[SCSI] advansys: Fix VLB driver name
[linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE         2
35
36 struct scsi_host_sg_pool {
37         size_t          size;
38         char            *name; 
39         struct kmem_cache       *slab;
40         mempool_t       *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x } 
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49         SP(8),
50         SP(16),
51         SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53         SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55         SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57         SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };      
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         if (!rq->bio)
267                 blk_rq_bio_prep(q, rq, bio);
268         else if (!ll_back_merge_fn(q, rq, bio))
269                 return -EINVAL;
270         else {
271                 rq->biotail->bi_next = bio;
272                 rq->biotail = bio;
273         }
274
275         return 0;
276 }
277
278 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
279 {
280         if (bio->bi_size)
281                 return 1;
282
283         bio_put(bio);
284         return 0;
285 }
286
287 /**
288  * scsi_req_map_sg - map a scatterlist into a request
289  * @rq:         request to fill
290  * @sg:         scatterlist
291  * @nsegs:      number of elements
292  * @bufflen:    len of buffer
293  * @gfp:        memory allocation flags
294  *
295  * scsi_req_map_sg maps a scatterlist into a request so that the
296  * request can be sent to the block layer. We do not trust the scatterlist
297  * sent to use, as some ULDs use that struct to only organize the pages.
298  */
299 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300                            int nsegs, unsigned bufflen, gfp_t gfp)
301 {
302         struct request_queue *q = rq->q;
303         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304         unsigned int data_len = bufflen, len, bytes, off;
305         struct page *page;
306         struct bio *bio = NULL;
307         int i, err, nr_vecs = 0;
308
309         for (i = 0; i < nsegs; i++) {
310                 page = sgl[i].page;
311                 off = sgl[i].offset;
312                 len = sgl[i].length;
313
314                 while (len > 0 && data_len > 0) {
315                         /*
316                          * sg sends a scatterlist that is larger than
317                          * the data_len it wants transferred for certain
318                          * IO sizes
319                          */
320                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321                         bytes = min(bytes, data_len);
322
323                         if (!bio) {
324                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
325                                 nr_pages -= nr_vecs;
326
327                                 bio = bio_alloc(gfp, nr_vecs);
328                                 if (!bio) {
329                                         err = -ENOMEM;
330                                         goto free_bios;
331                                 }
332                                 bio->bi_end_io = scsi_bi_endio;
333                         }
334
335                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
336                             bytes) {
337                                 bio_put(bio);
338                                 err = -EINVAL;
339                                 goto free_bios;
340                         }
341
342                         if (bio->bi_vcnt >= nr_vecs) {
343                                 err = scsi_merge_bio(rq, bio);
344                                 if (err) {
345                                         bio_endio(bio, bio->bi_size, 0);
346                                         goto free_bios;
347                                 }
348                                 bio = NULL;
349                         }
350
351                         page++;
352                         len -= bytes;
353                         data_len -=bytes;
354                         off = 0;
355                 }
356         }
357
358         rq->buffer = rq->data = NULL;
359         rq->data_len = bufflen;
360         return 0;
361
362 free_bios:
363         while ((bio = rq->bio) != NULL) {
364                 rq->bio = bio->bi_next;
365                 /*
366                  * call endio instead of bio_put incase it was bounced
367                  */
368                 bio_endio(bio, bio->bi_size, 0);
369         }
370
371         return err;
372 }
373
374 /**
375  * scsi_execute_async - insert request
376  * @sdev:       scsi device
377  * @cmd:        scsi command
378  * @cmd_len:    length of scsi cdb
379  * @data_direction: data direction
380  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
381  * @bufflen:    len of buffer
382  * @use_sg:     if buffer is a scatterlist this is the number of elements
383  * @timeout:    request timeout in seconds
384  * @retries:    number of times to retry request
385  * @flags:      or into request flags
386  **/
387 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
388                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
389                        int use_sg, int timeout, int retries, void *privdata,
390                        void (*done)(void *, char *, int, int), gfp_t gfp)
391 {
392         struct request *req;
393         struct scsi_io_context *sioc;
394         int err = 0;
395         int write = (data_direction == DMA_TO_DEVICE);
396
397         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
398         if (!sioc)
399                 return DRIVER_ERROR << 24;
400
401         req = blk_get_request(sdev->request_queue, write, gfp);
402         if (!req)
403                 goto free_sense;
404         req->cmd_type = REQ_TYPE_BLOCK_PC;
405         req->cmd_flags |= REQ_QUIET;
406
407         if (use_sg)
408                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
409         else if (bufflen)
410                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
411
412         if (err)
413                 goto free_req;
414
415         req->cmd_len = cmd_len;
416         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
417         memcpy(req->cmd, cmd, req->cmd_len);
418         req->sense = sioc->sense;
419         req->sense_len = 0;
420         req->timeout = timeout;
421         req->retries = retries;
422         req->end_io_data = sioc;
423
424         sioc->data = privdata;
425         sioc->done = done;
426
427         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
428         return 0;
429
430 free_req:
431         blk_put_request(req);
432 free_sense:
433         kmem_cache_free(scsi_io_context_cache, sioc);
434         return DRIVER_ERROR << 24;
435 }
436 EXPORT_SYMBOL_GPL(scsi_execute_async);
437
438 /*
439  * Function:    scsi_init_cmd_errh()
440  *
441  * Purpose:     Initialize cmd fields related to error handling.
442  *
443  * Arguments:   cmd     - command that is ready to be queued.
444  *
445  * Notes:       This function has the job of initializing a number of
446  *              fields related to error handling.   Typically this will
447  *              be called once for each command, as required.
448  */
449 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
450 {
451         cmd->serial_number = 0;
452         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
453         if (cmd->cmd_len == 0)
454                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
455 }
456
457 void scsi_device_unbusy(struct scsi_device *sdev)
458 {
459         struct Scsi_Host *shost = sdev->host;
460         unsigned long flags;
461
462         spin_lock_irqsave(shost->host_lock, flags);
463         shost->host_busy--;
464         if (unlikely(scsi_host_in_recovery(shost) &&
465                      (shost->host_failed || shost->host_eh_scheduled)))
466                 scsi_eh_wakeup(shost);
467         spin_unlock(shost->host_lock);
468         spin_lock(sdev->request_queue->queue_lock);
469         sdev->device_busy--;
470         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
471 }
472
473 /*
474  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
475  * and call blk_run_queue for all the scsi_devices on the target -
476  * including current_sdev first.
477  *
478  * Called with *no* scsi locks held.
479  */
480 static void scsi_single_lun_run(struct scsi_device *current_sdev)
481 {
482         struct Scsi_Host *shost = current_sdev->host;
483         struct scsi_device *sdev, *tmp;
484         struct scsi_target *starget = scsi_target(current_sdev);
485         unsigned long flags;
486
487         spin_lock_irqsave(shost->host_lock, flags);
488         starget->starget_sdev_user = NULL;
489         spin_unlock_irqrestore(shost->host_lock, flags);
490
491         /*
492          * Call blk_run_queue for all LUNs on the target, starting with
493          * current_sdev. We race with others (to set starget_sdev_user),
494          * but in most cases, we will be first. Ideally, each LU on the
495          * target would get some limited time or requests on the target.
496          */
497         blk_run_queue(current_sdev->request_queue);
498
499         spin_lock_irqsave(shost->host_lock, flags);
500         if (starget->starget_sdev_user)
501                 goto out;
502         list_for_each_entry_safe(sdev, tmp, &starget->devices,
503                         same_target_siblings) {
504                 if (sdev == current_sdev)
505                         continue;
506                 if (scsi_device_get(sdev))
507                         continue;
508
509                 spin_unlock_irqrestore(shost->host_lock, flags);
510                 blk_run_queue(sdev->request_queue);
511                 spin_lock_irqsave(shost->host_lock, flags);
512         
513                 scsi_device_put(sdev);
514         }
515  out:
516         spin_unlock_irqrestore(shost->host_lock, flags);
517 }
518
519 /*
520  * Function:    scsi_run_queue()
521  *
522  * Purpose:     Select a proper request queue to serve next
523  *
524  * Arguments:   q       - last request's queue
525  *
526  * Returns:     Nothing
527  *
528  * Notes:       The previous command was completely finished, start
529  *              a new one if possible.
