2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2005 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/pagemap.h>
23 #include <linux/buffer_head.h>
24 #include <linux/smp_lock.h>
25 #include <linux/quotaops.h>
26 #include <linux/mount.h>
40 * ntfs_test_inode - compare two (possibly fake) inodes for equality
41 * @vi: vfs inode which to test
42 * @na: ntfs attribute which is being tested with
44 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
45 * inode @vi for equality with the ntfs attribute @na.
47 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
48 * @na->name and @na->name_len are then ignored.
50 * Return 1 if the attributes match and 0 if not.
52 * NOTE: This function runs with the inode_lock spin lock held so it is not
55 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
59 if (vi->i_ino != na->mft_no)
62 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
63 if (likely(!NInoAttr(ni))) {
64 /* If not looking for a normal inode this is a mismatch. */
65 if (unlikely(na->type != AT_UNUSED))
68 /* A fake inode describing an attribute. */
69 if (ni->type != na->type)
71 if (ni->name_len != na->name_len)
73 if (na->name_len && memcmp(ni->name, na->name,
74 na->name_len * sizeof(ntfschar)))
82 * ntfs_init_locked_inode - initialize an inode
83 * @vi: vfs inode to initialize
84 * @na: ntfs attribute which to initialize @vi to
86 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
87 * order to enable ntfs_test_inode() to do its work.
89 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
90 * In that case, @na->name and @na->name_len should be set to NULL and 0,
91 * respectively. Although that is not strictly necessary as
92 * ntfs_read_inode_locked() will fill them in later.
94 * Return 0 on success and -errno on error.
96 * NOTE: This function runs with the inode_lock spin lock held so it is not
97 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
99 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
101 ntfs_inode *ni = NTFS_I(vi);
103 vi->i_ino = na->mft_no;
106 if (na->type == AT_INDEX_ALLOCATION)
107 NInoSetMstProtected(ni);
110 ni->name_len = na->name_len;
112 /* If initializing a normal inode, we are done. */
113 if (likely(na->type == AT_UNUSED)) {
115 BUG_ON(na->name_len);
119 /* It is a fake inode. */
123 * We have I30 global constant as an optimization as it is the name
124 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
125 * allocation but that is ok. And most attributes are unnamed anyway,
126 * thus the fraction of named attributes with name != I30 is actually
129 if (na->name_len && na->name != I30) {
133 i = na->name_len * sizeof(ntfschar);
134 ni->name = (ntfschar*)kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
137 memcpy(ni->name, na->name, i);
143 typedef int (*set_t)(struct inode *, void *);
144 static int ntfs_read_locked_inode(struct inode *vi);
145 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
146 static int ntfs_read_locked_index_inode(struct inode *base_vi,
150 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
151 * @sb: super block of mounted volume
152 * @mft_no: mft record number / inode number to obtain
154 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
155 * file or directory).
157 * If the inode is in the cache, it is just returned with an increased
158 * reference count. Otherwise, a new struct inode is allocated and initialized,
159 * and finally ntfs_read_locked_inode() is called to read in the inode and
160 * fill in the remainder of the inode structure.
162 * Return the struct inode on success. Check the return value with IS_ERR() and
163 * if true, the function failed and the error code is obtained from PTR_ERR().
165 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
176 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
177 (set_t)ntfs_init_locked_inode, &na);
179 return ERR_PTR(-ENOMEM);
183 /* If this is a freshly allocated inode, need to read it now. */
184 if (vi->i_state & I_NEW) {
185 err = ntfs_read_locked_inode(vi);
186 unlock_new_inode(vi);
189 * There is no point in keeping bad inodes around if the failure was
190 * due to ENOMEM. We want to be able to retry again later.
192 if (unlikely(err == -ENOMEM)) {
200 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
201 * @base_vi: vfs base inode containing the attribute
202 * @type: attribute type
203 * @name: Unicode name of the attribute (NULL if unnamed)
204 * @name_len: length of @name in Unicode characters (0 if unnamed)
206 * Obtain the (fake) struct inode corresponding to the attribute specified by
207 * @type, @name, and @name_len, which is present in the base mft record
208 * specified by the vfs inode @base_vi.
210 * If the attribute inode is in the cache, it is just returned with an
211 * increased reference count. Otherwise, a new struct inode is allocated and
212 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
213 * attribute and fill in the inode structure.
215 * Note, for index allocation attributes, you need to use ntfs_index_iget()
216 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
218 * Return the struct inode of the attribute inode on success. Check the return
219 * value with IS_ERR() and if true, the function failed and the error code is
220 * obtained from PTR_ERR().
222 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
223 ntfschar *name, u32 name_len)
229 /* Make sure no one calls ntfs_attr_iget() for indices. */
230 BUG_ON(type == AT_INDEX_ALLOCATION);
232 na.mft_no = base_vi->i_ino;
235 na.name_len = name_len;
237 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
238 (set_t)ntfs_init_locked_inode, &na);
240 return ERR_PTR(-ENOMEM);
244 /* If this is a freshly allocated inode, need to read it now. */
245 if (vi->i_state & I_NEW) {
246 err = ntfs_read_locked_attr_inode(base_vi, vi);
247 unlock_new_inode(vi);
250 * There is no point in keeping bad attribute inodes around. This also
251 * simplifies things in that we never need to check for bad attribute
262 * ntfs_index_iget - obtain a struct inode corresponding to an index
263 * @base_vi: vfs base inode containing the index related attributes
264 * @name: Unicode name of the index
265 * @name_len: length of @name in Unicode characters
267 * Obtain the (fake) struct inode corresponding to the index specified by @name
268 * and @name_len, which is present in the base mft record specified by the vfs
271 * If the index inode is in the cache, it is just returned with an increased
272 * reference count. Otherwise, a new struct inode is allocated and
273 * initialized, and finally ntfs_read_locked_index_inode() is called to read
274 * the index related attributes and fill in the inode structure.
276 * Return the struct inode of the index inode on success. Check the return
277 * value with IS_ERR() and if true, the function failed and the error code is
278 * obtained from PTR_ERR().
280 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
287 na.mft_no = base_vi->i_ino;
288 na.type = AT_INDEX_ALLOCATION;
290 na.name_len = name_len;
292 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
293 (set_t)ntfs_init_locked_inode, &na);
295 return ERR_PTR(-ENOMEM);
299 /* If this is a freshly allocated inode, need to read it now. */
300 if (vi->i_state & I_NEW) {
301 err = ntfs_read_locked_index_inode(base_vi, vi);
302 unlock_new_inode(vi);
305 * There is no point in keeping bad index inodes around. This also
306 * simplifies things in that we never need to check for bad index
316 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
320 ntfs_debug("Entering.");
321 ni = kmem_cache_alloc(ntfs_big_inode_cache, SLAB_NOFS);
322 if (likely(ni != NULL)) {
326 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
330 void ntfs_destroy_big_inode(struct inode *inode)
332 ntfs_inode *ni = NTFS_I(inode);
334 ntfs_debug("Entering.");
336 if (!atomic_dec_and_test(&ni->count))
338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
341 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
345 ntfs_debug("Entering.");
346 ni = kmem_cache_alloc(ntfs_inode_cache, SLAB_NOFS);
347 if (likely(ni != NULL)) {
351 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
355 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
357 ntfs_debug("Entering.");
359 if (!atomic_dec_and_test(&ni->count))
361 kmem_cache_free(ntfs_inode_cache, ni);
365 * __ntfs_init_inode - initialize ntfs specific part of an inode
366 * @sb: super block of mounted volume
367 * @ni: freshly allocated ntfs inode which to initialize
369 * Initialize an ntfs inode to defaults.
371 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
372 * untouched. Make sure to initialize them elsewhere.
374 * Return zero on success and -ENOMEM on error.
376 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
378 ntfs_debug("Entering.");
379 rwlock_init(&ni->size_lock);
380 ni->initialized_size = ni->allocated_size = 0;
382 atomic_set(&ni->count, 1);
383 ni->vol = NTFS_SB(sb);
384 ntfs_init_runlist(&ni->runlist);
385 init_MUTEX(&ni->mrec_lock);
388 ni->attr_list_size = 0;
389 ni->attr_list = NULL;
390 ntfs_init_runlist(&ni->attr_list_rl);
391 ni->itype.index.bmp_ino = NULL;
392 ni->itype.index.block_size = 0;
393 ni->itype.index.vcn_size = 0;
394 ni->itype.index.collation_rule = 0;
395 ni->itype.index.block_size_bits = 0;
396 ni->itype.index.vcn_size_bits = 0;
397 init_MUTEX(&ni->extent_lock);
399 ni->ext.base_ntfs_ino = NULL;
402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
411 ni->type = AT_UNUSED;
419 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
420 * @ctx: initialized attribute search context
422 * Search all file name attributes in the inode described by the attribute
423 * search context @ctx and check if any of the names are in the $Extend system
427 * 1: file is in $Extend directory
428 * 0: file is not in $Extend directory
429 * -errno: failed to determine if the file is in the $Extend directory
431 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
435 /* Restart search. */
436 ntfs_attr_reinit_search_ctx(ctx);
438 /* Get number of hard links. */
439 nr_links = le16_to_cpu(ctx->mrec->link_count);
441 /* Loop through all hard links. */
442 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
444 FILE_NAME_ATTR *file_name_attr;
445 ATTR_RECORD *attr = ctx->attr;
450 * Maximum sanity checking as we are called on an inode that
451 * we suspect might be corrupt.
453 p = (u8*)attr + le32_to_cpu(attr->length);
454 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
455 le32_to_cpu(ctx->mrec->bytes_in_use)) {
457 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
458 "attribute. You should run chkdsk.");
461 if (attr->non_resident) {
462 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
463 "name. You should run chkdsk.");
467 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
468 "invalid flags. You should run "
472 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
473 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
474 "name. You should run chkdsk.");
477 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
478 le16_to_cpu(attr->data.resident.value_offset));
479 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
480 if (p2 < (u8*)attr || p2 > p)
481 goto err_corrupt_attr;
482 /* This attribute is ok, but is it in the $Extend directory? */
483 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
484 return 1; /* YES, it's an extended system file. */
486 if (unlikely(err != -ENOENT))
488 if (unlikely(nr_links)) {
489 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
490 "doesn't match number of name attributes. You "
491 "should run chkdsk.");
494 return 0; /* NO, it is not an extended system file. */
498 * ntfs_read_locked_inode - read an inode from its device
501 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
502 * described by @vi into memory from the device.
