2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
31 static struct kmem_cache *bio_slab __read_mostly;
33 mempool_t *bio_split_pool __read_mostly;
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
41 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
42 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
51 struct bio_set *fs_bio_set;
53 unsigned int bvec_nr_vecs(unsigned short idx)
55 return bvec_slabs[idx].nr_vecs;
58 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
63 * see comment near bvec_array define!
66 case 1 : *idx = 0; break;
67 case 2 ... 4: *idx = 1; break;
68 case 5 ... 16: *idx = 2; break;
69 case 17 ... 64: *idx = 3; break;
70 case 65 ... 128: *idx = 4; break;
71 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
76 * idx now points to the pool we want to allocate from
79 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
81 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
86 void bio_free(struct bio *bio, struct bio_set *bio_set)
89 const int pool_idx = BIO_POOL_IDX(bio);
91 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
93 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
96 if (bio_integrity(bio))
97 bio_integrity_free(bio, bio_set);
99 mempool_free(bio, bio_set->bio_pool);
103 * default destructor for a bio allocated with bio_alloc_bioset()
105 static void bio_fs_destructor(struct bio *bio)
107 bio_free(bio, fs_bio_set);
110 void bio_init(struct bio *bio)
112 memset(bio, 0, sizeof(*bio));
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 atomic_set(&bio->bi_cnt, 1);
118 * bio_alloc_bioset - allocate a bio for I/O
119 * @gfp_mask: the GFP_ mask given to the slab allocator
120 * @nr_iovecs: number of iovecs to pre-allocate
121 * @bs: the bio_set to allocate from
124 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
125 * If %__GFP_WAIT is set then we will block on the internal pool waiting
126 * for a &struct bio to become free.
128 * allocate bio and iovecs from the memory pools specified by the
131 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
133 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
136 struct bio_vec *bvl = NULL;
139 if (likely(nr_iovecs)) {
140 unsigned long uninitialized_var(idx);
142 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
143 if (unlikely(!bvl)) {
144 mempool_free(bio, bs->bio_pool);
148 bio->bi_flags |= idx << BIO_POOL_OFFSET;
149 bio->bi_max_vecs = bvec_nr_vecs(idx);
151 bio->bi_io_vec = bvl;
157 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
159 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
162 bio->bi_destructor = bio_fs_destructor;
167 void zero_fill_bio(struct bio *bio)
173 bio_for_each_segment(bv, bio, i) {
174 char *data = bvec_kmap_irq(bv, &flags);
175 memset(data, 0, bv->bv_len);
176 flush_dcache_page(bv->bv_page);
177 bvec_kunmap_irq(data, &flags);
180 EXPORT_SYMBOL(zero_fill_bio);
183 * bio_put - release a reference to a bio
184 * @bio: bio to release reference to
187 * Put a reference to a &struct bio, either one you have gotten with
188 * bio_alloc or bio_get. The last put of a bio will free it.
190 void bio_put(struct bio *bio)
192 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
197 if (atomic_dec_and_test(&bio->bi_cnt)) {
199 bio->bi_destructor(bio);
203 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
205 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
206 blk_recount_segments(q, bio);
208 return bio->bi_phys_segments;
211 inline int bio_hw_segments(struct request_queue *q, struct bio *bio)
213 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
214 blk_recount_segments(q, bio);
216 return bio->bi_hw_segments;
220 * __bio_clone - clone a bio
221 * @bio: destination bio
222 * @bio_src: bio to clone
224 * Clone a &bio. Caller will own the returned bio, but not
225 * the actual data it points to. Reference count of returned
228 void __bio_clone(struct bio *bio, struct bio *bio_src)
230 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
231 bio_src->bi_max_vecs * sizeof(struct bio_vec));
234 * most users will be overriding ->bi_bdev with a new target,
235 * so we don't set nor calculate new physical/hw segment counts here
237 bio->bi_sector = bio_src->bi_sector;
238 bio->bi_bdev = bio_src->bi_bdev;
239 bio->bi_flags |= 1 << BIO_CLONED;
240 bio->bi_rw = bio_src->bi_rw;
241 bio->bi_vcnt = bio_src->bi_vcnt;
242 bio->bi_size = bio_src->bi_size;
243 bio->bi_idx = bio_src->bi_idx;
247 * bio_clone - clone a bio
249 * @gfp_mask: allocation priority
251 * Like __bio_clone, only also allocates the returned bio
253 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
255 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
260 b->bi_destructor = bio_fs_destructor;
263 if (bio_integrity(bio)) {
266 ret = bio_integrity_clone(b, bio, fs_bio_set);
276 * bio_get_nr_vecs - return approx number of vecs
279 * Return the approximate number of pages we can send to this target.
