4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/unistd.h>
32 /* spinlock for vfsmount related operations, inplace of dcache_lock */
33 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
37 static struct list_head *mount_hashtable __read_mostly;
38 static int hash_mask __read_mostly, hash_bits __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
43 decl_subsys(fs, NULL, NULL);
44 EXPORT_SYMBOL_GPL(fs_subsys);
46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
48 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
49 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
50 tmp = tmp + (tmp >> hash_bits);
51 return tmp & hash_mask;
54 struct vfsmount *alloc_vfsmnt(const char *name)
56 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
58 atomic_set(&mnt->mnt_count, 1);
59 INIT_LIST_HEAD(&mnt->mnt_hash);
60 INIT_LIST_HEAD(&mnt->mnt_child);
61 INIT_LIST_HEAD(&mnt->mnt_mounts);
62 INIT_LIST_HEAD(&mnt->mnt_list);
63 INIT_LIST_HEAD(&mnt->mnt_expire);
64 INIT_LIST_HEAD(&mnt->mnt_share);
65 INIT_LIST_HEAD(&mnt->mnt_slave_list);
66 INIT_LIST_HEAD(&mnt->mnt_slave);
68 int size = strlen(name) + 1;
69 char *newname = kmalloc(size, GFP_KERNEL);
71 memcpy(newname, name, size);
72 mnt->mnt_devname = newname;
79 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
82 mnt->mnt_root = dget(sb->s_root);
86 EXPORT_SYMBOL(simple_set_mnt);
88 void free_vfsmnt(struct vfsmount *mnt)
90 kfree(mnt->mnt_devname);
91 kmem_cache_free(mnt_cache, mnt);
95 * find the first or last mount at @dentry on vfsmount @mnt depending on
96 * @dir. If @dir is set return the first mount else return the last mount.
98 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
101 struct list_head *head = mount_hashtable + hash(mnt, dentry);
102 struct list_head *tmp = head;
103 struct vfsmount *p, *found = NULL;
106 tmp = dir ? tmp->next : tmp->prev;
110 p = list_entry(tmp, struct vfsmount, mnt_hash);
111 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
120 * lookup_mnt increments the ref count before returning
121 * the vfsmount struct.
123 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125 struct vfsmount *child_mnt;
126 spin_lock(&vfsmount_lock);
127 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
129 spin_unlock(&vfsmount_lock);
133 static inline int check_mnt(struct vfsmount *mnt)
135 return mnt->mnt_ns == current->nsproxy->mnt_ns;
138 static void touch_mnt_namespace(struct mnt_namespace *ns)
142 wake_up_interruptible(&ns->poll);
146 static void __touch_mnt_namespace(struct mnt_namespace *ns)
148 if (ns && ns->event != event) {
150 wake_up_interruptible(&ns->poll);
154 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156 old_nd->dentry = mnt->mnt_mountpoint;
157 old_nd->mnt = mnt->mnt_parent;
158 mnt->mnt_parent = mnt;
159 mnt->mnt_mountpoint = mnt->mnt_root;
160 list_del_init(&mnt->mnt_child);
161 list_del_init(&mnt->mnt_hash);
162 old_nd->dentry->d_mounted--;
165 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
166 struct vfsmount *child_mnt)
168 child_mnt->mnt_parent = mntget(mnt);
169 child_mnt->mnt_mountpoint = dget(dentry);
173 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
176 list_add_tail(&mnt->mnt_hash, mount_hashtable +
177 hash(nd->mnt, nd->dentry));
178 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
182 * the caller must hold vfsmount_lock
184 static void commit_tree(struct vfsmount *mnt)
186 struct vfsmount *parent = mnt->mnt_parent;
189 struct mnt_namespace *n = parent->mnt_ns;
191 BUG_ON(parent == mnt);
193 list_add_tail(&head, &mnt->mnt_list);
194 list_for_each_entry(m, &head, mnt_list)
196 list_splice(&head, n->list.prev);
198 list_add_tail(&mnt->mnt_hash, mount_hashtable +
199 hash(parent, mnt->mnt_mountpoint));
200 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
201 touch_mnt_namespace(n);
204 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206 struct list_head *next = p->mnt_mounts.next;
207 if (next == &p->mnt_mounts) {
211 next = p->mnt_child.next;
212 if (next != &p->mnt_parent->mnt_mounts)
217 return list_entry(next, struct vfsmount, mnt_child);
220 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222 struct list_head *prev = p->mnt_mounts.prev;
223 while (prev != &p->mnt_mounts) {
224 p = list_entry(prev, struct vfsmount, mnt_child);
225 prev = p->mnt_mounts.prev;
230 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
233 struct super_block *sb = old->mnt_sb;
234 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
237 mnt->mnt_flags = old->mnt_flags;
238 atomic_inc(&sb->s_active);
240 mnt->mnt_root = dget(root);
241 mnt->mnt_mountpoint = mnt->mnt_root;
242 mnt->mnt_parent = mnt;
244 if (flag & CL_SLAVE) {