504 * The only fields in @vi that we need to/can look at when the function is
505 * called are i_sb, pointing to the mounted device's super block, and i_ino,
506 * the number of the inode to load.
508 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
509 * for reading and sets up the necessary @vi fields as well as initializing
512 * Q: What locks are held when the function is called?
513 * A: i_state has I_LOCK set, hence the inode is locked, also
514 * i_count is set to 1, so it is not going to go away
515 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
516 * is allowed to write to them. We should of course be honouring them but
517 * we need to do that using the IS_* macros defined in include/linux/fs.h.
518 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520 * Return 0 on success and -errno on error. In the error case, the inode will
521 * have had make_bad_inode() executed on it.
523 static int ntfs_read_locked_inode(struct inode *vi)
525 ntfs_volume *vol = NTFS_SB(vi->i_sb);
529 STANDARD_INFORMATION *si;
530 ntfs_attr_search_ctx *ctx;
533 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
535 /* Setup the generic vfs inode parts now. */
537 /* This is the optimal IO size (for stat), not the fs block size. */
538 vi->i_blksize = PAGE_CACHE_SIZE;
540 * This is for checking whether an inode has changed w.r.t. a file so
541 * that the file can be updated if necessary (compare with f_version).
545 vi->i_uid = vol->uid;
546 vi->i_gid = vol->gid;
550 * Initialize the ntfs specific part of @vi special casing
551 * FILE_MFT which we need to do at mount time.
553 if (vi->i_ino != FILE_MFT)
554 ntfs_init_big_inode(vi);
557 m = map_mft_record(ni);
562 ctx = ntfs_attr_get_search_ctx(ni, m);
568 if (!(m->flags & MFT_RECORD_IN_USE)) {
569 ntfs_error(vi->i_sb, "Inode is not in use!");
572 if (m->base_mft_record) {
573 ntfs_error(vi->i_sb, "Inode is an extent inode!");
577 /* Transfer information from mft record into vfs and ntfs inodes. */
578 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
581 * FIXME: Keep in mind that link_count is two for files which have both
582 * a long file name and a short file name as separate entries, so if
583 * we are hiding short file names this will be too high. Either we need
584 * to account for the short file names by subtracting them or we need
585 * to make sure we delete files even though i_nlink is not zero which
586 * might be tricky due to vfs interactions. Need to think about this
587 * some more when implementing the unlink command.
589 vi->i_nlink = le16_to_cpu(m->link_count);
591 * FIXME: Reparse points can have the directory bit set even though
592 * they would be S_IFLNK. Need to deal with this further below when we
593 * implement reparse points / symbolic links but it will do for now.
594 * Also if not a directory, it could be something else, rather than
595 * a regular file. But again, will do for now.
597 /* Everyone gets all permissions. */
598 vi->i_mode |= S_IRWXUGO;
599 /* If read-only, noone gets write permissions. */
601 vi->i_mode &= ~S_IWUGO;
602 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
603 vi->i_mode |= S_IFDIR;
605 * Apply the directory permissions mask set in the mount
608 vi->i_mode &= ~vol->dmask;
609 /* Things break without this kludge! */
613 vi->i_mode |= S_IFREG;
614 /* Apply the file permissions mask set in the mount options. */
615 vi->i_mode &= ~vol->fmask;
618 * Find the standard information attribute in the mft record. At this
619 * stage we haven't setup the attribute list stuff yet, so this could
620 * in fact fail if the standard information is in an extent record, but
621 * I don't think this actually ever happens.
623 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
626 if (err == -ENOENT) {
628 * TODO: We should be performing a hot fix here (if the
629 * recover mount option is set) by creating a new
632 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
638 /* Get the standard information attribute value. */
639 si = (STANDARD_INFORMATION*)((u8*)a +
640 le16_to_cpu(a->data.resident.value_offset));
642 /* Transfer information from the standard information into vi. */
644 * Note: The i_?times do not quite map perfectly onto the NTFS times,
645 * but they are close enough, and in the end it doesn't really matter
649 * mtime is the last change of the data within the file. Not changed
650 * when only metadata is changed, e.g. a rename doesn't affect mtime.
652 vi->i_mtime = ntfs2utc(si->last_data_change_time);
654 * ctime is the last change of the metadata of the file. This obviously
655 * always changes, when mtime is changed. ctime can be changed on its
656 * own, mtime is then not changed, e.g. when a file is renamed.
658 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
660 * Last access to the data within the file. Not changed during a rename
661 * for example but changed whenever the file is written to.
663 vi->i_atime = ntfs2utc(si->last_access_time);
665 /* Find the attribute list attribute if present. */
666 ntfs_attr_reinit_search_ctx(ctx);
667 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
669 if (unlikely(err != -ENOENT)) {
670 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
674 } else /* if (!err) */ {
675 if (vi->i_ino == FILE_MFT)
676 goto skip_attr_list_load;
677 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
680 if (a->flags & ATTR_IS_ENCRYPTED ||
681 a->flags & ATTR_COMPRESSION_MASK ||
682 a->flags & ATTR_IS_SPARSE) {
683 ntfs_error(vi->i_sb, "Attribute list attribute is "
684 "compressed/encrypted/sparse.");
687 /* Now allocate memory for the attribute list. */
688 ni->attr_list_size = (u32)ntfs_attr_size(a);
689 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
690 if (!ni->attr_list) {
691 ntfs_error(vi->i_sb, "Not enough memory to allocate "
692 "buffer for attribute list.");
696 if (a->non_resident) {
697 NInoSetAttrListNonResident(ni);
698 if (a->data.non_resident.lowest_vcn) {
699 ntfs_error(vi->i_sb, "Attribute list has non "
704 * Setup the runlist. No need for locking as we have
705 * exclusive access to the inode at this time.
707 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
709 if (IS_ERR(ni->attr_list_rl.rl)) {
710 err = PTR_ERR(ni->attr_list_rl.rl);
711 ni->attr_list_rl.rl = NULL;
712 ntfs_error(vi->i_sb, "Mapping pairs "
713 "decompression failed.");
716 /* Now load the attribute list. */
717 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
718 ni->attr_list, ni->attr_list_size,
719 sle64_to_cpu(a->data.non_resident.
720 initialized_size)))) {
721 ntfs_error(vi->i_sb, "Failed to load "
722 "attribute list attribute.");
725 } else /* if (!a->non_resident) */ {
726 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
728 a->data.resident.value_length) >
729 (u8*)ctx->mrec + vol->mft_record_size) {
730 ntfs_error(vi->i_sb, "Corrupt attribute list "
734 /* Now copy the attribute list. */
735 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
736 a->data.resident.value_offset),
738 a->data.resident.value_length));
743 * If an attribute list is present we now have the attribute list value
744 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
746 if (S_ISDIR(vi->i_mode)) {
751 u8 *ir_end, *index_end;
753 /* It is a directory, find index root attribute. */
754 ntfs_attr_reinit_search_ctx(ctx);
755 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
758 if (err == -ENOENT) {
759 // FIXME: File is corrupt! Hot-fix with empty
760 // index root attribute if recovery option is
762 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
768 /* Set up the state. */
769 if (unlikely(a->non_resident)) {
770 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
774 /* Ensure the attribute name is placed before the value. */
775 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
776 le16_to_cpu(a->data.resident.value_offset)))) {
777 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
778 "placed after the attribute value.");
782 * Compressed/encrypted index root just means that the newly
783 * created files in that directory should be created compressed/
784 * encrypted. However index root cannot be both compressed and
787 if (a->flags & ATTR_COMPRESSION_MASK)
788 NInoSetCompressed(ni);
789 if (a->flags & ATTR_IS_ENCRYPTED) {
790 if (a->flags & ATTR_COMPRESSION_MASK) {
791 ntfs_error(vi->i_sb, "Found encrypted and "
792 "compressed attribute.");
795 NInoSetEncrypted(ni);
797 if (a->flags & ATTR_IS_SPARSE)
799 ir = (INDEX_ROOT*)((u8*)a +
800 le16_to_cpu(a->data.resident.value_offset));
801 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
802 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
803 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
807 index_end = (u8*)&ir->index +
808 le32_to_cpu(ir->index.index_length);
809 if (index_end > ir_end) {
810 ntfs_error(vi->i_sb, "Directory index is corrupt.");
813 if (ir->type != AT_FILE_NAME) {
814 ntfs_error(vi->i_sb, "Indexed attribute is not "
818 if (ir->collation_rule != COLLATION_FILE_NAME) {
819 ntfs_error(vi->i_sb, "Index collation rule is not "
820 "COLLATION_FILE_NAME.");
823 ni->itype.index.collation_rule = ir->collation_rule;
824 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
825 if (ni->itype.index.block_size &
826 (ni->itype.index.block_size - 1)) {
827 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
829 ni->itype.index.block_size);
832 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
833 ntfs_error(vi->i_sb, "Index block size (%u) > "
834 "PAGE_CACHE_SIZE (%ld) is not "
836 ni->itype.index.block_size,
841 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
842 ntfs_error(vi->i_sb, "Index block size (%u) < "
843 "NTFS_BLOCK_SIZE (%i) is not "
845 ni->itype.index.block_size,
850 ni->itype.index.block_size_bits =
851 ffs(ni->itype.index.block_size) - 1;
852 /* Determine the size of a vcn in the directory index. */
853 if (vol->cluster_size <= ni->itype.index.block_size) {
854 ni->itype.index.vcn_size = vol->cluster_size;
855 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
857 ni->itype.index.vcn_size = vol->sector_size;
858 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
861 /* Setup the index allocation attribute, even if not present. */
862 NInoSetMstProtected(ni);
863 ni->type = AT_INDEX_ALLOCATION;
867 if (!(ir->index.flags & LARGE_INDEX)) {
868 /* No index allocation. */
869 vi->i_size = ni->initialized_size =
870 ni->allocated_size = 0;
871 /* We are done with the mft record, so we release it. */
872 ntfs_attr_put_search_ctx(ctx);
873 unmap_mft_record(ni);
876 goto skip_large_dir_stuff;
877 } /* LARGE_INDEX: Index allocation present. Setup state. */
878 NInoSetIndexAllocPresent(ni);
879 /* Find index allocation attribute. */
880 ntfs_attr_reinit_search_ctx(ctx);
881 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
882 CASE_SENSITIVE, 0, NULL, 0, ctx);
885 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
886 "attribute is not present but "
887 "$INDEX_ROOT indicated it is.");
889 ntfs_error(vi->i_sb, "Failed to lookup "
895 if (!a->non_resident) {
896 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
901 * Ensure the attribute name is placed before the mapping pairs
904 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
906 a->data.non_resident.mapping_pairs_offset)))) {
907 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
908 "is placed after the mapping pairs "
912 if (a->flags & ATTR_IS_ENCRYPTED) {
913 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
917 if (a->flags & ATTR_IS_SPARSE) {
918 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
922 if (a->flags & ATTR_COMPRESSION_MASK) {
923 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
927 if (a->data.non_resident.lowest_vcn) {
928 ntfs_error(vi->i_sb, "First extent of "
929 "$INDEX_ALLOCATION attribute has non "
933 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
934 ni->initialized_size = sle64_to_cpu(
935 a->data.non_resident.initialized_size);
936 ni->allocated_size = sle64_to_cpu(
937 a->data.non_resident.allocated_size);
939 * We are done with the mft record, so we release it. Otherwise
940 * we would deadlock in ntfs_attr_iget().
