2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of_platform.h>
40 #include <linux/of_gpio.h>
42 #include <linux/vmalloc.h>
43 #include <asm/pgtable.h>
45 #include <asm/uaccess.h>
49 /*************************************************/
51 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
52 MODULE_DESCRIPTION("Freescale Ethernet Driver");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_MODULE_VERSION);
56 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
57 module_param(fs_enet_debug, int, 0);
58 MODULE_PARM_DESC(fs_enet_debug,
59 "Freescale bitmapped debugging message enable value");
61 #ifdef CONFIG_NET_POLL_CONTROLLER
62 static void fs_enet_netpoll(struct net_device *dev);
65 static void fs_set_multicast_list(struct net_device *dev)
67 struct fs_enet_private *fep = netdev_priv(dev);
69 (*fep->ops->set_multicast_list)(dev);
72 static void skb_align(struct sk_buff *skb, int align)
74 int off = ((unsigned long)skb->data) & (align - 1);
77 skb_reserve(skb, align - off);
80 /* NAPI receive function */
81 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
83 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
84 struct net_device *dev = fep->ndev;
85 const struct fs_platform_info *fpi = fep->fpi;
87 struct sk_buff *skb, *skbn, *skbt;
93 * First, grab all of the stats for the incoming packet.
94 * These get messed up if we get called due to a busy condition.
98 /* clear RX status bits for napi*/
99 (*fep->ops->napi_clear_rx_event)(dev);
101 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
102 curidx = bdp - fep->rx_bd_base;
105 * Since we have allocated space to hold a complete frame,
106 * the last indicator should be set.
108 if ((sc & BD_ENET_RX_LAST) == 0)
109 printk(KERN_WARNING DRV_MODULE_NAME
110 ": %s rcv is not +last\n",
116 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
117 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
118 fep->stats.rx_errors++;
119 /* Frame too long or too short. */
120 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
121 fep->stats.rx_length_errors++;
122 /* Frame alignment */
123 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
124 fep->stats.rx_frame_errors++;
126 if (sc & BD_ENET_RX_CR)
127 fep->stats.rx_crc_errors++;
129 if (sc & BD_ENET_RX_OV)
130 fep->stats.rx_crc_errors++;
132 skb = fep->rx_skbuff[curidx];
134 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
135 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
141 skb = fep->rx_skbuff[curidx];
143 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
144 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148 * Process the incoming frame.
150 fep->stats.rx_packets++;
151 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
152 fep->stats.rx_bytes += pkt_len + 4;
154 if (pkt_len <= fpi->rx_copybreak) {
155 /* +2 to make IP header L1 cache aligned */
156 skbn = dev_alloc_skb(pkt_len + 2);
158 skb_reserve(skbn, 2); /* align IP header */
159 skb_copy_from_linear_data(skb,
160 skbn->data, pkt_len);
167 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
170 skb_align(skbn, ENET_RX_ALIGN);
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
177 netif_receive_skb(skb);
179 printk(KERN_WARNING DRV_MODULE_NAME
180 ": %s Memory squeeze, dropping packet.\n",
182 fep->stats.rx_dropped++;
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
195 * Update BD pointer to next entry.
197 if ((sc & BD_ENET_RX_WRAP) == 0)
200 bdp = fep->rx_bd_base;
202 (*fep->ops->rx_bd_done)(dev);
204 if (received >= budget)
210 if (received < budget) {
212 netif_rx_complete(dev, napi);
213 (*fep->ops->napi_enable_rx)(dev);
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
221 struct fs_enet_private *fep = netdev_priv(dev);
222 const struct fs_platform_info *fpi = fep->fpi;
224 struct sk_buff *skb, *skbn, *skbt;
229 * First, grab all of the stats for the incoming packet.
230 * These get messed up if we get called due to a busy condition.
234 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
236 curidx = bdp - fep->rx_bd_base;
239 * Since we have allocated space to hold a complete frame,
240 * the last indicator should be set.