245 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
246 mnt->mnt_master = old;
247 CLEAR_MNT_SHARED(mnt);
249 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
250 list_add(&mnt->mnt_share, &old->mnt_share);
251 if (IS_MNT_SLAVE(old))
252 list_add(&mnt->mnt_slave, &old->mnt_slave);
253 mnt->mnt_master = old->mnt_master;
255 if (flag & CL_MAKE_SHARED)
258 /* stick the duplicate mount on the same expiry list
259 * as the original if that was on one */
260 if (flag & CL_EXPIRE) {
261 spin_lock(&vfsmount_lock);
262 if (!list_empty(&old->mnt_expire))
263 list_add(&mnt->mnt_expire, &old->mnt_expire);
264 spin_unlock(&vfsmount_lock);
270 static inline void __mntput(struct vfsmount *mnt)
272 struct super_block *sb = mnt->mnt_sb;
275 deactivate_super(sb);
278 void mntput_no_expire(struct vfsmount *mnt)
281 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
282 if (likely(!mnt->mnt_pinned)) {
283 spin_unlock(&vfsmount_lock);
287 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
289 spin_unlock(&vfsmount_lock);
290 acct_auto_close_mnt(mnt);
291 security_sb_umount_close(mnt);
296 EXPORT_SYMBOL(mntput_no_expire);
298 void mnt_pin(struct vfsmount *mnt)
300 spin_lock(&vfsmount_lock);
302 spin_unlock(&vfsmount_lock);
305 EXPORT_SYMBOL(mnt_pin);
307 void mnt_unpin(struct vfsmount *mnt)
309 spin_lock(&vfsmount_lock);
310 if (mnt->mnt_pinned) {
311 atomic_inc(&mnt->mnt_count);
314 spin_unlock(&vfsmount_lock);
317 EXPORT_SYMBOL(mnt_unpin);
320 static void *m_start(struct seq_file *m, loff_t *pos)
322 struct mnt_namespace *n = m->private;
326 down_read(&namespace_sem);
327 list_for_each(p, &n->list)
329 return list_entry(p, struct vfsmount, mnt_list);
333 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
335 struct mnt_namespace *n = m->private;
336 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
338 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
341 static void m_stop(struct seq_file *m, void *v)
343 up_read(&namespace_sem);
346 static inline void mangle(struct seq_file *m, const char *s)
348 seq_escape(m, s, " \t\n\\");
351 static int show_vfsmnt(struct seq_file *m, void *v)
353 struct vfsmount *mnt = v;
355 static struct proc_fs_info {
359 { MS_SYNCHRONOUS, ",sync" },
360 { MS_DIRSYNC, ",dirsync" },
361 { MS_MANDLOCK, ",mand" },
364 static struct proc_fs_info mnt_info[] = {
365 { MNT_NOSUID, ",nosuid" },
366 { MNT_NODEV, ",nodev" },
367 { MNT_NOEXEC, ",noexec" },
368 { MNT_NOATIME, ",noatime" },
369 { MNT_NODIRATIME, ",nodiratime" },
370 { MNT_RELATIME, ",relatime" },
373 struct proc_fs_info *fs_infop;
375 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
377 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
379 mangle(m, mnt->mnt_sb->s_type->name);
380 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
382 mangle(m, mnt->mnt_sb->s_subtype);
384 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
385 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
386 if (mnt->mnt_sb->s_flags & fs_infop->flag)
387 seq_puts(m, fs_infop->str);
389 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
390 if (mnt->mnt_flags & fs_infop->flag)
391 seq_puts(m, fs_infop->str);
393 if (mnt->mnt_sb->s_op->show_options)
394 err = mnt->mnt_sb->s_op->show_options(m, mnt);
395 seq_puts(m, " 0 0\n");
399 struct seq_operations mounts_op = {
406 static int show_vfsstat(struct seq_file *m, void *v)
408 struct vfsmount *mnt = v;
412 if (mnt->mnt_devname) {
413 seq_puts(m, "device ");
414 mangle(m, mnt->mnt_devname);
416 seq_puts(m, "no device");
419 seq_puts(m, " mounted on ");
420 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
423 /* file system type */
424 seq_puts(m, "with fstype ");
425 mangle(m, mnt->mnt_sb->s_type->name);
427 /* optional statistics */
428 if (mnt->mnt_sb->s_op->show_stats) {
430 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
437 struct seq_operations mountstats_op = {
441 .show = show_vfsstat,
445 * may_umount_tree - check if a mount tree is busy
446 * @mnt: root of mount tree
448 * This is called to check if a tree of mounts has any
449 * open files, pwds, chroots or sub mounts that are
452 int may_umount_tree(struct vfsmount *mnt)
455 int minimum_refs = 0;
458 spin_lock(&vfsmount_lock);
459 for (p = mnt; p; p = next_mnt(p, mnt)) {
460 actual_refs += atomic_read(&p->mnt_count);
463 spin_unlock(&vfsmount_lock);
465 if (actual_refs > minimum_refs)
471 EXPORT_SYMBOL(may_umount_tree);
474 * may_umount - check if a mount point is busy
475 * @mnt: root of mount
477 * This is called to check if a mount point has any
478 * open files, pwds, chroots or sub mounts. If the
479 * mount has sub mounts this will return busy
480 * regardless of whether the sub mounts are busy.
