Merge branch 'for-linus' of git://oss.sgi.com:8090/xfs/xfs-pull
[linux-2.6] / arch / sparc64 / kernel / time.c
1 /* time.c: UltraSparc timer and TOD clock support.
2  *
3  * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998 Eddie C. Dost   (ecd@skynet.be)
5  *
6  * Based largely on code which is:
7  *
8  * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
9  */
10
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/miscdevice.h>
32 #include <linux/rtc.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/clockchips.h>
35 #include <linux/clocksource.h>
36
37 #include <asm/oplib.h>
38 #include <asm/mostek.h>
39 #include <asm/timer.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/prom.h>
43 #include <asm/of_device.h>
44 #include <asm/starfire.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/cpudata.h>
48 #include <asm/uaccess.h>
49 #include <asm/irq_regs.h>
50
51 #include "entry.h"
52
53 DEFINE_SPINLOCK(mostek_lock);
54 DEFINE_SPINLOCK(rtc_lock);
55 void __iomem *mstk48t02_regs = NULL;
56 #ifdef CONFIG_PCI
57 unsigned long ds1287_regs = 0UL;
58 static void __iomem *bq4802_regs;
59 #endif
60
61 static void __iomem *mstk48t08_regs;
62 static void __iomem *mstk48t59_regs;
63
64 static int set_rtc_mmss(unsigned long);
65
66 #define TICK_PRIV_BIT   (1UL << 63)
67 #define TICKCMP_IRQ_BIT (1UL << 63)
68
69 #ifdef CONFIG_SMP
70 unsigned long profile_pc(struct pt_regs *regs)
71 {
72         unsigned long pc = instruction_pointer(regs);
73
74         if (in_lock_functions(pc))
75                 return regs->u_regs[UREG_RETPC];
76         return pc;
77 }
78 EXPORT_SYMBOL(profile_pc);
79 #endif
80
81 static void tick_disable_protection(void)
82 {
83         /* Set things up so user can access tick register for profiling
84          * purposes.  Also workaround BB_ERRATA_1 by doing a dummy
85          * read back of %tick after writing it.
86          */
87         __asm__ __volatile__(
88         "       ba,pt   %%xcc, 1f\n"
89         "        nop\n"
90         "       .align  64\n"
91         "1:     rd      %%tick, %%g2\n"
92         "       add     %%g2, 6, %%g2\n"
93         "       andn    %%g2, %0, %%g2\n"
94         "       wrpr    %%g2, 0, %%tick\n"
95         "       rdpr    %%tick, %%g0"
96         : /* no outputs */
97         : "r" (TICK_PRIV_BIT)
98         : "g2");
99 }
100
101 static void tick_disable_irq(void)
102 {
103         __asm__ __volatile__(
104         "       ba,pt   %%xcc, 1f\n"
105         "        nop\n"
106         "       .align  64\n"
107         "1:     wr      %0, 0x0, %%tick_cmpr\n"
108         "       rd      %%tick_cmpr, %%g0"
109         : /* no outputs */
110         : "r" (TICKCMP_IRQ_BIT));
111 }
112
113 static void tick_init_tick(void)
114 {
115         tick_disable_protection();
116         tick_disable_irq();
117 }
118
119 static unsigned long tick_get_tick(void)
120 {
121         unsigned long ret;
122
123         __asm__ __volatile__("rd        %%tick, %0\n\t"
124                              "mov       %0, %0"
125                              : "=r" (ret));
126
127         return ret & ~TICK_PRIV_BIT;
128 }
129
130 static int tick_add_compare(unsigned long adj)
131 {
132         unsigned long orig_tick, new_tick, new_compare;
133
134         __asm__ __volatile__("rd        %%tick, %0"
135                              : "=r" (orig_tick));
136
137         orig_tick &= ~TICKCMP_IRQ_BIT;
138
139         /* Workaround for Spitfire Errata (#54 I think??), I discovered
140          * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141          * number 103640.
142          *
143          * On Blackbird writes to %tick_cmpr can fail, the
144          * workaround seems to be to execute the wr instruction
145          * at the start of an I-cache line, and perform a dummy
146          * read back from %tick_cmpr right after writing to it. -DaveM
147          */
148         __asm__ __volatile__("ba,pt     %%xcc, 1f\n\t"
149                              " add      %1, %2, %0\n\t"
150                              ".align    64\n"
151                              "1:\n\t"
152                              "wr        %0, 0, %%tick_cmpr\n\t"
153                              "rd        %%tick_cmpr, %%g0\n\t"
154                              : "=r" (new_compare)
155                              : "r" (orig_tick), "r" (adj));
156
157         __asm__ __volatile__("rd        %%tick, %0"
158                              : "=r" (new_tick));
159         new_tick &= ~TICKCMP_IRQ_BIT;
160
161         return ((long)(new_tick - (orig_tick+adj))) > 0L;
162 }
163
164 static unsigned long tick_add_tick(unsigned long adj)
165 {
166         unsigned long new_tick;
167
168         /* Also need to handle Blackbird bug here too. */
169         __asm__ __volatile__("rd        %%tick, %0\n\t"
170                              "add       %0, %1, %0\n\t"
171                              "wrpr      %0, 0, %%tick\n\t"
172                              : "=&r" (new_tick)
173                              : "r" (adj));
174
175         return new_tick;
176 }
177
178 static struct sparc64_tick_ops tick_operations __read_mostly = {
179         .name           =       "tick",
180         .init_tick      =       tick_init_tick,
181         .disable_irq    =       tick_disable_irq,
182         .get_tick       =       tick_get_tick,
183         .add_tick       =       tick_add_tick,
184         .add_compare    =       tick_add_compare,
185         .softint_mask   =       1UL << 0,
186 };
187
188 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
189
190 static void stick_disable_irq(void)
191 {
192         __asm__ __volatile__(
193         "wr     %0, 0x0, %%asr25"
194         : /* no outputs */
195         : "r" (TICKCMP_IRQ_BIT));
196 }
197
198 static void stick_init_tick(void)
199 {
200         /* Writes to the %tick and %stick register are not
201          * allowed on sun4v.  The Hypervisor controls that
202          * bit, per-strand.
203          */
204         if (tlb_type != hypervisor) {
205                 tick_disable_protection();
206                 tick_disable_irq();
207
208                 /* Let the user get at STICK too. */
209                 __asm__ __volatile__(
210                 "       rd      %%asr24, %%g2\n"
211                 "       andn    %%g2, %0, %%g2\n"
212                 "       wr      %%g2, 0, %%asr24"
213                 : /* no outputs */
214                 : "r" (TICK_PRIV_BIT)
215                 : "g1", "g2");
216         }
217
218         stick_disable_irq();
219 }
220
221 static unsigned long stick_get_tick(void)
222 {
223         unsigned long ret;
224
225         __asm__ __volatile__("rd        %%asr24, %0"
226                              : "=r" (ret));
227
228         return ret & ~TICK_PRIV_BIT;
229 }
230
231 static unsigned long stick_add_tick(unsigned long adj)
232 {
233         unsigned long new_tick;
234
235         __asm__ __volatile__("rd        %%asr24, %0\n\t"
236                              "add       %0, %1, %0\n\t"
237                              "wr        %0, 0, %%asr24\n\t"
238                              : "=&r" (new_tick)
239                              : "r" (adj));
240
241         return new_tick;
242 }
243
244 static int stick_add_compare(unsigned long adj)
245 {
246         unsigned long orig_tick, new_tick;
247
248         __asm__ __volatile__("rd        %%asr24, %0"
249                              : "=r" (orig_tick));
250         orig_tick &= ~TICKCMP_IRQ_BIT;
251
252         __asm__ __volatile__("wr        %0, 0, %%asr25"
253                              : /* no outputs */
254                              : "r" (orig_tick + adj));
255
256         __asm__ __volatile__("rd        %%asr24, %0"
257                              : "=r" (new_tick));
258         new_tick &= ~TICKCMP_IRQ_BIT;
259
260         return ((long)(new_tick - (orig_tick+adj))) > 0L;
261 }
262
263 static struct sparc64_tick_ops stick_operations __read_mostly = {
264         .name           =       "stick",
265         .init_tick      =       stick_init_tick,
266         .disable_irq    =       stick_disable_irq,
267         .get_tick       =       stick_get_tick,
268         .add_tick       =       stick_add_tick,
269         .add_compare    =       stick_add_compare,
270         .softint_mask   =       1UL << 16,
271 };
272
273 /* On Hummingbird the STICK/STICK_CMPR register is implemented
274  * in I/O space.  There are two 64-bit registers each, the
275  * first holds the low 32-bits of the value and the second holds
276  * the high 32-bits.
