Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
[linux-2.6] / drivers / gpu / drm / ttm / ttm_tt.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include <linux/version.h>
32 #include <linux/vmalloc.h>
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/file.h>
37 #include <linux/swap.h>
38 #include "ttm/ttm_module.h"
39 #include "ttm/ttm_bo_driver.h"
40 #include "ttm/ttm_placement.h"
41
42 static int ttm_tt_swapin(struct ttm_tt *ttm);
43
44 #if defined(CONFIG_X86)
45 static void ttm_tt_clflush_page(struct page *page)
46 {
47         uint8_t *page_virtual;
48         unsigned int i;
49
50         if (unlikely(page == NULL))
51                 return;
52
53         page_virtual = kmap_atomic(page, KM_USER0);
54
55         for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
56                 clflush(page_virtual + i);
57
58         kunmap_atomic(page_virtual, KM_USER0);
59 }
60
61 static void ttm_tt_cache_flush_clflush(struct page *pages[],
62                                        unsigned long num_pages)
63 {
64         unsigned long i;
65
66         mb();
67         for (i = 0; i < num_pages; ++i)
68                 ttm_tt_clflush_page(*pages++);
69         mb();
70 }
71 #else
72 static void ttm_tt_ipi_handler(void *null)
73 {
74         ;
75 }
76 #endif
77
78 void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
79 {
80
81 #if defined(CONFIG_X86)
82         if (cpu_has_clflush) {
83                 ttm_tt_cache_flush_clflush(pages, num_pages);
84                 return;
85         }
86 #else
87         if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
88                 printk(KERN_ERR TTM_PFX
89                        "Timed out waiting for drm cache flush.\n");
90 #endif
91 }
92
93 /**
94  * Allocates storage for pointers to the pages that back the ttm.
95  *
96  * Uses kmalloc if possible. Otherwise falls back to vmalloc.
97  */
98 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
99 {
100         unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
101         ttm->pages = NULL;
102
103         if (size <= PAGE_SIZE)
104                 ttm->pages = kzalloc(size, GFP_KERNEL);
105
106         if (!ttm->pages) {
107                 ttm->pages = vmalloc_user(size);
108                 if (ttm->pages)
109                         ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
110         }
111 }
112
113 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
114 {
115         if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
116                 vfree(ttm->pages);
117                 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
118         } else {
119                 kfree(ttm->pages);
120         }
121         ttm->pages = NULL;
122 }
123
124 static struct page *ttm_tt_alloc_page(unsigned page_flags)
125 {
126         if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
127                 return alloc_page(GFP_HIGHUSER | __GFP_ZERO);
128
129         return alloc_page(GFP_HIGHUSER);
130 }
131
132 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
133 {
134         int write;
135         int dirty;
136         struct page *page;
137         int i;
138         struct ttm_backend *be = ttm->be;
139
140         BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
141         write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
142         dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
143
144         if (be)
145                 be->func->clear(be);
146
147         for (i = 0; i < ttm->num_pages; ++i) {
148                 page = ttm->pages[i];
149                 if (page == NULL)
150                         continue;
151
152                 if (page == ttm->dummy_read_page) {
153                         BUG_ON(write);
154                         continue;
155                 }
156
157                 if (write && dirty && !PageReserved(page))
158                         set_page_dirty_lock(page);
159
160                 ttm->pages[i] = NULL;
161                 ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
162                 put_page(page);
163         }
164         ttm->state = tt_unpopulated;
165         ttm->first_himem_page = ttm->num_pages;
166         ttm->last_lomem_page = -1;
167 }
168
169 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
170 {
171         struct page *p;
172         struct ttm_bo_device *bdev = ttm->bdev;
173         struct ttm_mem_global *mem_glob = bdev->mem_glob;
174         int ret;
175
176         while (NULL == (p = ttm->pages[index])) {
177                 p = ttm_tt_alloc_page(ttm->page_flags);
178
179                 if (!p)
180                         return NULL;
181
182                 if (PageHighMem(p)) {
183                         ret =
184                             ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
185                                                  false, false, true);
186                         if (unlikely(ret != 0))
187                                 goto out_err;