482 * Doesn't take quota and stuff into account. IOW, in some cases it will
483 * give false negatives. The main reason why it's here is that we need
484 * a non-destructive way to look for easily umountable filesystems.
486 int may_umount(struct vfsmount *mnt)
489 spin_lock(&vfsmount_lock);
490 if (propagate_mount_busy(mnt, 2))
492 spin_unlock(&vfsmount_lock);
496 EXPORT_SYMBOL(may_umount);
498 void release_mounts(struct list_head *head)
500 struct vfsmount *mnt;
501 while (!list_empty(head)) {
502 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
503 list_del_init(&mnt->mnt_hash);
504 if (mnt->mnt_parent != mnt) {
505 struct dentry *dentry;
507 spin_lock(&vfsmount_lock);
508 dentry = mnt->mnt_mountpoint;
510 mnt->mnt_mountpoint = mnt->mnt_root;
511 mnt->mnt_parent = mnt;
512 spin_unlock(&vfsmount_lock);
520 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
524 for (p = mnt; p; p = next_mnt(p, mnt))
525 list_move(&p->mnt_hash, kill);
528 propagate_umount(kill);
530 list_for_each_entry(p, kill, mnt_hash) {
531 list_del_init(&p->mnt_expire);
532 list_del_init(&p->mnt_list);
533 __touch_mnt_namespace(p->mnt_ns);
535 list_del_init(&p->mnt_child);
536 if (p->mnt_parent != p)
537 p->mnt_mountpoint->d_mounted--;
538 change_mnt_propagation(p, MS_PRIVATE);
542 static int do_umount(struct vfsmount *mnt, int flags)
544 struct super_block *sb = mnt->mnt_sb;
546 LIST_HEAD(umount_list);
548 retval = security_sb_umount(mnt, flags);
553 * Allow userspace to request a mountpoint be expired rather than
554 * unmounting unconditionally. Unmount only happens if:
555 * (1) the mark is already set (the mark is cleared by mntput())
556 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
558 if (flags & MNT_EXPIRE) {
559 if (mnt == current->fs->rootmnt ||
560 flags & (MNT_FORCE | MNT_DETACH))
563 if (atomic_read(&mnt->mnt_count) != 2)
566 if (!xchg(&mnt->mnt_expiry_mark, 1))
571 * If we may have to abort operations to get out of this
572 * mount, and they will themselves hold resources we must
573 * allow the fs to do things. In the Unix tradition of
574 * 'Gee thats tricky lets do it in userspace' the umount_begin
575 * might fail to complete on the first run through as other tasks
576 * must return, and the like. Thats for the mount program to worry
577 * about for the moment.
581 if (sb->s_op->umount_begin)
582 sb->s_op->umount_begin(mnt, flags);
586 * No sense to grab the lock for this test, but test itself looks
587 * somewhat bogus. Suggestions for better replacement?
588 * Ho-hum... In principle, we might treat that as umount + switch
589 * to rootfs. GC would eventually take care of the old vfsmount.
590 * Actually it makes sense, especially if rootfs would contain a
591 * /reboot - static binary that would close all descriptors and
592 * call reboot(9). Then init(8) could umount root and exec /reboot.
594 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
596 * Special case for "unmounting" root ...
597 * we just try to remount it readonly.
599 down_write(&sb->s_umount);
600 if (!(sb->s_flags & MS_RDONLY)) {
603 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
606 up_write(&sb->s_umount);
610 down_write(&namespace_sem);
611 spin_lock(&vfsmount_lock);
615 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
616 if (!list_empty(&mnt->mnt_list))
617 umount_tree(mnt, 1, &umount_list);
620 spin_unlock(&vfsmount_lock);
622 security_sb_umount_busy(mnt);
623 up_write(&namespace_sem);
624 release_mounts(&umount_list);
629 * Now umount can handle mount points as well as block devices.
630 * This is important for filesystems which use unnamed block devices.
632 * We now support a flag for forced unmount like the other 'big iron'
633 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
636 asmlinkage long sys_umount(char __user * name, int flags)
641 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
645 if (nd.dentry != nd.mnt->mnt_root)
647 if (!check_mnt(nd.mnt))
651 if (!capable(CAP_SYS_ADMIN))
654 retval = do_umount(nd.mnt, flags);
656 path_release_on_umount(&nd);
661 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
664 * The 2.0 compatible umount. No flags.
