                         if (strcmp(pname, "linux,phandle") == 0) {
952                                 np->node = *((u32 *)*p);
953                                 if (np->linux_phandle == 0)
954                                         np->linux_phandle = np->node;
955                         }
956                         if (strcmp(pname, "ibm,phandle") == 0)
957                                 np->linux_phandle = *((u32 *)*p);
958                         pp->name = pname;
959                         pp->length = sz;
960                         pp->value = (void *)*p;
961                         *prev_pp = pp;
962                         prev_pp = &pp->next;
963                 }
964                 *p = _ALIGN((*p) + sz, 4);
965         }
966         /* with version 0x10 we may not have the name property, recreate
967          * it here from the unit name if absent
968          */
969         if (!has_name) {
970                 char *p = pathp, *ps = pathp, *pa = NULL;
971                 int sz;
972
973                 while (*p) {
974                         if ((*p) == '@')
975                                 pa = p;
976                         if ((*p) == '/')
977                                 ps = p + 1;
978                         p++;
979                 }
980                 if (pa < ps)
981                         pa = p;
982                 sz = (pa - ps) + 1;
983                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
984                                         __alignof__(struct property));
985                 if (allnextpp) {
986                         pp->name = "name";
987                         pp->length = sz;
988                         pp->value = (unsigned char *)(pp + 1);
989                         *prev_pp = pp;
990                         prev_pp = &pp->next;
991                         memcpy(pp->value, ps, sz - 1);
992                         ((char *)pp->value)[sz - 1] = 0;
993                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
994                 }
995         }
996         if (allnextpp) {
997                 *prev_pp = NULL;
998                 np->name = get_property(np, "name", NULL);
999                 np->type = get_property(np, "device_type", NULL);
1000
1001                 if (!np->name)
1002                         np->name = "<NULL>";
1003                 if (!np->type)
1004                         np->type = "<NULL>";
1005         }
1006         while (tag == OF_DT_BEGIN_NODE) {
1007                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1008                 tag = *((u32 *)(*p));
1009         }
1010         if (tag != OF_DT_END_NODE) {
1011                 printk("Weird tag at end of node: %x\n", tag);
1012                 return mem;
1013         }
1014         *p += 4;
1015         return mem;
1016 }
1017
1018
1019 /**
1020  * unflattens the device-tree passed by the firmware, creating the
1021  * tree of struct device_node. It also fills the "name" and "type"
1022  * pointers of the nodes so the normal device-tree walking functions
1023  * can be used (this used to be done by finish_device_tree)
1024  */
1025 void __init unflatten_device_tree(void)
1026 {
1027         unsigned long start, mem, size;
1028         struct device_node **allnextp = &allnodes;
1029         char *p = NULL;
1030         int l = 0;
1031
1032         DBG(" -> unflatten_device_tree()\n");
1033
1034         /* First pass, scan for size */
1035         start = ((unsigned long)initial_boot_params) +
1036                 initial_boot_params->off_dt_struct;
1037         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1038         size = (size | 3) + 1;
1039
1040         DBG("  size is %lx, allocating...\n", size);
1041
1042         /* Allocate memory for the expanded device tree */
1043         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1044         if (!mem) {
1045                 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1046                 panic("Couldn't allocate memory with lmb_alloc()!\n");
1047         }
1048         mem = (unsigned long) __va(mem);
1049
1050         ((u32 *)mem)[size / 4] = 0xdeadbeef;
1051
1052         DBG("  unflattening %lx...\n", mem);
1053
1054         /* Second pass, do actual unflattening */
1055         start = ((unsigned long)initial_boot_params) +
1056                 initial_boot_params->off_dt_struct;
1057         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1058         if (*((u32 *)start) != OF_DT_END)
1059                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1060         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1061                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1062                        ((u32 *)mem)[size / 4] );
1063         *allnextp = NULL;
1064
1065         /* Get pointer to OF "/chosen" node for use everywhere */
1066         of_chosen = of_find_node_by_path("/chosen");
1067         if (of_chosen == NULL)
1068                 of_chosen = of_find_node_by_path("/chosen@0");
1069
1070         /* Retreive command line */
1071         if (of_chosen != NULL) {
1072                 p = (char *)get_property(of_chosen, "bootargs", &l);
1073                 if (p != NULL && l > 0)
1074                         strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1075         }
1076 #ifdef CONFIG_CMDLINE
1077         if (l == 0 || (l == 1 && (*p) == 0))
1078                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1079 #endif /* CONFIG_CMDLINE */
1080
1081         DBG("Command line is: %s\n", cmd_line);
1082
1083         DBG(" <- unflatten_device_tree()\n");
1084 }
1085
1086
1087 static int __init early_init_dt_scan_cpus(unsigned long node,
1088                                           const char *uname, int depth, void *data)
1089 {
1090         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1091         u32 *prop;
1092         unsigned long size = 0;
1093
1094         /* We are scanning "cpu" nodes only */
1095         if (type == NULL || strcmp(type, "cpu") != 0)
1096                 return 0;
1097
1098         boot_cpuid = 0;
1099         boot_cpuid_phys = 0;
1100         if (initial_boot_params && initial_boot_params->version >= 2) {
1101                 /* version 2 of the kexec param format adds the phys cpuid
1102                  * of booted proc.
