1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
67 struct e1000_phy_info *phy = &hw->phy;
68 struct e1000_nvm_info *nvm = &hw->nvm;
69 struct e1000_mac_info *mac = &hw->mac;
70 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
76 switch (hw->device_id) {
77 case E1000_DEV_ID_82575EB_COPPER:
78 case E1000_DEV_ID_82575EB_FIBER_SERDES:
79 case E1000_DEV_ID_82575GB_QUAD_COPPER:
80 mac->type = e1000_82575;
82 case E1000_DEV_ID_82576:
83 case E1000_DEV_ID_82576_FIBER:
84 case E1000_DEV_ID_82576_SERDES:
85 mac->type = e1000_82576;
88 return -E1000_ERR_MAC_INIT;
94 * The 82575 uses bits 22:23 for link mode. The mode can be changed
95 * based on the EEPROM. We cannot rely upon device ID. There
96 * is no distinguishable difference between fiber and internal
97 * SerDes mode on the 82575. There can be an external PHY attached
98 * on the SGMII interface. For this, we'll set sgmii_active to true.
100 phy->media_type = e1000_media_type_copper;
101 dev_spec->sgmii_active = false;
103 ctrl_ext = rd32(E1000_CTRL_EXT);
104 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
105 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
106 hw->phy.media_type = e1000_media_type_internal_serdes;
107 ctrl_ext |= E1000_CTRL_I2C_ENA;
108 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
109 dev_spec->sgmii_active = true;
110 ctrl_ext |= E1000_CTRL_I2C_ENA;
112 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
114 wr32(E1000_CTRL_EXT, ctrl_ext);
116 /* Set mta register count */
117 mac->mta_reg_count = 128;
118 /* Set rar entry count */
119 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
120 if (mac->type == e1000_82576)
121 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
122 /* Set if part includes ASF firmware */
123 mac->asf_firmware_present = true;
124 /* Set if manageability features are enabled. */
125 mac->arc_subsystem_valid =
126 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
129 /* physical interface link setup */
130 mac->ops.setup_physical_interface =
131 (hw->phy.media_type == e1000_media_type_copper)
132 ? igb_setup_copper_link_82575
133 : igb_setup_fiber_serdes_link_82575;
135 /* NVM initialization */
136 eecd = rd32(E1000_EECD);
138 nvm->opcode_bits = 8;
140 switch (nvm->override) {
141 case e1000_nvm_override_spi_large:
143 nvm->address_bits = 16;
145 case e1000_nvm_override_spi_small:
147 nvm->address_bits = 8;
150 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
151 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
155 nvm->type = e1000_nvm_eeprom_spi;
157 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
158 E1000_EECD_SIZE_EX_SHIFT);
161 * Added to a constant, "size" becomes the left-shift value
162 * for setting word_size.
164 size += NVM_WORD_SIZE_BASE_SHIFT;
166 /* EEPROM access above 16k is unsupported */
169 nvm->word_size = 1 << size;
171 /* setup PHY parameters */
172 if (phy->media_type != e1000_media_type_copper) {
173 phy->type = e1000_phy_none;
177 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
178 phy->reset_delay_us = 100;
180 /* PHY function pointers */
181 if (igb_sgmii_active_82575(hw)) {
182 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
183 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
184 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
186 phy->ops.reset = igb_phy_hw_reset;
187 phy->ops.read_reg = igb_read_phy_reg_igp;
188 phy->ops.write_reg = igb_write_phy_reg_igp;
191 /* Set phy->phy_addr and phy->id. */
192 ret_val = igb_get_phy_id_82575(hw);
196 /* Verify phy id and set remaining function pointers */
198 case M88E1111_I_PHY_ID:
199 phy->type = e1000_phy_m88;
200 phy->ops.get_phy_info = igb_get_phy_info_m88;
201 phy->ops.get_cable_length = igb_get_cable_length_m88;
202 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
204 case IGP03E1000_E_PHY_ID:
205 phy->type = e1000_phy_igp_3;
206 phy->ops.get_phy_info = igb_get_phy_info_igp;
207 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
208 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
209 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
210 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
213 return -E1000_ERR_PHY;
216 /* if 82576 then initialize mailbox parameters */
217 if (mac->type == e1000_82576)
218 igb_init_mbx_params_pf(hw);
224 * igb_acquire_phy_82575 - Acquire rights to access PHY
225 * @hw: pointer to the HW structure
227 * Acquire access rights to the correct PHY. This is a
228 * function pointer entry point called by the api module.