666 asmlinkage long sys_oldumount(char __user * name)
668 return sys_umount(name, 0);
673 static int mount_is_safe(struct nameidata *nd)
675 if (capable(CAP_SYS_ADMIN))
679 if (S_ISLNK(nd->dentry->d_inode->i_mode))
681 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
682 if (current->uid != nd->dentry->d_inode->i_uid)
685 if (vfs_permission(nd, MAY_WRITE))
691 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
696 if (d == NULL || d == d->d_parent)
702 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
705 struct vfsmount *res, *p, *q, *r, *s;
708 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
711 res = q = clone_mnt(mnt, dentry, flag);
714 q->mnt_mountpoint = mnt->mnt_mountpoint;
717 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
718 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
721 for (s = r; s; s = next_mnt(s, r)) {
722 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
723 s = skip_mnt_tree(s);
726 while (p != s->mnt_parent) {
732 nd.dentry = p->mnt_mountpoint;
733 q = clone_mnt(p, p->mnt_root, flag);
736 spin_lock(&vfsmount_lock);
737 list_add_tail(&q->mnt_list, &res->mnt_list);
739 spin_unlock(&vfsmount_lock);
745 LIST_HEAD(umount_list);
746 spin_lock(&vfsmount_lock);
747 umount_tree(res, 0, &umount_list);
748 spin_unlock(&vfsmount_lock);
749 release_mounts(&umount_list);
755 * @source_mnt : mount tree to be attached
756 * @nd : place the mount tree @source_mnt is attached
757 * @parent_nd : if non-null, detach the source_mnt from its parent and
758 * store the parent mount and mountpoint dentry.
759 * (done when source_mnt is moved)
761 * NOTE: in the table below explains the semantics when a source mount
762 * of a given type is attached to a destination mount of a given type.
763 * ---------------------------------------------------------------------------
764 * | BIND MOUNT OPERATION |
765 * |**************************************************************************
766 * | source-->| shared | private | slave | unbindable |
770 * |**************************************************************************
771 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
773 * |non-shared| shared (+) | private | slave (*) | invalid |
774 * ***************************************************************************
775 * A bind operation clones the source mount and mounts the clone on the
778 * (++) the cloned mount is propagated to all the mounts in the propagation
779 * tree of the destination mount and the cloned mount is added to
780 * the peer group of the source mount.
781 * (+) the cloned mount is created under the destination mount and is marked
782 * as shared. The cloned mount is added to the peer group of the source
784 * (+++) the mount is propagated to all the mounts in the propagation tree
785 * of the destination mount and the cloned mount is made slave
786 * of the same master as that of the source mount. The cloned mount
787 * is marked as 'shared and slave'.
788 * (*) the cloned mount is made a slave of the same master as that of the
791 * ---------------------------------------------------------------------------
792 * | MOVE MOUNT OPERATION |
793 * |**************************************************************************
794 * | source-->| shared | private | slave | unbindable |
798 * |**************************************************************************
799 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
801 * |non-shared| shared (+*) | private | slave (*) | unbindable |
802 * ***************************************************************************
804 * (+) the mount is moved to the destination. And is then propagated to
805 * all the mounts in the propagation tree of the destination mount.
806 * (+*) the mount is moved to the destination.
807 * (+++) the mount is moved to the destination and is then propagated to
808 * all the mounts belonging to the destination mount's propagation tree.
809 * the mount is marked as 'shared and slave'.
810 * (*) the mount continues to be a slave at the new location.
812 * if the source mount is a tree, the operations explained above is
813 * applied to each mount in the tree.
814 * Must be called without spinlocks held, since this function can sleep
817 static int attach_recursive_mnt(struct vfsmount *source_mnt,
818 struct nameidata *nd, struct nameidata *parent_nd)
820 LIST_HEAD(tree_list);
821 struct vfsmount *dest_mnt = nd->mnt;
822 struct dentry *dest_dentry = nd->dentry;
823 struct vfsmount *child, *p;
825 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
828 if (IS_MNT_SHARED(dest_mnt)) {
829 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
833 spin_lock(&vfsmount_lock);
835 detach_mnt(source_mnt, parent_nd);
836 attach_mnt(source_mnt, nd);
837 touch_mnt_namespace(current->nsproxy->mnt_ns);
839 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
840 commit_tree(source_mnt);
843 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
844 list_del_init(&child->mnt_hash);
847 spin_unlock(&vfsmount_lock);
851 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
854 if (mnt->mnt_sb->s_flags & MS_NOUSER)
857 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
858 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
862 mutex_lock(&nd->dentry->d_inode->i_mutex);
863 if (IS_DEADDIR(nd->dentry->d_inode))
866 err = security_sb_check_sb(mnt, nd);
871 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
872 err = attach_recursive_mnt(mnt, nd, NULL);
874 mutex_unlock(&nd->dentry->d_inode->i_mutex);
876 security_sb_post_addmount(mnt, nd);
881 * recursively change the type of the mountpoint.