1103                  */
1104                 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1105         } else {
1106                 /* Check if it's the boot-cpu, set it's hw index now */
1107                 if (of_get_flat_dt_prop(node,
1108                                         "linux,boot-cpu", NULL) != NULL) {
1109                         prop = of_get_flat_dt_prop(node, "reg", NULL);
1110                         if (prop != NULL)
1111                                 boot_cpuid_phys = *prop;
1112                 }
1113         }
1114         set_hard_smp_processor_id(0, boot_cpuid_phys);
1115
1116 #ifdef CONFIG_ALTIVEC
1117         /* Check if we have a VMX and eventually update CPU features */
1118         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", &size);
1119         if (prop && (*prop) > 0) {
1120                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1121                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1122         }
1123
1124         /* Same goes for Apple's "altivec" property */
1125         prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1126         if (prop) {
1127                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1128                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1129         }
1130 #endif /* CONFIG_ALTIVEC */
1131
1132 #ifdef CONFIG_PPC_PSERIES
1133         /*
1134          * Check for an SMT capable CPU and set the CPU feature. We do
1135          * this by looking at the size of the ibm,ppc-interrupt-server#s
1136          * property
1137          */
1138         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1139                                        &size);
1140         cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1141         if (prop && ((size / sizeof(u32)) > 1))
1142                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1143 #endif
1144
1145         return 0;
1146 }
1147
1148 static int __init early_init_dt_scan_chosen(unsigned long node,
1149                                             const char *uname, int depth, void *data)
1150 {
1151         u32 *prop;
1152         unsigned long *lprop;
1153
1154         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1155
1156         if (depth != 1 ||
1157             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1158                 return 0;
1159
1160         /* get platform type */
1161         prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
1162         if (prop == NULL)
1163                 return 0;
1164 #ifdef CONFIG_PPC64
1165         systemcfg->platform = *prop;
1166 #else
1167 #ifdef CONFIG_PPC_MULTIPLATFORM
1168         _machine = *prop;
1169 #endif
1170 #endif
1171
1172 #ifdef CONFIG_PPC64
1173         /* check if iommu is forced on or off */
1174         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1175                 iommu_is_off = 1;
1176         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1177                 iommu_force_on = 1;
1178 #endif
1179
1180         lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1181         if (lprop)
1182                 memory_limit = *lprop;
1183
1184 #ifdef CONFIG_PPC64
1185         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1186         if (lprop)
1187                 tce_alloc_start = *lprop;
1188         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1189         if (lprop)
1190                 tce_alloc_end = *lprop;
1191 #endif
1192
1193 #ifdef CONFIG_PPC_RTAS
1194         /* To help early debugging via the front panel, we retreive a minimal
1195          * set of RTAS infos now if available
1196          */
1197         {
1198                 u64 *basep, *entryp;
1199
1200                 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1201                 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1202                 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1203                 if (basep && entryp && prop) {
1204                         rtas.base = *basep;
1205                         rtas.entry = *entryp;
1206                         rtas.size = *prop;
1207                 }
1208         }
1209 #endif /* CONFIG_PPC_RTAS */
1210
1211         /* break now */
1212         return 1;
1213 }
1214
1215 static int __init early_init_dt_scan_root(unsigned long node,
1216                                           const char *uname, int depth, void *data)
1217 {
1218         u32 *prop;
1219
1220         if (depth != 0)
1221                 return 0;
1222
1223         prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1224         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1225         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1226
1227         prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1228         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1229         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1230         
1231         /* break now */
1232         return 1;
1233 }
1234
1235 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1236 {
1237         cell_t *p = *cellp;
1238         unsigned long r;
1239
1240         /* Ignore more than 2 cells */
1241         while (s > sizeof(unsigned long) / 4) {
1242                 p++;
1243                 s--;
1244         }
1245         r = *p++;
1246 #ifdef CONFIG_PPC64
1247         if (s > 1) {
1248                 r <<= 32;
1249                 r |= *(p++);
1250                 s--;
1251         }
1252 #endif
1253
1254         *cellp = p;
1255         return r;