230 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
234 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
236 return igb_acquire_swfw_sync_82575(hw, mask);
240 * igb_release_phy_82575 - Release rights to access PHY
241 * @hw: pointer to the HW structure
243 * A wrapper to release access rights to the correct PHY. This is a
244 * function pointer entry point called by the api module.
246 static void igb_release_phy_82575(struct e1000_hw *hw)
250 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
251 igb_release_swfw_sync_82575(hw, mask);
255 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
256 * @hw: pointer to the HW structure
257 * @offset: register offset to be read
258 * @data: pointer to the read data
260 * Reads the PHY register at offset using the serial gigabit media independent
261 * interface and stores the retrieved information in data.
263 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
266 struct e1000_phy_info *phy = &hw->phy;
269 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
270 hw_dbg("PHY Address %u is out of range\n", offset);
271 return -E1000_ERR_PARAM;
275 * Set up Op-code, Phy Address, and register address in the I2CCMD
276 * register. The MAC will take care of interfacing with the
277 * PHY to retrieve the desired data.
279 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
280 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
281 (E1000_I2CCMD_OPCODE_READ));
283 wr32(E1000_I2CCMD, i2ccmd);
285 /* Poll the ready bit to see if the I2C read completed */
286 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
288 i2ccmd = rd32(E1000_I2CCMD);
289 if (i2ccmd & E1000_I2CCMD_READY)
292 if (!(i2ccmd & E1000_I2CCMD_READY)) {
293 hw_dbg("I2CCMD Read did not complete\n");
294 return -E1000_ERR_PHY;
296 if (i2ccmd & E1000_I2CCMD_ERROR) {
297 hw_dbg("I2CCMD Error bit set\n");
298 return -E1000_ERR_PHY;
301 /* Need to byte-swap the 16-bit value. */
302 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
308 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
309 * @hw: pointer to the HW structure
310 * @offset: register offset to write to
311 * @data: data to write at register offset
313 * Writes the data to PHY register at the offset using the serial gigabit
314 * media independent interface.
316 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
319 struct e1000_phy_info *phy = &hw->phy;
321 u16 phy_data_swapped;
323 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
324 hw_dbg("PHY Address %d is out of range\n", offset);
325 return -E1000_ERR_PARAM;
328 /* Swap the data bytes for the I2C interface */
329 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
332 * Set up Op-code, Phy Address, and register address in the I2CCMD
333 * register. The MAC will take care of interfacing with the
334 * PHY to retrieve the desired data.
336 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
337 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
338 E1000_I2CCMD_OPCODE_WRITE |
341 wr32(E1000_I2CCMD, i2ccmd);
343 /* Poll the ready bit to see if the I2C read completed */
344 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
346 i2ccmd = rd32(E1000_I2CCMD);
347 if (i2ccmd & E1000_I2CCMD_READY)
350 if (!(i2ccmd & E1000_I2CCMD_READY)) {
351 hw_dbg("I2CCMD Write did not complete\n");
352 return -E1000_ERR_PHY;
354 if (i2ccmd & E1000_I2CCMD_ERROR) {
355 hw_dbg("I2CCMD Error bit set\n");
356 return -E1000_ERR_PHY;
363 * igb_get_phy_id_82575 - Retrieve PHY addr and id
364 * @hw: pointer to the HW structure
366 * Retrieves the PHY address and ID for both PHY's which do and do not use
369 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
371 struct e1000_phy_info *phy = &hw->phy;
376 * For SGMII PHYs, we try the list of possible addresses until
377 * we find one that works. For non-SGMII PHYs
378 * (e.g. integrated copper PHYs), an address of 1 should
379 * work. The result of this function should mean phy->phy_addr
380 * and phy->id are set correctly.
382 if (!(igb_sgmii_active_82575(hw))) {
384 ret_val = igb_get_phy_id(hw);
389 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
390 * Therefore, we need to test 1-7
392 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
393 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
395 hw_dbg("Vendor ID 0x%08X read at address %u\n",
398 * At the time of this writing, The M88 part is
399 * the only supported SGMII PHY product.