277  *
278  * Since STICK is constantly updating, we have to access it carefully.
279  *
280  * The sequence we use to read is:
281  * 1) read high
282  * 2) read low
283  * 3) read high again, if it rolled re-read both low and high again.
284  *
285  * Writing STICK safely is also tricky:
286  * 1) write low to zero
287  * 2) write high
288  * 3) write low
289  */
290 #define HBIRD_STICKCMP_ADDR     0x1fe0000f060UL
291 #define HBIRD_STICK_ADDR        0x1fe0000f070UL
292
293 static unsigned long __hbird_read_stick(void)
294 {
295         unsigned long ret, tmp1, tmp2, tmp3;
296         unsigned long addr = HBIRD_STICK_ADDR+8;
297
298         __asm__ __volatile__("ldxa      [%1] %5, %2\n"
299                              "1:\n\t"
300                              "sub       %1, 0x8, %1\n\t"
301                              "ldxa      [%1] %5, %3\n\t"
302                              "add       %1, 0x8, %1\n\t"
303                              "ldxa      [%1] %5, %4\n\t"
304                              "cmp       %4, %2\n\t"
305                              "bne,a,pn  %%xcc, 1b\n\t"
306                              " mov      %4, %2\n\t"
307                              "sllx      %4, 32, %4\n\t"
308                              "or        %3, %4, %0\n\t"
309                              : "=&r" (ret), "=&r" (addr),
310                                "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
311                              : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
312
313         return ret;
314 }
315
316 static void __hbird_write_stick(unsigned long val)
317 {
318         unsigned long low = (val & 0xffffffffUL);
319         unsigned long high = (val >> 32UL);
320         unsigned long addr = HBIRD_STICK_ADDR;
321
322         __asm__ __volatile__("stxa      %%g0, [%0] %4\n\t"
323                              "add       %0, 0x8, %0\n\t"
324                              "stxa      %3, [%0] %4\n\t"
325                              "sub       %0, 0x8, %0\n\t"
326                              "stxa      %2, [%0] %4"
327                              : "=&r" (addr)
328                              : "0" (addr), "r" (low), "r" (high),
329                                "i" (ASI_PHYS_BYPASS_EC_E));
330 }
331
332 static void __hbird_write_compare(unsigned long val)
333 {
334         unsigned long low = (val & 0xffffffffUL);
335         unsigned long high = (val >> 32UL);
336         unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
337
338         __asm__ __volatile__("stxa      %3, [%0] %4\n\t"
339                              "sub       %0, 0x8, %0\n\t"
340                              "stxa      %2, [%0] %4"
341                              : "=&r" (addr)
342                              : "0" (addr), "r" (low), "r" (high),
343                                "i" (ASI_PHYS_BYPASS_EC_E));
344 }
345
346 static void hbtick_disable_irq(void)
347 {
348         __hbird_write_compare(TICKCMP_IRQ_BIT);
349 }
350
351 static void hbtick_init_tick(void)
352 {
353         tick_disable_protection();
354
355         /* XXX This seems to be necessary to 'jumpstart' Hummingbird
356          * XXX into actually sending STICK interrupts.  I think because
357          * XXX of how we store %tick_cmpr in head.S this somehow resets the
358          * XXX {TICK + STICK} interrupt mux.  -DaveM
359          */
360         __hbird_write_stick(__hbird_read_stick());
361
362         hbtick_disable_irq();
363 }
364
365 static unsigned long hbtick_get_tick(void)
366 {
367         return __hbird_read_stick() & ~TICK_PRIV_BIT;
368 }
369
370 static unsigned long hbtick_add_tick(unsigned long adj)
371 {
372         unsigned long val;
373
374         val = __hbird_read_stick() + adj;
375         __hbird_write_stick(val);
376
377         return val;
378 }
379
380 static int hbtick_add_compare(unsigned long adj)
381 {
382         unsigned long val = __hbird_read_stick();
383         unsigned long val2;
384
385         val &= ~TICKCMP_IRQ_BIT;
386         val += adj;
387         __hbird_write_compare(val);
388
389         val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
390
391         return ((long)(val2 - val)) > 0L;
392 }
393
394 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
395         .name           =       "hbtick",
396         .init_tick      =       hbtick_init_tick,
397         .disable_irq    =       hbtick_disable_irq,
398         .get_tick       =       hbtick_get_tick,
399         .add_tick       =       hbtick_add_tick,
400         .add_compare    =       hbtick_add_compare,
401         .softint_mask   =       1UL << 0,
402 };
403
404 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
405
406 int update_persistent_clock(struct timespec now)
407 {
408         return set_rtc_mmss(now.tv_sec);
409 }
410
411 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
412 static void __init kick_start_clock(void)
413 {
414         void __iomem *regs = mstk48t02_regs;
415         u8 sec, tmp;
416         int i, count;
417
418         prom_printf("CLOCK: Clock was stopped. Kick start ");
419
420         spin_lock_irq(&mostek_lock);
421
422         /* Turn on the kick start bit to start the oscillator. */
423         tmp = mostek_read(regs + MOSTEK_CREG);
424         tmp |= MSTK_CREG_WRITE;
425         mostek_write(regs + MOSTEK_CREG, tmp);
426         tmp = mostek_read(regs + MOSTEK_SEC);
427         tmp &= ~MSTK_STOP;
428         mostek_write(regs + MOSTEK_SEC, tmp);
429         tmp = mostek_read(regs + MOSTEK_HOUR);
430         tmp |= MSTK_KICK_START;
431         mostek_write(regs + MOSTEK_HOUR, tmp);
432         tmp = mostek_read(regs + MOSTEK_CREG);
433         tmp &= ~MSTK_CREG_WRITE;
434         mostek_write(regs + MOSTEK_CREG, tmp);
435
436         spin_unlock_irq(&mostek_lock);
437
438         /* Delay to allow the clock oscillator to start. */
439         sec = MSTK_REG_SEC(regs);
440         for (i = 0; i < 3; i++) {
441                 while (sec == MSTK_REG_SEC(regs))
442                         for (count = 0; count < 100000; count++)
443                                 /* nothing */ ;
444                 prom_printf(".");
445                 sec = MSTK_REG_SEC(regs);
446         }
447         prom_printf("\n");
448
449         spin_lock_irq(&mostek_lock);
450
451         /* Turn off kick start and set a "valid" time and date. */
452         tmp = mostek_read(regs + MOSTEK_CREG);
453         tmp |= MSTK_CREG_WRITE;
454         mostek_write(regs + MOSTEK_CREG, tmp);
455         tmp = mostek_read(regs + MOSTEK_HOUR);
456         tmp &= ~MSTK_KICK_START;
457         mostek_write(regs + MOSTEK_HOUR, tmp);
458         MSTK_SET_REG_SEC(regs,0);