942 ntfs_attr_put_search_ctx(ctx);
943 unmap_mft_record(ni);
946 /* Get the index bitmap attribute inode. */
947 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
949 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
953 ni->itype.index.bmp_ino = bvi;
955 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
957 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
958 "and/or encrypted and/or sparse.");
961 /* Consistency check bitmap size vs. index allocation size. */
962 bvi_size = i_size_read(bvi);
963 if ((bvi_size << 3) < (vi->i_size >>
964 ni->itype.index.block_size_bits)) {
965 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
966 "for index allocation (0x%llx).",
967 bvi_size << 3, vi->i_size);
970 skip_large_dir_stuff:
971 /* Setup the operations for this inode. */
972 vi->i_op = &ntfs_dir_inode_ops;
973 vi->i_fop = &ntfs_dir_ops;
976 ntfs_attr_reinit_search_ctx(ctx);
978 /* Setup the data attribute, even if not present. */
983 /* Find first extent of the unnamed data attribute. */
984 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
986 vi->i_size = ni->initialized_size =
987 ni->allocated_size = 0;
988 if (err != -ENOENT) {
989 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
994 * FILE_Secure does not have an unnamed $DATA
995 * attribute, so we special case it here.
997 if (vi->i_ino == FILE_Secure)
998 goto no_data_attr_special_case;
1000 * Most if not all the system files in the $Extend
1001 * system directory do not have unnamed data
1002 * attributes so we need to check if the parent
1003 * directory of the file is FILE_Extend and if it is
1004 * ignore this error. To do this we need to get the
1005 * name of this inode from the mft record as the name
1006 * contains the back reference to the parent directory.
1008 if (ntfs_is_extended_system_file(ctx) > 0)
1009 goto no_data_attr_special_case;
1010 // FIXME: File is corrupt! Hot-fix with empty data
1011 // attribute if recovery option is set.
1012 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1016 /* Setup the state. */
1017 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1018 if (a->flags & ATTR_COMPRESSION_MASK) {
1019 NInoSetCompressed(ni);
1020 if (vol->cluster_size > 4096) {
1021 ntfs_error(vi->i_sb, "Found "
1022 "compressed data but "
1025 "cluster size (%i) > "
1030 if ((a->flags & ATTR_COMPRESSION_MASK)
1031 != ATTR_IS_COMPRESSED) {
1032 ntfs_error(vi->i_sb, "Found unknown "
1033 "compression method "
1034 "or corrupt file.");
1038 if (a->flags & ATTR_IS_SPARSE)
1041 if (a->flags & ATTR_IS_ENCRYPTED) {
1042 if (NInoCompressed(ni)) {
1043 ntfs_error(vi->i_sb, "Found encrypted and "
1044 "compressed data.");
1047 NInoSetEncrypted(ni);
1049 if (a->non_resident) {
1050 NInoSetNonResident(ni);
1051 if (NInoCompressed(ni) || NInoSparse(ni)) {
1052 if (a->data.non_resident.compression_unit !=
1054 ntfs_error(vi->i_sb, "Found "
1056 "compression unit (%u "
1058 "Cannot handle this.",
1059 a->data.non_resident.
1064 ni->itype.compressed.block_clusters = 1U <<
1065 a->data.non_resident.
1067 ni->itype.compressed.block_size = 1U << (
1068 a->data.non_resident.
1070 vol->cluster_size_bits);
1071 ni->itype.compressed.block_size_bits = ffs(
1072 ni->itype.compressed.
1074 ni->itype.compressed.size = sle64_to_cpu(
1075 a->data.non_resident.
1078 if (a->data.non_resident.lowest_vcn) {
1079 ntfs_error(vi->i_sb, "First extent of $DATA "
1080 "attribute has non zero "
1084 vi->i_size = sle64_to_cpu(
1085 a->data.non_resident.data_size);
1086 ni->initialized_size = sle64_to_cpu(
1087 a->data.non_resident.initialized_size);
1088 ni->allocated_size = sle64_to_cpu(
1089 a->data.non_resident.allocated_size);
1090 } else { /* Resident attribute. */
1091 vi->i_size = ni->initialized_size = le32_to_cpu(
1092 a->data.resident.value_length);
1093 ni->allocated_size = le32_to_cpu(a->length) -
1095 a->data.resident.value_offset);
1096 if (vi->i_size > ni->allocated_size) {
1097 ntfs_error(vi->i_sb, "Resident data attribute "
1098 "is corrupt (size exceeds "
1103 no_data_attr_special_case:
1104 /* We are done with the mft record, so we release it. */
1105 ntfs_attr_put_search_ctx(ctx);
1106 unmap_mft_record(ni);
1109 /* Setup the operations for this inode. */
1110 vi->i_op = &ntfs_file_inode_ops;
1111 vi->i_fop = &ntfs_file_ops;
1113 if (NInoMstProtected(ni))
1114 vi->i_mapping->a_ops = &ntfs_mst_aops;
1116 vi->i_mapping->a_ops = &ntfs_aops;
1118 * The number of 512-byte blocks used on disk (for stat). This is in so
1119 * far inaccurate as it doesn't account for any named streams or other
1120 * special non-resident attributes, but that is how Windows works, too,
1121 * so we are at least consistent with Windows, if not entirely
1122 * consistent with the Linux Way. Doing it the Linux Way would cause a
1123 * significant slowdown as it would involve iterating over all
1124 * attributes in the mft record and adding the allocated/compressed
1125 * sizes of all non-resident attributes present to give us the Linux
1126 * correct size that should go into i_blocks (after division by 512).
1128 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1129 vi->i_blocks = ni->itype.compressed.size >> 9;
1131 vi->i_blocks = ni->allocated_size >> 9;
1132 ntfs_debug("Done.");
1139 ntfs_attr_put_search_ctx(ctx);
1141 unmap_mft_record(ni);
1143 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1144 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1146 if (err != -EOPNOTSUPP && err != -ENOMEM)
1152 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1153 * @base_vi: base inode
1154 * @vi: attribute inode to read
1156 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1157 * attribute inode described by @vi into memory from the base mft record
1158 * described by @base_ni.
1160 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1161 * reading and looks up the attribute described by @vi before setting up the
1162 * necessary fields in @vi as well as initializing the ntfs inode.
1164 * Q: What locks are held when the function is called?
1165 * A: i_state has I_LOCK set, hence the inode is locked, also
1166 * i_count is set to 1, so it is not going to go away
1168 * Return 0 on success and -errno on error. In the error case, the inode will
1169 * have had make_bad_inode() executed on it.
1171 * Note this cannot be called for AT_INDEX_ALLOCATION.
1173 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1175 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1176 ntfs_inode *ni, *base_ni;
1179 ntfs_attr_search_ctx *ctx;
1182 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1184 ntfs_init_big_inode(vi);
1187 base_ni = NTFS_I(base_vi);
1189 /* Just mirror the values from the base inode. */
1190 vi->i_blksize = base_vi->i_blksize;
1191 vi->i_version = base_vi->i_version;
1192 vi->i_uid = base_vi->i_uid;
1193 vi->i_gid = base_vi->i_gid;
1194 vi->i_nlink = base_vi->i_nlink;
1195 vi->i_mtime = base_vi->i_mtime;
1196 vi->i_ctime = base_vi->i_ctime;
1197 vi->i_atime = base_vi->i_atime;
1198 vi->i_generation = ni->seq_no = base_ni->seq_no;
1200 /* Set inode type to zero but preserve permissions. */
1201 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1203 m = map_mft_record(base_ni);
1208 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1213 /* Find the attribute. */
1214 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1215 CASE_SENSITIVE, 0, NULL, 0, ctx);
1219 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1220 if (a->flags & ATTR_COMPRESSION_MASK) {
1221 NInoSetCompressed(ni);
1222 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1224 ntfs_error(vi->i_sb, "Found compressed "
1225 "non-data or named data "
1226 "attribute. Please report "
1227 "you saw this message to "
1228 "linux-ntfs-dev@lists."
1232 if (vol->cluster_size > 4096) {
1233 ntfs_error(vi->i_sb, "Found compressed "
1234 "attribute but compression is "
1235 "disabled due to cluster size "
1240 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1241 ATTR_IS_COMPRESSED) {
1242 ntfs_error(vi->i_sb, "Found unknown "
1243 "compression method.");
1248 * The compressed/sparse flag set in an index root just means
1249 * to compress all files.
1251 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1252 ntfs_error(vi->i_sb, "Found mst protected attribute "
1253 "but the attribute is %s. Please "
1254 "report you saw this message to "
1255 "linux-ntfs-dev@lists.sourceforge.net",
1256 NInoCompressed(ni) ? "compressed" :
1260 if (a->flags & ATTR_IS_SPARSE)
1263 if (a->flags & ATTR_IS_ENCRYPTED) {
1264 if (NInoCompressed(ni)) {
1265 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1270 * The encryption flag set in an index root just means to
1271 * encrypt all files.
1273 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1274 ntfs_error(vi->i_sb, "Found mst protected attribute "
1275 "but the attribute is encrypted. "
1276 "Please report you saw this message "
1277 "to linux-ntfs-dev@lists.sourceforge."