1256 }
1257
1258
1259 static int __init early_init_dt_scan_memory(unsigned long node,
1260                                             const char *uname, int depth, void *data)
1261 {
1262         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1263         cell_t *reg, *endp;
1264         unsigned long l;
1265
1266         /* We are scanning "memory" nodes only */
1267         if (type == NULL || strcmp(type, "memory") != 0)
1268                 return 0;
1269
1270         reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1271         if (reg == NULL)
1272                 return 0;
1273
1274         endp = reg + (l / sizeof(cell_t));
1275
1276         DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1277             uname, l, reg[0], reg[1], reg[2], reg[3]);
1278
1279         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1280                 unsigned long base, size;
1281
1282                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1283                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1284
1285                 if (size == 0)
1286                         continue;
1287                 DBG(" - %lx ,  %lx\n", base, size);
1288 #ifdef CONFIG_PPC64
1289                 if (iommu_is_off) {
1290                         if (base >= 0x80000000ul)
1291                                 continue;
1292                         if ((base + size) > 0x80000000ul)
1293                                 size = 0x80000000ul - base;
1294                 }
1295 #endif
1296                 lmb_add(base, size);
1297         }
1298         return 0;
1299 }
1300
1301 static void __init early_reserve_mem(void)
1302 {
1303         unsigned long base, size;
1304         unsigned long *reserve_map;
1305
1306         reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1307                                         initial_boot_params->off_mem_rsvmap);
1308         while (1) {
1309                 base = *(reserve_map++);
1310                 size = *(reserve_map++);
1311                 if (size == 0)
1312                         break;
1313                 DBG("reserving: %lx -> %lx\n", base, size);
1314                 lmb_reserve(base, size);
1315         }
1316
1317 #if 0
1318         DBG("memory reserved, lmbs :\n");
1319         lmb_dump_all();
1320 #endif
1321 }
1322
1323 void __init early_init_devtree(void *params)
1324 {
1325         DBG(" -> early_init_devtree()\n");
1326
1327         /* Setup flat device-tree pointer */
1328         initial_boot_params = params;
1329
1330         /* Retrieve various informations from the /chosen node of the
1331          * device-tree, including the platform type, initrd location and
1332          * size, TCE reserve, and more ...
1333          */
1334         of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1335
1336         /* Scan memory nodes and rebuild LMBs */
1337         lmb_init();
1338         of_scan_flat_dt(early_init_dt_scan_root, NULL);
1339         of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1340         lmb_enforce_memory_limit(memory_limit);
1341         lmb_analyze();
1342 #ifdef CONFIG_PPC64
1343         systemcfg->physicalMemorySize = lmb_phys_mem_size();
1344 #endif
1345         lmb_reserve(0, __pa(klimit));
1346
1347         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1348
1349         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1350         early_reserve_mem();
1351
1352         DBG("Scanning CPUs ...\n");
1353
1354         /* Retreive CPU related informations from the flat tree
1355          * (altivec support, boot CPU ID, ...)
1356          */
1357         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1358
1359         DBG(" <- early_init_devtree()\n");
1360 }
1361
1362 #undef printk
1363
1364 int
1365 prom_n_addr_cells(struct device_node* np)
1366 {
1367         int* ip;
1368         do {
1369                 if (np->parent)
1370                         np = np->parent;
1371                 ip = (int *) get_property(np, "#address-cells", NULL);
1372                 if (ip != NULL)
1373                         return *ip;
1374         } while (np->parent);
1375         /* No #address-cells property for the root node, default to 1 */
1376         return 1;
1377 }
1378
1379 int
1380 prom_n_size_cells(struct device_node* np)
1381 {
1382         int* ip;
1383         do {
1384                 if (np->parent)
1385                         np = np->parent;
1386                 ip = (int *) get_property(np, "#size-cells", NULL);
1387                 if (ip != NULL)
1388                         return *ip;
1389         } while (np->parent);
1390         /* No #size-cells property for the root node, default to 1 */
1391         return 1;
1392 }
1393
1394 /**
1395  * Work out the sense (active-low level / active-high edge)
1396  * of each interrupt from the device tree.
1397  */
1398 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1399 {
1400         struct device_node *np;
1401         int i, j;
1402
1403         /* default to level-triggered */
1404         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1405
1406         for (np = allnodes; np != 0; np = np->allnext) {
1407                 for (j = 0; j < np->n_intrs; j++) {
1408                         i = np->intrs[j].line;
1409                         if (i >= off && i < max)
1410                                 senses[i-off] = np->intrs[j].sense;
1411                 }
1412         }
1413 }
1414
1415 /**
1416  * Construct and return a list of the device_nodes with a given name.