280 * There's no guarantee that you will be able to fit this number of pages
281 * into a bio, it does not account for dynamic restrictions that vary
284 int bio_get_nr_vecs(struct block_device *bdev)
286 struct request_queue *q = bdev_get_queue(bdev);
289 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
290 if (nr_pages > q->max_phys_segments)
291 nr_pages = q->max_phys_segments;
292 if (nr_pages > q->max_hw_segments)
293 nr_pages = q->max_hw_segments;
298 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
299 *page, unsigned int len, unsigned int offset,
300 unsigned short max_sectors)
302 int retried_segments = 0;
303 struct bio_vec *bvec;
306 * cloned bio must not modify vec list
308 if (unlikely(bio_flagged(bio, BIO_CLONED)))
311 if (((bio->bi_size + len) >> 9) > max_sectors)
315 * For filesystems with a blocksize smaller than the pagesize
316 * we will often be called with the same page as last time and
317 * a consecutive offset. Optimize this special case.
319 if (bio->bi_vcnt > 0) {
320 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
322 if (page == prev->bv_page &&
323 offset == prev->bv_offset + prev->bv_len) {
326 if (q->merge_bvec_fn) {
327 struct bvec_merge_data bvm = {
328 .bi_bdev = bio->bi_bdev,
329 .bi_sector = bio->bi_sector,
330 .bi_size = bio->bi_size,
334 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
344 if (bio->bi_vcnt >= bio->bi_max_vecs)
348 * we might lose a segment or two here, but rather that than
349 * make this too complex.
352 while (bio->bi_phys_segments >= q->max_phys_segments
353 || bio->bi_hw_segments >= q->max_hw_segments) {
355 if (retried_segments)
358 retried_segments = 1;
359 blk_recount_segments(q, bio);
363 * setup the new entry, we might clear it again later if we
364 * cannot add the page
366 bvec = &bio->bi_io_vec[bio->bi_vcnt];
367 bvec->bv_page = page;
369 bvec->bv_offset = offset;
372 * if queue has other restrictions (eg varying max sector size
373 * depending on offset), it can specify a merge_bvec_fn in the
374 * queue to get further control
376 if (q->merge_bvec_fn) {
377 struct bvec_merge_data bvm = {
378 .bi_bdev = bio->bi_bdev,
379 .bi_sector = bio->bi_sector,
380 .bi_size = bio->bi_size,
385 * merge_bvec_fn() returns number of bytes it can accept
388 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
389 bvec->bv_page = NULL;
396 /* If we may be able to merge these biovecs, force a recount */
397 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
398 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
401 bio->bi_phys_segments++;
402 bio->bi_hw_segments++;
409 * bio_add_pc_page - attempt to add page to bio
410 * @q: the target queue
411 * @bio: destination bio
413 * @len: vec entry length
414 * @offset: vec entry offset
416 * Attempt to add a page to the bio_vec maplist. This can fail for a
417 * number of reasons, such as the bio being full or target block
418 * device limitations. The target block device must allow bio's
419 * smaller than PAGE_SIZE, so it is always possible to add a single
420 * page to an empty bio. This should only be used by REQ_PC bios.