530  */
531 static void scsi_run_queue(struct request_queue *q)
532 {
533         struct scsi_device *sdev = q->queuedata;
534         struct Scsi_Host *shost = sdev->host;
535         unsigned long flags;
536
537         if (sdev->single_lun)
538                 scsi_single_lun_run(sdev);
539
540         spin_lock_irqsave(shost->host_lock, flags);
541         while (!list_empty(&shost->starved_list) &&
542                !shost->host_blocked && !shost->host_self_blocked &&
543                 !((shost->can_queue > 0) &&
544                   (shost->host_busy >= shost->can_queue))) {
545                 /*
546                  * As long as shost is accepting commands and we have
547                  * starved queues, call blk_run_queue. scsi_request_fn
548                  * drops the queue_lock and can add us back to the
549                  * starved_list.
550                  *
551                  * host_lock protects the starved_list and starved_entry.
552                  * scsi_request_fn must get the host_lock before checking
553                  * or modifying starved_list or starved_entry.
554                  */
555                 sdev = list_entry(shost->starved_list.next,
556                                           struct scsi_device, starved_entry);
557                 list_del_init(&sdev->starved_entry);
558                 spin_unlock_irqrestore(shost->host_lock, flags);
559
560
561                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
562                     !test_and_set_bit(QUEUE_FLAG_REENTER,
563                                       &sdev->request_queue->queue_flags)) {
564                         blk_run_queue(sdev->request_queue);
565                         clear_bit(QUEUE_FLAG_REENTER,
566                                   &sdev->request_queue->queue_flags);
567                 } else
568                         blk_run_queue(sdev->request_queue);
569
570                 spin_lock_irqsave(shost->host_lock, flags);
571                 if (unlikely(!list_empty(&sdev->starved_entry)))
572                         /*
573                          * sdev lost a race, and was put back on the
574                          * starved list. This is unlikely but without this
575                          * in theory we could loop forever.
576                          */
577                         break;
578         }
579         spin_unlock_irqrestore(shost->host_lock, flags);
580
581         blk_run_queue(q);
582 }
583
584 /*
585  * Function:    scsi_requeue_command()
586  *
587  * Purpose:     Handle post-processing of completed commands.
588  *
589  * Arguments:   q       - queue to operate on
590  *              cmd     - command that may need to be requeued.
591  *
592  * Returns:     Nothing
593  *
594  * Notes:       After command completion, there may be blocks left
595  *              over which weren't finished by the previous command
596  *              this can be for a number of reasons - the main one is
597  *              I/O errors in the middle of the request, in which case
598  *              we need to request the blocks that come after the bad
599  *              sector.
600  * Notes:       Upon return, cmd is a stale pointer.
601  */
602 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
603 {
604         struct request *req = cmd->request;
605         unsigned long flags;
606
607         scsi_unprep_request(req);
608         spin_lock_irqsave(q->queue_lock, flags);
609         blk_requeue_request(q, req);
610         spin_unlock_irqrestore(q->queue_lock, flags);
611
612         scsi_run_queue(q);
613 }
614
615 void scsi_next_command(struct scsi_cmnd *cmd)
616 {
617         struct scsi_device *sdev = cmd->device;
618         struct request_queue *q = sdev->request_queue;
619
620         /* need to hold a reference on the device before we let go of the cmd */
621         get_device(&sdev->sdev_gendev);
622
623         scsi_put_command(cmd);
624         scsi_run_queue(q);
625
626         /* ok to remove device now */
627         put_device(&sdev->sdev_gendev);
628 }
629
630 void scsi_run_host_queues(struct Scsi_Host *shost)
631 {
632         struct scsi_device *sdev;
633
634         shost_for_each_device(sdev, shost)
635                 scsi_run_queue(sdev->request_queue);
636 }
637
638 /*
639  * Function:    scsi_end_request()
640  *
641  * Purpose:     Post-processing of completed commands (usually invoked at end
642  *              of upper level post-processing and scsi_io_completion).
643  *
644  * Arguments:   cmd      - command that is complete.
645  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
646  *              bytes    - number of bytes of completed I/O
647  *              requeue  - indicates whether we should requeue leftovers.
648  *
649  * Lock status: Assumed that lock is not held upon entry.
650  *
651  * Returns:     cmd if requeue required, NULL otherwise.
652  *
653  * Notes:       This is called for block device requests in order to
654  *              mark some number of sectors as complete.
655  * 
656  *              We are guaranteeing that the request queue will be goosed
657  *              at some point during this call.
658  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
659  */
660 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
661                                           int bytes, int requeue)
662 {
663         struct request_queue *q = cmd->device->request_queue;
664         struct request *req = cmd->request;
665         unsigned long flags;
666
667         /*
668          * If there are blocks left over at the end, set up the command
669          * to queue the remainder of them.
670          */
671         if (end_that_request_chunk(req, uptodate, bytes)) {
672                 int leftover = (req->hard_nr_sectors << 9);
673
674                 if (blk_pc_request(req))
675                         leftover = req->data_len;
676
677                 /* kill remainder if no retrys */
678                 if (!uptodate && blk_noretry_request(req))
679                         end_that_request_chunk(req, 0, leftover);
680                 else {
681                         if (requeue) {
682                                 /*
683                                  * Bleah.  Leftovers again.  Stick the
684                                  * leftovers in the front of the
685                                  * queue, and goose the queue again.
686                                  */
687                                 scsi_requeue_command(q, cmd);
688                                 cmd = NULL;
689                         }
690                         return cmd;
691                 }
692         }
693
694         add_disk_randomness(req->rq_disk);
695
696         spin_lock_irqsave(q->queue_lock, flags);
697         if (blk_rq_tagged(req))
698                 blk_queue_end_tag(q, req);
699         end_that_request_last(req, uptodate);
700         spin_unlock_irqrestore(q->queue_lock, flags);
701
702         /*
703          * This will goose the queue request function at the end, so we don't
704          * need to worry about launching another command.
705          */
706         scsi_next_command(cmd);
707         return NULL;
708 }
709
710 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
711 {
712         struct scsi_host_sg_pool *sgp;
713         struct scatterlist *sgl;
714
715         BUG_ON(!cmd->use_sg);
716
717         switch (cmd->use_sg) {
718         case 1 ... 8:
719                 cmd->sglist_len = 0;
720                 break;
721         case 9 ... 16:
722                 cmd->sglist_len = 1;
723                 break;
724         case 17 ... 32:
725                 cmd->sglist_len = 2;
726                 break;
727 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
728         case 33 ... 64:
729                 cmd->sglist_len = 3;
730                 break;
731 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
732         case 65 ... 128:
733                 cmd->sglist_len = 4;
734                 break;
735 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
736         case 129 ... 256:
737                 cmd->sglist_len = 5;
738                 break;
739 #endif
740 #endif
741 #endif
742         default:
743                 return NULL;
744         }
745
746         sgp = scsi_sg_pools + cmd->sglist_len;
747         sgl = mempool_alloc(sgp->pool, gfp_mask);
748         return sgl;
749 }
750
751 EXPORT_SYMBOL(scsi_alloc_sgtable);
752
753 void scsi_free_sgtable(struct scatterlist *sgl, int index)
754 {
755         struct scsi_host_sg_pool *sgp;
756
757         BUG_ON(index >= SG_MEMPOOL_NR);
758
759         sgp = scsi_sg_pools + index;
760         mempool_free(sgl, sgp->pool);
761 }
762
763 EXPORT_SYMBOL(scsi_free_sgtable);
764
765 /*
766  * Function:    scsi_release_buffers()
767  *
768  * Purpose:     Completion processing for block device I/O requests.
769  *
770  * Arguments:   cmd     - command that we are bailing.
771  *
772  * Lock status: Assumed that no lock is held upon entry.