1417  */
1418 struct device_node *find_devices(const char *name)
1419 {
1420         struct device_node *head, **prevp, *np;
1421
1422         prevp = &head;
1423         for (np = allnodes; np != 0; np = np->allnext) {
1424                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1425                         *prevp = np;
1426                         prevp = &np->next;
1427                 }
1428         }
1429         *prevp = NULL;
1430         return head;
1431 }
1432 EXPORT_SYMBOL(find_devices);
1433
1434 /**
1435  * Construct and return a list of the device_nodes with a given type.
1436  */
1437 struct device_node *find_type_devices(const char *type)
1438 {
1439         struct device_node *head, **prevp, *np;
1440
1441         prevp = &head;
1442         for (np = allnodes; np != 0; np = np->allnext) {
1443                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1444                         *prevp = np;
1445                         prevp = &np->next;
1446                 }
1447         }
1448         *prevp = NULL;
1449         return head;
1450 }
1451 EXPORT_SYMBOL(find_type_devices);
1452
1453 /**
1454  * Returns all nodes linked together
1455  */
1456 struct device_node *find_all_nodes(void)
1457 {
1458         struct device_node *head, **prevp, *np;
1459
1460         prevp = &head;
1461         for (np = allnodes; np != 0; np = np->allnext) {
1462                 *prevp = np;
1463                 prevp = &np->next;
1464         }
1465         *prevp = NULL;
1466         return head;
1467 }
1468 EXPORT_SYMBOL(find_all_nodes);
1469
1470 /** Checks if the given "compat" string matches one of the strings in
1471  * the device's "compatible" property
1472  */
1473 int device_is_compatible(struct device_node *device, const char *compat)
1474 {
1475         const char* cp;
1476         int cplen, l;
1477
1478         cp = (char *) get_property(device, "compatible", &cplen);
1479         if (cp == NULL)
1480                 return 0;
1481         while (cplen > 0) {
1482                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1483                         return 1;
1484                 l = strlen(cp) + 1;
1485                 cp += l;
1486                 cplen -= l;
1487         }
1488
1489         return 0;
1490 }
1491 EXPORT_SYMBOL(device_is_compatible);
1492
1493
1494 /**
1495  * Indicates whether the root node has a given value in its
1496  * compatible property.
1497  */
1498 int machine_is_compatible(const char *compat)
1499 {
1500         struct device_node *root;
1501         int rc = 0;
1502
1503         root = of_find_node_by_path("/");
1504         if (root) {
1505                 rc = device_is_compatible(root, compat);
1506                 of_node_put(root);
1507         }
1508         return rc;
1509 }
1510 EXPORT_SYMBOL(machine_is_compatible);
1511
1512 /**
1513  * Construct and return a list of the device_nodes with a given type
1514  * and compatible property.
1515  */
1516 struct device_node *find_compatible_devices(const char *type,
1517                                             const char *compat)
1518 {
1519         struct device_node *head, **prevp, *np;
1520
1521         prevp = &head;
1522         for (np = allnodes; np != 0; np = np->allnext) {
1523                 if (type != NULL
1524                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1525                         continue;
1526                 if (device_is_compatible(np, compat)) {
1527                         *prevp = np;
1528                         prevp = &np->next;
1529                 }
1530         }
1531         *prevp = NULL;
1532         return head;
1533 }
1534 EXPORT_SYMBOL(find_compatible_devices);
1535
1536 /**
1537  * Find the device_node with a given full_name.
1538  */
1539 struct device_node *find_path_device(const char *path)
1540 {
1541         struct device_node *np;
1542
1543         for (np = allnodes; np != 0; np = np->allnext)
1544                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1545                         return np;
1546         return NULL;
1547 }
1548 EXPORT_SYMBOL(find_path_device);
1549
1550 /*******
1551  *
1552  * New implementation of the OF "find" APIs, return a refcounted
1553  * object, call of_node_put() when done.  The device tree and list
1554  * are protected by a rw_lock.
1555  *
1556  * Note that property management will need some locking as well,
1557  * this isn't dealt with yet.
1558  *
1559  *******/
1560
1561 /**
1562  *      of_find_node_by_name - Find a node by its "name" property
1563  *      @from:  The node to start searching from or NULL, the node
1564  *              you pass will not be searched, only the next one
1565  *              will; typically, you pass what the previous call
1566  *              returned. of_node_put() will be called on it
1567  *      @name:  The name string to match against
1568  *
1569  *      Returns a node pointer with refcount incremented, use
1570  *      of_node_put() on it when done.