242 if ((sc & BD_ENET_RX_LAST) == 0)
243 printk(KERN_WARNING DRV_MODULE_NAME
244 ": %s rcv is not +last\n",
250 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
251 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
252 fep->stats.rx_errors++;
253 /* Frame too long or too short. */
254 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
255 fep->stats.rx_length_errors++;
256 /* Frame alignment */
257 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
258 fep->stats.rx_frame_errors++;
260 if (sc & BD_ENET_RX_CR)
261 fep->stats.rx_crc_errors++;
263 if (sc & BD_ENET_RX_OV)
264 fep->stats.rx_crc_errors++;
266 skb = fep->rx_skbuff[curidx];
268 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
269 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
276 skb = fep->rx_skbuff[curidx];
278 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
279 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
283 * Process the incoming frame.
285 fep->stats.rx_packets++;
286 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
287 fep->stats.rx_bytes += pkt_len + 4;
289 if (pkt_len <= fpi->rx_copybreak) {
290 /* +2 to make IP header L1 cache aligned */
291 skbn = dev_alloc_skb(pkt_len + 2);
293 skb_reserve(skbn, 2); /* align IP header */
294 skb_copy_from_linear_data(skb,
295 skbn->data, pkt_len);
302 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
305 skb_align(skbn, ENET_RX_ALIGN);
309 skb_put(skb, pkt_len); /* Make room */
310 skb->protocol = eth_type_trans(skb, dev);
314 printk(KERN_WARNING DRV_MODULE_NAME
315 ": %s Memory squeeze, dropping packet.\n",
317 fep->stats.rx_dropped++;
322 fep->rx_skbuff[curidx] = skbn;
323 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
324 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
327 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
330 * Update BD pointer to next entry.
332 if ((sc & BD_ENET_RX_WRAP) == 0)
335 bdp = fep->rx_bd_base;
337 (*fep->ops->rx_bd_done)(dev);
345 static void fs_enet_tx(struct net_device *dev)
347 struct fs_enet_private *fep = netdev_priv(dev);
350 int dirtyidx, do_wake, do_restart;
353 spin_lock(&fep->tx_lock);
356 do_wake = do_restart = 0;
357 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
358 dirtyidx = bdp - fep->tx_bd_base;
360 if (fep->tx_free == fep->tx_ring)
363 skb = fep->tx_skbuff[dirtyidx];
368 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
369 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
371 if (sc & BD_ENET_TX_HB) /* No heartbeat */
372 fep->stats.tx_heartbeat_errors++;
373 if (sc & BD_ENET_TX_LC) /* Late collision */
374 fep->stats.tx_window_errors++;
375 if (sc & BD_ENET_TX_RL) /* Retrans limit */
376 fep->stats.tx_aborted_errors++;
377 if (sc & BD_ENET_TX_UN) /* Underrun */
378 fep->stats.tx_fifo_errors++;
379 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
380 fep->stats.tx_carrier_errors++;
382 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
383 fep->stats.tx_errors++;
387 fep->stats.tx_packets++;
389 if (sc & BD_ENET_TX_READY)
390 printk(KERN_WARNING DRV_MODULE_NAME
391 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
395 * Deferred means some collisions occurred during transmit,
396 * but we eventually sent the packet OK.
398 if (sc & BD_ENET_TX_DEF)
399 fep->stats.collisions++;
402 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
403 skb->len, DMA_TO_DEVICE);
406 * Free the sk buffer associated with this last transmit.
408 dev_kfree_skb_irq(skb);
409 fep->tx_skbuff[dirtyidx] = NULL;
412 * Update pointer to next buffer descriptor to be transmitted.
414 if ((sc & BD_ENET_TX_WRAP) == 0)
417 bdp = fep->tx_bd_base;
420 * Since we have freed up a buffer, the ring is no longer
430 (*fep->ops->tx_restart)(dev);
432 spin_unlock(&fep->tx_lock);
435 netif_wake_queue(dev);
439 * The interrupt handler.
440 * This is called from the MPC core interrupt.