401 if (phy_id == M88_VENDOR)
404 hw_dbg("PHY address %u was unreadable\n", phy->addr);
408 /* A valid PHY type couldn't be found. */
409 if (phy->addr == 8) {
411 ret_val = -E1000_ERR_PHY;
415 ret_val = igb_get_phy_id(hw);
422 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
423 * @hw: pointer to the HW structure
425 * Resets the PHY using the serial gigabit media independent interface.
427 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
432 * This isn't a true "hard" reset, but is the only reset
433 * available to us at this time.
436 hw_dbg("Soft resetting SGMII attached PHY...\n");
439 * SFP documentation requires the following to configure the SPF module
440 * to work on SGMII. No further documentation is given.
442 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
446 ret_val = igb_phy_sw_reset(hw);
453 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
454 * @hw: pointer to the HW structure
455 * @active: true to enable LPLU, false to disable
457 * Sets the LPLU D0 state according to the active flag. When
458 * activating LPLU this function also disables smart speed
459 * and vice versa. LPLU will not be activated unless the
460 * device autonegotiation advertisement meets standards of
461 * either 10 or 10/100 or 10/100/1000 at all duplexes.
462 * This is a function pointer entry point only called by
463 * PHY setup routines.
465 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
467 struct e1000_phy_info *phy = &hw->phy;
471 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
476 data |= IGP02E1000_PM_D0_LPLU;
477 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
482 /* When LPLU is enabled, we should disable SmartSpeed */
483 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
485 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
486 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
491 data &= ~IGP02E1000_PM_D0_LPLU;
492 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
495 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
496 * during Dx states where the power conservation is most
497 * important. During driver activity we should enable
498 * SmartSpeed, so performance is maintained.
500 if (phy->smart_speed == e1000_smart_speed_on) {
501 ret_val = phy->ops.read_reg(hw,
502 IGP01E1000_PHY_PORT_CONFIG, &data);
506 data |= IGP01E1000_PSCFR_SMART_SPEED;
507 ret_val = phy->ops.write_reg(hw,
508 IGP01E1000_PHY_PORT_CONFIG, data);
511 } else if (phy->smart_speed == e1000_smart_speed_off) {
512 ret_val = phy->ops.read_reg(hw,
513 IGP01E1000_PHY_PORT_CONFIG, &data);
517 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
518 ret_val = phy->ops.write_reg(hw,
519 IGP01E1000_PHY_PORT_CONFIG, data);
530 * igb_acquire_nvm_82575 - Request for access to EEPROM
531 * @hw: pointer to the HW structure
533 * Acquire the necessary semaphores for exclusive access to the EEPROM.
534 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
535 * Return successful if access grant bit set, else clear the request for
536 * EEPROM access and return -E1000_ERR_NVM (-1).
538 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
542 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
546 ret_val = igb_acquire_nvm(hw);
549 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
556 * igb_release_nvm_82575 - Release exclusive access to EEPROM
557 * @hw: pointer to the HW structure
559 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
560 * then release the semaphores acquired.
562 static void igb_release_nvm_82575(struct e1000_hw *hw)
565 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
569 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
570 * @hw: pointer to the HW structure
571 * @mask: specifies which semaphore to acquire
573 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
574 * will also specify which port we're acquiring the lock for.
576 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
580 u32 fwmask = mask << 16;
582 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
584 while (i < timeout) {
585 if (igb_get_hw_semaphore(hw)) {
586 ret_val = -E1000_ERR_SWFW_SYNC;
590 swfw_sync = rd32(E1000_SW_FW_SYNC);
591 if (!(swfw_sync & (fwmask | swmask)))
595 * Firmware currently using resource (fwmask)
596 * or other software thread using resource (swmask)
598 igb_put_hw_semaphore(hw);
604 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
605 ret_val = -E1000_ERR_SWFW_SYNC;
610 wr32(E1000_SW_FW_SYNC, swfw_sync);
612 igb_put_hw_semaphore(hw);
619 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
620 * @hw: pointer to the HW structure
621 * @mask: specifies which semaphore to acquire
623 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
624 * will also specify which port we're releasing the lock for.
626 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
630 while (igb_get_hw_semaphore(hw) != 0);
633 swfw_sync = rd32(E1000_SW_FW_SYNC);
635 wr32(E1000_SW_FW_SYNC, swfw_sync);
637 igb_put_hw_semaphore(hw);
641 * igb_get_cfg_done_82575 - Read config done bit
642 * @hw: pointer to the HW structure
644 * Read the management control register for the config done bit for
645 * completion status. NOTE: silicon which is EEPROM-less will fail trying
646 * to read the config done bit, so an error is *ONLY* logged and returns
647 * 0. If we were to return with error, EEPROM-less silicon
648 * would not be able to be reset or change link.