1571  */
1572 struct device_node *of_find_node_by_name(struct device_node *from,
1573         const char *name)
1574 {
1575         struct device_node *np;
1576
1577         read_lock(&devtree_lock);
1578         np = from ? from->allnext : allnodes;
1579         for (; np != 0; np = np->allnext)
1580                 if (np->name != 0 && strcasecmp(np->name, name) == 0
1581                     && of_node_get(np))
1582                         break;
1583         if (from)
1584                 of_node_put(from);
1585         read_unlock(&devtree_lock);
1586         return np;
1587 }
1588 EXPORT_SYMBOL(of_find_node_by_name);
1589
1590 /**
1591  *      of_find_node_by_type - Find a node by its "device_type" property
1592  *      @from:  The node to start searching from or NULL, the node
1593  *              you pass will not be searched, only the next one
1594  *              will; typically, you pass what the previous call
1595  *              returned. of_node_put() will be called on it
1596  *      @name:  The type string to match against
1597  *
1598  *      Returns a node pointer with refcount incremented, use
1599  *      of_node_put() on it when done.
1600  */
1601 struct device_node *of_find_node_by_type(struct device_node *from,
1602         const char *type)
1603 {
1604         struct device_node *np;
1605
1606         read_lock(&devtree_lock);
1607         np = from ? from->allnext : allnodes;
1608         for (; np != 0; np = np->allnext)
1609                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1610                     && of_node_get(np))
1611                         break;
1612         if (from)
1613                 of_node_put(from);
1614         read_unlock(&devtree_lock);
1615         return np;
1616 }
1617 EXPORT_SYMBOL(of_find_node_by_type);
1618
1619 /**
1620  *      of_find_compatible_node - Find a node based on type and one of the
1621  *                                tokens in its "compatible" property
1622  *      @from:          The node to start searching from or NULL, the node
1623  *                      you pass will not be searched, only the next one
1624  *                      will; typically, you pass what the previous call
1625  *                      returned. of_node_put() will be called on it
1626  *      @type:          The type string to match "device_type" or NULL to ignore
1627  *      @compatible:    The string to match to one of the tokens in the device
1628  *                      "compatible" list.
1629  *
1630  *      Returns a node pointer with refcount incremented, use
1631  *      of_node_put() on it when done.
1632  */
1633 struct device_node *of_find_compatible_node(struct device_node *from,
1634         const char *type, const char *compatible)
1635 {
1636         struct device_node *np;
1637
1638         read_lock(&devtree_lock);
1639         np = from ? from->allnext : allnodes;
1640         for (; np != 0; np = np->allnext) {
1641                 if (type != NULL
1642                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1643                         continue;
1644                 if (device_is_compatible(np, compatible) && of_node_get(np))
1645                         break;
1646         }
1647         if (from)
1648                 of_node_put(from);
1649         read_unlock(&devtree_lock);
1650         return np;
1651 }
1652 EXPORT_SYMBOL(of_find_compatible_node);
1653
1654 /**
1655  *      of_find_node_by_path - Find a node matching a full OF path
1656  *      @path:  The full path to match
1657  *
1658  *      Returns a node pointer with refcount incremented, use
1659  *      of_node_put() on it when done.
1660  */
1661 struct device_node *of_find_node_by_path(const char *path)
1662 {
1663         struct device_node *np = allnodes;
1664
1665         read_lock(&devtree_lock);
1666         for (; np != 0; np = np->allnext) {
1667                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1668                     && of_node_get(np))
1669                         break;
1670         }
1671         read_unlock(&devtree_lock);
1672         return np;
1673 }
1674 EXPORT_SYMBOL(of_find_node_by_path);
1675
1676 /**
1677  *      of_find_node_by_phandle - Find a node given a phandle
1678  *      @handle:        phandle of the node to find
1679  *
1680  *      Returns a node pointer with refcount incremented, use
1681  *      of_node_put() on it when done.
1682  */
1683 struct device_node *of_find_node_by_phandle(phandle handle)
1684 {
1685         struct device_node *np;
1686
1687         read_lock(&devtree_lock);
1688         for (np = allnodes; np != 0; np = np->allnext)
1689                 if (np->linux_phandle == handle)
1690                         break;
1691         if (np)
1692                 of_node_get(np);
1693         read_unlock(&devtree_lock);
1694         return np;
1695 }
1696 EXPORT_SYMBOL(of_find_node_by_phandle);
1697
1698 /**
1699  *      of_find_all_nodes - Get next node in global list
1700  *      @prev:  Previous node or NULL to start iteration
1701  *              of_node_put() will be called on it
1702  *
1703  *      Returns a node pointer with refcount incremented, use
1704  *      of_node_put() on it when done.