459         MSTK_SET_REG_MIN(regs,0);
460         MSTK_SET_REG_HOUR(regs,0);
461         MSTK_SET_REG_DOW(regs,5);
462         MSTK_SET_REG_DOM(regs,1);
463         MSTK_SET_REG_MONTH(regs,8);
464         MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
465         tmp = mostek_read(regs + MOSTEK_CREG);
466         tmp &= ~MSTK_CREG_WRITE;
467         mostek_write(regs + MOSTEK_CREG, tmp);
468
469         spin_unlock_irq(&mostek_lock);
470
471         /* Ensure the kick start bit is off. If it isn't, turn it off. */
472         while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
473                 prom_printf("CLOCK: Kick start still on!\n");
474
475                 spin_lock_irq(&mostek_lock);
476
477                 tmp = mostek_read(regs + MOSTEK_CREG);
478                 tmp |= MSTK_CREG_WRITE;
479                 mostek_write(regs + MOSTEK_CREG, tmp);
480
481                 tmp = mostek_read(regs + MOSTEK_HOUR);
482                 tmp &= ~MSTK_KICK_START;
483                 mostek_write(regs + MOSTEK_HOUR, tmp);
484
485                 tmp = mostek_read(regs + MOSTEK_CREG);
486                 tmp &= ~MSTK_CREG_WRITE;
487                 mostek_write(regs + MOSTEK_CREG, tmp);
488
489                 spin_unlock_irq(&mostek_lock);
490         }
491
492         prom_printf("CLOCK: Kick start procedure successful.\n");
493 }
494
495 /* Return nonzero if the clock chip battery is low. */
496 static int __init has_low_battery(void)
497 {
498         void __iomem *regs = mstk48t02_regs;
499         u8 data1, data2;
500
501         spin_lock_irq(&mostek_lock);
502
503         data1 = mostek_read(regs + MOSTEK_EEPROM);      /* Read some data. */
504         mostek_write(regs + MOSTEK_EEPROM, ~data1);     /* Write back the complement. */
505         data2 = mostek_read(regs + MOSTEK_EEPROM);      /* Read back the complement. */
506         mostek_write(regs + MOSTEK_EEPROM, data1);      /* Restore original value. */
507
508         spin_unlock_irq(&mostek_lock);
509
510         return (data1 == data2);        /* Was the write blocked? */
511 }
512
513 static void __init mostek_set_system_time(void __iomem *mregs)
514 {
515         unsigned int year, mon, day, hour, min, sec;
516         u8 tmp;
517
518         spin_lock_irq(&mostek_lock);
519
520         /* Traditional Mostek chip. */
521         tmp = mostek_read(mregs + MOSTEK_CREG);
522         tmp |= MSTK_CREG_READ;
523         mostek_write(mregs + MOSTEK_CREG, tmp);
524
525         sec = MSTK_REG_SEC(mregs);
526         min = MSTK_REG_MIN(mregs);
527         hour = MSTK_REG_HOUR(mregs);
528         day = MSTK_REG_DOM(mregs);
529         mon = MSTK_REG_MONTH(mregs);
530         year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
531
532         xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
533         xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
534         set_normalized_timespec(&wall_to_monotonic,
535                                 -xtime.tv_sec, -xtime.tv_nsec);
536
537         tmp = mostek_read(mregs + MOSTEK_CREG);
538         tmp &= ~MSTK_CREG_READ;
539         mostek_write(mregs + MOSTEK_CREG, tmp);
540
541         spin_unlock_irq(&mostek_lock);
542 }
543
544 /* Probe for the real time clock chip. */
545 static void __init set_system_time(void)
546 {
547         unsigned int year, mon, day, hour, min, sec;
548         void __iomem *mregs = mstk48t02_regs;
549 #ifdef CONFIG_PCI
550         unsigned long dregs = ds1287_regs;
551         void __iomem *bregs = bq4802_regs;
552 #else
553         unsigned long dregs = 0UL;
554         void __iomem *bregs = 0UL;
555 #endif
556
557         if (!mregs && !dregs && !bregs) {
558                 prom_printf("Something wrong, clock regs not mapped yet.\n");
559                 prom_halt();
560         }               
561
562         if (mregs) {
563                 mostek_set_system_time(mregs);
564                 return;
565         }
566
567         if (bregs) {
568                 unsigned char val = readb(bregs + 0x0e);
569                 unsigned int century;
570
571                 /* BQ4802 RTC chip. */
572
573                 writeb(val | 0x08, bregs + 0x0e);
574
575                 sec  = readb(bregs + 0x00);
576                 min  = readb(bregs + 0x02);
577                 hour = readb(bregs + 0x04);
578                 day  = readb(bregs + 0x06);
579                 mon  = readb(bregs + 0x09);
580                 year = readb(bregs + 0x0a);
581                 century = readb(bregs + 0x0f);
582
583                 writeb(val, bregs + 0x0e);
584
585                 BCD_TO_BIN(sec);
586                 BCD_TO_BIN(min);
587                 BCD_TO_BIN(hour);
588                 BCD_TO_BIN(day);
589                 BCD_TO_BIN(mon);
590                 BCD_TO_BIN(year);
591                 BCD_TO_BIN(century);
592
593                 year += (century * 100);
594         } else {
595                 /* Dallas 12887 RTC chip. */
596
597                 do {
598                         sec  = CMOS_READ(RTC_SECONDS);
599                         min  = CMOS_READ(RTC_MINUTES);
600                         hour = CMOS_READ(RTC_HOURS);
601                         day  = CMOS_READ(RTC_DAY_OF_MONTH);
602                         mon  = CMOS_READ(RTC_MONTH);
603                         year = CMOS_READ(RTC_YEAR);
604                 } while (sec != CMOS_READ(RTC_SECONDS));
605
606                 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
607                         BCD_TO_BIN(sec);
608                         BCD_TO_BIN(min);
609                         BCD_TO_BIN(hour);
610                         BCD_TO_BIN(day);
611                         BCD_TO_BIN(mon);
612                         BCD_TO_BIN(year);
613                 }
614                 if ((year += 1900) < 1970)
615                         year += 100;
616         }
617
618         xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
619         xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
620         set_normalized_timespec(&wall_to_monotonic,
621                                 -xtime.tv_sec, -xtime.tv_nsec);
622 }
623
624 /* davem suggests we keep this within the 4M locked kernel image */
625 static u32 starfire_get_time(void)
626 {
627         static char obp_gettod[32];
628         static u32 unix_tod;
629
630         sprintf(obp_gettod, "h# %08x unix-gettod",
631                 (unsigned int) (long) &unix_tod);
632         prom_feval(obp_gettod);
633
634         return unix_tod;
635 }
636
637 static int starfire_set_time(u32 val)
638 {
639         /* Do nothing, time is set using the service processor
640          * console on this platform.