443 fs_enet_interrupt(int irq, void *dev_id)
445 struct net_device *dev = dev_id;
446 struct fs_enet_private *fep;
447 const struct fs_platform_info *fpi;
453 fep = netdev_priv(dev);
457 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
460 int_clr_events = int_events;
462 int_clr_events &= ~fep->ev_napi_rx;
464 (*fep->ops->clear_int_events)(dev, int_clr_events);
466 if (int_events & fep->ev_err)
467 (*fep->ops->ev_error)(dev, int_events);
469 if (int_events & fep->ev_rx) {
471 fs_enet_rx_non_napi(dev);
473 napi_ok = napi_schedule_prep(&fep->napi);
475 (*fep->ops->napi_disable_rx)(dev);
476 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
478 /* NOTE: it is possible for FCCs in NAPI mode */
479 /* to submit a spurious interrupt while in poll */
481 __netif_rx_schedule(dev, &fep->napi);
485 if (int_events & fep->ev_tx)
490 return IRQ_RETVAL(handled);
493 void fs_init_bds(struct net_device *dev)
495 struct fs_enet_private *fep = netdev_priv(dev);
502 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
503 fep->tx_free = fep->tx_ring;
504 fep->cur_rx = fep->rx_bd_base;
507 * Initialize the receive buffer descriptors.
509 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
510 skb = dev_alloc_skb(ENET_RX_FRSIZE);
512 printk(KERN_WARNING DRV_MODULE_NAME
513 ": %s Memory squeeze, unable to allocate skb\n",
517 skb_align(skb, ENET_RX_ALIGN);
518 fep->rx_skbuff[i] = skb;
520 dma_map_single(fep->dev, skb->data,
521 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
523 CBDW_DATLEN(bdp, 0); /* zero */
524 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
525 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
528 * if we failed, fillup remainder
530 for (; i < fep->rx_ring; i++, bdp++) {
531 fep->rx_skbuff[i] = NULL;
532 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
536 * ...and the same for transmit.
538 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
539 fep->tx_skbuff[i] = NULL;
540 CBDW_BUFADDR(bdp, 0);
542 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
546 void fs_cleanup_bds(struct net_device *dev)
548 struct fs_enet_private *fep = netdev_priv(dev);
554 * Reset SKB transmit buffers.
556 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
557 if ((skb = fep->tx_skbuff[i]) == NULL)
561 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
562 skb->len, DMA_TO_DEVICE);
564 fep->tx_skbuff[i] = NULL;
569 * Reset SKB receive buffers
571 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
572 if ((skb = fep->rx_skbuff[i]) == NULL)
576 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
577 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
580 fep->rx_skbuff[i] = NULL;
586 /**********************************************************************************/
588 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
590 struct fs_enet_private *fep = netdev_priv(dev);
596 spin_lock_irqsave(&fep->tx_lock, flags);
599 * Fill in a Tx ring entry
603 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
604 netif_stop_queue(dev);
605 spin_unlock_irqrestore(&fep->tx_lock, flags);
608 * Ooops. All transmit buffers are full. Bail out.
609 * This should not happen, since the tx queue should be stopped.
611 printk(KERN_WARNING DRV_MODULE_NAME
612 ": %s tx queue full!.\n", dev->name);
613 return NETDEV_TX_BUSY;
616 curidx = bdp - fep->tx_bd_base;
618 * Clear all of the status flags.
620 CBDC_SC(bdp, BD_ENET_TX_STATS);
625 fep->tx_skbuff[curidx] = skb;
627 fep->stats.tx_bytes += skb->len;
630 * Push the data cache so the CPM does not get stale memory data.
632 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
633 skb->data, skb->len, DMA_TO_DEVICE));
634 CBDW_DATLEN(bdp, skb->len);
636 dev->trans_start = jiffies;
639 * If this was the last BD in the ring, start at the beginning again.