773  *
774  * Returns:     Nothing
775  *
776  * Notes:       In the event that an upper level driver rejects a
777  *              command, we must release resources allocated during
778  *              the __init_io() function.  Primarily this would involve
779  *              the scatter-gather table, and potentially any bounce
780  *              buffers.
781  */
782 static void scsi_release_buffers(struct scsi_cmnd *cmd)
783 {
784         if (cmd->use_sg)
785                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
786
787         /*
788          * Zero these out.  They now point to freed memory, and it is
789          * dangerous to hang onto the pointers.
790          */
791         cmd->request_buffer = NULL;
792         cmd->request_bufflen = 0;
793 }
794
795 /*
796  * Function:    scsi_io_completion()
797  *
798  * Purpose:     Completion processing for block device I/O requests.
799  *
800  * Arguments:   cmd   - command that is finished.
801  *
802  * Lock status: Assumed that no lock is held upon entry.
803  *
804  * Returns:     Nothing
805  *
806  * Notes:       This function is matched in terms of capabilities to
807  *              the function that created the scatter-gather list.
808  *              In other words, if there are no bounce buffers
809  *              (the normal case for most drivers), we don't need
810  *              the logic to deal with cleaning up afterwards.
811  *
812  *              We must do one of several things here:
813  *
814  *              a) Call scsi_end_request.  This will finish off the
815  *                 specified number of sectors.  If we are done, the
816  *                 command block will be released, and the queue
817  *                 function will be goosed.  If we are not done, then
818  *                 scsi_end_request will directly goose the queue.
819  *
820  *              b) We can just use scsi_requeue_command() here.  This would
821  *                 be used if we just wanted to retry, for example.
822  */
823 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
824 {
825         int result = cmd->result;
826         int this_count = cmd->request_bufflen;
827         struct request_queue *q = cmd->device->request_queue;
828         struct request *req = cmd->request;
829         int clear_errors = 1;
830         struct scsi_sense_hdr sshdr;
831         int sense_valid = 0;
832         int sense_deferred = 0;
833
834         scsi_release_buffers(cmd);
835
836         if (result) {
837                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
838                 if (sense_valid)
839                         sense_deferred = scsi_sense_is_deferred(&sshdr);
840         }
841
842         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
843                 req->errors = result;
844                 if (result) {
845                         clear_errors = 0;
846                         if (sense_valid && req->sense) {
847                                 /*
848                                  * SG_IO wants current and deferred errors
849                                  */
850                                 int len = 8 + cmd->sense_buffer[7];
851
852                                 if (len > SCSI_SENSE_BUFFERSIZE)
853                                         len = SCSI_SENSE_BUFFERSIZE;
854                                 memcpy(req->sense, cmd->sense_buffer,  len);
855                                 req->sense_len = len;
856                         }
857                 }
858                 req->data_len = cmd->resid;
859         }
860
861         /*
862          * Next deal with any sectors which we were able to correctly
863          * handle.
864          */
865         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
866                                       "%d bytes done.\n",
867                                       req->nr_sectors, good_bytes));
868         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
869
870         if (clear_errors)
871                 req->errors = 0;
872
873         /* A number of bytes were successfully read.  If there
874          * are leftovers and there is some kind of error
875          * (result != 0), retry the rest.
876          */
877         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
878                 return;
879
880         /* good_bytes = 0, or (inclusive) there were leftovers and
881          * result = 0, so scsi_end_request couldn't retry.
882          */
883         if (sense_valid && !sense_deferred) {
884                 switch (sshdr.sense_key) {
885                 case UNIT_ATTENTION:
886                         if (cmd->device->removable) {
887                                 /* Detected disc change.  Set a bit
888                                  * and quietly refuse further access.
889                                  */
890                                 cmd->device->changed = 1;
891                                 scsi_end_request(cmd, 0, this_count, 1);
892                                 return;
893                         } else {
894                                 /* Must have been a power glitch, or a
895                                  * bus reset.  Could not have been a
896                                  * media change, so we just retry the
897                                  * request and see what happens.
898                                  */
899                                 scsi_requeue_command(q, cmd);
900                                 return;
901                         }
902                         break;
903                 case ILLEGAL_REQUEST:
904                         /* If we had an ILLEGAL REQUEST returned, then
905                          * we may have performed an unsupported
906                          * command.  The only thing this should be
907                          * would be a ten byte read where only a six
908                          * byte read was supported.  Also, on a system
909                          * where READ CAPACITY failed, we may have
910                          * read past the end of the disk.
911                          */
912                         if ((cmd->device->use_10_for_rw &&
913                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
914                             (cmd->cmnd[0] == READ_10 ||
915                              cmd->cmnd[0] == WRITE_10)) {
916                                 cmd->device->use_10_for_rw = 0;
917                                 /* This will cause a retry with a
918                                  * 6-byte command.
919                                  */
920                                 scsi_requeue_command(q, cmd);
921                                 return;
922                         } else {
923                                 scsi_end_request(cmd, 0, this_count, 1);
924                                 return;
925                         }
926                         break;
927                 case NOT_READY:
928                         /* If the device is in the process of becoming
929                          * ready, or has a temporary blockage, retry.
930                          */
931                         if (sshdr.asc == 0x04) {
932                                 switch (sshdr.ascq) {
933                                 case 0x01: /* becoming ready */
934                                 case 0x04: /* format in progress */
935                                 case 0x05: /* rebuild in progress */
936                                 case 0x06: /* recalculation in progress */
937                                 case 0x07: /* operation in progress */
938                                 case 0x08: /* Long write in progress */
939                                 case 0x09: /* self test in progress */
940                                         scsi_requeue_command(q, cmd);
941                                         return;
942                                 default:
943                                         break;
944                                 }
945                         }
946                         if (!(req->cmd_flags & REQ_QUIET)) {
947                                 scmd_printk(KERN_INFO, cmd,
948                                             "Device not ready: ");
949                                 scsi_print_sense_hdr("", &sshdr);
950                         }
951                         scsi_end_request(cmd, 0, this_count, 1);
952                         return;
953                 case VOLUME_OVERFLOW:
954                         if (!(req->cmd_flags & REQ_QUIET)) {
955                                 scmd_printk(KERN_INFO, cmd,
956                                             "Volume overflow, CDB: ");
957                                 __scsi_print_command(cmd->cmnd);
958                                 scsi_print_sense("", cmd);
959                         }
960                         /* See SSC3rXX or current. */
961                         scsi_end_request(cmd, 0, this_count, 1);
962                         return;
963                 default:
964                         break;
965                 }
966         }
967         if (host_byte(result) == DID_RESET) {
968                 /* Third party bus reset or reset for error recovery
969                  * reasons.  Just retry the request and see what
970                  * happens.
971                  */
972                 scsi_requeue_command(q, cmd);
973                 return;
974         }
975         if (result) {
976                 if (!(req->cmd_flags & REQ_QUIET)) {
977                         scsi_print_result(cmd);
978                         if (driver_byte(result) & DRIVER_SENSE)
979                                 scsi_print_sense("", cmd);
980                 }
981         }
982         scsi_end_request(cmd, 0, this_count, !result);
983 }
984 EXPORT_SYMBOL(scsi_io_completion);
985
986 /*
987  * Function:    scsi_init_io()
988  *
989  * Purpose:     SCSI I/O initialize function.
990  *
991  * Arguments:   cmd   - Command descriptor we wish to initialize
992  *
993  * Returns:     0 on success
994  *              BLKPREP_DEFER if the failure is retryable
995  *              BLKPREP_KILL if the failure is fatal
996  */
997 static int scsi_init_io(struct scsi_cmnd *cmd)
998 {
999         struct request     *req = cmd->request;
1000         struct scatterlist *sgpnt;
1001         int                count;
1002
1003         /*
1004          * We used to not use scatter-gather for single segment request,
1005          * but now we do (it makes highmem I/O easier to support without
1006          * kmapping pages)
1007          */
1008         cmd->use_sg = req->nr_phys_segments;
1009
1010         /*
1011          * If sg table allocation fails, requeue request later.