1281 if (ni->type != AT_DATA) {
1282 ntfs_error(vi->i_sb, "Found encrypted non-data "
1286 NInoSetEncrypted(ni);
1288 if (!a->non_resident) {
1289 /* Ensure the attribute name is placed before the value. */
1290 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1291 le16_to_cpu(a->data.resident.value_offset)))) {
1292 ntfs_error(vol->sb, "Attribute name is placed after "
1293 "the attribute value.");
1296 if (NInoMstProtected(ni)) {
1297 ntfs_error(vi->i_sb, "Found mst protected attribute "
1298 "but the attribute is resident. "
1299 "Please report you saw this message to "
1300 "linux-ntfs-dev@lists.sourceforge.net");
1303 vi->i_size = ni->initialized_size = le32_to_cpu(
1304 a->data.resident.value_length);
1305 ni->allocated_size = le32_to_cpu(a->length) -
1306 le16_to_cpu(a->data.resident.value_offset);
1307 if (vi->i_size > ni->allocated_size) {
1308 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1309 "(size exceeds allocation).");
1313 NInoSetNonResident(ni);
1315 * Ensure the attribute name is placed before the mapping pairs
1318 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1320 a->data.non_resident.mapping_pairs_offset)))) {
1321 ntfs_error(vol->sb, "Attribute name is placed after "
1322 "the mapping pairs array.");
1325 if (NInoCompressed(ni) || NInoSparse(ni)) {
1326 if (a->data.non_resident.compression_unit != 4) {
1327 ntfs_error(vi->i_sb, "Found nonstandard "
1328 "compression unit (%u instead "
1329 "of 4). Cannot handle this.",
1330 a->data.non_resident.
1335 ni->itype.compressed.block_clusters = 1U <<
1336 a->data.non_resident.compression_unit;
1337 ni->itype.compressed.block_size = 1U << (
1338 a->data.non_resident.compression_unit +
1339 vol->cluster_size_bits);
1340 ni->itype.compressed.block_size_bits = ffs(
1341 ni->itype.compressed.block_size) - 1;
1342 ni->itype.compressed.size = sle64_to_cpu(
1343 a->data.non_resident.compressed_size);
1345 if (a->data.non_resident.lowest_vcn) {
1346 ntfs_error(vi->i_sb, "First extent of attribute has "
1347 "non-zero lowest_vcn.");
1350 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1351 ni->initialized_size = sle64_to_cpu(
1352 a->data.non_resident.initialized_size);
1353 ni->allocated_size = sle64_to_cpu(
1354 a->data.non_resident.allocated_size);
1356 /* Setup the operations for this attribute inode. */
1359 if (NInoMstProtected(ni))
1360 vi->i_mapping->a_ops = &ntfs_mst_aops;
1362 vi->i_mapping->a_ops = &ntfs_aops;
1363 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1364 vi->i_blocks = ni->itype.compressed.size >> 9;
1366 vi->i_blocks = ni->allocated_size >> 9;
1368 * Make sure the base inode does not go away and attach it to the
1372 ni->ext.base_ntfs_ino = base_ni;
1373 ni->nr_extents = -1;
1375 ntfs_attr_put_search_ctx(ctx);
1376 unmap_mft_record(base_ni);
1378 ntfs_debug("Done.");
1385 ntfs_attr_put_search_ctx(ctx);
1386 unmap_mft_record(base_ni);
1388 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1389 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1390 "Marking corrupt inode and base inode 0x%lx as bad. "
1391 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1394 make_bad_inode(base_vi);
1401 * ntfs_read_locked_index_inode - read an index inode from its base inode
1402 * @base_vi: base inode
1403 * @vi: index inode to read
1405 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1406 * index inode described by @vi into memory from the base mft record described
1409 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1410 * reading and looks up the attributes relating to the index described by @vi
1411 * before setting up the necessary fields in @vi as well as initializing the
1414 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1415 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1416 * are setup like directory inodes since directories are a special case of
1417 * indices ao they need to be treated in much the same way. Most importantly,
1418 * for small indices the index allocation attribute might not actually exist.
1419 * However, the index root attribute always exists but this does not need to
1420 * have an inode associated with it and this is why we define a new inode type
1421 * index. Also, like for directories, we need to have an attribute inode for
1422 * the bitmap attribute corresponding to the index allocation attribute and we
1423 * can store this in the appropriate field of the inode, just like we do for
1424 * normal directory inodes.
1426 * Q: What locks are held when the function is called?
1427 * A: i_state has I_LOCK set, hence the inode is locked, also
1428 * i_count is set to 1, so it is not going to go away
1430 * Return 0 on success and -errno on error. In the error case, the inode will
1431 * have had make_bad_inode() executed on it.
1433 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1436 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1437 ntfs_inode *ni, *base_ni, *bni;
1441 ntfs_attr_search_ctx *ctx;
1443 u8 *ir_end, *index_end;
1446 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1447 ntfs_init_big_inode(vi);
1449 base_ni = NTFS_I(base_vi);
1450 /* Just mirror the values from the base inode. */
1451 vi->i_blksize = base_vi->i_blksize;
1452 vi->i_version = base_vi->i_version;
1453 vi->i_uid = base_vi->i_uid;
1454 vi->i_gid = base_vi->i_gid;
1455 vi->i_nlink = base_vi->i_nlink;
1456 vi->i_mtime = base_vi->i_mtime;
1457 vi->i_ctime = base_vi->i_ctime;
1458 vi->i_atime = base_vi->i_atime;
1459 vi->i_generation = ni->seq_no = base_ni->seq_no;
1460 /* Set inode type to zero but preserve permissions. */
1461 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1462 /* Map the mft record for the base inode. */
1463 m = map_mft_record(base_ni);
1468 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1473 /* Find the index root attribute. */
1474 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1475 CASE_SENSITIVE, 0, NULL, 0, ctx);
1476 if (unlikely(err)) {
1478 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1483 /* Set up the state. */
1484 if (unlikely(a->non_resident)) {
1485 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1488 /* Ensure the attribute name is placed before the value. */
1489 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1490 le16_to_cpu(a->data.resident.value_offset)))) {
1491 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1492 "after the attribute value.");
1496 * Compressed/encrypted/sparse index root is not allowed, except for
1497 * directories of course but those are not dealt with here.
1499 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1501 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1505 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1506 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1507 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1508 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1511 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1512 if (index_end > ir_end) {
1513 ntfs_error(vi->i_sb, "Index is corrupt.");
1517 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1518 le32_to_cpu(ir->type));
1521 ni->itype.index.collation_rule = ir->collation_rule;
1522 ntfs_debug("Index collation rule is 0x%x.",
1523 le32_to_cpu(ir->collation_rule));
1524 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1525 if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) {
1526 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1527 "two.", ni->itype.index.block_size);
1530 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1531 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1532 "(%ld) is not supported. Sorry.",
1533 ni->itype.index.block_size, PAGE_CACHE_SIZE);
1537 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1538 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1539 "(%i) is not supported. Sorry.",
1540 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1544 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1545 /* Determine the size of a vcn in the index. */
1546 if (vol->cluster_size <= ni->itype.index.block_size) {
1547 ni->itype.index.vcn_size = vol->cluster_size;
1548 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1550 ni->itype.index.vcn_size = vol->sector_size;
1551 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1553 /* Check for presence of index allocation attribute. */
1554 if (!(ir->index.flags & LARGE_INDEX)) {
1555 /* No index allocation. */
1556 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1557 /* We are done with the mft record, so we release it. */
1558 ntfs_attr_put_search_ctx(ctx);
1559 unmap_mft_record(base_ni);
1562 goto skip_large_index_stuff;
1563 } /* LARGE_INDEX: Index allocation present. Setup state. */
1564 NInoSetIndexAllocPresent(ni);
1565 /* Find index allocation attribute. */
1566 ntfs_attr_reinit_search_ctx(ctx);
1567 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1568 CASE_SENSITIVE, 0, NULL, 0, ctx);
1569 if (unlikely(err)) {
1571 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1572 "not present but $INDEX_ROOT "
1573 "indicated it is.");
1575 ntfs_error(vi->i_sb, "Failed to lookup "
1576 "$INDEX_ALLOCATION attribute.");
1579 if (!a->non_resident) {
1580 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1585 * Ensure the attribute name is placed before the mapping pairs array.
1587 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1589 a->data.non_resident.mapping_pairs_offset)))) {
1590 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1591 "placed after the mapping pairs array.");
1594 if (a->flags & ATTR_IS_ENCRYPTED) {
1595 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1599 if (a->flags & ATTR_IS_SPARSE) {
1600 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1603 if (a->flags & ATTR_COMPRESSION_MASK) {
1604 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1608 if (a->data.non_resident.lowest_vcn) {
1609 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1610 "attribute has non zero lowest_vcn.");
1613 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1614 ni->initialized_size = sle64_to_cpu(
1615 a->data.non_resident.initialized_size);
1616 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1618 * We are done with the mft record, so we release it. Otherwise
1619 * we would deadlock in ntfs_attr_iget().
1621 ntfs_attr_put_search_ctx(ctx);
1622 unmap_mft_record(base_ni);
1625 /* Get the index bitmap attribute inode. */
1626 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1628 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1633 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1635 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1636 "encrypted and/or sparse.");
1637 goto iput_unm_err_out;
1639 /* Consistency check bitmap size vs. index allocation size. */
1640 bvi_size = i_size_read(bvi);
1641 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1642 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1643 "index allocation (0x%llx).", bvi_size << 3,
1645 goto iput_unm_err_out;
1647 ni->itype.index.bmp_ino = bvi;
1648 skip_large_index_stuff:
1649 /* Setup the operations for this index inode. */
1652 vi->i_mapping->a_ops = &ntfs_mst_aops;
1653 vi->i_blocks = ni->allocated_size >> 9;
1655 * Make sure the base inode doesn't go away and attach it to the
1659 ni->ext.base_ntfs_ino = base_ni;
1660 ni->nr_extents = -1;
1662 ntfs_debug("Done.");
1671 ntfs_attr_put_search_ctx(ctx);
1673 unmap_mft_record(base_ni);
1675 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1676 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1679 if (err != -EOPNOTSUPP && err != -ENOMEM)
1685 * ntfs_read_inode_mount - special read_inode for mount time use only
1686 * @vi: inode to read
1688 * Read inode FILE_MFT at mount time, only called with super_block lock
1689 * held from within the read_super() code path.