641          */
642         return 0;
643 }
644
645 static u32 hypervisor_get_time(void)
646 {
647         unsigned long ret, time;
648         int retries = 10000;
649
650 retry:
651         ret = sun4v_tod_get(&time);
652         if (ret == HV_EOK)
653                 return time;
654         if (ret == HV_EWOULDBLOCK) {
655                 if (--retries > 0) {
656                         udelay(100);
657                         goto retry;
658                 }
659                 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
660                 return 0;
661         }
662         printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
663         return 0;
664 }
665
666 static int hypervisor_set_time(u32 secs)
667 {
668         unsigned long ret;
669         int retries = 10000;
670
671 retry:
672         ret = sun4v_tod_set(secs);
673         if (ret == HV_EOK)
674                 return 0;
675         if (ret == HV_EWOULDBLOCK) {
676                 if (--retries > 0) {
677                         udelay(100);
678                         goto retry;
679                 }
680                 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
681                 return -EAGAIN;
682         }
683         printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
684         return -EOPNOTSUPP;
685 }
686
687 static int __init clock_model_matches(const char *model)
688 {
689         if (strcmp(model, "mk48t02") &&
690             strcmp(model, "mk48t08") &&
691             strcmp(model, "mk48t59") &&
692             strcmp(model, "m5819") &&
693             strcmp(model, "m5819p") &&
694             strcmp(model, "m5823") &&
695             strcmp(model, "ds1287") &&
696             strcmp(model, "bq4802"))
697                 return 0;
698
699         return 1;
700 }
701
702 static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
703 {
704         struct device_node *dp = op->node;
705         const char *model = of_get_property(dp, "model", NULL);
706         const char *compat = of_get_property(dp, "compatible", NULL);
707         unsigned long size, flags;
708         void __iomem *regs;
709
710         if (!model)
711                 model = compat;
712
713         if (!model || !clock_model_matches(model))
714                 return -ENODEV;
715
716         /* On an Enterprise system there can be multiple mostek clocks.
717          * We should only match the one that is on the central FHC bus.
718          */
719         if (!strcmp(dp->parent->name, "fhc") &&
720             strcmp(dp->parent->parent->name, "central") != 0)
721                 return -ENODEV;
722
723         size = (op->resource[0].end - op->resource[0].start) + 1;
724         regs = of_ioremap(&op->resource[0], 0, size, "clock");
725         if (!regs)
726                 return -ENOMEM;
727
728 #ifdef CONFIG_PCI
729         if (!strcmp(model, "ds1287") ||
730             !strcmp(model, "m5819") ||
731             !strcmp(model, "m5819p") ||
732             !strcmp(model, "m5823")) {
733                 ds1287_regs = (unsigned long) regs;
734         } else if (!strcmp(model, "bq4802")) {
735                 bq4802_regs = regs;
736         } else
737 #endif
738         if (model[5] == '0' && model[6] == '2') {
739                 mstk48t02_regs = regs;
740         } else if(model[5] == '0' && model[6] == '8') {
741                 mstk48t08_regs = regs;
742                 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
743         } else {
744                 mstk48t59_regs = regs;
745                 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
746         }
747
748         printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
749
750         local_irq_save(flags);
751
752         if (mstk48t02_regs != NULL) {
753                 /* Report a low battery voltage condition. */
754                 if (has_low_battery())
755                         prom_printf("NVRAM: Low battery voltage!\n");
756
757                 /* Kick start the clock if it is completely stopped. */
758                 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
759                         kick_start_clock();
760         }
761
762         set_system_time();
763         
764         local_irq_restore(flags);
765
766         return 0;
767 }
768
769 static struct of_device_id clock_match[] = {
770         {
771                 .name = "eeprom",
772         },
773         {
774                 .name = "rtc",
775         },
776         {},
777 };
778
779 static struct of_platform_driver clock_driver = {
780         .match_table    = clock_match,
781         .probe          = clock_probe,
782         .driver         = {
783                 .name   = "clock",
784         },
785 };
786
787 static int __init clock_init(void)
788 {
789         if (this_is_starfire) {
790                 xtime.tv_sec = starfire_get_time();
791                 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
792                 set_normalized_timespec(&wall_to_monotonic,
793                                         -xtime.tv_sec, -xtime.tv_nsec);
794                 return 0;
795         }
796         if (tlb_type == hypervisor) {
797                 xtime.tv_sec = hypervisor_get_time();
798                 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
799                 set_normalized_timespec(&wall_to_monotonic,
800                                         -xtime.tv_sec, -xtime.tv_nsec);
801                 return 0;
802         }
803
804         return of_register_driver(&clock_driver, &of_platform_bus_type);
805 }
806
807 /* Must be after subsys_initcall() so that busses are probed.  Must
808  * be before device_initcall() because things like the RTC driver
809  * need to see the clock registers.
810  */
811 fs_initcall(clock_init);
812
813 /* This is gets the master TICK_INT timer going. */
814 static unsigned long sparc64_init_timers(void)
815 {
816         struct device_node *dp;
817         unsigned long clock;
818
819         dp = of_find_node_by_path("/");
820         if (tlb_type == spitfire) {
821                 unsigned long ver, manuf, impl;
822
823                 __asm__ __volatile__ ("rdpr %%ver, %0"
824                                       : "=&r" (ver));
825                 manuf = ((ver >> 48) & 0xffff);
826                 impl = ((ver >> 32) & 0xffff);
827                 if (manuf == 0x17 && impl == 0x13) {
828                         /* Hummingbird, aka Ultra-IIe */
829                         tick_ops = &hbtick_operations;
830                         clock = of_getintprop_default(dp, "stick-frequency", 0);
831                 } else {
832                         tick_ops = &tick_operations;
833                         clock = local_cpu_data().clock_tick;
834                 }
835         } else {
836                 tick_ops = &stick_operations;
837                 clock = of_getintprop_default(dp, "stick-frequency", 0);
838         }
839
840         return clock;
841 }
842
843 struct freq_table {
844         unsigned long clock_tick_ref;
845         unsigned int ref_freq;
846 };
847 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
848
849 unsigned long sparc64_get_clock_tick(unsigned int cpu)
850 {
851         struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
852
853         if (ft->clock_tick_ref)
854                 return ft->clock_tick_ref;
855         return cpu_data(cpu).clock_tick;
856 }
857
858 #ifdef CONFIG_CPU_FREQ
859
860 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
861                                     void *data)
862 {
863         struct cpufreq_freqs *freq = data;
864         unsigned int cpu = freq->cpu;
865         struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
866
867         if (!ft->ref_freq) {
868                 ft->ref_freq = freq->old;
869                 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
870         }
871         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
872             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
873             (val == CPUFREQ_RESUMECHANGE)) {
874                 cpu_data(cpu).clock_tick =
875                         cpufreq_scale(ft->clock_tick_ref,
876                                       ft->ref_freq,
877                                       freq->new);
878         }
879
880         return 0;
881 }
882
883 static struct notifier_block sparc64_cpufreq_notifier_block = {
884         .notifier_call  = sparc64_cpufreq_notifier
885 };
886
887 static int __init register_sparc64_cpufreq_notifier(void)
888 {
889
890         cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
891                                   CPUFREQ_TRANSITION_NOTIFIER);
892         return 0;
893 }
894
895 core_initcall(register_sparc64_cpufreq_notifier);
896
897 #endif /* CONFIG_CPU_FREQ */
898
899 static int sparc64_next_event(unsigned long delta,
900                               struct clock_event_device *evt)
901 {
902         return tick_ops->add_compare(delta) ? -ETIME : 0;
903 }
904
905 static void sparc64_timer_setup(enum clock_event_mode mode,
906                                 struct clock_event_device *evt)
907 {
908         switch (mode) {
909         case CLOCK_EVT_MODE_ONESHOT:
910         case CLOCK_EVT_MODE_RESUME:
911                 break;
912
913         case CLOCK_EVT_MODE_SHUTDOWN:
914                 tick_ops->disable_irq();
915                 break;
916
917         case CLOCK_EVT_MODE_PERIODIC:
918         case CLOCK_EVT_MODE_UNUSED:
919                 WARN_ON(1);
920                 break;
921         };
922 }
923
924 static struct clock_event_device sparc64_clockevent = {
925         .features       = CLOCK_EVT_FEAT_ONESHOT,
926         .set_mode       = sparc64_timer_setup,
927         .set_next_event = sparc64_next_event,
928         .rating         = 100,
929         .shift          = 30,
930         .irq            = -1,
931 };
932 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
933
934 void timer_interrupt(int irq, struct pt_regs *regs)
935 {
936         struct pt_regs *old_regs = set_irq_regs(regs);
937         unsigned long tick_mask = tick_ops->softint_mask;
938         int cpu = smp_processor_id();
939         struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
940
941         clear_softint(tick_mask);
942
943         irq_enter();
944
945         kstat_this_cpu.irqs[0]++;
946
947         if (unlikely(!evt->event_handler)) {
948                 printk(KERN_WARNING
949                        "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
950         } else
951                 evt->event_handler(evt);
952
953         irq_exit();
954
955         set_irq_regs(old_regs);
956 }
957
958 void __devinit setup_sparc64_timer(void)
959 {
960         struct clock_event_device *sevt;
961         unsigned long pstate;
962
963         /* Guarantee that the following sequences execute
964          * uninterrupted.