1012          */
1013         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1014         if (unlikely(!sgpnt)) {
1015                 scsi_unprep_request(req);
1016                 return BLKPREP_DEFER;
1017         }
1018
1019         req->buffer = NULL;
1020         cmd->request_buffer = (char *) sgpnt;
1021         if (blk_pc_request(req))
1022                 cmd->request_bufflen = req->data_len;
1023         else
1024                 cmd->request_bufflen = req->nr_sectors << 9;
1025
1026         /* 
1027          * Next, walk the list, and fill in the addresses and sizes of
1028          * each segment.
1029          */
1030         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1031         if (likely(count <= cmd->use_sg)) {
1032                 cmd->use_sg = count;
1033                 return BLKPREP_OK;
1034         }
1035
1036         printk(KERN_ERR "Incorrect number of segments after building list\n");
1037         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1038         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1039                         req->current_nr_sectors);
1040
1041         /* release the command and kill it */
1042         scsi_release_buffers(cmd);
1043         scsi_put_command(cmd);
1044         return BLKPREP_KILL;
1045 }
1046
1047 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1048                 struct request *req)
1049 {
1050         struct scsi_cmnd *cmd;
1051
1052         if (!req->special) {
1053                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1054                 if (unlikely(!cmd))
1055                         return NULL;
1056                 req->special = cmd;
1057         } else {
1058                 cmd = req->special;
1059         }
1060
1061         /* pull a tag out of the request if we have one */
1062         cmd->tag = req->tag;
1063         cmd->request = req;
1064
1065         return cmd;
1066 }
1067
1068 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1069 {
1070         BUG_ON(!blk_pc_request(cmd->request));
1071         /*
1072          * This will complete the whole command with uptodate=1 so
1073          * as far as the block layer is concerned the command completed
1074          * successfully. Since this is a REQ_BLOCK_PC command the
1075          * caller should check the request's errors value
1076          */
1077         scsi_io_completion(cmd, cmd->request_bufflen);
1078 }
1079
1080 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1081 {
1082         struct scsi_cmnd *cmd;
1083
1084         cmd = scsi_get_cmd_from_req(sdev, req);
1085         if (unlikely(!cmd))
1086                 return BLKPREP_DEFER;
1087
1088         /*
1089          * BLOCK_PC requests may transfer data, in which case they must
1090          * a bio attached to them.  Or they might contain a SCSI command
1091          * that does not transfer data, in which case they may optionally
1092          * submit a request without an attached bio.
1093          */
1094         if (req->bio) {
1095                 int ret;
1096
1097                 BUG_ON(!req->nr_phys_segments);
1098
1099                 ret = scsi_init_io(cmd);
1100                 if (unlikely(ret))
1101                         return ret;
1102         } else {
1103                 BUG_ON(req->data_len);
1104                 BUG_ON(req->data);
1105
1106                 cmd->request_bufflen = 0;
1107                 cmd->request_buffer = NULL;
1108                 cmd->use_sg = 0;
1109                 req->buffer = NULL;
1110         }
1111
1112         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1113         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1114         cmd->cmd_len = req->cmd_len;
1115         if (!req->data_len)
1116                 cmd->sc_data_direction = DMA_NONE;
1117         else if (rq_data_dir(req) == WRITE)
1118                 cmd->sc_data_direction = DMA_TO_DEVICE;
1119         else
1120                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1121         
1122         cmd->transfersize = req->data_len;
1123         cmd->allowed = req->retries;
1124         cmd->timeout_per_command = req->timeout;
1125         cmd->done = scsi_blk_pc_done;
1126         return BLKPREP_OK;
1127 }
1128
1129 /*
1130  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1131  * from filesystems that still need to be translated to SCSI CDBs from
1132  * the ULD.
1133  */
1134 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1135 {
1136         struct scsi_cmnd *cmd;
1137         struct scsi_driver *drv;
1138         int ret;
1139
1140         /*
1141          * Filesystem requests must transfer data.
1142          */
1143         BUG_ON(!req->nr_phys_segments);
1144
1145         cmd = scsi_get_cmd_from_req(sdev, req);
1146         if (unlikely(!cmd))
1147                 return BLKPREP_DEFER;
1148
1149         ret = scsi_init_io(cmd);
1150         if (unlikely(ret))
1151                 return ret;
1152
1153         /*
1154          * Initialize the actual SCSI command for this request.
1155          */
1156         drv = *(struct scsi_driver **)req->rq_disk->private_data;
1157         if (unlikely(!drv->init_command(cmd))) {
1158                 scsi_release_buffers(cmd);
1159                 scsi_put_command(cmd);
1160                 return BLKPREP_KILL;
1161         }
1162
1163         return BLKPREP_OK;
1164 }
1165
1166 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1167 {
1168         struct scsi_device *sdev = q->queuedata;
1169         int ret = BLKPREP_OK;
1170
1171         /*
1172          * If the device is not in running state we will reject some
1173          * or all commands.
1174          */
1175         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1176                 switch (sdev->sdev_state) {
1177                 case SDEV_OFFLINE:
1178                         /*
1179                          * If the device is offline we refuse to process any
1180                          * commands.  The device must be brought online
1181                          * before trying any recovery commands.
1182                          */
1183                         sdev_printk(KERN_ERR, sdev,
1184                                     "rejecting I/O to offline device\n");
1185                         ret = BLKPREP_KILL;
1186                         break;
1187                 case SDEV_DEL:
1188                         /*
1189                          * If the device is fully deleted, we refuse to
1190                          * process any commands as well.
1191                          */
1192                         sdev_printk(KERN_ERR, sdev,
1193                                     "rejecting I/O to dead device\n");
1194                         ret = BLKPREP_KILL;
1195                         break;
1196                 case SDEV_QUIESCE:
1197                 case SDEV_BLOCK:
1198                         /*
1199                          * If the devices is blocked we defer normal commands.
1200                          */
1201                         if (!(req->cmd_flags & REQ_PREEMPT))
1202                                 ret = BLKPREP_DEFER;
1203                         break;
1204                 default:
1205                         /*
1206                          * For any other not fully online state we only allow
1207                          * special commands.  In particular any user initiated
1208                          * command is not allowed.
1209                          */
1210                         if (!(req->cmd_flags & REQ_PREEMPT))
1211                                 ret = BLKPREP_KILL;
1212                         break;
1213                 }
1214
1215                 if (ret != BLKPREP_OK)
1216                         goto out;
1217         }
1218
1219         switch (req->cmd_type) {
1220         case REQ_TYPE_BLOCK_PC:
1221                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1222                 break;
1223         case REQ_TYPE_FS:
1224                 ret = scsi_setup_fs_cmnd(sdev, req);
1225                 break;
1226         default:
1227                 /*
1228                  * All other command types are not supported.
1229                  *
1230                  * Note that these days the SCSI subsystem does not use
1231                  * REQ_TYPE_SPECIAL requests anymore.  These are only used
1232                  * (directly or via blk_insert_request) by non-SCSI drivers.
1233                  */
1234                 blk_dump_rq_flags(req, "SCSI bad req");
1235                 ret = BLKPREP_KILL;
1236                 break;
1237         }
1238
1239  out:
1240         switch (ret) {
1241         case BLKPREP_KILL:
1242                 req->errors = DID_NO_CONNECT << 16;
1243                 break;
1244         case BLKPREP_DEFER:
1245                 /*
1246                  * If we defer, the elv_next_request() returns NULL, but the
1247                  * queue must be restarted, so we plug here if no returning
1248                  * command will automatically do that.
1249                  */
1250                 if (sdev->device_busy == 0)
1251                         blk_plug_device(q);
1252                 break;
1253         default:
1254                 req->cmd_flags |= REQ_DONTPREP;
1255         }
1256
1257         return ret;
1258 }
1259
1260 /*
1261  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1262  * return 0.
1263  *
1264  * Called with the queue_lock held.