188                         ttm->pages[--ttm->first_himem_page] = p;
189                 } else {
190                         ret =
191                             ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
192                                                  false, false, false);
193                         if (unlikely(ret != 0))
194                                 goto out_err;
195                         ttm->pages[++ttm->last_lomem_page] = p;
196                 }
197         }
198         return p;
199 out_err:
200         put_page(p);
201         return NULL;
202 }
203
204 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
205 {
206         int ret;
207
208         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
209                 ret = ttm_tt_swapin(ttm);
210                 if (unlikely(ret != 0))
211                         return NULL;
212         }
213         return __ttm_tt_get_page(ttm, index);
214 }
215
216 int ttm_tt_populate(struct ttm_tt *ttm)
217 {
218         struct page *page;
219         unsigned long i;
220         struct ttm_backend *be;
221         int ret;
222
223         if (ttm->state != tt_unpopulated)
224                 return 0;
225
226         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
227                 ret = ttm_tt_swapin(ttm);
228                 if (unlikely(ret != 0))
229                         return ret;
230         }
231
232         be = ttm->be;
233
234         for (i = 0; i < ttm->num_pages; ++i) {
235                 page = __ttm_tt_get_page(ttm, i);
236                 if (!page)
237                         return -ENOMEM;
238         }
239
240         be->func->populate(be, ttm->num_pages, ttm->pages,
241                            ttm->dummy_read_page);
242         ttm->state = tt_unbound;
243         return 0;
244 }
245
246 #ifdef CONFIG_X86
247 static inline int ttm_tt_set_page_caching(struct page *p,
248                                           enum ttm_caching_state c_state)
249 {
250         if (PageHighMem(p))
251                 return 0;
252
253         switch (c_state) {
254         case tt_cached:
255                 return set_pages_wb(p, 1);
256         case tt_wc:
257             return set_memory_wc((unsigned long) page_address(p), 1);
258         default:
259                 return set_pages_uc(p, 1);
260         }
261 }
262 #else /* CONFIG_X86 */
263 static inline int ttm_tt_set_page_caching(struct page *p,
264                                           enum ttm_caching_state c_state)
265 {
266         return 0;
267 }
268 #endif /* CONFIG_X86 */
269
270 /*
271  * Change caching policy for the linear kernel map
272  * for range of pages in a ttm.
273  */
274
275 static int ttm_tt_set_caching(struct ttm_tt *ttm,
276                               enum ttm_caching_state c_state)
277 {
278         int i, j;
279         struct page *cur_page;
280         int ret;
281
282         if (ttm->caching_state == c_state)
283                 return 0;
284
285         if (c_state != tt_cached) {
286                 ret = ttm_tt_populate(ttm);
287                 if (unlikely(ret != 0))
288                         return ret;
289         }
290
291         if (ttm->caching_state == tt_cached)
292                 ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
293
294         for (i = 0; i < ttm->num_pages; ++i) {
295                 cur_page = ttm->pages[i];
296                 if (likely(cur_page != NULL)) {
297                         ret = ttm_tt_set_page_caching(cur_page, c_state);
298                         if (unlikely(ret != 0))
299                                 goto out_err;
300                 }
301         }
302
303         ttm->caching_state = c_state;
304
305         return 0;
306
307 out_err:
308         for (j = 0; j < i; ++j) {
309                 cur_page = ttm->pages[j];
310                 if (likely(cur_page != NULL)) {
311                         (void)ttm_tt_set_page_caching(cur_page,
312                                                       ttm->caching_state);
313                 }
314         }
315
316         return ret;
317 }
318
319 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
320 {
321         enum ttm_caching_state state;
322
323         if (placement & TTM_PL_FLAG_WC)
324                 state = tt_wc;
325         else if (placement & TTM_PL_FLAG_UNCACHED)
326                 state = tt_uncached;
327         else
328                 state = tt_cached;
329
330         return ttm_tt_set_caching(ttm, state);
331 }
332
333 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
334 {
335         int i;
336         struct page *cur_page;
337         struct ttm_backend *be = ttm->be;
338
339         if (be)
340                 be->func->clear(be);
341         (void)ttm_tt_set_caching(ttm, tt_cached);
342         for (i = 0; i < ttm->num_pages; ++i) {
343                 cur_page = ttm->pages[i];
344                 ttm->pages[i] = NULL;
345                 if (cur_page) {
346                         if (page_count(cur_page) != 1)