965          */
966         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
967                              "wrpr      %0, %1, %%pstate"
968                              : "=r" (pstate)
969                              : "i" (PSTATE_IE));
970
971         tick_ops->init_tick();
972
973         /* Restore PSTATE_IE. */
974         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
975                              : /* no outputs */
976                              : "r" (pstate));
977
978         sevt = &__get_cpu_var(sparc64_events);
979
980         memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
981         sevt->cpumask = cpumask_of_cpu(smp_processor_id());
982
983         clockevents_register_device(sevt);
984 }
985
986 #define SPARC64_NSEC_PER_CYC_SHIFT      10UL
987
988 static struct clocksource clocksource_tick = {
989         .rating         = 100,
990         .mask           = CLOCKSOURCE_MASK(64),
991         .shift          = 16,
992         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
993 };
994
995 static void __init setup_clockevent_multiplier(unsigned long hz)
996 {
997         unsigned long mult, shift = 32;
998
999         while (1) {
1000                 mult = div_sc(hz, NSEC_PER_SEC, shift);
1001                 if (mult && (mult >> 32UL) == 0UL)
1002                         break;
1003
1004                 shift--;
1005         }
1006
1007         sparc64_clockevent.shift = shift;
1008         sparc64_clockevent.mult = mult;
1009 }
1010
1011 static unsigned long tb_ticks_per_usec __read_mostly;
1012
1013 void __delay(unsigned long loops)
1014 {
1015         unsigned long bclock, now;
1016
1017         bclock = tick_ops->get_tick();
1018         do {
1019                 now = tick_ops->get_tick();
1020         } while ((now-bclock) < loops);
1021 }
1022 EXPORT_SYMBOL(__delay);
1023
1024 void udelay(unsigned long usecs)
1025 {
1026         __delay(tb_ticks_per_usec * usecs);
1027 }
1028 EXPORT_SYMBOL(udelay);
1029
1030 void __init time_init(void)
1031 {
1032         unsigned long clock = sparc64_init_timers();
1033
1034         tb_ticks_per_usec = clock / USEC_PER_SEC;
1035
1036         timer_ticks_per_nsec_quotient =
1037                 clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
1038
1039         clocksource_tick.name = tick_ops->name;
1040         clocksource_tick.mult =
1041                 clocksource_hz2mult(clock,
1042                                     clocksource_tick.shift);
1043         clocksource_tick.read = tick_ops->get_tick;
1044
1045         printk("clocksource: mult[%x] shift[%d]\n",
1046                clocksource_tick.mult, clocksource_tick.shift);
1047
1048         clocksource_register(&clocksource_tick);
1049
1050         sparc64_clockevent.name = tick_ops->name;
1051
1052         setup_clockevent_multiplier(clock);
1053
1054         sparc64_clockevent.max_delta_ns =
1055                 clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent);
1056         sparc64_clockevent.min_delta_ns =
1057                 clockevent_delta2ns(0xF, &sparc64_clockevent);
1058
1059         printk("clockevent: mult[%lx] shift[%d]\n",
1060                sparc64_clockevent.mult, sparc64_clockevent.shift);
1061
1062         setup_sparc64_timer();
1063 }
1064
1065 unsigned long long sched_clock(void)
1066 {
1067         unsigned long ticks = tick_ops->get_tick();
1068
1069         return (ticks * timer_ticks_per_nsec_quotient)
1070                 >> SPARC64_NSEC_PER_CYC_SHIFT;
1071 }
1072
1073 static int set_rtc_mmss(unsigned long nowtime)
1074 {
1075         int real_seconds, real_minutes, chip_minutes;
1076         void __iomem *mregs = mstk48t02_regs;
1077 #ifdef CONFIG_PCI
1078         unsigned long dregs = ds1287_regs;
1079         void __iomem *bregs = bq4802_regs;
1080 #else
1081         unsigned long dregs = 0UL;
1082         void __iomem *bregs = 0UL;
1083 #endif
1084         unsigned long flags;
1085         u8 tmp;
1086
1087         /* 
1088          * Not having a register set can lead to trouble.
1089          * Also starfire doesn't have a tod clock.