1705  */
1706 struct device_node *of_find_all_nodes(struct device_node *prev)
1707 {
1708         struct device_node *np;
1709
1710         read_lock(&devtree_lock);
1711         np = prev ? prev->allnext : allnodes;
1712         for (; np != 0; np = np->allnext)
1713                 if (of_node_get(np))
1714                         break;
1715         if (prev)
1716                 of_node_put(prev);
1717         read_unlock(&devtree_lock);
1718         return np;
1719 }
1720 EXPORT_SYMBOL(of_find_all_nodes);
1721
1722 /**
1723  *      of_get_parent - Get a node's parent if any
1724  *      @node:  Node to get parent
1725  *
1726  *      Returns a node pointer with refcount incremented, use
1727  *      of_node_put() on it when done.
1728  */
1729 struct device_node *of_get_parent(const struct device_node *node)
1730 {
1731         struct device_node *np;
1732
1733         if (!node)
1734                 return NULL;
1735
1736         read_lock(&devtree_lock);
1737         np = of_node_get(node->parent);
1738         read_unlock(&devtree_lock);
1739         return np;
1740 }
1741 EXPORT_SYMBOL(of_get_parent);
1742
1743 /**
1744  *      of_get_next_child - Iterate a node childs
1745  *      @node:  parent node
1746  *      @prev:  previous child of the parent node, or NULL to get first
1747  *
1748  *      Returns a node pointer with refcount incremented, use
1749  *      of_node_put() on it when done.
1750  */
1751 struct device_node *of_get_next_child(const struct device_node *node,
1752         struct device_node *prev)
1753 {
1754         struct device_node *next;
1755
1756         read_lock(&devtree_lock);
1757         next = prev ? prev->sibling : node->child;
1758         for (; next != 0; next = next->sibling)
1759                 if (of_node_get(next))
1760                         break;
1761         if (prev)
1762                 of_node_put(prev);
1763         read_unlock(&devtree_lock);
1764         return next;
1765 }
1766 EXPORT_SYMBOL(of_get_next_child);
1767
1768 /**
1769  *      of_node_get - Increment refcount of a node
1770  *      @node:  Node to inc refcount, NULL is supported to
1771  *              simplify writing of callers
1772  *
1773  *      Returns node.
1774  */
1775 struct device_node *of_node_get(struct device_node *node)
1776 {
1777         if (node)
1778                 kref_get(&node->kref);
1779         return node;
1780 }
1781 EXPORT_SYMBOL(of_node_get);
1782
1783 static inline struct device_node * kref_to_device_node(struct kref *kref)
1784 {
1785         return container_of(kref, struct device_node, kref);
1786 }
1787
1788 /**
1789  *      of_node_release - release a dynamically allocated node
1790  *      @kref:  kref element of the node to be released
1791  *
1792  *      In of_node_put() this function is passed to kref_put()
1793  *      as the destructor.
1794  */
1795 static void of_node_release(struct kref *kref)
1796 {
1797         struct device_node *node = kref_to_device_node(kref);
1798         struct property *prop = node->properties;
1799
1800         if (!OF_IS_DYNAMIC(node))
1801                 return;
1802         while (prop) {
1803                 struct property *next = prop->next;
1804                 kfree(prop->name);
1805                 kfree(prop->value);
1806                 kfree(prop);
1807                 prop = next;
1808         }
1809         kfree(node->intrs);
1810         kfree(node->addrs);
1811         kfree(node->full_name);
1812         kfree(node->data);
1813         kfree(node);
1814 }
1815
1816 /**
1817  *      of_node_put - Decrement refcount of a node
1818  *      @node:  Node to dec refcount, NULL is supported to
1819  *              simplify writing of callers
1820  *
1821  */
1822 void of_node_put(struct device_node *node)
1823 {
1824         if (node)
1825                 kref_put(&node->kref, of_node_release);
1826 }
1827 EXPORT_SYMBOL(of_node_put);
1828
1829 /*
1830  * Plug a device node into the tree and global list.
1831  */
1832 void of_attach_node(struct device_node *np)
1833 {
1834         write_lock(&devtree_lock);
1835         np->sibling = np->parent->child;
1836         np->allnext = allnodes;
1837         np->parent->child = np;
1838         allnodes = np;
1839         write_unlock(&devtree_lock);
1840 }
1841
1842 /*
1843  * "Unplug" a node from the device tree.  The caller must hold
1844  * a reference to the node.  The memory associated with the node
1845  * is not freed until its refcount goes to zero.