1265  */
1266 static inline int scsi_dev_queue_ready(struct request_queue *q,
1267                                   struct scsi_device *sdev)
1268 {
1269         if (sdev->device_busy >= sdev->queue_depth)
1270                 return 0;
1271         if (sdev->device_busy == 0 && sdev->device_blocked) {
1272                 /*
1273                  * unblock after device_blocked iterates to zero
1274                  */
1275                 if (--sdev->device_blocked == 0) {
1276                         SCSI_LOG_MLQUEUE(3,
1277                                    sdev_printk(KERN_INFO, sdev,
1278                                    "unblocking device at zero depth\n"));
1279                 } else {
1280                         blk_plug_device(q);
1281                         return 0;
1282                 }
1283         }
1284         if (sdev->device_blocked)
1285                 return 0;
1286
1287         return 1;
1288 }
1289
1290 /*
1291  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1292  * return 0. We must end up running the queue again whenever 0 is
1293  * returned, else IO can hang.
1294  *
1295  * Called with host_lock held.
1296  */
1297 static inline int scsi_host_queue_ready(struct request_queue *q,
1298                                    struct Scsi_Host *shost,
1299                                    struct scsi_device *sdev)
1300 {
1301         if (scsi_host_in_recovery(shost))
1302                 return 0;
1303         if (shost->host_busy == 0 && shost->host_blocked) {
1304                 /*
1305                  * unblock after host_blocked iterates to zero
1306                  */
1307                 if (--shost->host_blocked == 0) {
1308                         SCSI_LOG_MLQUEUE(3,
1309                                 printk("scsi%d unblocking host at zero depth\n",
1310                                         shost->host_no));
1311                 } else {
1312                         blk_plug_device(q);
1313                         return 0;
1314                 }
1315         }
1316         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1317             shost->host_blocked || shost->host_self_blocked) {
1318                 if (list_empty(&sdev->starved_entry))
1319                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1320                 return 0;
1321         }
1322
1323         /* We're OK to process the command, so we can't be starved */
1324         if (!list_empty(&sdev->starved_entry))
1325                 list_del_init(&sdev->starved_entry);
1326
1327         return 1;
1328 }
1329
1330 /*
1331  * Kill a request for a dead device
1332  */
1333 static void scsi_kill_request(struct request *req, struct request_queue *q)
1334 {
1335         struct scsi_cmnd *cmd = req->special;
1336         struct scsi_device *sdev = cmd->device;
1337         struct Scsi_Host *shost = sdev->host;
1338
1339         blkdev_dequeue_request(req);
1340
1341         if (unlikely(cmd == NULL)) {
1342                 printk(KERN_CRIT "impossible request in %s.\n",
1343                                  __FUNCTION__);
1344                 BUG();
1345         }
1346
1347         scsi_init_cmd_errh(cmd);
1348         cmd->result = DID_NO_CONNECT << 16;
1349         atomic_inc(&cmd->device->iorequest_cnt);
1350
1351         /*
1352          * SCSI request completion path will do scsi_device_unbusy(),
1353          * bump busy counts.  To bump the counters, we need to dance
1354          * with the locks as normal issue path does.
1355          */
1356         sdev->device_busy++;
1357         spin_unlock(sdev->request_queue->queue_lock);
1358         spin_lock(shost->host_lock);
1359         shost->host_busy++;
1360         spin_unlock(shost->host_lock);
1361         spin_lock(sdev->request_queue->queue_lock);
1362
1363         __scsi_done(cmd);
1364 }
1365
1366 static void scsi_softirq_done(struct request *rq)
1367 {
1368         struct scsi_cmnd *cmd = rq->completion_data;
1369         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1370         int disposition;
1371
1372         INIT_LIST_HEAD(&cmd->eh_entry);
1373
1374         disposition = scsi_decide_disposition(cmd);
1375         if (disposition != SUCCESS &&
1376             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1377                 sdev_printk(KERN_ERR, cmd->device,
1378                             "timing out command, waited %lus\n",
1379                             wait_for/HZ);
1380                 disposition = SUCCESS;
1381         }
1382                         
1383         scsi_log_completion(cmd, disposition);
1384
1385         switch (disposition) {
1386                 case SUCCESS:
1387                         scsi_finish_command(cmd);
1388                         break;
1389                 case NEEDS_RETRY:
1390                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1391                         break;
1392                 case ADD_TO_MLQUEUE:
1393                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1394                         break;
1395                 default:
1396                         if (!scsi_eh_scmd_add(cmd, 0))
1397                                 scsi_finish_command(cmd);
1398         }
1399 }
1400
1401 /*
1402  * Function:    scsi_request_fn()
1403  *
1404  * Purpose:     Main strategy routine for SCSI.
1405  *
1406  * Arguments:   q       - Pointer to actual queue.
1407  *
1408  * Returns:     Nothing
1409  *
1410  * Lock status: IO request lock assumed to be held when called.
1411  */
1412 static void scsi_request_fn(struct request_queue *q)
1413 {
1414         struct scsi_device *sdev = q->queuedata;
1415         struct Scsi_Host *shost;
1416         struct scsi_cmnd *cmd;
1417         struct request *req;
1418
1419         if (!sdev) {
1420                 printk("scsi: killing requests for dead queue\n");
1421                 while ((req = elv_next_request(q)) != NULL)
1422                         scsi_kill_request(req, q);
1423                 return;
1424         }
1425
1426         if(!get_device(&sdev->sdev_gendev))
1427                 /* We must be tearing the block queue down already */
1428                 return;
1429
1430         /*
1431          * To start with, we keep looping until the queue is empty, or until
1432          * the host is no longer able to accept any more requests.
1433          */
1434         shost = sdev->host;
1435         while (!blk_queue_plugged(q)) {
1436                 int rtn;
1437                 /*
1438                  * get next queueable request.  We do this early to make sure
1439                  * that the request is fully prepared even if we cannot 
1440                  * accept it.
1441                  */
1442                 req = elv_next_request(q);
1443                 if (!req || !scsi_dev_queue_ready(q, sdev))
1444                         break;
1445
1446                 if (unlikely(!scsi_device_online(sdev))) {
1447                         sdev_printk(KERN_ERR, sdev,
1448                                     "rejecting I/O to offline device\n");
1449                         scsi_kill_request(req, q);
1450                         continue;
1451                 }
1452
1453
1454                 /*
1455                  * Remove the request from the request list.
1456                  */
1457                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1458                         blkdev_dequeue_request(req);
1459                 sdev->device_busy++;
1460
1461                 spin_unlock(q->queue_lock);
1462                 cmd = req->special;
1463                 if (unlikely(cmd == NULL)) {
1464                         printk(KERN_CRIT "impossible request in %s.\n"
1465                                          "please mail a stack trace to "
1466                                          "linux-scsi@vger.kernel.org\n",
1467                                          __FUNCTION__);
1468                         blk_dump_rq_flags(req, "foo");
1469                         BUG();
1470                 }
1471                 spin_lock(shost->host_lock);
1472
1473                 if (!scsi_host_queue_ready(q, shost, sdev))
1474                         goto not_ready;
1475                 if (sdev->single_lun) {
1476                         if (scsi_target(sdev)->starget_sdev_user &&
1477                             scsi_target(sdev)->starget_sdev_user != sdev)
1478                                 goto not_ready;
1479                         scsi_target(sdev)->starget_sdev_user = sdev;
1480                 }
1481                 shost->host_busy++;
1482
1483                 /*
1484                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1485                  *              take the lock again.
1486                  */
1487                 spin_unlock_irq(shost->host_lock);
1488
1489                 /*
1490                  * Finally, initialize any error handling parameters, and set up
1491                  * the timers for timeouts.
1492                  */
1493                 scsi_init_cmd_errh(cmd);
1494
1495                 /*
1496                  * Dispatch the command to the low-level driver.
1497                  */
1498                 rtn = scsi_dispatch_cmd(cmd);
1499                 spin_lock_irq(q->queue_lock);
1500                 if(rtn) {
1501                         /* we're refusing the command; because of
1502                          * the way locks get dropped, we need to 
1503                          * check here if plugging is required */
1504                         if(sdev->device_busy == 0)
1505                                 blk_plug_device(q);
1506
1507                         break;
1508                 }
1509         }
1510
1511         goto out;
1512
1513  not_ready:
1514         spin_unlock_irq(shost->host_lock);
1515
1516         /*
1517          * lock q, handle tag, requeue req, and decrement device_busy. We
1518          * must return with queue_lock held.
