4 | The entry point stan computes the tangent of
6 | stand does the same except for denormalized input.
8 | Input: Double-extended number X in location pointed to
9 | by address register a0.
11 | Output: The value tan(X) returned in floating-point register Fp0.
13 | Accuracy and Monotonicity: The returned result is within 3 ulp in
14 | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
15 | result is subsequently rounded to double precision. The
16 | result is provably monotonic in double precision.
18 | Speed: The program sTAN takes approximately 170 cycles for
19 | input argument X such that |X| < 15Pi, which is the usual
24 | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
26 | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
27 | k = N mod 2, so in particular, k = 0 or 1.
29 | 3. If k is odd, go to 5.
31 | 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
32 | rational function U/V where
33 | U = r + r*s*(P1 + s*(P2 + s*P3)), and
34 | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r.
37 | 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
38 | rational function U/V where
39 | U = r + r*s*(P1 + s*(P2 + s*P3)), and
40 | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
41 | -Cot(r) = -V/U. Exit.
43 | 6. If |X| > 1, go to 8.
45 | 7. (|X|<2**(-40)) Tan(X) = X. Exit.
47 | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
50 | Copyright (C) Motorola, Inc. 1990
53 | For details on the license for this file, please see the
54 | file, README, in this same directory.
56 |STAN idnt 2,1 | Motorola 040 Floating Point Software Package
62 BOUNDS1: .long 0x3FD78000,0x4004BC7E
63 TWOBYPI: .long 0x3FE45F30,0x6DC9C883
65 TANQ4: .long 0x3EA0B759,0xF50F8688
66 TANP3: .long 0xBEF2BAA5,0xA8924F04
68 TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
70 TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
72 TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
74 TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
76 TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
78 INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
80 TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
81 TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
83 |--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
84 |--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
88 .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
89 .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
90 .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
91 .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
92 .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
93 .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
94 .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
95 .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
96 .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
97 .long 0xC0040000,0x90836524,0x88034B96,0x20B00000
98 .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
99 .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
100 .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
101 .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
102 .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
103 .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
104 .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
105 .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
106 .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
107 .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
108 .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
109 .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
110 .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
111 .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
112 .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
113 .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
114 .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
115 .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
116 .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
117 .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
118 .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
119 .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
120 .long 0x00000000,0x00000000,0x00000000,0x00000000
121 .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
122 .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
123 .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
124 .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
125 .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
126 .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
127 .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
128 .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
129 .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
130 .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
131 .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
132 .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
133 .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
134 .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
135 .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
136 .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
137 .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
138 .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
139 .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
140 .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
141 .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
142 .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
143 .long 0x40040000,0x90836524,0x88034B96,0xA0B00000
144 .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
145 .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
146 .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
147 .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
148 .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
149 .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
150 .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
151 .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
152 .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
165 |--TAN(X) = X FOR DENORMALIZED X
171 fmovex (%a0),%fp0 | ...LOAD INPUT
175 andil #0x7FFFFFFF,%d0
177 cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
181 cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
187 |--THIS IS THE USUAL CASE, |X| <= 15 PI.
188 |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
190 fmuld TWOBYPI,%fp1 | ...X*2/PI
192 |--HIDE THE NEXT TWO INSTRUCTIONS
193 leal PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
196 fmovel %fp1,%d0 | ...CONVERT TO INTEGER
199 addal %d0,%a1 | ...ADDRESS N*PIBY2 IN Y1, Y2
201 fsubx (%a1)+,%fp0 | ...X-Y1
204 fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
207 andil #0x80000000,%d0 | ...D0 WAS ODD IFF D0 < 0
215 fmulx %fp1,%fp1 | ...S = R*R
220 fmulx %fp1,%fp3 | ...SQ4
221 fmulx %fp1,%fp2 | ...SP3
223 faddd TANQ3,%fp3 | ...Q3+SQ4
224 faddx TANP2,%fp2 | ...P2+SP3
226 fmulx %fp1,%fp3 | ...S(Q3+SQ4)
227 fmulx %fp1,%fp2 | ...S(P2+SP3)
229 faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
230 faddx TANP1,%fp2 | ...P1+S(P2+SP3)
232 fmulx %fp1,%fp3 | ...S(Q2+S(Q3+SQ4))
233 fmulx %fp1,%fp2 | ...S(P1+S(P2+SP3))
235 faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
236 fmulx %fp0,%fp2 | ...RS(P1+S(P2+SP3))
238 fmulx %fp3,%fp1 | ...S(Q1+S(Q2+S(Q3+SQ4)))
241 faddx %fp2,%fp0 | ...R+RS(P1+S(P2+SP3))
244 fadds #0x3F800000,%fp1 | ...1+S(Q1+...)