1691 * This function exists because when it is called the page cache for $MFT/$DATA
1692 * is not initialized and hence we cannot get at the contents of mft records
1693 * by calling map_mft_record*().
1695 * Further it needs to cope with the circular references problem, i.e. cannot
1696 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1697 * we do not know where the other extent mft records are yet and again, because
1698 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1699 * attribute list is actually present in $MFT inode.
1701 * We solve these problems by starting with the $DATA attribute before anything
1702 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1703 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1704 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1705 * sufficient information for the next step to complete.
1707 * This should work but there are two possible pit falls (see inline comments
1708 * below), but only time will tell if they are real pits or just smoke...
1710 int ntfs_read_inode_mount(struct inode *vi)
1712 VCN next_vcn, last_vcn, highest_vcn;
1714 struct super_block *sb = vi->i_sb;
1715 ntfs_volume *vol = NTFS_SB(sb);
1716 struct buffer_head *bh;
1718 MFT_RECORD *m = NULL;
1720 ntfs_attr_search_ctx *ctx;
1721 unsigned int i, nr_blocks;
1724 ntfs_debug("Entering.");
1726 /* Initialize the ntfs specific part of @vi. */
1727 ntfs_init_big_inode(vi);
1731 /* Setup the data attribute. It is special as it is mst protected. */
1732 NInoSetNonResident(ni);
1733 NInoSetMstProtected(ni);
1734 NInoSetSparseDisabled(ni);
1739 * This sets up our little cheat allowing us to reuse the async read io
1740 * completion handler for directories.
1742 ni->itype.index.block_size = vol->mft_record_size;
1743 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1745 /* Very important! Needed to be able to call map_mft_record*(). */
1748 /* Allocate enough memory to read the first mft record. */
1749 if (vol->mft_record_size > 64 * 1024) {
1750 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1751 vol->mft_record_size);
1754 i = vol->mft_record_size;
1755 if (i < sb->s_blocksize)
1756 i = sb->s_blocksize;
1757 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1759 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1763 /* Determine the first block of the $MFT/$DATA attribute. */
1764 block = vol->mft_lcn << vol->cluster_size_bits >>
1765 sb->s_blocksize_bits;
1766 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1770 /* Load $MFT/$DATA's first mft record. */
1771 for (i = 0; i < nr_blocks; i++) {
1772 bh = sb_bread(sb, block++);
1774 ntfs_error(sb, "Device read failed.");
1777 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1782 /* Apply the mst fixups. */
1783 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1784 /* FIXME: Try to use the $MFTMirr now. */
1785 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1789 /* Need this to sanity check attribute list references to $MFT. */
1790 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1792 /* Provides readpage() and sync_page() for map_mft_record(). */
1793 vi->i_mapping->a_ops = &ntfs_mst_aops;
1795 ctx = ntfs_attr_get_search_ctx(ni, m);
1801 /* Find the attribute list attribute if present. */
1802 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1804 if (unlikely(err != -ENOENT)) {
1805 ntfs_error(sb, "Failed to lookup attribute list "
1806 "attribute. You should run chkdsk.");
1809 } else /* if (!err) */ {
1810 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1813 ntfs_debug("Attribute list attribute found in $MFT.");
1814 NInoSetAttrList(ni);
1816 if (a->flags & ATTR_IS_ENCRYPTED ||
1817 a->flags & ATTR_COMPRESSION_MASK ||
1818 a->flags & ATTR_IS_SPARSE) {
1819 ntfs_error(sb, "Attribute list attribute is "
1820 "compressed/encrypted/sparse. Not "
1821 "allowed. $MFT is corrupt. You should "
1825 /* Now allocate memory for the attribute list. */
1826 ni->attr_list_size = (u32)ntfs_attr_size(a);
1827 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1828 if (!ni->attr_list) {
1829 ntfs_error(sb, "Not enough memory to allocate buffer "
1830 "for attribute list.");
1833 if (a->non_resident) {
1834 NInoSetAttrListNonResident(ni);
1835 if (a->data.non_resident.lowest_vcn) {
1836 ntfs_error(sb, "Attribute list has non zero "
1837 "lowest_vcn. $MFT is corrupt. "
1838 "You should run chkdsk.");
1841 /* Setup the runlist. */
1842 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1844 if (IS_ERR(ni->attr_list_rl.rl)) {
1845 err = PTR_ERR(ni->attr_list_rl.rl);
1846 ni->attr_list_rl.rl = NULL;
1847 ntfs_error(sb, "Mapping pairs decompression "
1848 "failed with error code %i.",
1852 /* Now load the attribute list. */
1853 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1854 ni->attr_list, ni->attr_list_size,
1855 sle64_to_cpu(a->data.
1856 non_resident.initialized_size)))) {
1857 ntfs_error(sb, "Failed to load attribute list "
1858 "attribute with error code %i.",
1862 } else /* if (!ctx.attr->non_resident) */ {
1863 if ((u8*)a + le16_to_cpu(
1864 a->data.resident.value_offset) +
1866 a->data.resident.value_length) >
1867 (u8*)ctx->mrec + vol->mft_record_size) {
1868 ntfs_error(sb, "Corrupt attribute list "
1872 /* Now copy the attribute list. */
1873 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1874 a->data.resident.value_offset),
1876 a->data.resident.value_length));
1878 /* The attribute list is now setup in memory. */
1880 * FIXME: I don't know if this case is actually possible.
1881 * According to logic it is not possible but I have seen too
1882 * many weird things in MS software to rely on logic... Thus we
1883 * perform a manual search and make sure the first $MFT/$DATA
1884 * extent is in the base inode. If it is not we abort with an
1885 * error and if we ever see a report of this error we will need
1886 * to do some magic in order to have the necessary mft record
1887 * loaded and in the right place in the page cache. But
1888 * hopefully logic will prevail and this never happens...
1890 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1891 al_end = (u8*)al_entry + ni->attr_list_size;
1892 for (;; al_entry = next_al_entry) {
1893 /* Out of bounds check. */
1894 if ((u8*)al_entry < ni->attr_list ||
1895 (u8*)al_entry > al_end)
1896 goto em_put_err_out;
1897 /* Catch the end of the attribute list. */
1898 if ((u8*)al_entry == al_end)
1899 goto em_put_err_out;
1900 if (!al_entry->length)
1901 goto em_put_err_out;
1902 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1903 le16_to_cpu(al_entry->length) > al_end)
1904 goto em_put_err_out;
1905 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1906 le16_to_cpu(al_entry->length));
1907 if (le32_to_cpu(al_entry->type) >
1908 const_le32_to_cpu(AT_DATA))
1909 goto em_put_err_out;
1910 if (AT_DATA != al_entry->type)
1912 /* We want an unnamed attribute. */
1913 if (al_entry->name_length)
1914 goto em_put_err_out;
1915 /* Want the first entry, i.e. lowest_vcn == 0. */
1916 if (al_entry->lowest_vcn)
1917 goto em_put_err_out;
1918 /* First entry has to be in the base mft record. */
1919 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1920 /* MFT references do not match, logic fails. */
1921 ntfs_error(sb, "BUG: The first $DATA extent "
1922 "of $MFT is not in the base "
1923 "mft record. Please report "
1924 "you saw this message to "
1925 "linux-ntfs-dev@lists."
1929 /* Sequence numbers must match. */
1930 if (MSEQNO_LE(al_entry->mft_reference) !=
1932 goto em_put_err_out;
1933 /* Got it. All is ok. We can stop now. */
1939 ntfs_attr_reinit_search_ctx(ctx);
1941 /* Now load all attribute extents. */
1943 next_vcn = last_vcn = highest_vcn = 0;
1944 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
1946 runlist_element *nrl;
1948 /* Cache the current attribute. */
1950 /* $MFT must be non-resident. */
1951 if (!a->non_resident) {
1952 ntfs_error(sb, "$MFT must be non-resident but a "
1953 "resident extent was found. $MFT is "
1954 "corrupt. Run chkdsk.");
1957 /* $MFT must be uncompressed and unencrypted. */
1958 if (a->flags & ATTR_COMPRESSION_MASK ||
1959 a->flags & ATTR_IS_ENCRYPTED ||
1960 a->flags & ATTR_IS_SPARSE) {
1961 ntfs_error(sb, "$MFT must be uncompressed, "
1962 "non-sparse, and unencrypted but a "
1963 "compressed/sparse/encrypted extent "
1964 "was found. $MFT is corrupt. Run "
1969 * Decompress the mapping pairs array of this extent and merge
1970 * the result into the existing runlist. No need for locking
1971 * as we have exclusive access to the inode at this time and we
1972 * are a mount in progress task, too.
1974 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
1976 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
1977 "failed with error code %ld. $MFT is "
1978 "corrupt.", PTR_ERR(nrl));
1981 ni->runlist.rl = nrl;
1983 /* Are we in the first extent? */
1985 if (a->data.non_resident.lowest_vcn) {
1986 ntfs_error(sb, "First extent of $DATA "
1987 "attribute has non zero "
1988 "lowest_vcn. $MFT is corrupt. "
1989 "You should run chkdsk.");
1992 /* Get the last vcn in the $DATA attribute. */
1993 last_vcn = sle64_to_cpu(
1994 a->data.non_resident.allocated_size)
1995 >> vol->cluster_size_bits;
1996 /* Fill in the inode size. */
1997 vi->i_size = sle64_to_cpu(
1998 a->data.non_resident.data_size);
1999 ni->initialized_size = sle64_to_cpu(
2000 a->data.non_resident.initialized_size);
2001 ni->allocated_size = sle64_to_cpu(
2002 a->data.non_resident.allocated_size);
2004 * Verify the number of mft records does not exceed
2007 if ((vi->i_size >> vol->mft_record_size_bits) >=
2009 ntfs_error(sb, "$MFT is too big! Aborting.");
2013 * We have got the first extent of the runlist for
2014 * $MFT which means it is now relatively safe to call
2015 * the normal ntfs_read_inode() function.
2016 * Complete reading the inode, this will actually
2017 * re-read the mft record for $MFT, this time entering
2018 * it into the page cache with which we complete the
2019 * kick start of the volume. It should be safe to do
2020 * this now as the first extent of $MFT/$DATA is
2021 * already known and we would hope that we don't need
2022 * further extents in order to find the other
2023 * attributes belonging to $MFT. Only time will tell if
2024 * this is really the case. If not we will have to play
2025 * magic at this point, possibly duplicating a lot of
2026 * ntfs_read_inode() at this point. We will need to
2027 * ensure we do enough of its work to be able to call
2028 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2029 * hope this never happens...