1519          *
1520          * Decrementing device_busy without checking it is OK, as all such
1521          * cases (host limits or settings) should run the queue at some
1522          * later time.
1523          */
1524         spin_lock_irq(q->queue_lock);
1525         blk_requeue_request(q, req);
1526         sdev->device_busy--;
1527         if(sdev->device_busy == 0)
1528                 blk_plug_device(q);
1529  out:
1530         /* must be careful here...if we trigger the ->remove() function
1531          * we cannot be holding the q lock */
1532         spin_unlock_irq(q->queue_lock);
1533         put_device(&sdev->sdev_gendev);
1534         spin_lock_irq(q->queue_lock);
1535 }
1536
1537 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1538 {
1539         struct device *host_dev;
1540         u64 bounce_limit = 0xffffffff;
1541
1542         if (shost->unchecked_isa_dma)
1543                 return BLK_BOUNCE_ISA;
1544         /*
1545          * Platforms with virtual-DMA translation
1546          * hardware have no practical limit.
1547          */
1548         if (!PCI_DMA_BUS_IS_PHYS)
1549                 return BLK_BOUNCE_ANY;
1550
1551         host_dev = scsi_get_device(shost);
1552         if (host_dev && host_dev->dma_mask)
1553                 bounce_limit = *host_dev->dma_mask;
1554
1555         return bounce_limit;
1556 }
1557 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1558
1559 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1560                                          request_fn_proc *request_fn)
1561 {
1562         struct request_queue *q;
1563
1564         q = blk_init_queue(request_fn, NULL);
1565         if (!q)
1566                 return NULL;
1567
1568         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1569         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1570         blk_queue_max_sectors(q, shost->max_sectors);
1571         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1572         blk_queue_segment_boundary(q, shost->dma_boundary);
1573
1574         if (!shost->use_clustering)
1575                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1576         return q;
1577 }
1578 EXPORT_SYMBOL(__scsi_alloc_queue);
1579
1580 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1581 {
1582         struct request_queue *q;
1583
1584         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1585         if (!q)
1586                 return NULL;
1587
1588         blk_queue_prep_rq(q, scsi_prep_fn);
1589         blk_queue_softirq_done(q, scsi_softirq_done);
1590         return q;
1591 }
1592
1593 void scsi_free_queue(struct request_queue *q)
1594 {
1595         blk_cleanup_queue(q);
1596 }
1597
1598 /*
1599  * Function:    scsi_block_requests()
1600  *
1601  * Purpose:     Utility function used by low-level drivers to prevent further
1602  *              commands from being queued to the device.
1603  *
1604  * Arguments:   shost       - Host in question
1605  *
1606  * Returns:     Nothing
1607  *
1608  * Lock status: No locks are assumed held.
1609  *
1610  * Notes:       There is no timer nor any other means by which the requests
1611  *              get unblocked other than the low-level driver calling
1612  *              scsi_unblock_requests().
1613  */
1614 void scsi_block_requests(struct Scsi_Host *shost)
1615 {
1616         shost->host_self_blocked = 1;
1617 }
1618 EXPORT_SYMBOL(scsi_block_requests);
1619
1620 /*
1621  * Function:    scsi_unblock_requests()
1622  *
1623  * Purpose:     Utility function used by low-level drivers to allow further
1624  *              commands from being queued to the device.
1625  *
1626  * Arguments:   shost       - Host in question
1627  *
1628  * Returns:     Nothing
1629  *
1630  * Lock status: No locks are assumed held.
1631  *
1632  * Notes:       There is no timer nor any other means by which the requests
1633  *              get unblocked other than the low-level driver calling
1634  *              scsi_unblock_requests().
1635  *
1636  *              This is done as an API function so that changes to the
1637  *              internals of the scsi mid-layer won't require wholesale
1638  *              changes to drivers that use this feature.
1639  */
1640 void scsi_unblock_requests(struct Scsi_Host *shost)
1641 {
1642         shost->host_self_blocked = 0;
1643         scsi_run_host_queues(shost);
1644 }
1645 EXPORT_SYMBOL(scsi_unblock_requests);
1646
1647 int __init scsi_init_queue(void)
1648 {
1649         int i;
1650
1651         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1652                                         sizeof(struct scsi_io_context),
1653                                         0, 0, NULL);
1654         if (!scsi_io_context_cache) {
1655                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1656                 return -ENOMEM;
1657         }
1658
1659         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1660                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1661                 int size = sgp->size * sizeof(struct scatterlist);
1662
1663                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1664                                 SLAB_HWCACHE_ALIGN, NULL);
1665                 if (!sgp->slab) {
1666                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1667                                         sgp->name);
1668                 }
1669
1670                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1671                                                      sgp->slab);
1672                 if (!sgp->pool) {
1673                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1674                                         sgp->name);
1675                 }
1676         }
1677
1678         return 0;
1679 }
1680
1681 void scsi_exit_queue(void)
1682 {
1683         int i;
1684
1685         kmem_cache_destroy(scsi_io_context_cache);
1686
1687         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1688                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1689                 mempool_destroy(sgp->pool);
1690                 kmem_cache_destroy(sgp->slab);
1691         }
1692 }
1693
1694 /**
1695  *      scsi_mode_select - issue a mode select
1696  *      @sdev:  SCSI device to be queried
1697  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1698  *      @sp:    Save page bit (0 == don't save, 1 == save)
1699  *      @modepage: mode page being requested
1700  *      @buffer: request buffer (may not be smaller than eight bytes)
1701  *      @len:   length of request buffer.
1702  *      @timeout: command timeout
1703  *      @retries: number of retries before failing
1704  *      @data: returns a structure abstracting the mode header data
1705  *      @sense: place to put sense data (or NULL if no sense to be collected).
1706  *              must be SCSI_SENSE_BUFFERSIZE big.
1707  *
1708  *      Returns zero if successful; negative error number or scsi
1709  *      status on error
1710  *
1711  */
1712 int
1713 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1714                  unsigned char *buffer, int len, int timeout, int retries,
1715                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1716 {
1717         unsigned char cmd[10];
1718         unsigned char *real_buffer;
1719         int ret;
1720
1721         memset(cmd, 0, sizeof(cmd));
1722         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1723
1724         if (sdev->use_10_for_ms) {
1725                 if (len > 65535)
1726                         return -EINVAL;
1727                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1728                 if (!real_buffer)
1729                         return -ENOMEM;
1730                 memcpy(real_buffer + 8, buffer, len);
1731                 len += 8;
1732                 real_buffer[0] = 0;
1733                 real_buffer[1] = 0;
1734                 real_buffer[2] = data->medium_type;
1735                 real_buffer[3] = data->device_specific;
1736                 real_buffer[4] = data->longlba ? 0x01 : 0;
1737                 real_buffer[5] = 0;
1738                 real_buffer[6] = data->block_descriptor_length >> 8;
1739                 real_buffer[7] = data->block_descriptor_length;
1740
1741                 cmd[0] = MODE_SELECT_10;
1742                 cmd[7] = len >> 8;
1743                 cmd[8] = len;
1744         } else {
1745                 if (len > 255 || data->block_descriptor_length > 255 ||
1746                     data->longlba)
1747                         return -EINVAL;
1748
1749                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1750                 if (!real_buffer)
1751                         return -ENOMEM;
1752                 memcpy(real_buffer + 4, buffer, len);
1753                 len += 4;
1754                 real_buffer[0] = 0;
1755                 real_buffer[1] = data->medium_type;
1756                 real_buffer[2] = data->device_specific;
1757                 real_buffer[3] = data->block_descriptor_length;
1758                 
1759
1760                 cmd[0] = MODE_SELECT;
1761                 cmd[4] = len;
1762         }
1763
1764         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1765                                sshdr, timeout, retries);
1766         kfree(real_buffer);
1767         return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(scsi_mode_select);
1770
1771 /**
1772  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1773  *              six bytes if necessary.