883 static int do_change_type(struct nameidata *nd, int flag)
885 struct vfsmount *m, *mnt = nd->mnt;
886 int recurse = flag & MS_REC;
887 int type = flag & ~MS_REC;
889 if (!capable(CAP_SYS_ADMIN))
892 if (nd->dentry != nd->mnt->mnt_root)
895 down_write(&namespace_sem);
896 spin_lock(&vfsmount_lock);
897 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
898 change_mnt_propagation(m, type);
899 spin_unlock(&vfsmount_lock);
900 up_write(&namespace_sem);
907 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
909 struct nameidata old_nd;
910 struct vfsmount *mnt = NULL;
911 int err = mount_is_safe(nd);
914 if (!old_name || !*old_name)
916 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
920 down_write(&namespace_sem);
922 if (IS_MNT_UNBINDABLE(old_nd.mnt))
925 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
930 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
932 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
937 err = graft_tree(mnt, nd);
939 LIST_HEAD(umount_list);
940 spin_lock(&vfsmount_lock);
941 umount_tree(mnt, 0, &umount_list);
942 spin_unlock(&vfsmount_lock);
943 release_mounts(&umount_list);
947 up_write(&namespace_sem);
948 path_release(&old_nd);
953 * change filesystem flags. dir should be a physical root of filesystem.
954 * If you've mounted a non-root directory somewhere and want to do remount
955 * on it - tough luck.
957 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
961 struct super_block *sb = nd->mnt->mnt_sb;
963 if (!capable(CAP_SYS_ADMIN))
966 if (!check_mnt(nd->mnt))
969 if (nd->dentry != nd->mnt->mnt_root)
972 down_write(&sb->s_umount);
973 err = do_remount_sb(sb, flags, data, 0);
975 nd->mnt->mnt_flags = mnt_flags;
976 up_write(&sb->s_umount);
978 security_sb_post_remount(nd->mnt, flags, data);
982 static inline int tree_contains_unbindable(struct vfsmount *mnt)
985 for (p = mnt; p; p = next_mnt(p, mnt)) {
986 if (IS_MNT_UNBINDABLE(p))
992 static int do_move_mount(struct nameidata *nd, char *old_name)
994 struct nameidata old_nd, parent_nd;
997 if (!capable(CAP_SYS_ADMIN))
999 if (!old_name || !*old_name)
1001 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1005 down_write(&namespace_sem);
1006 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1009 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1013 mutex_lock(&nd->dentry->d_inode->i_mutex);
1014 if (IS_DEADDIR(nd->dentry->d_inode))
1017 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1021 if (old_nd.dentry != old_nd.mnt->mnt_root)
1024 if (old_nd.mnt == old_nd.mnt->mnt_parent)
1027 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1028 S_ISDIR(old_nd.dentry->d_inode->i_mode))
1031 * Don't move a mount residing in a shared parent.
1033 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1036 * Don't move a mount tree containing unbindable mounts to a destination
1037 * mount which is shared.
1039 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1042 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1043 if (p == old_nd.mnt)
1046 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1049 spin_lock(&vfsmount_lock);
1050 /* if the mount is moved, it should no longer be expire
1052 list_del_init(&old_nd.mnt->mnt_expire);
1053 spin_unlock(&vfsmount_lock);
1055 mutex_unlock(&nd->dentry->d_inode->i_mutex);
1057 up_write(&namespace_sem);
1059 path_release(&parent_nd);
1060 path_release(&old_nd);
1065 * create a new mount for userspace and request it to be added into the
1068 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1069 int mnt_flags, char *name, void *data)
1071 struct vfsmount *mnt;
1073 if (!type || !memchr(type, 0, PAGE_SIZE))
1076 /* we need capabilities... */
1077 if (!capable(CAP_SYS_ADMIN))
1080 mnt = do_kern_mount(type, flags, name, data);
1082 return PTR_ERR(mnt);
1084 return do_add_mount(mnt, nd, mnt_flags, NULL);
1088 * add a mount into a namespace's mount tree
1089 * - provide the option of adding the new mount to an expiration list
1091 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1092 int mnt_flags, struct list_head *fslist)
1096 down_write(&namespace_sem);
1097 /* Something was mounted here while we slept */
1098 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1101 if (!check_mnt(nd->mnt))
1104 /* Refuse the same filesystem on the same mount point */
1106 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1107 nd->mnt->mnt_root == nd->dentry)
1111 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1114 newmnt->mnt_flags = mnt_flags;
1115 if ((err = graft_tree(newmnt, nd)))
1119 /* add to the specified expiration list */
1120 spin_lock(&vfsmount_lock);
1121 list_add_tail(&newmnt->mnt_expire, fslist);
1122 spin_unlock(&vfsmount_lock);
1124 up_write(&namespace_sem);
1128 up_write(&namespace_sem);
1133 EXPORT_SYMBOL_GPL(do_add_mount);
1135 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1136 struct list_head *umounts)
1138 spin_lock(&vfsmount_lock);
1141 * Check if mount is still attached, if not, let whoever holds it deal
1144 if (mnt->mnt_parent == mnt) {
1145 spin_unlock(&vfsmount_lock);
1150 * Check that it is still dead: the count should now be 2 - as