2031 ntfs_read_locked_inode(vi);
2032 if (is_bad_inode(vi)) {
2033 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2034 "failed. BUG or corrupt $MFT. "
2035 "Run chkdsk and if no errors "
2036 "are found, please report you "
2037 "saw this message to "
2038 "linux-ntfs-dev@lists."
2040 ntfs_attr_put_search_ctx(ctx);
2041 /* Revert to the safe super operations. */
2046 * Re-initialize some specifics about $MFT's inode as
2047 * ntfs_read_inode() will have set up the default ones.
2049 /* Set uid and gid to root. */
2050 vi->i_uid = vi->i_gid = 0;
2051 /* Regular file. No access for anyone. */
2052 vi->i_mode = S_IFREG;
2053 /* No VFS initiated operations allowed for $MFT. */
2054 vi->i_op = &ntfs_empty_inode_ops;
2055 vi->i_fop = &ntfs_empty_file_ops;
2058 /* Get the lowest vcn for the next extent. */
2059 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2060 next_vcn = highest_vcn + 1;
2062 /* Only one extent or error, which we catch below. */
2066 /* Avoid endless loops due to corruption. */
2067 if (next_vcn < sle64_to_cpu(
2068 a->data.non_resident.lowest_vcn)) {
2069 ntfs_error(sb, "$MFT has corrupt attribute list "
2070 "attribute. Run chkdsk.");
2074 if (err != -ENOENT) {
2075 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2076 "$MFT is corrupt. Run chkdsk.");
2080 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2081 "corrupt. Run chkdsk.");
2084 if (highest_vcn && highest_vcn != last_vcn - 1) {
2085 ntfs_error(sb, "Failed to load the complete runlist for "
2086 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2088 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2089 (unsigned long long)highest_vcn,
2090 (unsigned long long)last_vcn - 1);
2093 ntfs_attr_put_search_ctx(ctx);
2094 ntfs_debug("Done.");
2099 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2100 "attribute list. $MFT is corrupt. Run chkdsk.");
2102 ntfs_attr_put_search_ctx(ctx);
2104 ntfs_error(sb, "Failed. Marking inode as bad.");
2111 * ntfs_put_inode - handler for when the inode reference count is decremented
2114 * The VFS calls ntfs_put_inode() every time the inode reference count (i_count)
2115 * is about to be decremented (but before the decrement itself.
2117 * If the inode @vi is a directory with two references, one of which is being
2118 * dropped, we need to put the attribute inode for the directory index bitmap,
2119 * if it is present, otherwise the directory inode would remain pinned for
2122 void ntfs_put_inode(struct inode *vi)
2124 if (S_ISDIR(vi->i_mode) && atomic_read(&vi->i_count) == 2) {
2125 ntfs_inode *ni = NTFS_I(vi);
2126 if (NInoIndexAllocPresent(ni)) {
2127 struct inode *bvi = NULL;
2128 mutex_lock(&vi->i_mutex);
2129 if (atomic_read(&vi->i_count) == 2) {
2130 bvi = ni->itype.index.bmp_ino;
2132 ni->itype.index.bmp_ino = NULL;
2134 mutex_unlock(&vi->i_mutex);
2141 static void __ntfs_clear_inode(ntfs_inode *ni)
2143 /* Free all alocated memory. */
2144 down_write(&ni->runlist.lock);
2145 if (ni->runlist.rl) {
2146 ntfs_free(ni->runlist.rl);
2147 ni->runlist.rl = NULL;
2149 up_write(&ni->runlist.lock);
2151 if (ni->attr_list) {
2152 ntfs_free(ni->attr_list);
2153 ni->attr_list = NULL;
2156 down_write(&ni->attr_list_rl.lock);
2157 if (ni->attr_list_rl.rl) {
2158 ntfs_free(ni->attr_list_rl.rl);
2159 ni->attr_list_rl.rl = NULL;
2161 up_write(&ni->attr_list_rl.lock);
2163 if (ni->name_len && ni->name != I30) {
2170 void ntfs_clear_extent_inode(ntfs_inode *ni)
2172 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2174 BUG_ON(NInoAttr(ni));
2175 BUG_ON(ni->nr_extents != -1);
2178 if (NInoDirty(ni)) {
2179 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2180 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2181 "Losing data! This is a BUG!!!");
2182 // FIXME: Do something!!!
2184 #endif /* NTFS_RW */
2186 __ntfs_clear_inode(ni);
2189 ntfs_destroy_extent_inode(ni);
2193 * ntfs_clear_big_inode - clean up the ntfs specific part of an inode
2194 * @vi: vfs inode pending annihilation
2196 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2197 * is called, which deallocates all memory belonging to the NTFS specific part
2198 * of the inode and returns.
2200 * If the MFT record is dirty, we commit it before doing anything else.
2202 void ntfs_clear_big_inode(struct inode *vi)
2204 ntfs_inode *ni = NTFS_I(vi);
2207 * If the inode @vi is an index inode we need to put the attribute
2208 * inode for the index bitmap, if it is present, otherwise the index
2209 * inode would disappear and the attribute inode for the index bitmap
2210 * would no longer be referenced from anywhere and thus it would remain
2213 if (NInoAttr(ni) && (ni->type == AT_INDEX_ALLOCATION) &&
2214 NInoIndexAllocPresent(ni) && ni->itype.index.bmp_ino) {
2215 iput(ni->itype.index.bmp_ino);
2216 ni->itype.index.bmp_ino = NULL;
2219 if (NInoDirty(ni)) {
2220 BOOL was_bad = (is_bad_inode(vi));
2222 /* Committing the inode also commits all extent inodes. */
2223 ntfs_commit_inode(vi);
2225 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2226 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2227 "0x%lx. Losing data!", vi->i_ino);
2228 // FIXME: Do something!!!
2231 #endif /* NTFS_RW */
2233 /* No need to lock at this stage as no one else has a reference. */
2234 if (ni->nr_extents > 0) {
2237 for (i = 0; i < ni->nr_extents; i++)
2238 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2239 kfree(ni->ext.extent_ntfs_inos);
2242 __ntfs_clear_inode(ni);
2245 /* Release the base inode if we are holding it. */
2246 if (ni->nr_extents == -1) {
2247 iput(VFS_I(ni->ext.base_ntfs_ino));
2249 ni->ext.base_ntfs_ino = NULL;
2256 * ntfs_show_options - show mount options in /proc/mounts
2257 * @sf: seq_file in which to write our mount options
2258 * @mnt: vfs mount whose mount options to display
2260 * Called by the VFS once for each mounted ntfs volume when someone reads
2261 * /proc/mounts in order to display the NTFS specific mount options of each
2262 * mount. The mount options of the vfs mount @mnt are written to the seq file
2263 * @sf and success is returned.
2265 int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
2267 ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
2270 seq_printf(sf, ",uid=%i", vol->uid);
2271 seq_printf(sf, ",gid=%i", vol->gid);
2272 if (vol->fmask == vol->dmask)
2273 seq_printf(sf, ",umask=0%o", vol->fmask);
2275 seq_printf(sf, ",fmask=0%o", vol->fmask);
2276 seq_printf(sf, ",dmask=0%o", vol->dmask);
2278 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2279 if (NVolCaseSensitive(vol))
2280 seq_printf(sf, ",case_sensitive");
2281 if (NVolShowSystemFiles(vol))
2282 seq_printf(sf, ",show_sys_files");
2283 if (!NVolSparseEnabled(vol))
2284 seq_printf(sf, ",disable_sparse");
2285 for (i = 0; on_errors_arr[i].val; i++) {
2286 if (on_errors_arr[i].val & vol->on_errors)
2287 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2289 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2295 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2299 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2300 * @vi: inode for which the i_size was changed
2302 * We only support i_size changes for normal files at present, i.e. not
2303 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2306 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2307 * that the change is allowed.
2309 * This implies for us that @vi is a file inode rather than a directory, index,
2310 * or attribute inode as well as that @vi is a base inode.
2312 * Returns 0 on success or -errno on error.
2314 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
2315 * writing. The only case in the kernel where ->i_alloc_sem is not held is
2316 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2317 * with the current i_size as the offset. The analogous place in NTFS is in
2318 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2319 * without holding ->i_alloc_sem.
2321 int ntfs_truncate(struct inode *vi)
2323 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2325 unsigned long flags;
2326 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2327 ntfs_volume *vol = ni->vol;
2328 ntfs_attr_search_ctx *ctx;
2331 const char *te = " Leaving file length out of sync with i_size.";
2332 int err, mp_size, size_change, alloc_change;
2335 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2336 BUG_ON(NInoAttr(ni));
2337 BUG_ON(S_ISDIR(vi->i_mode));
2338 BUG_ON(NInoMstProtected(ni));
2339 BUG_ON(ni->nr_extents < 0);
2342 * Lock the runlist for writing and map the mft record to ensure it is
2343 * safe to mess with the attribute runlist and sizes.
2345 down_write(&ni->runlist.lock);
2349 base_ni = ni->ext.base_ntfs_ino;
2350 m = map_mft_record(base_ni);
2353 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2354 "(error code %d).%s", vi->i_ino, err, te);
2359 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2360 if (unlikely(!ctx)) {
2361 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2362 "inode 0x%lx (not enough memory).%s",
2367 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2368 CASE_SENSITIVE, 0, NULL, 0, ctx);
2369 if (unlikely(err)) {
2370 if (err == -ENOENT) {
2371 ntfs_error(vi->i_sb, "Open attribute is missing from "
2372 "mft record. Inode 0x%lx is corrupt. "
2373 "Run chkdsk.%s", vi->i_ino, te);
2376 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2377 "inode 0x%lx (error code %d).%s",
2378 vi->i_ino, err, te);
2384 * The i_size of the vfs inode is the new size for the attribute value.