1090          */
1091         if (!mregs && !dregs && !bregs)
1092                 return -1;
1093
1094         if (mregs) {
1095                 spin_lock_irqsave(&mostek_lock, flags);
1096
1097                 /* Read the current RTC minutes. */
1098                 tmp = mostek_read(mregs + MOSTEK_CREG);
1099                 tmp |= MSTK_CREG_READ;
1100                 mostek_write(mregs + MOSTEK_CREG, tmp);
1101
1102                 chip_minutes = MSTK_REG_MIN(mregs);
1103
1104                 tmp = mostek_read(mregs + MOSTEK_CREG);
1105                 tmp &= ~MSTK_CREG_READ;
1106                 mostek_write(mregs + MOSTEK_CREG, tmp);
1107
1108                 /*
1109                  * since we're only adjusting minutes and seconds,
1110                  * don't interfere with hour overflow. This avoids
1111                  * messing with unknown time zones but requires your
1112                  * RTC not to be off by more than 15 minutes
1113                  */
1114                 real_seconds = nowtime % 60;
1115                 real_minutes = nowtime / 60;
1116                 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1117                         real_minutes += 30;     /* correct for half hour time zone */
1118                 real_minutes %= 60;
1119
1120                 if (abs(real_minutes - chip_minutes) < 30) {
1121                         tmp = mostek_read(mregs + MOSTEK_CREG);
1122                         tmp |= MSTK_CREG_WRITE;
1123                         mostek_write(mregs + MOSTEK_CREG, tmp);
1124
1125                         MSTK_SET_REG_SEC(mregs,real_seconds);
1126                         MSTK_SET_REG_MIN(mregs,real_minutes);
1127
1128                         tmp = mostek_read(mregs + MOSTEK_CREG);
1129                         tmp &= ~MSTK_CREG_WRITE;
1130                         mostek_write(mregs + MOSTEK_CREG, tmp);
1131
1132                         spin_unlock_irqrestore(&mostek_lock, flags);
1133
1134                         return 0;
1135                 } else {
1136                         spin_unlock_irqrestore(&mostek_lock, flags);
1137
1138                         return -1;
1139                 }
1140         } else if (bregs) {
1141                 int retval = 0;
1142                 unsigned char val = readb(bregs + 0x0e);
1143
1144                 /* BQ4802 RTC chip. */
1145
1146                 writeb(val | 0x08, bregs + 0x0e);
1147
1148                 chip_minutes = readb(bregs + 0x02);
1149                 BCD_TO_BIN(chip_minutes);
1150                 real_seconds = nowtime % 60;
1151                 real_minutes = nowtime / 60;
1152                 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1153                         real_minutes += 30;
1154                 real_minutes %= 60;
1155
1156                 if (abs(real_minutes - chip_minutes) < 30) {
1157                         BIN_TO_BCD(real_seconds);
1158                         BIN_TO_BCD(real_minutes);
1159                         writeb(real_seconds, bregs + 0x00);
1160                         writeb(real_minutes, bregs + 0x02);
1161                 } else {
1162                         printk(KERN_WARNING
1163                                "set_rtc_mmss: can't update from %d to %d\n",
1164                                chip_minutes, real_minutes);
1165                         retval = -1;
1166                 }
1167
1168                 writeb(val, bregs + 0x0e);
1169
1170                 return retval;
1171         } else {
1172                 int retval = 0;
1173                 unsigned char save_control, save_freq_select;
1174
1175                 /* Stolen from arch/i386/kernel/time.c, see there for
1176                  * credits and descriptive comments.
1177                  */
1178                 spin_lock_irqsave(&rtc_lock, flags);
1179                 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1180                 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1181
1182                 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1183                 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1184
1185                 chip_minutes = CMOS_READ(RTC_MINUTES);
1186                 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1187                         BCD_TO_BIN(chip_minutes);
1188                 real_seconds = nowtime % 60;
1189                 real_minutes = nowtime / 60;
1190                 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1191                         real_minutes += 30;
1192                 real_minutes %= 60;
1193
1194                 if (abs(real_minutes - chip_minutes) < 30) {
1195                         if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1196                                 BIN_TO_BCD(real_seconds);
1197                                 BIN_TO_BCD(real_minutes);
1198                         }
1199                         CMOS_WRITE(real_seconds,RTC_SECONDS);
1200                         CMOS_WRITE(real_minutes,RTC_MINUTES);
1201                 } else {
1202                         printk(KERN_WARNING
1203                                "set_rtc_mmss: can't update from %d to %d\n",
1204                                chip_minutes, real_minutes);
1205                         retval = -1;
1206                 }
1207
1208                 CMOS_WRITE(save_control, RTC_CONTROL);
1209                 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1210                 spin_unlock_irqrestore(&rtc_lock, flags);
1211
1212                 return retval;
1213         }
1214 }
1215
1216 #define RTC_IS_OPEN             0x01    /* means /dev/rtc is in use     */
1217 static unsigned char mini_rtc_status;   /* bitmapped status byte.       */
1218
1219 #define FEBRUARY        2
1220 #define STARTOFTIME     1970
1221 #define SECDAY          86400L
1222 #define SECYR           (SECDAY * 365)
1223 #define leapyear(year)          ((year) % 4 == 0 && \
1224                                  ((year) % 100 != 0 || (year) % 400 == 0))
1225 #define days_in_year(a)         (leapyear(a) ? 366 : 365)
1226 #define days_in_month(a)        (month_days[(a) - 1])
1227
1228 static int month_days[12] = {
1229         31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1230 };
1231
1232 /*
1233  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1234  */
1235 static void GregorianDay(struct rtc_time * tm)
1236 {
1237         int leapsToDate;
1238         int lastYear;
1239         int day;
1240         int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1241
1242         lastYear = tm->tm_year - 1;
1243
1244         /*
1245          * Number of leap corrections to apply up to end of last year
1246          */
1247         leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1248
1249         /*
1250          * This year is a leap year if it is divisible by 4 except when it is
1251          * divisible by 100 unless it is divisible by 400
1252          *
1253          * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1254          */
1255         day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1256
1257         day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1258                    tm->tm_mday;
1259
1260         tm->tm_wday = day % 7;
1261 }
1262
1263 static void to_tm(int tim, struct rtc_time *tm)
1264 {
1265         register int    i;
1266         register long   hms, day;
1267
1268         day = tim / SECDAY;
1269         hms = tim % SECDAY;
1270
1271         /* Hours, minutes, seconds are easy */
1272         tm->tm_hour = hms / 3600;
1273         tm->tm_min = (hms % 3600) / 60;
1274         tm->tm_sec = (hms % 3600) % 60;
1275
1276         /* Number of years in days */
1277         for (i = STARTOFTIME; day >= days_in_year(i); i++)
1278                 day -= days_in_year(i);
1279         tm->tm_year = i;
1280
1281         /* Number of months in days left */
1282         if (leapyear(tm->tm_year))
1283                 days_in_month(FEBRUARY) = 29;
1284         for (i = 1; day >= days_in_month(i); i++)
1285                 day -= days_in_month(i);
1286         days_in_month(FEBRUARY) = 28;
1287         tm->tm_mon = i;
1288
1289         /* Days are what is left over (+1) from all that. */
1290         tm->tm_mday = day + 1;
1291
1292         /*
1293          * Determine the day of week
1294          */
1295         GregorianDay(tm);
1296 }
1297
1298 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1299  * aka Unix time.  So we have to convert to/from rtc_time.