650 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
652 s32 timeout = PHY_CFG_TIMEOUT;
654 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
656 if (hw->bus.func == 1)
657 mask = E1000_NVM_CFG_DONE_PORT_1;
660 if (rd32(E1000_EEMNGCTL) & mask)
666 hw_dbg("MNG configuration cycle has not completed.\n");
668 /* If EEPROM is not marked present, init the PHY manually */
669 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
670 (hw->phy.type == e1000_phy_igp_3))
671 igb_phy_init_script_igp3(hw);
677 * igb_check_for_link_82575 - Check for link
678 * @hw: pointer to the HW structure
680 * If sgmii is enabled, then use the pcs register to determine link, otherwise
681 * use the generic interface for determining link.
683 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
688 /* SGMII link check is done through the PCS register. */
689 if ((hw->phy.media_type != e1000_media_type_copper) ||
690 (igb_sgmii_active_82575(hw))) {
691 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
694 * Use this flag to determine if link needs to be checked or
695 * not. If we have link clear the flag so that we do not
696 * continue to check for link.
698 hw->mac.get_link_status = !hw->mac.serdes_has_link;
700 ret_val = igb_check_for_copper_link(hw);
706 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
707 * @hw: pointer to the HW structure
708 * @speed: stores the current speed
709 * @duplex: stores the current duplex
711 * Using the physical coding sub-layer (PCS), retrieve the current speed and
712 * duplex, then store the values in the pointers provided.
714 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
717 struct e1000_mac_info *mac = &hw->mac;
720 /* Set up defaults for the return values of this function */
721 mac->serdes_has_link = false;
726 * Read the PCS Status register for link state. For non-copper mode,
727 * the status register is not accurate. The PCS status register is
730 pcs = rd32(E1000_PCS_LSTAT);
733 * The link up bit determines when link is up on autoneg. The sync ok
734 * gets set once both sides sync up and agree upon link. Stable link
735 * can be determined by checking for both link up and link sync ok
737 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
738 mac->serdes_has_link = true;
740 /* Detect and store PCS speed */
741 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
743 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
749 /* Detect and store PCS duplex */
750 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
751 *duplex = FULL_DUPLEX;
753 *duplex = HALF_DUPLEX;
761 * igb_init_rx_addrs_82575 - Initialize receive address's
762 * @hw: pointer to the HW structure
763 * @rar_count: receive address registers
765 * Setups the receive address registers by setting the base receive address
766 * register to the devices MAC address and clearing all the other receive
767 * address registers to 0.
769 static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
772 u8 addr[6] = {0,0,0,0,0,0};
774 * This function is essentially the same as that of
775 * e1000_init_rx_addrs_generic. However it also takes care
776 * of the special case where the register offset of the
777 * second set of RARs begins elsewhere. This is implicitly taken care by
778 * function e1000_rar_set_generic.
781 hw_dbg("e1000_init_rx_addrs_82575");
783 /* Setup the receive address */
784 hw_dbg("Programming MAC Address into RAR[0]\n");
785 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
787 /* Zero out the other (rar_entry_count - 1) receive addresses */
788 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
789 for (i = 1; i < rar_count; i++)
790 hw->mac.ops.rar_set(hw, addr, i);
794 * igb_update_mc_addr_list - Update Multicast addresses
795 * @hw: pointer to the HW structure
796 * @mc_addr_list: array of multicast addresses to program
797 * @mc_addr_count: number of multicast addresses to program
798 * @rar_used_count: the first RAR register free to program
799 * @rar_count: total number of supported Receive Address Registers
801 * Updates the Receive Address Registers and Multicast Table Array.
802 * The caller must have a packed mc_addr_list of multicast addresses.
803 * The parameter rar_count will usually be hw->mac.rar_entry_count
804 * unless there are workarounds that change this.
806 void igb_update_mc_addr_list(struct e1000_hw *hw,
807 u8 *mc_addr_list, u32 mc_addr_count,
808 u32 rar_used_count, u32 rar_count)
812 u8 addr[6] = {0,0,0,0,0,0};
814 * This function is essentially the same as that of
815 * igb_update_mc_addr_list_generic. However it also takes care
816 * of the special case where the register offset of the
817 * second set of RARs begins elsewhere. This is implicitly taken care by
818 * function e1000_rar_set_generic.