422 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
423 unsigned int len, unsigned int offset)
425 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
429 * bio_add_page - attempt to add page to bio
430 * @bio: destination bio
432 * @len: vec entry length
433 * @offset: vec entry offset
435 * Attempt to add a page to the bio_vec maplist. This can fail for a
436 * number of reasons, such as the bio being full or target block
437 * device limitations. The target block device must allow bio's
438 * smaller than PAGE_SIZE, so it is always possible to add a single
439 * page to an empty bio.
441 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
444 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
445 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
448 struct bio_map_data {
449 struct bio_vec *iovecs;
451 struct sg_iovec *sgvecs;
454 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
455 struct sg_iovec *iov, int iov_count)
457 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
458 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
459 bmd->nr_sgvecs = iov_count;
460 bio->bi_private = bmd;
463 static void bio_free_map_data(struct bio_map_data *bmd)
470 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
473 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
478 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
484 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
493 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
494 struct sg_iovec *iov, int iov_count, int uncopy)
497 struct bio_vec *bvec;
499 unsigned int iov_off = 0;
500 int read = bio_data_dir(bio) == READ;
502 __bio_for_each_segment(bvec, bio, i, 0) {
503 char *bv_addr = page_address(bvec->bv_page);
504 unsigned int bv_len = iovecs[i].bv_len;
506 while (bv_len && iov_idx < iov_count) {
510 bytes = min_t(unsigned int,
511 iov[iov_idx].iov_len - iov_off, bv_len);
512 iov_addr = iov[iov_idx].iov_base + iov_off;
515 if (!read && !uncopy)
516 ret = copy_from_user(bv_addr, iov_addr,
519 ret = copy_to_user(iov_addr, bv_addr,
531 if (iov[iov_idx].iov_len == iov_off) {
538 __free_page(bvec->bv_page);
545 * bio_uncopy_user - finish previously mapped bio
546 * @bio: bio being terminated
548 * Free pages allocated from bio_copy_user() and write back data
549 * to user space in case of a read.
551 int bio_uncopy_user(struct bio *bio)
553 struct bio_map_data *bmd = bio->bi_private;
556 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, bmd->nr_sgvecs, 1);
558 bio_free_map_data(bmd);
564 * bio_copy_user_iov - copy user data to bio
565 * @q: destination block queue
567 * @iov_count: number of elements in the iovec
568 * @write_to_vm: bool indicating writing to pages or not
570 * Prepares and returns a bio for indirect user io, bouncing data
571 * to/from kernel pages as necessary. Must be paired with
572 * call bio_uncopy_user() on io completion.
574 struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov,
575 int iov_count, int write_to_vm)
577 struct bio_map_data *bmd;
578 struct bio_vec *bvec;
583 unsigned int len = 0;
585 for (i = 0; i < iov_count; i++) {
590 uaddr = (unsigned long)iov[i].iov_base;
591 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
592 start = uaddr >> PAGE_SHIFT;
594 nr_pages += end - start;
595 len += iov[i].iov_len;
598 bmd = bio_alloc_map_data(nr_pages, iov_count, GFP_KERNEL);
600 return ERR_PTR(-ENOMEM);
603 bio = bio_alloc(GFP_KERNEL, nr_pages);
607 bio->bi_rw |= (!write_to_vm << BIO_RW);
611 unsigned int bytes = PAGE_SIZE;
616 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
622 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
635 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0);
640 bio_set_map_data(bmd, bio, iov, iov_count);
643 bio_for_each_segment(bvec, bio, i)
644 __free_page(bvec->bv_page);
648 bio_free_map_data(bmd);
653 * bio_copy_user - copy user data to bio
654 * @q: destination block queue
655 * @uaddr: start of user address
656 * @len: length in bytes
657 * @write_to_vm: bool indicating writing to pages or not
659 * Prepares and returns a bio for indirect user io, bouncing data
660 * to/from kernel pages as necessary. Must be paired with
661 * call bio_uncopy_user() on io completion.