641 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
644 fep->cur_tx = fep->tx_bd_base;
647 netif_stop_queue(dev);
649 /* Trigger transmission start */
650 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
651 BD_ENET_TX_LAST | BD_ENET_TX_TC;
653 /* note that while FEC does not have this bit
654 * it marks it as available for software use
655 * yay for hw reuse :) */
657 sc |= BD_ENET_TX_PAD;
660 (*fep->ops->tx_kickstart)(dev);
662 spin_unlock_irqrestore(&fep->tx_lock, flags);
667 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
670 struct fs_enet_private *fep = netdev_priv(dev);
672 (*fep->ops->pre_request_irq)(dev, irq);
673 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
676 static void fs_free_irq(struct net_device *dev, int irq)
678 struct fs_enet_private *fep = netdev_priv(dev);
681 (*fep->ops->post_free_irq)(dev, irq);
684 static void fs_timeout(struct net_device *dev)
686 struct fs_enet_private *fep = netdev_priv(dev);
690 fep->stats.tx_errors++;
692 spin_lock_irqsave(&fep->lock, flags);
694 if (dev->flags & IFF_UP) {
695 phy_stop(fep->phydev);
696 (*fep->ops->stop)(dev);
697 (*fep->ops->restart)(dev);
698 phy_start(fep->phydev);
701 phy_start(fep->phydev);
702 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
703 spin_unlock_irqrestore(&fep->lock, flags);
706 netif_wake_queue(dev);
709 /*-----------------------------------------------------------------------------
710 * generic link-change handler - should be sufficient for most cases
711 *-----------------------------------------------------------------------------*/
712 static void generic_adjust_link(struct net_device *dev)
714 struct fs_enet_private *fep = netdev_priv(dev);
715 struct phy_device *phydev = fep->phydev;
719 /* adjust to duplex mode */
720 if (phydev->duplex != fep->oldduplex) {
722 fep->oldduplex = phydev->duplex;
725 if (phydev->speed != fep->oldspeed) {
727 fep->oldspeed = phydev->speed;
736 fep->ops->restart(dev);
737 } else if (fep->oldlink) {
744 if (new_state && netif_msg_link(fep))
745 phy_print_status(phydev);
749 static void fs_adjust_link(struct net_device *dev)
751 struct fs_enet_private *fep = netdev_priv(dev);
754 spin_lock_irqsave(&fep->lock, flags);
756 if(fep->ops->adjust_link)
757 fep->ops->adjust_link(dev);
759 generic_adjust_link(dev);
761 spin_unlock_irqrestore(&fep->lock, flags);
764 static int fs_init_phy(struct net_device *dev)
766 struct fs_enet_private *fep = netdev_priv(dev);
767 struct phy_device *phydev;
773 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
774 PHY_INTERFACE_MODE_MII);
776 printk("No phy bus ID specified in BSP code\n");
779 if (IS_ERR(phydev)) {
780 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
781 return PTR_ERR(phydev);
784 fep->phydev = phydev;
789 static int fs_enet_open(struct net_device *dev)
791 struct fs_enet_private *fep = netdev_priv(dev);
795 /* to initialize the fep->cur_rx,... */
796 /* not doing this, will cause a crash in fs_enet_rx_napi */
797 fs_init_bds(fep->ndev);
799 if (fep->fpi->use_napi)
800 napi_enable(&fep->napi);
802 /* Install our interrupt handler. */
803 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
805 printk(KERN_ERR DRV_MODULE_NAME
806 ": %s Could not allocate FS_ENET IRQ!", dev->name);
807 if (fep->fpi->use_napi)
808 napi_disable(&fep->napi);
812 err = fs_init_phy(dev);
814 if (fep->fpi->use_napi)
815 napi_disable(&fep->napi);
818 phy_start(fep->phydev);
820 netif_start_queue(dev);
825 static int fs_enet_close(struct net_device *dev)
827 struct fs_enet_private *fep = netdev_priv(dev);
830 netif_stop_queue(dev);
831 netif_carrier_off(dev);
832 if (fep->fpi->use_napi)
833 napi_disable(&fep->napi);
834 phy_stop(fep->phydev);
836 spin_lock_irqsave(&fep->lock, flags);
837 spin_lock(&fep->tx_lock);