822 * Load the first set of multicast addresses into the exact
823 * filters (RAR). If there are not enough to fill the RAR
824 * array, clear the filters.
826 for (i = rar_used_count; i < rar_count; i++) {
828 igb_rar_set(hw, mc_addr_list, i);
830 mc_addr_list += ETH_ALEN;
832 igb_rar_set(hw, addr, i);
836 /* Clear the old settings from the MTA */
837 hw_dbg("Clearing MTA\n");
838 for (i = 0; i < hw->mac.mta_reg_count; i++) {
839 array_wr32(E1000_MTA, i, 0);
843 /* Load any remaining multicast addresses into the hash table. */
844 for (; mc_addr_count > 0; mc_addr_count--) {
845 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
846 hw_dbg("Hash value = 0x%03X\n", hash_value);
847 igb_mta_set(hw, hash_value);
848 mc_addr_list += ETH_ALEN;
853 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
854 * @hw: pointer to the HW structure
856 * In the case of fiber serdes, shut down optics and PCS on driver unload
857 * when management pass thru is not enabled.
859 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
863 if (hw->mac.type != e1000_82576 ||
864 (hw->phy.media_type != e1000_media_type_fiber &&
865 hw->phy.media_type != e1000_media_type_internal_serdes))
868 /* if the management interface is not enabled, then power down */
869 if (!igb_enable_mng_pass_thru(hw)) {
870 /* Disable PCS to turn off link */
871 reg = rd32(E1000_PCS_CFG0);
872 reg &= ~E1000_PCS_CFG_PCS_EN;
873 wr32(E1000_PCS_CFG0, reg);
875 /* shutdown the laser */
876 reg = rd32(E1000_CTRL_EXT);
877 reg |= E1000_CTRL_EXT_SDP7_DATA;
878 wr32(E1000_CTRL_EXT, reg);
880 /* flush the write to verify completion */
889 * igb_reset_hw_82575 - Reset hardware
890 * @hw: pointer to the HW structure
892 * This resets the hardware into a known state. This is a
893 * function pointer entry point called by the api module.
895 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
901 * Prevent the PCI-E bus from sticking if there is no TLP connection
902 * on the last TLP read/write transaction when MAC is reset.
904 ret_val = igb_disable_pcie_master(hw);
906 hw_dbg("PCI-E Master disable polling has failed.\n");
908 hw_dbg("Masking off all interrupts\n");
909 wr32(E1000_IMC, 0xffffffff);
912 wr32(E1000_TCTL, E1000_TCTL_PSP);
917 ctrl = rd32(E1000_CTRL);
919 hw_dbg("Issuing a global reset to MAC\n");
920 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
922 ret_val = igb_get_auto_rd_done(hw);
925 * When auto config read does not complete, do not
926 * return with an error. This can happen in situations
927 * where there is no eeprom and prevents getting link.
929 hw_dbg("Auto Read Done did not complete\n");
932 /* If EEPROM is not present, run manual init scripts */
933 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
934 igb_reset_init_script_82575(hw);
936 /* Clear any pending interrupt events. */
937 wr32(E1000_IMC, 0xffffffff);
938 icr = rd32(E1000_ICR);
940 igb_check_alt_mac_addr(hw);
946 * igb_init_hw_82575 - Initialize hardware
947 * @hw: pointer to the HW structure
949 * This inits the hardware readying it for operation.
951 static s32 igb_init_hw_82575(struct e1000_hw *hw)
953 struct e1000_mac_info *mac = &hw->mac;
955 u16 i, rar_count = mac->rar_entry_count;
957 /* Initialize identification LED */
958 ret_val = igb_id_led_init(hw);
960 hw_dbg("Error initializing identification LED\n");
961 /* This is not fatal and we should not stop init due to this */
964 /* Disabling VLAN filtering */
965 hw_dbg("Initializing the IEEE VLAN\n");
968 /* Setup the receive address */
969 igb_init_rx_addrs_82575(hw, rar_count);
970 /* Zero out the Multicast HASH table */
971 hw_dbg("Zeroing the MTA\n");
972 for (i = 0; i < mac->mta_reg_count; i++)
973 array_wr32(E1000_MTA, i, 0);
975 /* Setup link and flow control */
976 ret_val = igb_setup_link(hw);
979 * Clear all of the statistics registers (clear on read). It is
980 * important that we do this after we have tried to establish link
981 * because the symbol error count will increment wildly if there
984 igb_clear_hw_cntrs_82575(hw);
990 * igb_setup_copper_link_82575 - Configure copper link settings
991 * @hw: pointer to the HW structure
993 * Configures the link for auto-neg or forced speed and duplex. Then we check
994 * for link, once link is established calls to configure collision distance
995 * and flow control are called.