663 struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
664 unsigned int len, int write_to_vm)
668 iov.iov_base = (void __user *)uaddr;
671 return bio_copy_user_iov(q, &iov, 1, write_to_vm);
674 static struct bio *__bio_map_user_iov(struct request_queue *q,
675 struct block_device *bdev,
676 struct sg_iovec *iov, int iov_count,
686 for (i = 0; i < iov_count; i++) {
687 unsigned long uaddr = (unsigned long)iov[i].iov_base;
688 unsigned long len = iov[i].iov_len;
689 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
690 unsigned long start = uaddr >> PAGE_SHIFT;
692 nr_pages += end - start;
694 * buffer must be aligned to at least hardsector size for now
696 if (uaddr & queue_dma_alignment(q))
697 return ERR_PTR(-EINVAL);
701 return ERR_PTR(-EINVAL);
703 bio = bio_alloc(GFP_KERNEL, nr_pages);
705 return ERR_PTR(-ENOMEM);
708 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
712 for (i = 0; i < iov_count; i++) {
713 unsigned long uaddr = (unsigned long)iov[i].iov_base;
714 unsigned long len = iov[i].iov_len;
715 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
716 unsigned long start = uaddr >> PAGE_SHIFT;
717 const int local_nr_pages = end - start;
718 const int page_limit = cur_page + local_nr_pages;
720 ret = get_user_pages_fast(uaddr, local_nr_pages,
721 write_to_vm, &pages[cur_page]);
722 if (ret < local_nr_pages) {
727 offset = uaddr & ~PAGE_MASK;
728 for (j = cur_page; j < page_limit; j++) {
729 unsigned int bytes = PAGE_SIZE - offset;
740 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
750 * release the pages we didn't map into the bio, if any
752 while (j < page_limit)
753 page_cache_release(pages[j++]);
759 * set data direction, and check if mapped pages need bouncing
762 bio->bi_rw |= (1 << BIO_RW);
765 bio->bi_flags |= (1 << BIO_USER_MAPPED);
769 for (i = 0; i < nr_pages; i++) {
772 page_cache_release(pages[i]);
781 * bio_map_user - map user address into bio
782 * @q: the struct request_queue for the bio
783 * @bdev: destination block device
784 * @uaddr: start of user address
785 * @len: length in bytes
786 * @write_to_vm: bool indicating writing to pages or not
788 * Map the user space address into a bio suitable for io to a block
789 * device. Returns an error pointer in case of error.
791 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
792 unsigned long uaddr, unsigned int len, int write_to_vm)
796 iov.iov_base = (void __user *)uaddr;
799 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
803 * bio_map_user_iov - map user sg_iovec table into bio
804 * @q: the struct request_queue for the bio
805 * @bdev: destination block device
807 * @iov_count: number of elements in the iovec
808 * @write_to_vm: bool indicating writing to pages or not
810 * Map the user space address into a bio suitable for io to a block
811 * device. Returns an error pointer in case of error.
813 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
814 struct sg_iovec *iov, int iov_count,
819 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
825 * subtle -- if __bio_map_user() ended up bouncing a bio,
826 * it would normally disappear when its bi_end_io is run.
827 * however, we need it for the unmap, so grab an extra
835 static void __bio_unmap_user(struct bio *bio)
837 struct bio_vec *bvec;
841 * make sure we dirty pages we wrote to
843 __bio_for_each_segment(bvec, bio, i, 0) {
844 if (bio_data_dir(bio) == READ)
845 set_page_dirty_lock(bvec->bv_page);
847 page_cache_release(bvec->bv_page);
854 * bio_unmap_user - unmap a bio
855 * @bio: the bio being unmapped
857 * Unmap a bio previously mapped by bio_map_user(). Must be called with
860 * bio_unmap_user() may sleep.