1846  */
1847 void of_detach_node(const struct device_node *np)
1848 {
1849         struct device_node *parent;
1850
1851         write_lock(&devtree_lock);
1852
1853         parent = np->parent;
1854
1855         if (allnodes == np)
1856                 allnodes = np->allnext;
1857         else {
1858                 struct device_node *prev;
1859                 for (prev = allnodes;
1860                      prev->allnext != np;
1861                      prev = prev->allnext)
1862                         ;
1863                 prev->allnext = np->allnext;
1864         }
1865
1866         if (parent->child == np)
1867                 parent->child = np->sibling;
1868         else {
1869                 struct device_node *prevsib;
1870                 for (prevsib = np->parent->child;
1871                      prevsib->sibling != np;
1872                      prevsib = prevsib->sibling)
1873                         ;
1874                 prevsib->sibling = np->sibling;
1875         }
1876
1877         write_unlock(&devtree_lock);
1878 }
1879
1880 #ifdef CONFIG_PPC_PSERIES
1881 /*
1882  * Fix up the uninitialized fields in a new device node:
1883  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1884  *
1885  * A lot of boot-time code is duplicated here, because functions such
1886  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1887  * slab allocator.
1888  *
1889  * This should probably be split up into smaller chunks.
1890  */
1891
1892 static int of_finish_dynamic_node(struct device_node *node,
1893                                   unsigned long *unused1, int unused2,
1894                                   int unused3, int unused4)
1895 {
1896         struct device_node *parent = of_get_parent(node);
1897         int err = 0;
1898         phandle *ibm_phandle;
1899
1900         node->name = get_property(node, "name", NULL);
1901         node->type = get_property(node, "device_type", NULL);
1902
1903         if (!parent) {
1904                 err = -ENODEV;
1905                 goto out;
1906         }
1907
1908         /* We don't support that function on PowerMac, at least
1909          * not yet
1910          */
1911         if (systemcfg->platform == PLATFORM_POWERMAC)
1912                 return -ENODEV;
1913
1914         /* fix up new node's linux_phandle field */
1915         if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1916                 node->linux_phandle = *ibm_phandle;
1917
1918 out:
1919         of_node_put(parent);
1920         return err;
1921 }
1922
1923 static int prom_reconfig_notifier(struct notifier_block *nb,
1924                                   unsigned long action, void *node)
1925 {
1926         int err;
1927
1928         switch (action) {
1929         case PSERIES_RECONFIG_ADD:
1930                 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1931                 if (err < 0) {
1932                         printk(KERN_ERR "finish_node returned %d\n", err);
1933                         err = NOTIFY_BAD;
1934                 }
1935                 break;
1936         default:
1937                 err = NOTIFY_DONE;
1938                 break;
1939         }
1940         return err;
1941 }
1942
1943 static struct notifier_block prom_reconfig_nb = {
1944         .notifier_call = prom_reconfig_notifier,
1945         .priority = 10, /* This one needs to run first */
1946 };
1947
1948 static int __init prom_reconfig_setup(void)
1949 {
1950         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1951 }
1952 __initcall(prom_reconfig_setup);
1953 #endif
1954
1955 /*
1956  * Find a property with a given name for a given node
1957  * and return the value.
1958  */
1959 unsigned char *get_property(struct device_node *np, const char *name,
1960                             int *lenp)
1961 {
1962         struct property *pp;
1963
1964         for (pp = np->properties; pp != 0; pp = pp->next)
1965                 if (strcmp(pp->name, name) == 0) {
1966                         if (lenp != 0)
1967                                 *lenp = pp->length;
1968                         return pp->value;
1969                 }
1970         return NULL;
1971 }
1972 EXPORT_SYMBOL(get_property);
1973
1974 /*
1975  * Add a property to a node
1976  */
1977 void prom_add_property(struct device_node* np, struct property* prop)
1978 {
1979         struct property **next = &np->properties;
1980
1981         prop->next = NULL;      
1982         while (*next)
1983                 next = &(*next)->next;
1984         *next = prop;
1985 }
1986
1987 /* I quickly hacked that one, check against spec ! */
1988 static inline unsigned long
1989 bus_space_to_resource_flags(unsigned int bus_space)
1990 {
1991         u8 space = (bus_space >> 24) & 0xf;
1992         if (space == 0)
1993                 space = 0x02;
1994         if (space == 0x02)
1995                 return IORESOURCE_MEM;
1996         else if (space == 0x01)
1997                 return IORESOURCE_IO;
1998         else {
1999                 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2000                         bus_space);
2001                 return 0;
2002         }
2003 }
2004
2005 #ifdef CONFIG_PCI
2006 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2007                                                  struct address_range *range)
2008 {
2009         unsigned long mask;
2010         int i;
2011
2012         /* Check this one */
2013         mask = bus_space_to_resource_flags(range->space);
2014         for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2015                 if ((pdev->resource[i].flags & mask) == mask &&
2016                         pdev->resource[i].start <= range->address &&
2017                         pdev->resource[i].end > range->address) {
2018                                 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2019                                         /* Add better message */
2020                                         printk(KERN_WARNING "PCI/OF resource overlap !\n");
2021                                         return NULL;
2022                                 }
2023                                 break;
2024                         }
2025         }
2026         if (i == DEVICE_COUNT_RESOURCE)
2027                 return NULL;
2028         return &pdev->resource[i];
2029 }
2030
2031 /*
2032  * Request an OF device resource. Currently handles child of PCI devices,
2033  * or other nodes attached to the root node. Ultimately, put some
2034  * link to resources in the OF node.