997 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1003 ctrl = rd32(E1000_CTRL);
1004 ctrl |= E1000_CTRL_SLU;
1005 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1006 wr32(E1000_CTRL, ctrl);
1008 switch (hw->phy.type) {
1010 ret_val = igb_copper_link_setup_m88(hw);
1012 case e1000_phy_igp_3:
1013 ret_val = igb_copper_link_setup_igp(hw);
1014 /* Setup activity LED */
1015 led_ctrl = rd32(E1000_LEDCTL);
1016 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1017 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1018 wr32(E1000_LEDCTL, led_ctrl);
1021 ret_val = -E1000_ERR_PHY;
1028 if (hw->mac.autoneg) {
1030 * Setup autoneg and flow control advertisement
1031 * and perform autonegotiation.
1033 ret_val = igb_copper_link_autoneg(hw);
1038 * PHY will be set to 10H, 10F, 100H or 100F
1039 * depending on user settings.
1041 hw_dbg("Forcing Speed and Duplex\n");
1042 ret_val = hw->phy.ops.force_speed_duplex(hw);
1044 hw_dbg("Error Forcing Speed and Duplex\n");
1049 ret_val = igb_configure_pcs_link_82575(hw);
1054 * Check link status. Wait up to 100 microseconds for link to become
1057 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1062 hw_dbg("Valid link established!!!\n");
1063 /* Config the MAC and PHY after link is up */
1064 igb_config_collision_dist(hw);
1065 ret_val = igb_config_fc_after_link_up(hw);
1067 hw_dbg("Unable to establish link!!!\n");
1075 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
1076 * @hw: pointer to the HW structure
1078 * Configures speed and duplex for fiber and serdes links.
1080 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1085 * On the 82575, SerDes loopback mode persists until it is
1086 * explicitly turned off or a power cycle is performed. A read to
1087 * the register does not indicate its status. Therefore, we ensure
1088 * loopback mode is disabled during initialization.
1090 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1092 /* Force link up, set 1gb, set both sw defined pins */
1093 reg = rd32(E1000_CTRL);
1094 reg |= E1000_CTRL_SLU |
1095 E1000_CTRL_SPD_1000 |
1097 E1000_CTRL_SWDPIN0 |
1099 wr32(E1000_CTRL, reg);
1101 /* Power on phy for 82576 fiber adapters */
1102 if (hw->mac.type == e1000_82576) {
1103 reg = rd32(E1000_CTRL_EXT);
1104 reg &= ~E1000_CTRL_EXT_SDP7_DATA;
1105 wr32(E1000_CTRL_EXT, reg);
1108 /* Set switch control to serdes energy detect */
1109 reg = rd32(E1000_CONNSW);
1110 reg |= E1000_CONNSW_ENRGSRC;
1111 wr32(E1000_CONNSW, reg);
1114 * New SerDes mode allows for forcing speed or autonegotiating speed
1115 * at 1gb. Autoneg should be default set by most drivers. This is the
1116 * mode that will be compatible with older link partners and switches.
1117 * However, both are supported by the hardware and some drivers/tools.
1119 reg = rd32(E1000_PCS_LCTL);
1121 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1122 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1124 if (hw->mac.autoneg) {
1125 /* Set PCS register for autoneg */
1126 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1127 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1128 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1129 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1130 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1132 /* Set PCS register for forced speed */
1133 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1134 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1135 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1136 E1000_PCS_LCTL_FSD | /* Force Speed */
1137 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1138 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1141 if (hw->mac.type == e1000_82576) {
1142 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1143 igb_force_mac_fc(hw);
1146 wr32(E1000_PCS_LCTL, reg);
1152 * igb_configure_pcs_link_82575 - Configure PCS link
1153 * @hw: pointer to the HW structure
1155 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1156 * only used on copper connections where the serialized gigabit media
1157 * independent interface (sgmii) is being used. Configures the link
1158 * for auto-negotiation or forces speed/duplex.