1151 * contributed by the vfsmount parent and the mntget above
1153 if (!propagate_mount_busy(mnt, 2)) {
1154 /* delete from the namespace */
1155 touch_mnt_namespace(mnt->mnt_ns);
1156 list_del_init(&mnt->mnt_list);
1158 umount_tree(mnt, 1, umounts);
1159 spin_unlock(&vfsmount_lock);
1162 * Someone brought it back to life whilst we didn't have any
1163 * locks held so return it to the expiration list
1165 list_add_tail(&mnt->mnt_expire, mounts);
1166 spin_unlock(&vfsmount_lock);
1171 * go through the vfsmounts we've just consigned to the graveyard to
1172 * - check that they're still dead
1173 * - delete the vfsmount from the appropriate namespace under lock
1174 * - dispose of the corpse
1176 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1178 struct mnt_namespace *ns;
1179 struct vfsmount *mnt;
1181 while (!list_empty(graveyard)) {
1183 mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1184 list_del_init(&mnt->mnt_expire);
1186 /* don't do anything if the namespace is dead - all the
1187 * vfsmounts from it are going away anyway */
1189 if (!ns || !ns->root)
1193 spin_unlock(&vfsmount_lock);
1194 down_write(&namespace_sem);
1195 expire_mount(mnt, mounts, &umounts);
1196 up_write(&namespace_sem);
1197 release_mounts(&umounts);
1200 spin_lock(&vfsmount_lock);
1205 * process a list of expirable mountpoints with the intent of discarding any
1206 * mountpoints that aren't in use and haven't been touched since last we came
1209 void mark_mounts_for_expiry(struct list_head *mounts)
1211 struct vfsmount *mnt, *next;
1212 LIST_HEAD(graveyard);
1214 if (list_empty(mounts))
1217 spin_lock(&vfsmount_lock);
1219 /* extract from the expiration list every vfsmount that matches the
1220 * following criteria:
1221 * - only referenced by its parent vfsmount
1222 * - still marked for expiry (marked on the last call here; marks are
1223 * cleared by mntput())
1225 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1226 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1227 atomic_read(&mnt->mnt_count) != 1)
1231 list_move(&mnt->mnt_expire, &graveyard);
1234 expire_mount_list(&graveyard, mounts);
1236 spin_unlock(&vfsmount_lock);
1239 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1242 * Ripoff of 'select_parent()'
1244 * search the list of submounts for a given mountpoint, and move any
1245 * shrinkable submounts to the 'graveyard' list.
1247 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1249 struct vfsmount *this_parent = parent;
1250 struct list_head *next;
1254 next = this_parent->mnt_mounts.next;
1256 while (next != &this_parent->mnt_mounts) {
1257 struct list_head *tmp = next;
1258 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1261 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1264 * Descend a level if the d_mounts list is non-empty.
1266 if (!list_empty(&mnt->mnt_mounts)) {
1271 if (!propagate_mount_busy(mnt, 1)) {
1273 list_move_tail(&mnt->mnt_expire, graveyard);
1278 * All done at this level ... ascend and resume the search
1280 if (this_parent != parent) {
1281 next = this_parent->mnt_child.next;
1282 this_parent = this_parent->mnt_parent;
1289 * process a list of expirable mountpoints with the intent of discarding any
1290 * submounts of a specific parent mountpoint
1292 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1294 LIST_HEAD(graveyard);
1297 spin_lock(&vfsmount_lock);
1299 /* extract submounts of 'mountpoint' from the expiration list */
1300 while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1301 expire_mount_list(&graveyard, mounts);
1303 spin_unlock(&vfsmount_lock);
1306 EXPORT_SYMBOL_GPL(shrink_submounts);
1309 * Some copy_from_user() implementations do not return the exact number of
1310 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1311 * Note that this function differs from copy_from_user() in that it will oops
1312 * on bad values of `to', rather than returning a short copy.
1314 static long exact_copy_from_user(void *to, const void __user * from,
1318 const char __user *f = from;
1321 if (!access_ok(VERIFY_READ, from, n))
1325 if (__get_user(c, f)) {
1336 int copy_mount_options(const void __user * data, unsigned long *where)
1346 if (!(page = __get_free_page(GFP_KERNEL)))
1349 /* We only care that *some* data at the address the user
1350 * gave us is valid. Just in case, we'll zero
1351 * the remainder of the page.
1353 /* copy_from_user cannot cross TASK_SIZE ! */
1354 size = TASK_SIZE - (unsigned long)data;
1355 if (size > PAGE_SIZE)
1358 i = size - exact_copy_from_user((void *)page, data, size);
1364 memset((char *)page + i, 0, PAGE_SIZE - i);
1370 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1371 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1373 * data is a (void *) that can point to any structure up to
1374 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1375 * information (or be NULL).
1377 * Pre-0.97 versions of mount() didn't have a flags word.
1378 * When the flags word was introduced its top half was required
1379 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1380 * Therefore, if this magic number is present, it carries no information
1381 * and must be discarded.