2386 new_size = i_size_read(vi);
2387 /* The current size of the attribute value is the old size. */
2388 old_size = ntfs_attr_size(a);
2389 /* Calculate the new allocated size. */
2390 if (NInoNonResident(ni))
2391 new_alloc_size = (new_size + vol->cluster_size - 1) &
2392 ~(s64)vol->cluster_size_mask;
2394 new_alloc_size = (new_size + 7) & ~7;
2395 /* The current allocated size is the old allocated size. */
2396 read_lock_irqsave(&ni->size_lock, flags);
2397 old_alloc_size = ni->allocated_size;
2398 read_unlock_irqrestore(&ni->size_lock, flags);
2400 * The change in the file size. This will be 0 if no change, >0 if the
2401 * size is growing, and <0 if the size is shrinking.
2404 if (new_size - old_size >= 0) {
2406 if (new_size == old_size)
2409 /* As above for the allocated size. */
2411 if (new_alloc_size - old_alloc_size >= 0) {
2413 if (new_alloc_size == old_alloc_size)
2417 * If neither the size nor the allocation are being changed there is
2420 if (!size_change && !alloc_change)
2422 /* If the size is changing, check if new size is allowed in $AttrDef. */
2424 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2425 if (unlikely(err)) {
2426 if (err == -ERANGE) {
2427 ntfs_error(vol->sb, "Truncate would cause the "
2428 "inode 0x%lx to %simum size "
2429 "for its attribute type "
2430 "(0x%x). Aborting truncate.",
2432 new_size > old_size ? "exceed "
2433 "the max" : "go under the min",
2434 le32_to_cpu(ni->type));
2437 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2438 "attribute type 0x%x. "
2439 "Aborting truncate.",
2441 le32_to_cpu(ni->type));
2444 /* Reset the vfs inode size to the old size. */
2445 i_size_write(vi, old_size);
2449 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2450 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2451 "supported yet for %s files, ignoring.",
2452 NInoCompressed(ni) ? "compressed" :
2457 if (a->non_resident)
2458 goto do_non_resident_truncate;
2459 BUG_ON(NInoNonResident(ni));
2460 /* Resize the attribute record to best fit the new attribute size. */
2461 if (new_size < vol->mft_record_size &&
2462 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2463 unsigned long flags;
2465 /* The resize succeeded! */
2466 flush_dcache_mft_record_page(ctx->ntfs_ino);
2467 mark_mft_record_dirty(ctx->ntfs_ino);
2468 write_lock_irqsave(&ni->size_lock, flags);
2469 /* Update the sizes in the ntfs inode and all is done. */
2470 ni->allocated_size = le32_to_cpu(a->length) -
2471 le16_to_cpu(a->data.resident.value_offset);
2473 * Note ntfs_resident_attr_value_resize() has already done any
2474 * necessary data clearing in the attribute record. When the
2475 * file is being shrunk vmtruncate() will already have cleared
2476 * the top part of the last partial page, i.e. since this is
2477 * the resident case this is the page with index 0. However,
2478 * when the file is being expanded, the page cache page data
2479 * between the old data_size, i.e. old_size, and the new_size
2480 * has not been zeroed. Fortunately, we do not need to zero it
2481 * either since on one hand it will either already be zero due
2482 * to both readpage and writepage clearing partial page data
2483 * beyond i_size in which case there is nothing to do or in the
2484 * case of the file being mmap()ped at the same time, POSIX
2485 * specifies that the behaviour is unspecified thus we do not
2486 * have to do anything. This means that in our implementation
2487 * in the rare case that the file is mmap()ped and a write
2488 * occured into the mmap()ped region just beyond the file size
2489 * and writepage has not yet been called to write out the page
2490 * (which would clear the area beyond the file size) and we now
2491 * extend the file size to incorporate this dirty region
2492 * outside the file size, a write of the page would result in
2493 * this data being written to disk instead of being cleared.
2494 * Given both POSIX and the Linux mmap(2) man page specify that
2495 * this corner case is undefined, we choose to leave it like
2496 * that as this is much simpler for us as we cannot lock the
2497 * relevant page now since we are holding too many ntfs locks
2498 * which would result in a lock reversal deadlock.
2500 ni->initialized_size = new_size;
2501 write_unlock_irqrestore(&ni->size_lock, flags);
2504 /* If the above resize failed, this must be an attribute extension. */
2505 BUG_ON(size_change < 0);
2507 * We have to drop all the locks so we can call
2508 * ntfs_attr_make_non_resident(). This could be optimised by try-
2509 * locking the first page cache page and only if that fails dropping
2510 * the locks, locking the page, and redoing all the locking and
2511 * lookups. While this would be a huge optimisation, it is not worth
2512 * it as this is definitely a slow code path as it only ever can happen
2513 * once for any given file.
2515 ntfs_attr_put_search_ctx(ctx);
2516 unmap_mft_record(base_ni);
2517 up_write(&ni->runlist.lock);
2519 * Not enough space in the mft record, try to make the attribute
2520 * non-resident and if successful restart the truncation process.
2522 err = ntfs_attr_make_non_resident(ni, old_size);
2524 goto retry_truncate;
2526 * Could not make non-resident. If this is due to this not being
2527 * permitted for this attribute type or there not being enough space,
2528 * try to make other attributes non-resident. Otherwise fail.
2530 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2531 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2532 "type 0x%x, because the conversion from "
2533 "resident to non-resident attribute failed "
2534 "with error code %i.", vi->i_ino,
2535 (unsigned)le32_to_cpu(ni->type), err);
2540 /* TODO: Not implemented from here, abort. */
2542 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2543 "disk for the non-resident attribute value. "
2544 "This case is not implemented yet.");
2545 else /* if (err == -EPERM) */
2546 ntfs_error(vol->sb, "This attribute type may not be "
2547 "non-resident. This case is not implemented "
2552 // TODO: Attempt to make other attributes non-resident.
2554 goto do_resident_extend;
2556 * Both the attribute list attribute and the standard information
2557 * attribute must remain in the base inode. Thus, if this is one of
2558 * these attributes, we have to try to move other attributes out into
2559 * extent mft records instead.
2561 if (ni->type == AT_ATTRIBUTE_LIST ||
2562 ni->type == AT_STANDARD_INFORMATION) {
2563 // TODO: Attempt to move other attributes into extent mft
2567 goto do_resident_extend;
2570 // TODO: Attempt to move this attribute to an extent mft record, but
2571 // only if it is not already the only attribute in an mft record in
2572 // which case there would be nothing to gain.
2575 goto do_resident_extend;
2576 /* There is nothing we can do to make enough space. )-: */
2579 do_non_resident_truncate:
2580 BUG_ON(!NInoNonResident(ni));
2581 if (alloc_change < 0) {
2582 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2583 if (highest_vcn > 0 &&
2584 old_alloc_size >> vol->cluster_size_bits >
2587 * This attribute has multiple extents. Not yet
2590 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2591 "attribute type 0x%x, because the "
2592 "attribute is highly fragmented (it "
2593 "consists of multiple extents) and "
2594 "this case is not implemented yet.",
2596 (unsigned)le32_to_cpu(ni->type));
2602 * If the size is shrinking, need to reduce the initialized_size and
2603 * the data_size before reducing the allocation.
2605 if (size_change < 0) {
2607 * Make the valid size smaller (i_size is already up-to-date).
2609 write_lock_irqsave(&ni->size_lock, flags);
2610 if (new_size < ni->initialized_size) {
2611 ni->initialized_size = new_size;
2612 a->data.non_resident.initialized_size =
2613 cpu_to_sle64(new_size);
2615 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2616 write_unlock_irqrestore(&ni->size_lock, flags);
2617 flush_dcache_mft_record_page(ctx->ntfs_ino);
2618 mark_mft_record_dirty(ctx->ntfs_ino);
2619 /* If the allocated size is not changing, we are done. */
2623 * If the size is shrinking it makes no sense for the
2624 * allocation to be growing.
2626 BUG_ON(alloc_change > 0);
2627 } else /* if (size_change >= 0) */ {
2629 * The file size is growing or staying the same but the
2630 * allocation can be shrinking, growing or staying the same.
2632 if (alloc_change > 0) {
2634 * We need to extend the allocation and possibly update
2635 * the data size. If we are updating the data size,
2636 * since we are not touching the initialized_size we do
2637 * not need to worry about the actual data on disk.
2638 * And as far as the page cache is concerned, there
2639 * will be no pages beyond the old data size and any
2640 * partial region in the last page between the old and
2641 * new data size (or the end of the page if the new
2642 * data size is outside the page) does not need to be
2643 * modified as explained above for the resident
2644 * attribute truncate case. To do this, we simply drop
2645 * the locks we hold and leave all the work to our
2646 * friendly helper ntfs_attr_extend_allocation().
2648 ntfs_attr_put_search_ctx(ctx);
2649 unmap_mft_record(base_ni);
2650 up_write(&ni->runlist.lock);
2651 err = ntfs_attr_extend_allocation(ni, new_size,
2652 size_change > 0 ? new_size : -1, -1);
2654 * ntfs_attr_extend_allocation() will have done error
2662 /* alloc_change < 0 */
2663 /* Free the clusters. */
2664 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2665 vol->cluster_size_bits, -1, ctx);
2668 if (unlikely(nr_freed < 0)) {
2669 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2670 "%lli). Unmount and run chkdsk to recover "
2671 "the lost cluster(s).", (long long)nr_freed);
2675 /* Truncate the runlist. */
2676 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2677 new_alloc_size >> vol->cluster_size_bits);
2679 * If the runlist truncation failed and/or the search context is no
2680 * longer valid, we cannot resize the attribute record or build the
2681 * mapping pairs array thus we mark the inode bad so that no access to
2682 * the freed clusters can happen.
2684 if (unlikely(err || IS_ERR(m))) {
2685 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2687 "restore attribute search context" :
2688 "truncate attribute runlist",
2689 IS_ERR(m) ? PTR_ERR(m) : err, es);
2693 /* Get the size for the shrunk mapping pairs array for the runlist. */
2694 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2695 if (unlikely(mp_size <= 0)) {
2696 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2697 "attribute type 0x%x, because determining the "
2698 "size for the mapping pairs failed with error "
2699 "code %i.%s", vi->i_ino,
2700 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2705 * Shrink the attribute record for the new mapping pairs array. Note,
2706 * this cannot fail since we are making the attribute smaller thus by
2707 * definition there is enough space to do so.
2709 attr_len = le32_to_cpu(a->length);
2710 err = ntfs_attr_record_resize(m, a, mp_size +
2711 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2714 * Generate the mapping pairs array directly into the attribute record.