2035  */
2036 struct resource *request_OF_resource(struct device_node* node, int index,
2037                                      const char* name_postfix)
2038 {
2039         struct pci_dev* pcidev;
2040         u8 pci_bus, pci_devfn;
2041         unsigned long iomask;
2042         struct device_node* nd;
2043         struct resource* parent;
2044         struct resource *res = NULL;
2045         int nlen, plen;
2046
2047         if (index >= node->n_addrs)
2048                 goto fail;
2049
2050         /* Sanity check on bus space */
2051         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2052         if (iomask & IORESOURCE_MEM)
2053                 parent = &iomem_resource;
2054         else if (iomask & IORESOURCE_IO)
2055                 parent = &ioport_resource;
2056         else
2057                 goto fail;
2058
2059         /* Find a PCI parent if any */
2060         nd = node;
2061         pcidev = NULL;
2062         while (nd) {
2063                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2064                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2065                 if (pcidev) break;
2066                 nd = nd->parent;
2067         }
2068         if (pcidev)
2069                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2070         if (!parent) {
2071                 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2072                         node->name);
2073                 goto fail;
2074         }
2075
2076         res = __request_region(parent, node->addrs[index].address,
2077                                node->addrs[index].size, NULL);
2078         if (!res)
2079                 goto fail;
2080         nlen = strlen(node->name);
2081         plen = name_postfix ? strlen(name_postfix) : 0;
2082         res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2083         if (res->name) {
2084                 strcpy((char *)res->name, node->name);
2085                 if (plen)
2086                         strcpy((char *)res->name+nlen, name_postfix);
2087         }
2088         return res;
2089 fail:
2090         return NULL;
2091 }
2092 EXPORT_SYMBOL(request_OF_resource);
2093
2094 int release_OF_resource(struct device_node *node, int index)
2095 {
2096         struct pci_dev* pcidev;
2097         u8 pci_bus, pci_devfn;
2098         unsigned long iomask, start, end;
2099         struct device_node* nd;
2100         struct resource* parent;
2101         struct resource *res = NULL;
2102
2103         if (index >= node->n_addrs)
2104                 return -EINVAL;
2105
2106         /* Sanity check on bus space */
2107         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2108         if (iomask & IORESOURCE_MEM)
2109                 parent = &iomem_resource;
2110         else if (iomask & IORESOURCE_IO)
2111                 parent = &ioport_resource;
2112         else
2113                 return -EINVAL;
2114
2115         /* Find a PCI parent if any */
2116         nd = node;
2117         pcidev = NULL;
2118         while(nd) {
2119                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2120                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2121                 if (pcidev) break;
2122                 nd = nd->parent;
2123         }
2124         if (pcidev)
2125                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2126         if (!parent) {
2127                 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2128                         node->name);
2129                 return -ENODEV;
2130         }
2131
2132         /* Find us in the parent and its childs */
2133         res = parent->child;
2134         start = node->addrs[index].address;
2135         end = start + node->addrs[index].size - 1;
2136         while (res) {
2137                 if (res->start == start && res->end == end &&
2138                     (res->flags & IORESOURCE_BUSY))
2139                         break;
2140                 if (res->start <= start && res->end >= end)
2141                         res = res->child;
2142                 else
2143                         res = res->sibling;
2144         }
2145         if (!res)
2146                 return -ENODEV;
2147
2148         if (res->name) {
2149                 kfree(res->name);
2150                 res->name = NULL;
2151         }
2152         release_resource(res);
2153         kfree(res);
2154
2155         return 0;
2156 }
2157 EXPORT_SYMBOL(release_OF_resource);
2158 #endif /* CONFIG_PCI */