862 void bio_unmap_user(struct bio *bio)
864 __bio_unmap_user(bio);
868 static void bio_map_kern_endio(struct bio *bio, int err)
874 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
875 unsigned int len, gfp_t gfp_mask)
877 unsigned long kaddr = (unsigned long)data;
878 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
879 unsigned long start = kaddr >> PAGE_SHIFT;
880 const int nr_pages = end - start;
884 bio = bio_alloc(gfp_mask, nr_pages);
886 return ERR_PTR(-ENOMEM);
888 offset = offset_in_page(kaddr);
889 for (i = 0; i < nr_pages; i++) {
890 unsigned int bytes = PAGE_SIZE - offset;
898 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
907 bio->bi_end_io = bio_map_kern_endio;
912 * bio_map_kern - map kernel address into bio
913 * @q: the struct request_queue for the bio
914 * @data: pointer to buffer to map
915 * @len: length in bytes
916 * @gfp_mask: allocation flags for bio allocation
918 * Map the kernel address into a bio suitable for io to a block
919 * device. Returns an error pointer in case of error.
921 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
926 bio = __bio_map_kern(q, data, len, gfp_mask);
930 if (bio->bi_size == len)
934 * Don't support partial mappings.
937 return ERR_PTR(-EINVAL);
940 static void bio_copy_kern_endio(struct bio *bio, int err)
942 struct bio_vec *bvec;
943 const int read = bio_data_dir(bio) == READ;
944 struct bio_map_data *bmd = bio->bi_private;
946 char *p = bmd->sgvecs[0].iov_base;
948 __bio_for_each_segment(bvec, bio, i, 0) {
949 char *addr = page_address(bvec->bv_page);
950 int len = bmd->iovecs[i].bv_len;
953 memcpy(p, addr, len);
955 __free_page(bvec->bv_page);
959 bio_free_map_data(bmd);
964 * bio_copy_kern - copy kernel address into bio
965 * @q: the struct request_queue for the bio
966 * @data: pointer to buffer to copy
967 * @len: length in bytes
968 * @gfp_mask: allocation flags for bio and page allocation
969 * @reading: data direction is READ
971 * copy the kernel address into a bio suitable for io to a block
972 * device. Returns an error pointer in case of error.
974 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
975 gfp_t gfp_mask, int reading)
977 unsigned long kaddr = (unsigned long)data;
978 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
979 unsigned long start = kaddr >> PAGE_SHIFT;
980 const int nr_pages = end - start;
982 struct bio_vec *bvec;
983 struct bio_map_data *bmd;
990 bmd = bio_alloc_map_data(nr_pages, 1, gfp_mask);
992 return ERR_PTR(-ENOMEM);
995 bio = bio_alloc(gfp_mask, nr_pages);
1001 unsigned int bytes = PAGE_SIZE;
1006 page = alloc_page(q->bounce_gfp | gfp_mask);
1012 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
1023 bio_for_each_segment(bvec, bio, i) {
1024 char *addr = page_address(bvec->bv_page);
1026 memcpy(addr, p, bvec->bv_len);
1031 bio->bi_private = bmd;
1032 bio->bi_end_io = bio_copy_kern_endio;
1034 bio_set_map_data(bmd, bio, &iov, 1);
1037 bio_for_each_segment(bvec, bio, i)
1038 __free_page(bvec->bv_page);
1042 bio_free_map_data(bmd);
1044 return ERR_PTR(ret);
1048 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1049 * for performing direct-IO in BIOs.
1051 * The problem is that we cannot run set_page_dirty() from interrupt context
1052 * because the required locks are not interrupt-safe. So what we can do is to
1053 * mark the pages dirty _before_ performing IO. And in interrupt context,
1054 * check that the pages are still dirty. If so, fine. If not, redirty them
1055 * in process context.
1057 * We special-case compound pages here: normally this means reads into hugetlb
1058 * pages. The logic in here doesn't really work right for compound pages
1059 * because the VM does not uniformly chase down the head page in all cases.
1060 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1061 * handle them at all. So we skip compound pages here at an early stage.