1383 long do_mount(char *dev_name, char *dir_name, char *type_page,
1384 unsigned long flags, void *data_page)
1386 struct nameidata nd;
1391 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1392 flags &= ~MS_MGC_MSK;
1394 /* Basic sanity checks */
1396 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1398 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1402 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1404 /* Separate the per-mountpoint flags */
1405 if (flags & MS_NOSUID)
1406 mnt_flags |= MNT_NOSUID;
1407 if (flags & MS_NODEV)
1408 mnt_flags |= MNT_NODEV;
1409 if (flags & MS_NOEXEC)
1410 mnt_flags |= MNT_NOEXEC;
1411 if (flags & MS_NOATIME)
1412 mnt_flags |= MNT_NOATIME;
1413 if (flags & MS_NODIRATIME)
1414 mnt_flags |= MNT_NODIRATIME;
1415 if (flags & MS_RELATIME)
1416 mnt_flags |= MNT_RELATIME;
1418 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1419 MS_NOATIME | MS_NODIRATIME | MS_RELATIME);
1421 /* ... and get the mountpoint */
1422 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1426 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1430 if (flags & MS_REMOUNT)
1431 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1433 else if (flags & MS_BIND)
1434 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1435 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1436 retval = do_change_type(&nd, flags);
1437 else if (flags & MS_MOVE)
1438 retval = do_move_mount(&nd, dev_name);
1440 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1441 dev_name, data_page);
1448 * Allocate a new namespace structure and populate it with contents
1449 * copied from the namespace of the passed in task structure.
1451 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1452 struct fs_struct *fs)
1454 struct mnt_namespace *new_ns;
1455 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1456 struct vfsmount *p, *q;
1458 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1462 atomic_set(&new_ns->count, 1);
1463 INIT_LIST_HEAD(&new_ns->list);
1464 init_waitqueue_head(&new_ns->poll);
1467 down_write(&namespace_sem);
1468 /* First pass: copy the tree topology */
1469 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1470 CL_COPY_ALL | CL_EXPIRE);
1471 if (!new_ns->root) {
1472 up_write(&namespace_sem);
1476 spin_lock(&vfsmount_lock);
1477 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1478 spin_unlock(&vfsmount_lock);
1481 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1482 * as belonging to new namespace. We have already acquired a private
1483 * fs_struct, so tsk->fs->lock is not needed.
1490 if (p == fs->rootmnt) {
1492 fs->rootmnt = mntget(q);
1494 if (p == fs->pwdmnt) {
1496 fs->pwdmnt = mntget(q);
1498 if (p == fs->altrootmnt) {
1500 fs->altrootmnt = mntget(q);
1503 p = next_mnt(p, mnt_ns->root);
1504 q = next_mnt(q, new_ns->root);
1506 up_write(&namespace_sem);
1518 struct mnt_namespace *copy_mnt_ns(int flags, struct mnt_namespace *ns,
1519 struct fs_struct *new_fs)
1521 struct mnt_namespace *new_ns;
1526 if (!(flags & CLONE_NEWNS))
1529 new_ns = dup_mnt_ns(ns, new_fs);
1535 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1536 char __user * type, unsigned long flags,
1540 unsigned long data_page;
1541 unsigned long type_page;
1542 unsigned long dev_page;
1545 retval = copy_mount_options(type, &type_page);
1549 dir_page = getname(dir_name);
1550 retval = PTR_ERR(dir_page);
1551 if (IS_ERR(dir_page))
1554 retval = copy_mount_options(dev_name, &dev_page);
1558 retval = copy_mount_options(data, &data_page);
1563 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1564 flags, (void *)data_page);
1566 free_page(data_page);
1569 free_page(dev_page);
1573 free_page(type_page);
1578 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1579 * It can block. Requires the big lock held.
1581 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1582 struct dentry *dentry)
1584 struct dentry *old_root;
1585 struct vfsmount *old_rootmnt;
1586 write_lock(&fs->lock);
1587 old_root = fs->root;
1588 old_rootmnt = fs->rootmnt;
1589 fs->rootmnt = mntget(mnt);
1590 fs->root = dget(dentry);
1591 write_unlock(&fs->lock);
1594 mntput(old_rootmnt);
1599 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1600 * It can block. Requires the big lock held.
1602 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1603 struct dentry *dentry)
1605 struct dentry *old_pwd;
1606 struct vfsmount *old_pwdmnt;
1608 write_lock(&fs->lock);
1610 old_pwdmnt = fs->pwdmnt;
1611 fs->pwdmnt = mntget(mnt);
1612 fs->pwd = dget(dentry);
1613 write_unlock(&fs->lock);
1621 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1623 struct task_struct *g, *p;
1624 struct fs_struct *fs;
1626 read_lock(&tasklist_lock);
1627 do_each_thread(g, p) {
1631 atomic_inc(&fs->count);
1633 if (fs->root == old_nd->dentry
1634 && fs->rootmnt == old_nd->mnt)
1635 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1636 if (fs->pwd == old_nd->dentry
1637 && fs->pwdmnt == old_nd->mnt)
1638 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1642 } while_each_thread(g, p);
1643 read_unlock(&tasklist_lock);
1647 * pivot_root Semantics:
1648 * Moves the root file system of the current process to the directory put_old,
1649 * makes new_root as the new root file system of the current process, and sets
1650 * root/cwd of all processes which had them on the current root to new_root.