838 (*fep->ops->stop)(dev);
839 spin_unlock(&fep->tx_lock);
840 spin_unlock_irqrestore(&fep->lock, flags);
842 /* release any irqs */
843 phy_disconnect(fep->phydev);
845 fs_free_irq(dev, fep->interrupt);
850 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
852 struct fs_enet_private *fep = netdev_priv(dev);
856 /*************************************************************************/
858 static void fs_get_drvinfo(struct net_device *dev,
859 struct ethtool_drvinfo *info)
861 strcpy(info->driver, DRV_MODULE_NAME);
862 strcpy(info->version, DRV_MODULE_VERSION);
865 static int fs_get_regs_len(struct net_device *dev)
867 struct fs_enet_private *fep = netdev_priv(dev);
869 return (*fep->ops->get_regs_len)(dev);
872 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
875 struct fs_enet_private *fep = netdev_priv(dev);
881 spin_lock_irqsave(&fep->lock, flags);
882 r = (*fep->ops->get_regs)(dev, p, &len);
883 spin_unlock_irqrestore(&fep->lock, flags);
889 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
891 struct fs_enet_private *fep = netdev_priv(dev);
896 return phy_ethtool_gset(fep->phydev, cmd);
899 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
901 struct fs_enet_private *fep = netdev_priv(dev);
906 return phy_ethtool_sset(fep->phydev, cmd);
909 static int fs_nway_reset(struct net_device *dev)
914 static u32 fs_get_msglevel(struct net_device *dev)
916 struct fs_enet_private *fep = netdev_priv(dev);
917 return fep->msg_enable;
920 static void fs_set_msglevel(struct net_device *dev, u32 value)
922 struct fs_enet_private *fep = netdev_priv(dev);
923 fep->msg_enable = value;
926 static const struct ethtool_ops fs_ethtool_ops = {
927 .get_drvinfo = fs_get_drvinfo,
928 .get_regs_len = fs_get_regs_len,
929 .get_settings = fs_get_settings,
930 .set_settings = fs_set_settings,
931 .nway_reset = fs_nway_reset,
932 .get_link = ethtool_op_get_link,
933 .get_msglevel = fs_get_msglevel,
934 .set_msglevel = fs_set_msglevel,
935 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
936 .set_sg = ethtool_op_set_sg,
937 .get_regs = fs_get_regs,
940 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
942 struct fs_enet_private *fep = netdev_priv(dev);
943 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
945 if (!netif_running(dev))
948 return phy_mii_ioctl(fep->phydev, mii, cmd);
951 extern int fs_mii_connect(struct net_device *dev);
952 extern void fs_mii_disconnect(struct net_device *dev);
954 /**************************************************************************************/
956 /* handy pointer to the immap */
957 void __iomem *fs_enet_immap = NULL;
959 static int setup_immap(void)
962 fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
963 WARN_ON(!fs_enet_immap);
964 #elif defined(CONFIG_CPM2)
965 fs_enet_immap = cpm2_immr;
971 static void cleanup_immap(void)
973 #if defined(CONFIG_CPM1)
974 iounmap(fs_enet_immap);
978 /**************************************************************************************/
980 static int __devinit find_phy(struct device_node *np,
981 struct fs_platform_info *fpi)
983 struct device_node *phynode, *mdionode;
984 int ret = 0, len, bus_id;
987 data = of_get_property(np, "fixed-link", NULL);
989 snprintf(fpi->bus_id, 16, "%x:%02x", 0, *data);
993 data = of_get_property(np, "phy-handle", &len);
994 if (!data || len != 4)
997 phynode = of_find_node_by_phandle(*data);
1001 data = of_get_property(phynode, "reg", &len);
1002 if (!data || len != 4) {
1007 mdionode = of_get_parent(phynode);
1013 bus_id = of_get_gpio(mdionode, 0);
1015 struct resource res;
1016 ret = of_address_to_resource(mdionode, 0, &res);
1022 snprintf(fpi->bus_id, 16, "%x:%02x", bus_id, *data);
1025 of_node_put(mdionode);
1027 of_node_put(phynode);