1063 * Note that this code is very hard to test under normal circumstances because
1064 * direct-io pins the pages with get_user_pages(). This makes
1065 * is_page_cache_freeable return false, and the VM will not clean the pages.
1066 * But other code (eg, pdflush) could clean the pages if they are mapped
1069 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1070 * deferred bio dirtying paths.
1074 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1076 void bio_set_pages_dirty(struct bio *bio)
1078 struct bio_vec *bvec = bio->bi_io_vec;
1081 for (i = 0; i < bio->bi_vcnt; i++) {
1082 struct page *page = bvec[i].bv_page;
1084 if (page && !PageCompound(page))
1085 set_page_dirty_lock(page);
1089 static void bio_release_pages(struct bio *bio)
1091 struct bio_vec *bvec = bio->bi_io_vec;
1094 for (i = 0; i < bio->bi_vcnt; i++) {
1095 struct page *page = bvec[i].bv_page;
1103 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1104 * If they are, then fine. If, however, some pages are clean then they must
1105 * have been written out during the direct-IO read. So we take another ref on
1106 * the BIO and the offending pages and re-dirty the pages in process context.
1108 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1109 * here on. It will run one page_cache_release() against each page and will
1110 * run one bio_put() against the BIO.
1113 static void bio_dirty_fn(struct work_struct *work);
1115 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1116 static DEFINE_SPINLOCK(bio_dirty_lock);
1117 static struct bio *bio_dirty_list;
1120 * This runs in process context
1122 static void bio_dirty_fn(struct work_struct *work)
1124 unsigned long flags;
1127 spin_lock_irqsave(&bio_dirty_lock, flags);
1128 bio = bio_dirty_list;
1129 bio_dirty_list = NULL;
1130 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1133 struct bio *next = bio->bi_private;
1135 bio_set_pages_dirty(bio);
1136 bio_release_pages(bio);
1142 void bio_check_pages_dirty(struct bio *bio)
1144 struct bio_vec *bvec = bio->bi_io_vec;
1145 int nr_clean_pages = 0;
1148 for (i = 0; i < bio->bi_vcnt; i++) {
1149 struct page *page = bvec[i].bv_page;
1151 if (PageDirty(page) || PageCompound(page)) {
1152 page_cache_release(page);
1153 bvec[i].bv_page = NULL;
1159 if (nr_clean_pages) {
1160 unsigned long flags;
1162 spin_lock_irqsave(&bio_dirty_lock, flags);
1163 bio->bi_private = bio_dirty_list;
1164 bio_dirty_list = bio;
1165 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1166 schedule_work(&bio_dirty_work);
1173 * bio_endio - end I/O on a bio
1175 * @error: error, if any
1178 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1179 * preferred way to end I/O on a bio, it takes care of clearing
1180 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1181 * established -Exxxx (-EIO, for instance) error values in case
1182 * something went wrong. Noone should call bi_end_io() directly on a
1183 * bio unless they own it and thus know that it has an end_io
1186 void bio_endio(struct bio *bio, int error)
1189 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1190 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1194 bio->bi_end_io(bio, error);
1197 void bio_pair_release(struct bio_pair *bp)
1199 if (atomic_dec_and_test(&bp->cnt)) {
1200 struct bio *master = bp->bio1.bi_private;
1202 bio_endio(master, bp->error);
1203 mempool_free(bp, bp->bio2.bi_private);
1207 static void bio_pair_end_1(struct bio *bi, int err)
1209 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1214 bio_pair_release(bp);
1217 static void bio_pair_end_2(struct bio *bi, int err)
1219 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1224 bio_pair_release(bp);
1228 * split a bio - only worry about a bio with a single page
1231 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1233 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1238 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1239 bi->bi_sector + first_sectors);
1241 BUG_ON(bi->bi_vcnt != 1);
1242 BUG_ON(bi->bi_idx != 0);
1243 atomic_set(&bp->cnt, 3);
1247 bp->bio2.bi_sector += first_sectors;
1248 bp->bio2.bi_size -= first_sectors << 9;
1249 bp->bio1.bi_size = first_sectors << 9;
1251 bp->bv1 = bi->bi_io_vec[0];
1252 bp->bv2 = bi->bi_io_vec[0];
1253 bp->bv2.bv_offset += first_sectors << 9;
1254 bp->bv2.bv_len -= first_sectors << 9;
1255 bp->bv1.bv_len = first_sectors << 9;
1257 bp->bio1.bi_io_vec = &bp->bv1;
1258 bp->bio2.bi_io_vec = &bp->bv2;
1260 bp->bio1.bi_max_vecs = 1;
1261 bp->bio2.bi_max_vecs = 1;
1263 bp->bio1.bi_end_io = bio_pair_end_1;
1264 bp->bio2.bi_end_io = bio_pair_end_2;
1266 bp->bio1.bi_private = bi;
1267 bp->bio2.bi_private = pool;
1269 if (bio_integrity(bi))
1270 bio_integrity_split(bi, bp, first_sectors);
1277 * create memory pools for biovec's in a bio_set.