347                                 printk(KERN_ERR TTM_PFX
348                                        "Erroneous page count. "
349                                        "Leaking pages.\n");
350                         ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
351                                             PageHighMem(cur_page));
352                         __free_page(cur_page);
353                 }
354         }
355         ttm->state = tt_unpopulated;
356         ttm->first_himem_page = ttm->num_pages;
357         ttm->last_lomem_page = -1;
358 }
359
360 void ttm_tt_destroy(struct ttm_tt *ttm)
361 {
362         struct ttm_backend *be;
363
364         if (unlikely(ttm == NULL))
365                 return;
366
367         be = ttm->be;
368         if (likely(be != NULL)) {
369                 be->func->destroy(be);
370                 ttm->be = NULL;
371         }
372
373         if (likely(ttm->pages != NULL)) {
374                 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
375                         ttm_tt_free_user_pages(ttm);
376                 else
377                         ttm_tt_free_alloced_pages(ttm);
378
379                 ttm_tt_free_page_directory(ttm);
380         }
381
382         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
383             ttm->swap_storage)
384                 fput(ttm->swap_storage);
385
386         kfree(ttm);
387 }
388
389 int ttm_tt_set_user(struct ttm_tt *ttm,
390                     struct task_struct *tsk,
391                     unsigned long start, unsigned long num_pages)
392 {
393         struct mm_struct *mm = tsk->mm;
394         int ret;
395         int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
396         struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
397
398         BUG_ON(num_pages != ttm->num_pages);
399         BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
400
401         /**
402          * Account user pages as lowmem pages for now.
403          */
404
405         ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
406                                    false, false, false);
407         if (unlikely(ret != 0))
408                 return ret;
409
410         down_read(&mm->mmap_sem);
411         ret = get_user_pages(tsk, mm, start, num_pages,
412                              write, 0, ttm->pages, NULL);
413         up_read(&mm->mmap_sem);
414
415         if (ret != num_pages && write) {
416                 ttm_tt_free_user_pages(ttm);
417                 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
418                 return -ENOMEM;
419         }
420
421         ttm->tsk = tsk;
422         ttm->start = start;
423         ttm->state = tt_unbound;
424
425         return 0;
426 }
427
428 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
429                              uint32_t page_flags, struct page *dummy_read_page)
430 {
431         struct ttm_bo_driver *bo_driver = bdev->driver;
432         struct ttm_tt *ttm;
433
434         if (!bo_driver)
435                 return NULL;
436
437         ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
438         if (!ttm)
439                 return NULL;
440
441         ttm->bdev = bdev;
442
443         ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
444         ttm->first_himem_page = ttm->num_pages;
445         ttm->last_lomem_page = -1;
446         ttm->caching_state = tt_cached;
447         ttm->page_flags = page_flags;
448
449         ttm->dummy_read_page = dummy_read_page;
450
451         ttm_tt_alloc_page_directory(ttm);
452         if (!ttm->pages) {
453                 ttm_tt_destroy(ttm);
454                 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
455                 return NULL;
456         }
457         ttm->be = bo_driver->create_ttm_backend_entry(bdev);
458         if (!ttm->be) {
459                 ttm_tt_destroy(ttm);
460                 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
461                 return NULL;
462         }
463         ttm->state = tt_unpopulated;
464         return ttm;
465 }
466
467 void ttm_tt_unbind(struct ttm_tt *ttm)
468 {
469         int ret;
470         struct ttm_backend *be = ttm->be;
471
472         if (ttm->state == tt_bound) {
473                 ret = be->func->unbind(be);
474                 BUG_ON(ret);
475                 ttm->state = tt_unbound;
476         }
477 }
478
479 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
480 {
481         int ret = 0;
482         struct ttm_backend *be;
483
484         if (!ttm)
485                 return -EINVAL;
486
487         if (ttm->state == tt_bound)
488                 return 0;
489
490         be = ttm->be;
491
492         ret = ttm_tt_populate(ttm);
493         if (ret)
494                 return ret;
495
496         ret = be->func->bind(be, bo_mem);
497         if (ret) {
498                 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
499                 return ret;
500         }
501
502         ttm->state = tt_bound;
503