2716 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2717 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2718 mp_size, ni->runlist.rl, 0, -1, NULL);
2719 if (unlikely(err)) {
2720 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2721 "attribute type 0x%x, because building the "
2722 "mapping pairs failed with error code %i.%s",
2723 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2728 /* Update the allocated/compressed size as well as the highest vcn. */
2729 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2730 vol->cluster_size_bits) - 1);
2731 write_lock_irqsave(&ni->size_lock, flags);
2732 ni->allocated_size = new_alloc_size;
2733 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2734 if (NInoSparse(ni) || NInoCompressed(ni)) {
2736 ni->itype.compressed.size -= nr_freed <<
2737 vol->cluster_size_bits;
2738 BUG_ON(ni->itype.compressed.size < 0);
2739 a->data.non_resident.compressed_size = cpu_to_sle64(
2740 ni->itype.compressed.size);
2741 vi->i_blocks = ni->itype.compressed.size >> 9;
2744 vi->i_blocks = new_alloc_size >> 9;
2745 write_unlock_irqrestore(&ni->size_lock, flags);
2747 * We have shrunk the allocation. If this is a shrinking truncate we
2748 * have already dealt with the initialized_size and the data_size above
2749 * and we are done. If the truncate is only changing the allocation
2750 * and not the data_size, we are also done. If this is an extending
2751 * truncate, need to extend the data_size now which is ensured by the
2752 * fact that @size_change is positive.
2756 * If the size is growing, need to update it now. If it is shrinking,
2757 * we have already updated it above (before the allocation change).
2759 if (size_change > 0)
2760 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2761 /* Ensure the modified mft record is written out. */
2762 flush_dcache_mft_record_page(ctx->ntfs_ino);
2763 mark_mft_record_dirty(ctx->ntfs_ino);
2765 ntfs_attr_put_search_ctx(ctx);
2766 unmap_mft_record(base_ni);
2767 up_write(&ni->runlist.lock);
2769 /* Update the mtime and ctime on the base inode. */
2770 /* normally ->truncate shouldn't update ctime or mtime,
2771 * but ntfs did before so it got a copy & paste version
2772 * of file_update_time. one day someone should fix this
2775 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2776 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2779 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2780 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2782 VFS_I(base_ni)->i_mtime = now;
2783 VFS_I(base_ni)->i_ctime = now;
2786 mark_inode_dirty_sync(VFS_I(base_ni));
2790 NInoClearTruncateFailed(ni);
2791 ntfs_debug("Done.");
2797 if (err != -ENOMEM && err != -EOPNOTSUPP) {
2799 make_bad_inode(VFS_I(base_ni));
2802 if (err != -EOPNOTSUPP)
2803 NInoSetTruncateFailed(ni);
2804 else if (old_size >= 0)
2805 i_size_write(vi, old_size);
2808 ntfs_attr_put_search_ctx(ctx);
2810 unmap_mft_record(base_ni);
2811 up_write(&ni->runlist.lock);
2813 ntfs_debug("Failed. Returning error code %i.", err);
2816 if (err != -ENOMEM && err != -EOPNOTSUPP) {
2818 make_bad_inode(VFS_I(base_ni));
2821 if (err != -EOPNOTSUPP)
2822 NInoSetTruncateFailed(ni);
2824 i_size_write(vi, old_size);
2829 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2830 * @vi: inode for which the i_size was changed
2832 * Wrapper for ntfs_truncate() that has no return value.
2834 * See ntfs_truncate() description above for details.
2836 void ntfs_truncate_vfs(struct inode *vi) {
2841 * ntfs_setattr - called from notify_change() when an attribute is being changed
2842 * @dentry: dentry whose attributes to change
2843 * @attr: structure describing the attributes and the changes
2845 * We have to trap VFS attempts to truncate the file described by @dentry as
2846 * soon as possible, because we do not implement changes in i_size yet. So we
2847 * abort all i_size changes here.
2849 * We also abort all changes of user, group, and mode as we do not implement
2850 * the NTFS ACLs yet.
2852 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
2853 * called with ->i_alloc_sem held for writing.
2855 * Basically this is a copy of generic notify_change() and inode_setattr()
2856 * functionality, except we intercept and abort changes in i_size.
2858 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2860 struct inode *vi = dentry->d_inode;
2862 unsigned int ia_valid = attr->ia_valid;
2864 err = inode_change_ok(vi, attr);
2867 /* We do not support NTFS ACLs yet. */
2868 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2869 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2870 "supported yet, ignoring.");
2874 if (ia_valid & ATTR_SIZE) {
2875 if (attr->ia_size != i_size_read(vi)) {
2876 ntfs_inode *ni = NTFS_I(vi);
2878 * FIXME: For now we do not support resizing of
2879 * compressed or encrypted files yet.
2881 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2882 ntfs_warning(vi->i_sb, "Changes in inode size "
2883 "are not supported yet for "
2884 "%s files, ignoring.",
2885 NInoCompressed(ni) ?
2886 "compressed" : "encrypted");
2889 err = vmtruncate(vi, attr->ia_size);
2890 if (err || ia_valid == ATTR_SIZE)
2894 * We skipped the truncate but must still update
2897 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2900 if (ia_valid & ATTR_ATIME)
2901 vi->i_atime = timespec_trunc(attr->ia_atime,
2902 vi->i_sb->s_time_gran);
2903 if (ia_valid & ATTR_MTIME)
2904 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2905 vi->i_sb->s_time_gran);
2906 if (ia_valid & ATTR_CTIME)
2907 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2908 vi->i_sb->s_time_gran);
2909 mark_inode_dirty(vi);
2915 * ntfs_write_inode - write out a dirty inode
2916 * @vi: inode to write out
2917 * @sync: if true, write out synchronously
2919 * Write out a dirty inode to disk including any extent inodes if present.
2921 * If @sync is true, commit the inode to disk and wait for io completion. This
2922 * is done using write_mft_record().
2924 * If @sync is false, just schedule the write to happen but do not wait for i/o
2925 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2926 * marking the page (and in this case mft record) dirty but we do not implement
2927 * this yet as write_mft_record() largely ignores the @sync parameter and
2928 * always performs synchronous writes.
2930 * Return 0 on success and -errno on error.
2932 int ntfs_write_inode(struct inode *vi, int sync)
2935 ntfs_inode *ni = NTFS_I(vi);
2936 ntfs_attr_search_ctx *ctx;
2938 STANDARD_INFORMATION *si;
2940 BOOL modified = FALSE;
2942 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2945 * Dirty attribute inodes are written via their real inodes so just
2946 * clean them here. Access time updates are taken care off when the
2947 * real inode is written.
2951 ntfs_debug("Done.");
2954 /* Map, pin, and lock the mft record belonging to the inode. */
2955 m = map_mft_record(ni);
2960 /* Update the access times in the standard information attribute. */
2961 ctx = ntfs_attr_get_search_ctx(ni, m);
2962 if (unlikely(!ctx)) {
2966 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2967 CASE_SENSITIVE, 0, NULL, 0, ctx);
2968 if (unlikely(err)) {
2969 ntfs_attr_put_search_ctx(ctx);
2972 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2973 le16_to_cpu(ctx->attr->data.resident.value_offset));
2974 /* Update the access times if they have changed. */
2975 nt = utc2ntfs(vi->i_mtime);
2976 if (si->last_data_change_time != nt) {
2977 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2978 "new = 0x%llx", vi->i_ino, (long long)
2979 sle64_to_cpu(si->last_data_change_time),
2980 (long long)sle64_to_cpu(nt));
2981 si->last_data_change_time = nt;
2984 nt = utc2ntfs(vi->i_ctime);
2985 if (si->last_mft_change_time != nt) {
2986 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2987 "new = 0x%llx", vi->i_ino, (long long)
2988 sle64_to_cpu(si->last_mft_change_time),
2989 (long long)sle64_to_cpu(nt));
2990 si->last_mft_change_time = nt;
2993 nt = utc2ntfs(vi->i_atime);
2994 if (si->last_access_time != nt) {
2995 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
2996 "new = 0x%llx", vi->i_ino,
2997 (long long)sle64_to_cpu(si->last_access_time),
2998 (long long)sle64_to_cpu(nt));
2999 si->last_access_time = nt;
3003 * If we just modified the standard information attribute we need to
3004 * mark the mft record it is in dirty. We do this manually so that
3005 * mark_inode_dirty() is not called which would redirty the inode and
3006 * hence result in an infinite loop of trying to write the inode.
3007 * There is no need to mark the base inode nor the base mft record
3008 * dirty, since we are going to write this mft record below in any case
3009 * and the base mft record may actually not have been modified so it
3010 * might not need to be written out.
3011 * NOTE: It is not a problem when the inode for $MFT itself is being
3012 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3013 * on the $MFT inode and hence ntfs_write_inode() will not be
3014 * re-invoked because of it which in turn is ok since the dirtied mft
3015 * record will be cleaned and written out to disk below, i.e. before
3016 * this function returns.
3018 if (modified && !NInoTestSetDirty(ctx->ntfs_ino))
3019 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3020 ctx->ntfs_ino->page_ofs);
3021 ntfs_attr_put_search_ctx(ctx);
3022 /* Now the access times are updated, write the base mft record. */
3024 err = write_mft_record(ni, m, sync);
3025 /* Write all attached extent mft records. */
3026 down(&ni->extent_lock);
3027 if (ni->nr_extents > 0) {
3028 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3031 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3032 for (i = 0; i < ni->nr_extents; i++) {
3033 ntfs_inode *tni = extent_nis[i];
3035 if (NInoDirty(tni)) {
3036 MFT_RECORD *tm = map_mft_record(tni);
3040 if (!err || err == -ENOMEM)
3044 ret = write_mft_record(tni, tm, sync);
3045 unmap_mft_record(tni);
3046 if (unlikely(ret)) {
3047 if (!err || err == -ENOMEM)
3053 up(&ni->extent_lock);
3054 unmap_mft_record(ni);
3057 ntfs_debug("Done.");
3060 unmap_mft_record(ni);
3062 if (err == -ENOMEM) {
3063 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3064 "Marking the inode dirty again, so the VFS "
3066 mark_inode_dirty(vi);
3068 ntfs_error(vi->i_sb, "Failed (error code %i): Marking inode "
3069 "as bad. You should run chkdsk.", -err);
3071 NVolSetErrors(ni->vol);
3076 #endif /* NTFS_RW */