2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 #include <linux/module.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
21 #include <asm/pgtable.h>
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
26 * future use of radix_tree tags in the swap cache.
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .sync_page = block_sync_page,
31 .set_page_dirty = __set_page_dirty_nobuffers,
32 .migratepage = migrate_page,
35 static struct backing_dev_info swap_backing_dev_info = {
36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37 .unplug_io_fn = swap_unplug_io_fn,
40 struct address_space swapper_space = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 .backing_dev_info = &swap_backing_dev_info,
48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
51 unsigned long add_total;
52 unsigned long del_total;
53 unsigned long find_success;
54 unsigned long find_total;
57 void show_swap_cache_info(void)
59 printk("%lu pages in swap cache\n", total_swapcache_pages);
60 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
61 swap_cache_info.add_total, swap_cache_info.del_total,
62 swap_cache_info.find_success, swap_cache_info.find_total);
63 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
64 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
68 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
69 * but sets SwapCache flag and private instead of mapping and index.
71 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
75 BUG_ON(!PageLocked(page));
76 BUG_ON(PageSwapCache(page));
77 BUG_ON(PagePrivate(page));
78 BUG_ON(!PageSwapBacked(page));
79 error = radix_tree_preload(gfp_mask);
82 SetPageSwapCache(page);
83 set_page_private(page, entry.val);
85 spin_lock_irq(&swapper_space.tree_lock);
86 error = radix_tree_insert(&swapper_space.page_tree,
89 total_swapcache_pages++;
90 __inc_zone_page_state(page, NR_FILE_PAGES);
91 INC_CACHE_INFO(add_total);
93 spin_unlock_irq(&swapper_space.tree_lock);
94 radix_tree_preload_end();
96 if (unlikely(error)) {
97 set_page_private(page, 0UL);
98 ClearPageSwapCache(page);
99 page_cache_release(page);
106 * This must be called only on pages that have
107 * been verified to be in the swap cache.
109 void __delete_from_swap_cache(struct page *page)
111 BUG_ON(!PageLocked(page));
112 BUG_ON(!PageSwapCache(page));
113 BUG_ON(PageWriteback(page));
114 BUG_ON(PagePrivate(page));
116 radix_tree_delete(&swapper_space.page_tree, page_private(page));
117 set_page_private(page, 0);
118 ClearPageSwapCache(page);
119 total_swapcache_pages--;
120 __dec_zone_page_state(page, NR_FILE_PAGES);
121 INC_CACHE_INFO(del_total);
125 * add_to_swap - allocate swap space for a page
126 * @page: page we want to move to swap
127 * @gfp_mask: memory allocation flags
129 * Allocate swap space for the page and add the page to the
130 * swap cache. Caller needs to hold the page lock.
132 int add_to_swap(struct page * page, gfp_t gfp_mask)
137 BUG_ON(!PageLocked(page));
138 BUG_ON(!PageUptodate(page));
141 entry = get_swap_page();
146 * Radix-tree node allocations from PF_MEMALLOC contexts could
147 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148 * stops emergency reserves from being allocated.
150 * TODO: this could cause a theoretical memory reclaim
151 * deadlock in the swap out path.
154 * Add it to the swap cache and mark it dirty
156 err = add_to_swap_cache(page, entry,
157 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
160 case 0: /* Success */
164 /* Raced with "speculative" read_swap_cache_async */
168 /* -ENOMEM radix-tree allocation failure */
176 * This must be called only on pages that have
177 * been verified to be in the swap cache and locked.
178 * It will never put the page into the free list,
179 * the caller has a reference on the page.
181 void delete_from_swap_cache(struct page *page)
185 entry.val = page_private(page);
187 spin_lock_irq(&swapper_space.tree_lock);
188 __delete_from_swap_cache(page);
189 spin_unlock_irq(&swapper_space.tree_lock);
192 page_cache_release(page);
196 * If we are the only user, then try to free up the swap cache.
198 * Its ok to check for PageSwapCache without the page lock
199 * here because we are going to recheck again inside
200 * exclusive_swap_page() _with_ the lock.