504         if (ttm->page_flags & TTM_PAGE_FLAG_USER)
505                 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
506         return 0;
507 }
508 EXPORT_SYMBOL(ttm_tt_bind);
509
510 static int ttm_tt_swapin(struct ttm_tt *ttm)
511 {
512         struct address_space *swap_space;
513         struct file *swap_storage;
514         struct page *from_page;
515         struct page *to_page;
516         void *from_virtual;
517         void *to_virtual;
518         int i;
519         int ret;
520
521         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
522                 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
523                                       ttm->num_pages);
524                 if (unlikely(ret != 0))
525                         return ret;
526
527                 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
528                 return 0;
529         }
530
531         swap_storage = ttm->swap_storage;
532         BUG_ON(swap_storage == NULL);
533
534         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
535
536         for (i = 0; i < ttm->num_pages; ++i) {
537                 from_page = read_mapping_page(swap_space, i, NULL);
538                 if (IS_ERR(from_page))
539                         goto out_err;
540                 to_page = __ttm_tt_get_page(ttm, i);
541                 if (unlikely(to_page == NULL))
542                         goto out_err;
543
544                 preempt_disable();
545                 from_virtual = kmap_atomic(from_page, KM_USER0);
546                 to_virtual = kmap_atomic(to_page, KM_USER1);
547                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
548                 kunmap_atomic(to_virtual, KM_USER1);
549                 kunmap_atomic(from_virtual, KM_USER0);
550                 preempt_enable();
551                 page_cache_release(from_page);
552         }
553
554         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
555                 fput(swap_storage);
556         ttm->swap_storage = NULL;
557         ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
558
559         return 0;
560 out_err:
561         ttm_tt_free_alloced_pages(ttm);
562         return -ENOMEM;
563 }
564
565 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
566 {
567         struct address_space *swap_space;
568         struct file *swap_storage;
569         struct page *from_page;
570         struct page *to_page;
571         void *from_virtual;
572         void *to_virtual;
573         int i;
574
575         BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
576         BUG_ON(ttm->caching_state != tt_cached);
577
578         /*
579          * For user buffers, just unpin the pages, as there should be
580          * vma references.
581          */
582
583         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
584                 ttm_tt_free_user_pages(ttm);
585                 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
586                 ttm->swap_storage = NULL;
587                 return 0;
588         }
589
590         if (!persistant_swap_storage) {
591                 swap_storage = shmem_file_setup("ttm swap",
592                                                 ttm->num_pages << PAGE_SHIFT,
593                                                 0);
594                 if (unlikely(IS_ERR(swap_storage))) {
595                         printk(KERN_ERR "Failed allocating swap storage.\n");
596                         return -ENOMEM;
597                 }
598         } else
599                 swap_storage = persistant_swap_storage;
600
601         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
602
603         for (i = 0; i < ttm->num_pages; ++i) {
604                 from_page = ttm->pages[i];
605                 if (unlikely(from_page == NULL))
606                         continue;
607                 to_page = read_mapping_page(swap_space, i, NULL);
608                 if (unlikely(to_page == NULL))
609                         goto out_err;
610
611                 preempt_disable();
612                 from_virtual = kmap_atomic(from_page, KM_USER0);
613                 to_virtual = kmap_atomic(to_page, KM_USER1);
614                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
615                 kunmap_atomic(to_virtual, KM_USER1);
616                 kunmap_atomic(from_virtual, KM_USER0);
617                 preempt_enable();
618                 set_page_dirty(to_page);
619                 mark_page_accessed(to_page);
620                 page_cache_release(to_page);
621         }
622
623         ttm_tt_free_alloced_pages(ttm);
624         ttm->swap_storage = swap_storage;
625         ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
626         if (persistant_swap_storage)
627                 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
628
629         return 0;
630 out_err:
631         if (!persistant_swap_storage)
632                 fput(swap_storage);
633
634         return -ENOMEM;
635 }