1160 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1162 struct e1000_mac_info *mac = &hw->mac;
1165 if (hw->phy.media_type != e1000_media_type_copper ||
1166 !(igb_sgmii_active_82575(hw)))
1169 /* For SGMII, we need to issue a PCS autoneg restart */
1170 reg = rd32(E1000_PCS_LCTL);
1172 /* AN time out should be disabled for SGMII mode */
1173 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1176 /* Make sure forced speed and force link are not set */
1177 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1180 * The PHY should be setup prior to calling this function.
1181 * All we need to do is restart autoneg and enable autoneg.
1183 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1185 /* Set PCS register for forced speed */
1187 /* Turn off bits for full duplex, speed, and autoneg */
1188 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1189 E1000_PCS_LCTL_FSV_100 |
1190 E1000_PCS_LCTL_FDV_FULL |
1191 E1000_PCS_LCTL_AN_ENABLE);
1193 /* Check for duplex first */
1194 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1195 reg |= E1000_PCS_LCTL_FDV_FULL;
1198 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1199 reg |= E1000_PCS_LCTL_FSV_100;
1201 /* Force speed and force link */
1202 reg |= E1000_PCS_LCTL_FSD |
1203 E1000_PCS_LCTL_FORCE_LINK |
1204 E1000_PCS_LCTL_FLV_LINK_UP;
1206 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1209 wr32(E1000_PCS_LCTL, reg);
1216 * igb_sgmii_active_82575 - Return sgmii state
1217 * @hw: pointer to the HW structure
1219 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1220 * which can be enabled for use in the embedded applications. Simply
1221 * return the current state of the sgmii interface.
1223 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1225 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1227 if (hw->mac.type != e1000_82575 && hw->mac.type != e1000_82576)
1230 return dev_spec->sgmii_active;
1234 * igb_reset_init_script_82575 - Inits HW defaults after reset
1235 * @hw: pointer to the HW structure
1237 * Inits recommended HW defaults after a reset when there is no EEPROM
1238 * detected. This is only for the 82575.
1240 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1242 if (hw->mac.type == e1000_82575) {
1243 hw_dbg("Running reset init script for 82575\n");
1244 /* SerDes configuration via SERDESCTRL */
1245 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1246 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1247 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1248 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1250 /* CCM configuration via CCMCTL register */
1251 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1252 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1254 /* PCIe lanes configuration */
1255 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1256 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1257 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1258 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1260 /* PCIe PLL Configuration */
1261 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1262 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1263 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1270 * igb_read_mac_addr_82575 - Read device MAC address
1271 * @hw: pointer to the HW structure
1273 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1277 if (igb_check_alt_mac_addr(hw))
1278 ret_val = igb_read_mac_addr(hw);
1284 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1285 * @hw: pointer to the HW structure
1287 * Clears the hardware counters by reading the counter registers.
1289 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1293 igb_clear_hw_cntrs_base(hw);
1295 temp = rd32(E1000_PRC64);
1296 temp = rd32(E1000_PRC127);
1297 temp = rd32(E1000_PRC255);
1298 temp = rd32(E1000_PRC511);
1299 temp = rd32(E1000_PRC1023);
1300 temp = rd32(E1000_PRC1522);
1301 temp = rd32(E1000_PTC64);
1302 temp = rd32(E1000_PTC127);
1303 temp = rd32(E1000_PTC255);
1304 temp = rd32(E1000_PTC511);
1305 temp = rd32(E1000_PTC1023);
1306 temp = rd32(E1000_PTC1522);
1308 temp = rd32(E1000_ALGNERRC);
1309 temp = rd32(E1000_RXERRC);
1310 temp = rd32(E1000_TNCRS);
1311 temp = rd32(E1000_CEXTERR);
1312 temp = rd32(E1000_TSCTC);
1313 temp = rd32(E1000_TSCTFC);
1315 temp = rd32(E1000_MGTPRC);
1316 temp = rd32(E1000_MGTPDC);
1317 temp = rd32(E1000_MGTPTC);
1319 temp = rd32(E1000_IAC);
1320 temp = rd32(E1000_ICRXOC);