203 static inline void free_swap_cache(struct page *page)
205 if (PageSwapCache(page) && trylock_page(page)) {
206 remove_exclusive_swap_page(page);
212 * Perform a free_page(), also freeing any swap cache associated with
213 * this page if it is the last user of the page.
215 void free_page_and_swap_cache(struct page *page)
217 free_swap_cache(page);
218 page_cache_release(page);
222 * Passed an array of pages, drop them all from swapcache and then release
223 * them. They are removed from the LRU and freed if this is their last use.
225 void free_pages_and_swap_cache(struct page **pages, int nr)
227 struct page **pagep = pages;
231 int todo = min(nr, PAGEVEC_SIZE);
234 for (i = 0; i < todo; i++)
235 free_swap_cache(pagep[i]);
236 release_pages(pagep, todo, 0);
243 * Lookup a swap entry in the swap cache. A found page will be returned
244 * unlocked and with its refcount incremented - we rely on the kernel
245 * lock getting page table operations atomic even if we drop the page
246 * lock before returning.
248 struct page * lookup_swap_cache(swp_entry_t entry)
252 page = find_get_page(&swapper_space, entry.val);
255 INC_CACHE_INFO(find_success);
257 INC_CACHE_INFO(find_total);
262 * Locate a page of swap in physical memory, reserving swap cache space
263 * and reading the disk if it is not already cached.
264 * A failure return means that either the page allocation failed or that
265 * the swap entry is no longer in use.
267 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
268 struct vm_area_struct *vma, unsigned long addr)
270 struct page *found_page, *new_page = NULL;
275 * First check the swap cache. Since this is normally
276 * called after lookup_swap_cache() failed, re-calling
277 * that would confuse statistics.
279 found_page = find_get_page(&swapper_space, entry.val);
284 * Get a new page to read into from swap.
287 new_page = alloc_page_vma(gfp_mask, vma, addr);
289 break; /* Out of memory */
293 * Swap entry may have been freed since our caller observed it.
295 if (!swap_duplicate(entry))
299 * Associate the page with swap entry in the swap cache.
300 * May fail (-EEXIST) if there is already a page associated
301 * with this entry in the swap cache: added by a racing
302 * read_swap_cache_async, or add_to_swap or shmem_writepage
303 * re-using the just freed swap entry for an existing page.
304 * May fail (-ENOMEM) if radix-tree node allocation failed.
306 __set_page_locked(new_page);
307 SetPageSwapBacked(new_page);
308 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
311 * Initiate read into locked page and return.
313 lru_cache_add_anon(new_page);
314 swap_readpage(NULL, new_page);
317 ClearPageSwapBacked(new_page);
318 __clear_page_locked(new_page);
320 } while (err != -ENOMEM);
323 page_cache_release(new_page);
328 * swapin_readahead - swap in pages in hope we need them soon
329 * @entry: swap entry of this memory
330 * @gfp_mask: memory allocation flags
331 * @vma: user vma this address belongs to
332 * @addr: target address for mempolicy
334 * Returns the struct page for entry and addr, after queueing swapin.
336 * Primitive swap readahead code. We simply read an aligned block of
337 * (1 << page_cluster) entries in the swap area. This method is chosen
338 * because it doesn't cost us any seek time. We also make sure to queue
339 * the 'original' request together with the readahead ones...
341 * This has been extended to use the NUMA policies from the mm triggering
344 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
346 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
347 struct vm_area_struct *vma, unsigned long addr)
351 unsigned long offset;
352 unsigned long end_offset;
355 * Get starting offset for readaround, and number of pages to read.
356 * Adjust starting address by readbehind (for NUMA interleave case)?
357 * No, it's very unlikely that swap layout would follow vma layout,
358 * more likely that neighbouring swap pages came from the same node:
359 * so use the same "addr" to choose the same node for each swap read.
361 nr_pages = valid_swaphandles(entry, &offset);
362 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
363 /* Ok, do the async read-ahead now */
364 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
365 gfp_mask, vma, addr);
368 page_cache_release(page);
370 lru_add_drain(); /* Push any new pages onto the LRU now */
371 return read_swap_cache_async(entry, gfp_mask, vma, addr);