1300  */
1301 static void starfire_get_rtc_time(struct rtc_time *time)
1302 {
1303         u32 seconds = starfire_get_time();
1304
1305         to_tm(seconds, time);
1306         time->tm_year -= 1900;
1307         time->tm_mon -= 1;
1308 }
1309
1310 static int starfire_set_rtc_time(struct rtc_time *time)
1311 {
1312         u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1313                              time->tm_mday, time->tm_hour,
1314                              time->tm_min, time->tm_sec);
1315
1316         return starfire_set_time(seconds);
1317 }
1318
1319 static void hypervisor_get_rtc_time(struct rtc_time *time)
1320 {
1321         u32 seconds = hypervisor_get_time();
1322
1323         to_tm(seconds, time);
1324         time->tm_year -= 1900;
1325         time->tm_mon -= 1;
1326 }
1327
1328 static int hypervisor_set_rtc_time(struct rtc_time *time)
1329 {
1330         u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1331                              time->tm_mday, time->tm_hour,
1332                              time->tm_min, time->tm_sec);
1333
1334         return hypervisor_set_time(seconds);
1335 }
1336
1337 #ifdef CONFIG_PCI
1338 static void bq4802_get_rtc_time(struct rtc_time *time)
1339 {
1340         unsigned char val = readb(bq4802_regs + 0x0e);
1341         unsigned int century;
1342
1343         writeb(val | 0x08, bq4802_regs + 0x0e);
1344
1345         time->tm_sec = readb(bq4802_regs + 0x00);
1346         time->tm_min = readb(bq4802_regs + 0x02);
1347         time->tm_hour = readb(bq4802_regs + 0x04);
1348         time->tm_mday = readb(bq4802_regs + 0x06);
1349         time->tm_mon = readb(bq4802_regs + 0x09);
1350         time->tm_year = readb(bq4802_regs + 0x0a);
1351         time->tm_wday = readb(bq4802_regs + 0x08);
1352         century = readb(bq4802_regs + 0x0f);
1353
1354         writeb(val, bq4802_regs + 0x0e);
1355
1356         BCD_TO_BIN(time->tm_sec);
1357         BCD_TO_BIN(time->tm_min);
1358         BCD_TO_BIN(time->tm_hour);
1359         BCD_TO_BIN(time->tm_mday);
1360         BCD_TO_BIN(time->tm_mon);
1361         BCD_TO_BIN(time->tm_year);
1362         BCD_TO_BIN(time->tm_wday);
1363         BCD_TO_BIN(century);
1364
1365         time->tm_year += (century * 100);
1366         time->tm_year -= 1900;
1367
1368         time->tm_mon--;
1369 }
1370
1371 static int bq4802_set_rtc_time(struct rtc_time *time)
1372 {
1373         unsigned char val = readb(bq4802_regs + 0x0e);
1374         unsigned char sec, min, hrs, day, mon, yrs, century;
1375         unsigned int year;
1376
1377         year = time->tm_year + 1900;
1378         century = year / 100;
1379         yrs = year % 100;
1380
1381         mon = time->tm_mon + 1;   /* tm_mon starts at zero */
1382         day = time->tm_mday;
1383         hrs = time->tm_hour;
1384         min = time->tm_min;
1385         sec = time->tm_sec;
1386
1387         BIN_TO_BCD(sec);
1388         BIN_TO_BCD(min);
1389         BIN_TO_BCD(hrs);
1390         BIN_TO_BCD(day);
1391         BIN_TO_BCD(mon);
1392         BIN_TO_BCD(yrs);
1393         BIN_TO_BCD(century);
1394
1395         writeb(val | 0x08, bq4802_regs + 0x0e);
1396
1397         writeb(sec, bq4802_regs + 0x00);
1398         writeb(min, bq4802_regs + 0x02);
1399         writeb(hrs, bq4802_regs + 0x04);
1400         writeb(day, bq4802_regs + 0x06);
1401         writeb(mon, bq4802_regs + 0x09);
1402         writeb(yrs, bq4802_regs + 0x0a);
1403         writeb(century, bq4802_regs + 0x0f);
1404
1405         writeb(val, bq4802_regs + 0x0e);
1406
1407         return 0;
1408 }
1409
1410 static void cmos_get_rtc_time(struct rtc_time *rtc_tm)
1411 {
1412         unsigned char ctrl;
1413
1414         rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1415         rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1416         rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1417         rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1418         rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1419         rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1420         rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1421
1422         ctrl = CMOS_READ(RTC_CONTROL);
1423         if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1424                 BCD_TO_BIN(rtc_tm->tm_sec);
1425                 BCD_TO_BIN(rtc_tm->tm_min);
1426                 BCD_TO_BIN(rtc_tm->tm_hour);
1427                 BCD_TO_BIN(rtc_tm->tm_mday);
1428                 BCD_TO_BIN(rtc_tm->tm_mon);
1429                 BCD_TO_BIN(rtc_tm->tm_year);
1430                 BCD_TO_BIN(rtc_tm->tm_wday);
1431         }
1432
1433         if (rtc_tm->tm_year <= 69)
1434                 rtc_tm->tm_year += 100;
1435
1436         rtc_tm->tm_mon--;
1437 }
1438
1439 static int cmos_set_rtc_time(struct rtc_time *rtc_tm)
1440 {
1441         unsigned char mon, day, hrs, min, sec;
1442         unsigned char save_control, save_freq_select;
1443         unsigned int yrs;
1444
1445         yrs = rtc_tm->tm_year;
1446         mon = rtc_tm->tm_mon + 1;
1447         day = rtc_tm->tm_mday;
1448         hrs = rtc_tm->tm_hour;
1449         min = rtc_tm->tm_min;
1450         sec = rtc_tm->tm_sec;
1451
1452         if (yrs >= 100)
1453                 yrs -= 100;
1454
1455         if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1456                 BIN_TO_BCD(sec);
1457                 BIN_TO_BCD(min);
1458                 BIN_TO_BCD(hrs);
1459                 BIN_TO_BCD(day);
1460                 BIN_TO_BCD(mon);
1461                 BIN_TO_BCD(yrs);
1462         }
1463
1464         save_control = CMOS_READ(RTC_CONTROL);
1465         CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1466         save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
1467         CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1468
1469         CMOS_WRITE(yrs, RTC_YEAR);
1470         CMOS_WRITE(mon, RTC_MONTH);
1471         CMOS_WRITE(day, RTC_DAY_OF_MONTH);
1472         CMOS_WRITE(hrs, RTC_HOURS);
1473         CMOS_WRITE(min, RTC_MINUTES);
1474         CMOS_WRITE(sec, RTC_SECONDS);
1475
1476         CMOS_WRITE(save_control, RTC_CONTROL);
1477         CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1478
1479         return 0;
1480 }
1481 #endif /* CONFIG_PCI */
1482
1483 static void mostek_get_rtc_time(struct rtc_time *rtc_tm)
1484 {
1485         void __iomem *regs = mstk48t02_regs;
1486         u8 tmp;
1487
1488         spin_lock_irq(&mostek_lock);
1489
1490         tmp = mostek_read(regs + MOSTEK_CREG);
1491         tmp |= MSTK_CREG_READ;
1492         mostek_write(regs + MOSTEK_CREG, tmp);
1493
1494         rtc_tm->tm_sec = MSTK_REG_SEC(regs);
1495         rtc_tm->tm_min = MSTK_REG_MIN(regs);
1496         rtc_tm->tm_hour = MSTK_REG_HOUR(regs);
1497         rtc_tm->tm_mday = MSTK_REG_DOM(regs);
1498         rtc_tm->tm_mon = MSTK_REG_MONTH(regs);
1499         rtc_tm->tm_year = MSTK_CVT_YEAR( MSTK_REG_YEAR(regs) );
1500         rtc_tm->tm_wday = MSTK_REG_DOW(regs);
1501
1502         tmp = mostek_read(regs + MOSTEK_CREG);
1503         tmp &= ~MSTK_CREG_READ;
1504         mostek_write(regs + MOSTEK_CREG, tmp);
1505
1506         spin_unlock_irq(&mostek_lock);
1507
1508         rtc_tm->tm_mon--;
1509         rtc_tm->tm_wday--;
1510         rtc_tm->tm_year -= 1900;