1653 * The new_root and put_old must be directories, and must not be on the
1654 * same file system as the current process root. The put_old must be
1655 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1656 * pointed to by put_old must yield the same directory as new_root. No other
1657 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1659 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1660 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1661 * in this situation.
1664 * - we don't move root/cwd if they are not at the root (reason: if something
1665 * cared enough to change them, it's probably wrong to force them elsewhere)
1666 * - it's okay to pick a root that isn't the root of a file system, e.g.
1667 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1668 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1671 asmlinkage long sys_pivot_root(const char __user * new_root,
1672 const char __user * put_old)
1674 struct vfsmount *tmp;
1675 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1678 if (!capable(CAP_SYS_ADMIN))
1683 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1688 if (!check_mnt(new_nd.mnt))
1691 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1695 error = security_sb_pivotroot(&old_nd, &new_nd);
1697 path_release(&old_nd);
1701 read_lock(¤t->fs->lock);
1702 user_nd.mnt = mntget(current->fs->rootmnt);
1703 user_nd.dentry = dget(current->fs->root);
1704 read_unlock(¤t->fs->lock);
1705 down_write(&namespace_sem);
1706 mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1708 if (IS_MNT_SHARED(old_nd.mnt) ||
1709 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1710 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1712 if (!check_mnt(user_nd.mnt))
1715 if (IS_DEADDIR(new_nd.dentry->d_inode))
1717 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1719 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1722 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1723 goto out2; /* loop, on the same file system */
1725 if (user_nd.mnt->mnt_root != user_nd.dentry)
1726 goto out2; /* not a mountpoint */
1727 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1728 goto out2; /* not attached */
1729 if (new_nd.mnt->mnt_root != new_nd.dentry)
1730 goto out2; /* not a mountpoint */
1731 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1732 goto out2; /* not attached */
1733 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1734 spin_lock(&vfsmount_lock);
1735 if (tmp != new_nd.mnt) {
1737 if (tmp->mnt_parent == tmp)
1738 goto out3; /* already mounted on put_old */
1739 if (tmp->mnt_parent == new_nd.mnt)
1741 tmp = tmp->mnt_parent;
1743 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1745 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1747 detach_mnt(new_nd.mnt, &parent_nd);
1748 detach_mnt(user_nd.mnt, &root_parent);
1749 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1750 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1751 touch_mnt_namespace(current->nsproxy->mnt_ns);
1752 spin_unlock(&vfsmount_lock);
1753 chroot_fs_refs(&user_nd, &new_nd);
1754 security_sb_post_pivotroot(&user_nd, &new_nd);
1756 path_release(&root_parent);
1757 path_release(&parent_nd);
1759 mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1760 up_write(&namespace_sem);
1761 path_release(&user_nd);
1762 path_release(&old_nd);
1764 path_release(&new_nd);
1769 spin_unlock(&vfsmount_lock);
1773 static void __init init_mount_tree(void)
1775 struct vfsmount *mnt;
1776 struct mnt_namespace *ns;
1778 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1780 panic("Can't create rootfs");
1781 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1783 panic("Can't allocate initial namespace");
1784 atomic_set(&ns->count, 1);
1785 INIT_LIST_HEAD(&ns->list);
1786 init_waitqueue_head(&ns->poll);
1788 list_add(&mnt->mnt_list, &ns->list);
1792 init_task.nsproxy->mnt_ns = ns;
1795 set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1796 set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1799 void __init mnt_init(unsigned long mempages)
1801 struct list_head *d;
1802 unsigned int nr_hash;
1806 init_rwsem(&namespace_sem);
1808 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1809 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1811 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1813 if (!mount_hashtable)
1814 panic("Failed to allocate mount hash table\n");
1817 * Find the power-of-two list-heads that can fit into the allocation..
1818 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1821 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1825 } while ((nr_hash >> hash_bits) != 0);
1829 * Re-calculate the actual number of entries and the mask
1830 * from the number of bits we can fit.
1832 nr_hash = 1UL << hash_bits;
1833 hash_mask = nr_hash - 1;
1835 printk("Mount-cache hash table entries: %d\n", nr_hash);
1837 /* And initialize the newly allocated array */
1838 d = mount_hashtable;
1847 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1849 err = subsystem_register(&fs_subsys);
1851 printk(KERN_WARNING "%s: subsystem_register error: %d\n",
1857 void __put_mnt_ns(struct mnt_namespace *ns)
1859 struct vfsmount *root = ns->root;
1860 LIST_HEAD(umount_list);
1862 spin_unlock(&vfsmount_lock);
1863 down_write(&namespace_sem);
1864 spin_lock(&vfsmount_lock);
1865 umount_tree(root, 0, &umount_list);
1866 spin_unlock(&vfsmount_lock);
1867 up_write(&namespace_sem);
1868 release_mounts(&umount_list);