246 fmovel %d1,%fpcr |restore users exceptions
247 fdivx %fp1,%fp0 |last inst - possible exception set
253 fmulx %fp0,%fp0 | ...S = R*R
258 fmulx %fp0,%fp3 | ...SQ4
259 fmulx %fp0,%fp2 | ...SP3
261 faddd TANQ3,%fp3 | ...Q3+SQ4
262 faddx TANP2,%fp2 | ...P2+SP3
264 fmulx %fp0,%fp3 | ...S(Q3+SQ4)
265 fmulx %fp0,%fp2 | ...S(P2+SP3)
267 faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
268 faddx TANP1,%fp2 | ...P1+S(P2+SP3)
270 fmulx %fp0,%fp3 | ...S(Q2+S(Q3+SQ4))
271 fmulx %fp0,%fp2 | ...S(P1+S(P2+SP3))
273 faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
274 fmulx %fp1,%fp2 | ...RS(P1+S(P2+SP3))
276 fmulx %fp3,%fp0 | ...S(Q1+S(Q2+S(Q3+SQ4)))
279 faddx %fp2,%fp1 | ...R+RS(P1+S(P2+SP3))
280 fadds #0x3F800000,%fp0 | ...1+S(Q1+...)
284 eoril #0x80000000,(%sp)
286 fmovel %d1,%fpcr |restore users exceptions
287 fdivx (%sp)+,%fp0 |last inst - possible exception set
292 |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
293 |--IF |X| < 2**(-40), RETURN X OR 1.
294 cmpil #0x3FFF8000,%d0
300 fmovel %d1,%fpcr |restore users exceptions
301 fmovex (%sp)+,%fp0 |last inst - possible exception set
307 |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
308 |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
309 |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
311 fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
313 fmoves #0x00000000,%fp1
315 |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
316 |--there is a danger of unwanted overflow in first LOOP iteration. In this
317 |--case, reduce argument by one remainder step to make subsequent reduction
319 cmpil #0x7ffeffff,%d0 |is argument dangerously large?
321 movel #0x7ffe0000,FP_SCR2(%a6) |yes
322 | ;create 2**16383*PI/2
323 movel #0xc90fdaa2,FP_SCR2+4(%a6)
325 ftstx %fp0 |test sign of argument
326 movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
328 movel #0x85a308d3,FP_SCR3+4(%a6)
331 orw #0x8000,FP_SCR2(%a6) |positive arg
332 orw #0x8000,FP_SCR3(%a6)
334 faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
335 fmovex %fp0,%fp1 |save high result in fp1
336 faddx FP_SCR3(%a6),%fp0 |low part of reduction
337 fsubx %fp0,%fp1 |determine low component of result
338 faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
340 |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
341 |--integer quotient will be stored in N
342 |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
345 fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
347 movel %d0,%a1 | ...save a copy of D0
348 andil #0x00007FFF,%d0
349 subil #0x00003FFF,%d0 | ...D0 IS K
353 subil #27,%d0 | ...D0 IS L := K-27
354 movel #0,ENDFLAG(%a6)
357 clrl %d0 | ...D0 IS L := 0
358 movel #1,ENDFLAG(%a6)
361 |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
362 |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
364 |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
365 |--2**L * (PIby2_1), 2**L * (PIby2_2)
367 movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
368 subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
370 movel #0xA2F9836E,FP_SCR1+4(%a6)
371 movel #0x4E44152A,FP_SCR1+8(%a6)
372 movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
375 fmulx FP_SCR1(%a6),%fp2
376 |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
377 |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
378 |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
379 |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
380 |--US THE DESIRED VALUE IN FLOATING POINT.
382 |--HIDE SIX CYCLES OF INSTRUCTION
385 andil #0x80000000,%d2
386 oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
387 movel %d2,TWOTO63(%a6)
390 addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
393 fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
395 |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
396 movew %d2,FP_SCR2(%a6)
398 movel #0xC90FDAA2,FP_SCR2+4(%a6)
399 clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
402 fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
404 addil #0x00003FDD,%d0
405 movew %d0,FP_SCR3(%a6)
407 movel #0x85A308D3,FP_SCR3+4(%a6)
408 clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
410 movel ENDFLAG(%a6),%d0
412 |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
413 |--P2 = 2**(L) * Piby2_2
415 fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
417 fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
419 |--we want P+p = W+w but |p| <= half ulp of P
420 |--Then, we need to compute A := R-P and a := r-p
421 faddx %fp5,%fp3 | ...FP3 is P
422 fsubx %fp3,%fp4 | ...W-P
424 fsubx %fp3,%fp0 | ...FP0 is A := R - P
425 faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
427 fmovex %fp0,%fp3 | ...FP3 A
428 fsubx %fp4,%fp1 | ...FP1 is a := r - p
430 |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
431 |--|r| <= half ulp of R.
432 faddx %fp1,%fp0 | ...FP0 is R := A+a
433 |--No need to calculate r if this is the last loop
437 |--Need to calculate r
438 fsubx %fp0,%fp3 | ...A-R
439 faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
445 fmovemx (%a7)+,%fp2-%fp5