1511 }
1512
1513 static int mostek_set_rtc_time(struct rtc_time *rtc_tm)
1514 {
1515         unsigned char mon, day, hrs, min, sec, wday;
1516         void __iomem *regs = mstk48t02_regs;
1517         unsigned int yrs;
1518         u8 tmp;
1519
1520         yrs = rtc_tm->tm_year + 1900;
1521         mon = rtc_tm->tm_mon + 1;
1522         day = rtc_tm->tm_mday;
1523         wday = rtc_tm->tm_wday + 1;
1524         hrs = rtc_tm->tm_hour;
1525         min = rtc_tm->tm_min;
1526         sec = rtc_tm->tm_sec;
1527
1528         spin_lock_irq(&mostek_lock);
1529
1530         tmp = mostek_read(regs + MOSTEK_CREG);
1531         tmp |= MSTK_CREG_WRITE;
1532         mostek_write(regs + MOSTEK_CREG, tmp);
1533
1534         MSTK_SET_REG_SEC(regs, sec);
1535         MSTK_SET_REG_MIN(regs, min);
1536         MSTK_SET_REG_HOUR(regs, hrs);
1537         MSTK_SET_REG_DOW(regs, wday);
1538         MSTK_SET_REG_DOM(regs, day);
1539         MSTK_SET_REG_MONTH(regs, mon);
1540         MSTK_SET_REG_YEAR(regs, yrs - MSTK_YEAR_ZERO);
1541
1542         tmp = mostek_read(regs + MOSTEK_CREG);
1543         tmp &= ~MSTK_CREG_WRITE;
1544         mostek_write(regs + MOSTEK_CREG, tmp);
1545
1546         spin_unlock_irq(&mostek_lock);
1547
1548         return 0;
1549 }
1550
1551 struct mini_rtc_ops {
1552         void (*get_rtc_time)(struct rtc_time *);
1553         int (*set_rtc_time)(struct rtc_time *);
1554 };
1555
1556 static struct mini_rtc_ops starfire_rtc_ops = {
1557         .get_rtc_time = starfire_get_rtc_time,
1558         .set_rtc_time = starfire_set_rtc_time,
1559 };
1560
1561 static struct mini_rtc_ops hypervisor_rtc_ops = {
1562         .get_rtc_time = hypervisor_get_rtc_time,
1563         .set_rtc_time = hypervisor_set_rtc_time,
1564 };
1565
1566 #ifdef CONFIG_PCI
1567 static struct mini_rtc_ops bq4802_rtc_ops = {
1568         .get_rtc_time = bq4802_get_rtc_time,
1569         .set_rtc_time = bq4802_set_rtc_time,
1570 };
1571
1572 static struct mini_rtc_ops cmos_rtc_ops = {
1573         .get_rtc_time = cmos_get_rtc_time,
1574         .set_rtc_time = cmos_set_rtc_time,
1575 };
1576 #endif /* CONFIG_PCI */
1577
1578 static struct mini_rtc_ops mostek_rtc_ops = {
1579         .get_rtc_time = mostek_get_rtc_time,
1580         .set_rtc_time = mostek_set_rtc_time,
1581 };
1582
1583 static struct mini_rtc_ops *mini_rtc_ops;
1584
1585 static inline void mini_get_rtc_time(struct rtc_time *time)
1586 {
1587         unsigned long flags;
1588
1589         spin_lock_irqsave(&rtc_lock, flags);
1590         mini_rtc_ops->get_rtc_time(time);
1591         spin_unlock_irqrestore(&rtc_lock, flags);
1592 }
1593
1594 static inline int mini_set_rtc_time(struct rtc_time *time)
1595 {
1596         unsigned long flags;
1597         int err;
1598
1599         spin_lock_irqsave(&rtc_lock, flags);
1600         err = mini_rtc_ops->set_rtc_time(time);
1601         spin_unlock_irqrestore(&rtc_lock, flags);
1602
1603         return err;
1604 }
1605
1606 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1607                           unsigned int cmd, unsigned long arg)
1608 {
1609         struct rtc_time wtime;
1610         void __user *argp = (void __user *)arg;
1611
1612         switch (cmd) {
1613
1614         case RTC_PLL_GET:
1615                 return -EINVAL;
1616
1617         case RTC_PLL_SET:
1618                 return -EINVAL;
1619
1620         case RTC_UIE_OFF:       /* disable ints from RTC updates.       */
1621                 return 0;
1622
1623         case RTC_UIE_ON:        /* enable ints for RTC updates. */
1624                 return -EINVAL;
1625
1626         case RTC_RD_TIME:       /* Read the time/date from RTC  */
1627                 /* this doesn't get week-day, who cares */
1628                 memset(&wtime, 0, sizeof(wtime));
1629                 mini_get_rtc_time(&wtime);
1630
1631                 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1632
1633         case RTC_SET_TIME:      /* Set the RTC */
1634             {
1635                 int year, days;
1636
1637                 if (!capable(CAP_SYS_TIME))
1638                         return -EACCES;
1639
1640                 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1641                         return -EFAULT;
1642
1643                 year = wtime.tm_year + 1900;
1644                 days = month_days[wtime.tm_mon] +
1645                        ((wtime.tm_mon == 1) && leapyear(year));
1646
1647                 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
1648                     (wtime.tm_mday < 1))
1649                         return -EINVAL;
1650
1651                 if (wtime.tm_mday < 0 || wtime.tm_mday > days)
1652                         return -EINVAL;
1653
1654                 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1655                     wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1656                     wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1657                         return -EINVAL;
1658
1659                 return mini_set_rtc_time(&wtime);
1660             }
1661         }
1662
1663         return -EINVAL;
1664 }
1665
1666 static int mini_rtc_open(struct inode *inode, struct file *file)
1667 {
1668         lock_kernel();
1669         if (mini_rtc_status & RTC_IS_OPEN) {
1670                 unlock_kernel();
1671                 return -EBUSY;
1672         }
1673
1674         mini_rtc_status |= RTC_IS_OPEN;
1675         unlock_kernel();
1676
1677         return 0;
1678 }
1679
1680 static int mini_rtc_release(struct inode *inode, struct file *file)
1681 {
1682         mini_rtc_status &= ~RTC_IS_OPEN;
1683         return 0;
1684 }
1685
1686
1687 static const struct file_operations mini_rtc_fops = {
1688         .owner          = THIS_MODULE,
1689         .ioctl          = mini_rtc_ioctl,
1690         .open           = mini_rtc_open,
1691         .release        = mini_rtc_release,
1692 };
1693
1694 static struct miscdevice rtc_mini_dev =
1695 {
1696         .minor          = RTC_MINOR,
1697         .name           = "rtc",
1698         .fops           = &mini_rtc_fops,
1699 };
1700
1701 static int __init rtc_mini_init(void)
1702 {
1703         int retval;
1704
1705         if (tlb_type == hypervisor)
1706                 mini_rtc_ops = &hypervisor_rtc_ops;
1707         else if (this_is_starfire)
1708                 mini_rtc_ops = &starfire_rtc_ops;
1709 #ifdef CONFIG_PCI
1710         else if (bq4802_regs)
1711                 mini_rtc_ops = &bq4802_rtc_ops;
1712         else if (ds1287_regs)
1713                 mini_rtc_ops = &cmos_rtc_ops;
1714 #endif /* CONFIG_PCI */
1715         else if (mstk48t02_regs)
1716                 mini_rtc_ops = &mostek_rtc_ops;
1717         else
1718                 return -ENODEV;
1719
1720         printk(KERN_INFO "Mini RTC Driver\n");
1721
1722         retval = misc_register(&rtc_mini_dev);
1723         if (retval < 0)
1724                 return retval;
1725
1726         return 0;
1727 }
1728
1729 static void __exit rtc_mini_exit(void)
1730 {
1731         misc_deregister(&rtc_mini_dev);
1732 }
1733
1734 int __devinit read_current_timer(unsigned long *timer_val)
1735 {
1736         *timer_val = tick_ops->get_tick();
1737         return 0;
1738 }
1739
1740 module_init(rtc_mini_init);
1741 module_exit(rtc_mini_exit);