1322 temp = rd32(E1000_ICRXPTC);
1323 temp = rd32(E1000_ICRXATC);
1324 temp = rd32(E1000_ICTXPTC);
1325 temp = rd32(E1000_ICTXATC);
1326 temp = rd32(E1000_ICTXQEC);
1327 temp = rd32(E1000_ICTXQMTC);
1328 temp = rd32(E1000_ICRXDMTC);
1330 temp = rd32(E1000_CBTMPC);
1331 temp = rd32(E1000_HTDPMC);
1332 temp = rd32(E1000_CBRMPC);
1333 temp = rd32(E1000_RPTHC);
1334 temp = rd32(E1000_HGPTC);
1335 temp = rd32(E1000_HTCBDPC);
1336 temp = rd32(E1000_HGORCL);
1337 temp = rd32(E1000_HGORCH);
1338 temp = rd32(E1000_HGOTCL);
1339 temp = rd32(E1000_HGOTCH);
1340 temp = rd32(E1000_LENERRS);
1342 /* This register should not be read in copper configurations */
1343 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1344 temp = rd32(E1000_SCVPC);
1348 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1349 * @hw: pointer to the HW structure
1351 * After rx enable if managability is enabled then there is likely some
1352 * bad data at the start of the fifo and possibly in the DMA fifo. This
1353 * function clears the fifos and flushes any packets that came in as rx was
1356 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1358 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1361 if (hw->mac.type != e1000_82575 ||
1362 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1365 /* Disable all RX queues */
1366 for (i = 0; i < 4; i++) {
1367 rxdctl[i] = rd32(E1000_RXDCTL(i));
1368 wr32(E1000_RXDCTL(i),
1369 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1371 /* Poll all queues to verify they have shut down */
1372 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1375 for (i = 0; i < 4; i++)
1376 rx_enabled |= rd32(E1000_RXDCTL(i));
1377 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1382 hw_dbg("Queue disable timed out after 10ms\n");
1384 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1385 * incoming packets are rejected. Set enable and wait 2ms so that
1386 * any packet that was coming in as RCTL.EN was set is flushed
1388 rfctl = rd32(E1000_RFCTL);
1389 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1391 rlpml = rd32(E1000_RLPML);
1392 wr32(E1000_RLPML, 0);
1394 rctl = rd32(E1000_RCTL);
1395 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1396 temp_rctl |= E1000_RCTL_LPE;
1398 wr32(E1000_RCTL, temp_rctl);
1399 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1403 /* Enable RX queues that were previously enabled and restore our
1406 for (i = 0; i < 4; i++)
1407 wr32(E1000_RXDCTL(i), rxdctl[i]);
1408 wr32(E1000_RCTL, rctl);
1411 wr32(E1000_RLPML, rlpml);
1412 wr32(E1000_RFCTL, rfctl);
1414 /* Flush receive errors generated by workaround */
1421 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1422 * @hw: pointer to the hardware struct
1423 * @enable: state to enter, either enabled or disabled
1425 * enables/disables L2 switch loopback functionality.
1427 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1429 u32 dtxswc = rd32(E1000_DTXSWC);
1432 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1434 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1436 wr32(E1000_DTXSWC, dtxswc);
1440 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1441 * @hw: pointer to the hardware struct
1442 * @enable: state to enter, either enabled or disabled
1444 * enables/disables replication of packets across multiple pools.
1446 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1448 u32 vt_ctl = rd32(E1000_VT_CTL);
1451 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1453 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1455 wr32(E1000_VT_CTL, vt_ctl);
1458 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1459 .reset_hw = igb_reset_hw_82575,
1460 .init_hw = igb_init_hw_82575,
1461 .check_for_link = igb_check_for_link_82575,
1462 .rar_set = igb_rar_set,
1463 .read_mac_addr = igb_read_mac_addr_82575,
1464 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1467 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1468 .acquire = igb_acquire_phy_82575,
1469 .get_cfg_done = igb_get_cfg_done_82575,
1470 .release = igb_release_phy_82575,
1473 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1474 .acquire = igb_acquire_nvm_82575,
1475 .read = igb_read_nvm_eerd,
1476 .release = igb_release_nvm_82575,
1477 .write = igb_write_nvm_spi,
1480 const struct e1000_info e1000_82575_info = {
1481 .get_invariants = igb_get_invariants_82575,
1482 .mac_ops = &e1000_mac_ops_82575,
1483 .phy_ops = &e1000_phy_ops_82575,
1484 .nvm_ops = &e1000_nvm_ops_82575,