1774  *      @sdev:  SCSI device to be queried
1775  *      @dbd:   set if mode sense will allow block descriptors to be returned
1776  *      @modepage: mode page being requested
1777  *      @buffer: request buffer (may not be smaller than eight bytes)
1778  *      @len:   length of request buffer.
1779  *      @timeout: command timeout
1780  *      @retries: number of retries before failing
1781  *      @data: returns a structure abstracting the mode header data
1782  *      @sense: place to put sense data (or NULL if no sense to be collected).
1783  *              must be SCSI_SENSE_BUFFERSIZE big.
1784  *
1785  *      Returns zero if unsuccessful, or the header offset (either 4
1786  *      or 8 depending on whether a six or ten byte command was
1787  *      issued) if successful.
1788  **/
1789 int
1790 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1791                   unsigned char *buffer, int len, int timeout, int retries,
1792                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1793 {
1794         unsigned char cmd[12];
1795         int use_10_for_ms;
1796         int header_length;
1797         int result;
1798         struct scsi_sense_hdr my_sshdr;
1799
1800         memset(data, 0, sizeof(*data));
1801         memset(&cmd[0], 0, 12);
1802         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1803         cmd[2] = modepage;
1804
1805         /* caller might not be interested in sense, but we need it */
1806         if (!sshdr)
1807                 sshdr = &my_sshdr;
1808
1809  retry:
1810         use_10_for_ms = sdev->use_10_for_ms;
1811
1812         if (use_10_for_ms) {
1813                 if (len < 8)
1814                         len = 8;
1815
1816                 cmd[0] = MODE_SENSE_10;
1817                 cmd[8] = len;
1818                 header_length = 8;
1819         } else {
1820                 if (len < 4)
1821                         len = 4;
1822
1823                 cmd[0] = MODE_SENSE;
1824                 cmd[4] = len;
1825                 header_length = 4;
1826         }
1827
1828         memset(buffer, 0, len);
1829
1830         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1831                                   sshdr, timeout, retries);
1832
1833         /* This code looks awful: what it's doing is making sure an
1834          * ILLEGAL REQUEST sense return identifies the actual command
1835          * byte as the problem.  MODE_SENSE commands can return
1836          * ILLEGAL REQUEST if the code page isn't supported */
1837
1838         if (use_10_for_ms && !scsi_status_is_good(result) &&
1839             (driver_byte(result) & DRIVER_SENSE)) {
1840                 if (scsi_sense_valid(sshdr)) {
1841                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1842                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1843                                 /* 
1844                                  * Invalid command operation code
1845                                  */
1846                                 sdev->use_10_for_ms = 0;
1847                                 goto retry;
1848                         }
1849                 }
1850         }
1851
1852         if(scsi_status_is_good(result)) {
1853                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1854                              (modepage == 6 || modepage == 8))) {
1855                         /* Initio breakage? */
1856                         header_length = 0;
1857                         data->length = 13;
1858                         data->medium_type = 0;
1859                         data->device_specific = 0;
1860                         data->longlba = 0;
1861                         data->block_descriptor_length = 0;
1862                 } else if(use_10_for_ms) {
1863                         data->length = buffer[0]*256 + buffer[1] + 2;
1864                         data->medium_type = buffer[2];
1865                         data->device_specific = buffer[3];
1866                         data->longlba = buffer[4] & 0x01;
1867                         data->block_descriptor_length = buffer[6]*256
1868                                 + buffer[7];
1869                 } else {
1870                         data->length = buffer[0] + 1;
1871                         data->medium_type = buffer[1];
1872                         data->device_specific = buffer[2];
1873                         data->block_descriptor_length = buffer[3];
1874                 }
1875                 data->header_length = header_length;
1876         }
1877
1878         return result;
1879 }
1880 EXPORT_SYMBOL(scsi_mode_sense);
1881
1882 int
1883 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1884 {
1885         char cmd[] = {
1886                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1887         };
1888         struct scsi_sense_hdr sshdr;
1889         int result;
1890         
1891         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1892                                   timeout, retries);
1893
1894         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1895
1896                 if ((scsi_sense_valid(&sshdr)) &&
1897                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1898                      (sshdr.sense_key == NOT_READY))) {
1899                         sdev->changed = 1;
1900                         result = 0;
1901                 }
1902         }
1903         return result;
1904 }
1905 EXPORT_SYMBOL(scsi_test_unit_ready);
1906
1907 /**
1908  *      scsi_device_set_state - Take the given device through the device
1909  *              state model.
1910  *      @sdev:  scsi device to change the state of.
1911  *      @state: state to change to.
1912  *
1913  *      Returns zero if unsuccessful or an error if the requested 
1914  *      transition is illegal.
1915  **/
1916 int
1917 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1918 {
1919         enum scsi_device_state oldstate = sdev->sdev_state;
1920
1921         if (state == oldstate)
1922                 return 0;
1923
1924         switch (state) {
1925         case SDEV_CREATED:
1926                 /* There are no legal states that come back to
1927                  * created.  This is the manually initialised start
1928                  * state */
1929                 goto illegal;
1930                         
1931         case SDEV_RUNNING:
1932                 switch (oldstate) {
1933                 case SDEV_CREATED:
1934                 case SDEV_OFFLINE:
1935                 case SDEV_QUIESCE:
1936                 case SDEV_BLOCK:
1937                         break;
1938                 default:
1939                         goto illegal;
1940                 }
1941                 break;
1942
1943         case SDEV_QUIESCE:
1944                 switch (oldstate) {
1945                 case SDEV_RUNNING:
1946                 case SDEV_OFFLINE:
1947                         break;
1948                 default:
1949                         goto illegal;
1950                 }
1951                 break;
1952
1953         case SDEV_OFFLINE:
1954                 switch (oldstate) {
1955                 case SDEV_CREATED:
1956                 case SDEV_RUNNING:
1957                 case SDEV_QUIESCE:
1958                 case SDEV_BLOCK:
1959                         break;
1960                 default:
1961                         goto illegal;
1962                 }
1963                 break;
1964
1965         case SDEV_BLOCK:
1966                 switch (oldstate) {
1967                 case SDEV_CREATED:
1968                 case SDEV_RUNNING:
1969                         break;
1970                 default:
1971                         goto illegal;
1972                 }
1973                 break;
1974
1975         case SDEV_CANCEL:
1976                 switch (oldstate) {
1977                 case SDEV_CREATED:
1978                 case SDEV_RUNNING:
1979                 case SDEV_QUIESCE:
1980                 case SDEV_OFFLINE:
1981                 case SDEV_BLOCK:
1982                         break;
1983                 default:
1984                         goto illegal;
1985                 }
1986                 break;
1987
1988         case SDEV_DEL:
1989                 switch (oldstate) {
1990                 case SDEV_CREATED:
1991                 case SDEV_RUNNING:
1992                 case SDEV_OFFLINE:
1993                 case SDEV_CANCEL:
1994                         break;
1995                 default:
1996                         goto illegal;
1997                 }
1998                 break;
1999
2000         }
2001         sdev->sdev_state = state;
2002         return 0;
2003
2004  illegal:
2005         SCSI_LOG_ERROR_RECOVERY(1, 
2006                                 sdev_printk(KERN_ERR, sdev,
2007                                             "Illegal state transition %s->%s\n",
2008                                             scsi_device_state_name(oldstate),
2009                                             scsi_device_state_name(state))
2010                                 );
2011         return -EINVAL;
2012 }
2013 EXPORT_SYMBOL(scsi_device_set_state);
2014
2015 /**
2016  *      scsi_device_quiesce - Block user issued commands.
2017  *      @sdev:  scsi device to quiesce.
2018  *
2019  *      This works by trying to transition to the SDEV_QUIESCE state
2020  *      (which must be a legal transition).  When the device is in this
2021  *      state, only special requests will be accepted, all others will
2022  *      be deferred.  Since special requests may also be requeued requests,
2023  *      a successful return doesn't guarantee the device will be 
2024  *      totally quiescent.