1031 #ifdef CONFIG_FS_ENET_HAS_FEC
1032 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1034 #define IS_FEC(match) 0
1037 static int __devinit fs_enet_probe(struct of_device *ofdev,
1038 const struct of_device_id *match)
1040 struct net_device *ndev;
1041 struct fs_enet_private *fep;
1042 struct fs_platform_info *fpi;
1045 int privsize, len, ret = -ENODEV;
1047 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1051 if (!IS_FEC(match)) {
1052 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1053 if (!data || len != 4)
1056 fpi->cp_command = *data;
1061 fpi->rx_copybreak = 240;
1063 fpi->napi_weight = 17;
1065 ret = find_phy(ofdev->node, fpi);
1069 privsize = sizeof(*fep) +
1070 sizeof(struct sk_buff **) *
1071 (fpi->rx_ring + fpi->tx_ring);
1073 ndev = alloc_etherdev(privsize);
1079 dev_set_drvdata(&ofdev->dev, ndev);
1081 fep = netdev_priv(ndev);
1082 fep->dev = &ofdev->dev;
1085 fep->ops = match->data;
1087 ret = fep->ops->setup_data(ndev);
1091 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1092 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1094 spin_lock_init(&fep->lock);
1095 spin_lock_init(&fep->tx_lock);
1097 mac_addr = of_get_mac_address(ofdev->node);
1099 memcpy(ndev->dev_addr, mac_addr, 6);
1101 ret = fep->ops->allocate_bd(ndev);
1103 goto out_cleanup_data;
1105 fep->rx_bd_base = fep->ring_base;
1106 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1108 fep->tx_ring = fpi->tx_ring;
1109 fep->rx_ring = fpi->rx_ring;
1111 ndev->open = fs_enet_open;
1112 ndev->hard_start_xmit = fs_enet_start_xmit;
1113 ndev->tx_timeout = fs_timeout;
1114 ndev->watchdog_timeo = 2 * HZ;
1115 ndev->stop = fs_enet_close;
1116 ndev->get_stats = fs_enet_get_stats;
1117 ndev->set_multicast_list = fs_set_multicast_list;
1120 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1123 ndev->ethtool_ops = &fs_ethtool_ops;
1124 ndev->do_ioctl = fs_ioctl;
1126 init_timer(&fep->phy_timer_list);
1128 netif_carrier_off(ndev);
1130 ret = register_netdev(ndev);
1134 printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
1136 ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1137 ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1142 fep->ops->free_bd(ndev);
1144 fep->ops->cleanup_data(ndev);
1147 dev_set_drvdata(&ofdev->dev, NULL);
1153 static int fs_enet_remove(struct of_device *ofdev)
1155 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1156 struct fs_enet_private *fep = netdev_priv(ndev);
1158 unregister_netdev(ndev);
1160 fep->ops->free_bd(ndev);
1161 fep->ops->cleanup_data(ndev);
1162 dev_set_drvdata(fep->dev, NULL);
1168 static struct of_device_id fs_enet_match[] = {
1169 #ifdef CONFIG_FS_ENET_HAS_SCC
1171 .compatible = "fsl,cpm1-scc-enet",
1172 .data = (void *)&fs_scc_ops,
1175 .compatible = "fsl,cpm2-scc-enet",
1176 .data = (void *)&fs_scc_ops,
1179 #ifdef CONFIG_FS_ENET_HAS_FCC
1181 .compatible = "fsl,cpm2-fcc-enet",
1182 .data = (void *)&fs_fcc_ops,
1185 #ifdef CONFIG_FS_ENET_HAS_FEC
1187 .compatible = "fsl,pq1-fec-enet",
1188 .data = (void *)&fs_fec_ops,
1194 static struct of_platform_driver fs_enet_driver = {
1196 .match_table = fs_enet_match,
1197 .probe = fs_enet_probe,
1198 .remove = fs_enet_remove,
1201 static int __init fs_init(void)
1203 int r = setup_immap();
1207 r = of_register_platform_driver(&fs_enet_driver);
1218 static void __exit fs_cleanup(void)
1220 of_unregister_platform_driver(&fs_enet_driver);
1224 #ifdef CONFIG_NET_POLL_CONTROLLER
1225 static void fs_enet_netpoll(struct net_device *dev)
1227 disable_irq(dev->irq);
1228 fs_enet_interrupt(dev->irq, dev, NULL);
1229 enable_irq(dev->irq);
1233 /**************************************************************************************/
1235 module_init(fs_init);
1236 module_exit(fs_cleanup);