1278 * use the global biovec slabs created for general use.
1280 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1284 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1285 struct biovec_slab *bp = bvec_slabs + i;
1286 mempool_t **bvp = bs->bvec_pools + i;
1288 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1295 static void biovec_free_pools(struct bio_set *bs)
1299 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1300 mempool_t *bvp = bs->bvec_pools[i];
1303 mempool_destroy(bvp);
1308 void bioset_free(struct bio_set *bs)
1311 mempool_destroy(bs->bio_pool);
1313 bioset_integrity_free(bs);
1314 biovec_free_pools(bs);
1319 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1321 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1326 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1330 if (bioset_integrity_create(bs, bio_pool_size))
1333 if (!biovec_create_pools(bs, bvec_pool_size))
1341 static void __init biovec_init_slabs(void)
1345 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1347 struct biovec_slab *bvs = bvec_slabs + i;
1349 size = bvs->nr_vecs * sizeof(struct bio_vec);
1350 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1351 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1355 static int __init init_bio(void)
1357 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1359 bio_integrity_init_slab();
1360 biovec_init_slabs();
1362 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1364 panic("bio: can't allocate bios\n");
1366 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1367 sizeof(struct bio_pair));
1368 if (!bio_split_pool)
1369 panic("bio: can't create split pool\n");
1374 subsys_initcall(init_bio);
1376 EXPORT_SYMBOL(bio_alloc);
1377 EXPORT_SYMBOL(bio_put);
1378 EXPORT_SYMBOL(bio_free);
1379 EXPORT_SYMBOL(bio_endio);
1380 EXPORT_SYMBOL(bio_init);
1381 EXPORT_SYMBOL(__bio_clone);
1382 EXPORT_SYMBOL(bio_clone);
1383 EXPORT_SYMBOL(bio_phys_segments);
1384 EXPORT_SYMBOL(bio_hw_segments);
1385 EXPORT_SYMBOL(bio_add_page);
1386 EXPORT_SYMBOL(bio_add_pc_page);
1387 EXPORT_SYMBOL(bio_get_nr_vecs);
1388 EXPORT_SYMBOL(bio_map_user);
1389 EXPORT_SYMBOL(bio_unmap_user);
1390 EXPORT_SYMBOL(bio_map_kern);
1391 EXPORT_SYMBOL(bio_copy_kern);
1392 EXPORT_SYMBOL(bio_pair_release);
1393 EXPORT_SYMBOL(bio_split);
1394 EXPORT_SYMBOL(bio_split_pool);
1395 EXPORT_SYMBOL(bio_copy_user);
1396 EXPORT_SYMBOL(bio_uncopy_user);
1397 EXPORT_SYMBOL(bioset_create);
1398 EXPORT_SYMBOL(bioset_free);
1399 EXPORT_SYMBOL(bio_alloc_bioset);