2025  *
2026  *      Must be called with user context, may sleep.
2027  *
2028  *      Returns zero if unsuccessful or an error if not.
2029  **/
2030 int
2031 scsi_device_quiesce(struct scsi_device *sdev)
2032 {
2033         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2034         if (err)
2035                 return err;
2036
2037         scsi_run_queue(sdev->request_queue);
2038         while (sdev->device_busy) {
2039                 msleep_interruptible(200);
2040                 scsi_run_queue(sdev->request_queue);
2041         }
2042         return 0;
2043 }
2044 EXPORT_SYMBOL(scsi_device_quiesce);
2045
2046 /**
2047  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2048  *      @sdev:  scsi device to resume.
2049  *
2050  *      Moves the device from quiesced back to running and restarts the
2051  *      queues.
2052  *
2053  *      Must be called with user context, may sleep.
2054  **/
2055 void
2056 scsi_device_resume(struct scsi_device *sdev)
2057 {
2058         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2059                 return;
2060         scsi_run_queue(sdev->request_queue);
2061 }
2062 EXPORT_SYMBOL(scsi_device_resume);
2063
2064 static void
2065 device_quiesce_fn(struct scsi_device *sdev, void *data)
2066 {
2067         scsi_device_quiesce(sdev);
2068 }
2069
2070 void
2071 scsi_target_quiesce(struct scsi_target *starget)
2072 {
2073         starget_for_each_device(starget, NULL, device_quiesce_fn);
2074 }
2075 EXPORT_SYMBOL(scsi_target_quiesce);
2076
2077 static void
2078 device_resume_fn(struct scsi_device *sdev, void *data)
2079 {
2080         scsi_device_resume(sdev);
2081 }
2082
2083 void
2084 scsi_target_resume(struct scsi_target *starget)
2085 {
2086         starget_for_each_device(starget, NULL, device_resume_fn);
2087 }
2088 EXPORT_SYMBOL(scsi_target_resume);
2089
2090 /**
2091  * scsi_internal_device_block - internal function to put a device
2092  *                              temporarily into the SDEV_BLOCK state
2093  * @sdev:       device to block
2094  *
2095  * Block request made by scsi lld's to temporarily stop all
2096  * scsi commands on the specified device.  Called from interrupt
2097  * or normal process context.
2098  *
2099  * Returns zero if successful or error if not
2100  *
2101  * Notes:       
2102  *      This routine transitions the device to the SDEV_BLOCK state
2103  *      (which must be a legal transition).  When the device is in this
2104  *      state, all commands are deferred until the scsi lld reenables
2105  *      the device with scsi_device_unblock or device_block_tmo fires.
2106  *      This routine assumes the host_lock is held on entry.
2107  **/
2108 int
2109 scsi_internal_device_block(struct scsi_device *sdev)
2110 {
2111         struct request_queue *q = sdev->request_queue;
2112         unsigned long flags;
2113         int err = 0;
2114
2115         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2116         if (err)
2117                 return err;
2118
2119         /* 
2120          * The device has transitioned to SDEV_BLOCK.  Stop the
2121          * block layer from calling the midlayer with this device's
2122          * request queue. 
2123          */
2124         spin_lock_irqsave(q->queue_lock, flags);
2125         blk_stop_queue(q);
2126         spin_unlock_irqrestore(q->queue_lock, flags);
2127
2128         return 0;
2129 }
2130 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2131  
2132 /**
2133  * scsi_internal_device_unblock - resume a device after a block request
2134  * @sdev:       device to resume
2135  *
2136  * Called by scsi lld's or the midlayer to restart the device queue
2137  * for the previously suspended scsi device.  Called from interrupt or
2138  * normal process context.
2139  *
2140  * Returns zero if successful or error if not.
2141  *
2142  * Notes:       
2143  *      This routine transitions the device to the SDEV_RUNNING state
2144  *      (which must be a legal transition) allowing the midlayer to
2145  *      goose the queue for this device.  This routine assumes the 
2146  *      host_lock is held upon entry.
2147  **/
2148 int
2149 scsi_internal_device_unblock(struct scsi_device *sdev)
2150 {
2151         struct request_queue *q = sdev->request_queue; 
2152         int err;
2153         unsigned long flags;
2154         
2155         /* 
2156          * Try to transition the scsi device to SDEV_RUNNING
2157          * and goose the device queue if successful.  
2158          */
2159         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2160         if (err)
2161                 return err;
2162
2163         spin_lock_irqsave(q->queue_lock, flags);
2164         blk_start_queue(q);
2165         spin_unlock_irqrestore(q->queue_lock, flags);
2166
2167         return 0;
2168 }
2169 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2170
2171 static void
2172 device_block(struct scsi_device *sdev, void *data)
2173 {
2174         scsi_internal_device_block(sdev);
2175 }
2176
2177 static int
2178 target_block(struct device *dev, void *data)
2179 {
2180         if (scsi_is_target_device(dev))
2181                 starget_for_each_device(to_scsi_target(dev), NULL,
2182                                         device_block);
2183         return 0;
2184 }
2185
2186 void
2187 scsi_target_block(struct device *dev)
2188 {
2189         if (scsi_is_target_device(dev))
2190                 starget_for_each_device(to_scsi_target(dev), NULL,
2191                                         device_block);
2192         else
2193                 device_for_each_child(dev, NULL, target_block);
2194 }
2195 EXPORT_SYMBOL_GPL(scsi_target_block);
2196
2197 static void
2198 device_unblock(struct scsi_device *sdev, void *data)
2199 {
2200         scsi_internal_device_unblock(sdev);
2201 }
2202
2203 static int
2204 target_unblock(struct device *dev, void *data)
2205 {
2206         if (scsi_is_target_device(dev))
2207                 starget_for_each_device(to_scsi_target(dev), NULL,
2208                                         device_unblock);
2209         return 0;
2210 }
2211
2212 void
2213 scsi_target_unblock(struct device *dev)
2214 {
2215         if (scsi_is_target_device(dev))
2216                 starget_for_each_device(to_scsi_target(dev), NULL,
2217                                         device_unblock);
2218         else
2219                 device_for_each_child(dev, NULL, target_unblock);
2220 }
2221 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2222
2223 /**
2224  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2225  * @sg:         scatter-gather list
2226  * @sg_count:   number of segments in sg
2227  * @offset:     offset in bytes into sg, on return offset into the mapped area
2228  * @len:        bytes to map, on return number of bytes mapped
2229  *
2230  * Returns virtual address of the start of the mapped page
2231  */
2232 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2233                           size_t *offset, size_t *len)
2234 {
2235         int i;
2236         size_t sg_len = 0, len_complete = 0;
2237         struct page *page;
2238
2239         WARN_ON(!irqs_disabled());
2240
2241         for (i = 0; i < sg_count; i++) {
2242                 len_complete = sg_len; /* Complete sg-entries */
2243                 sg_len += sg[i].length;
2244                 if (sg_len > *offset)
2245                         break;
2246         }
2247
2248         if (unlikely(i == sg_count)) {
2249                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2250                         "elements %d\n",
2251                        __FUNCTION__, sg_len, *offset, sg_count);
2252                 WARN_ON(1);
2253                 return NULL;
2254         }
2255
2256         /* Offset starting from the beginning of first page in this sg-entry */
2257         *offset = *offset - len_complete + sg[i].offset;
2258
2259         /* Assumption: contiguous pages can be accessed as "page + i" */
2260         page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2261         *offset &= ~PAGE_MASK;
2262
2263         /* Bytes in this sg-entry from *offset to the end of the page */
2264         sg_len = PAGE_SIZE - *offset;
2265         if (*len > sg_len)
2266                 *len = sg_len;
2267
2268         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2269 }
2270 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2271
2272 /**
2273  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2274  *                         mapped with scsi_kmap_atomic_sg
2275  * @virt:       virtual address to be unmapped
2276  */
2277 void scsi_kunmap_atomic_sg(void *virt)
2278 {
2279         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2280 }
2281 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);