Btrfs: leave btree locks spinning more often
[linux-2.6] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_key *ins_key,
30                       struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32                           struct btrfs_root *root, struct extent_buffer *dst,
33                           struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35                               struct btrfs_root *root,
36                               struct extent_buffer *dst_buf,
37                               struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39                    struct btrfs_path *path, int level, int slot);
40
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43         struct btrfs_path *path;
44         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45         if (path)
46                 path->reada = 1;
47         return path;
48 }
49
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56         int i;
57         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58                 if (p->nodes[i] && p->locks[i])
59                         btrfs_set_lock_blocking(p->nodes[i]);
60         }
61 }
62
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  *
66  * held is used to keep lockdep happy, when lockdep is enabled
67  * we set held to a blocking lock before we go around and
68  * retake all the spinlocks in the path.  You can safely use NULL
69  * for held
70  */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72                                         struct extent_buffer *held)
73 {
74         int i;
75
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77         /* lockdep really cares that we take all of these spinlocks
78          * in the right order.  If any of the locks in the path are not
79          * currently blocking, it is going to complain.  So, make really
80          * really sure by forcing the path to blocking before we clear
81          * the path blocking.
82          */
83         if (held)
84                 btrfs_set_lock_blocking(held);
85         btrfs_set_path_blocking(p);
86 #endif
87
88         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89                 if (p->nodes[i] && p->locks[i])
90                         btrfs_clear_lock_blocking(p->nodes[i]);
91         }
92
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94         if (held)
95                 btrfs_clear_lock_blocking(held);
96 #endif
97 }
98
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102         btrfs_release_path(NULL, p);
103         kmem_cache_free(btrfs_path_cachep, p);
104 }
105
106 /*
107  * path release drops references on the extent buffers in the path
108  * and it drops any locks held by this path
109  *
110  * It is safe to call this on paths that no locks or extent buffers held.
111  */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114         int i;
115
116         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117                 p->slots[i] = 0;
118                 if (!p->nodes[i])
119                         continue;
120                 if (p->locks[i]) {
121                         btrfs_tree_unlock(p->nodes[i]);
122                         p->locks[i] = 0;
123                 }
124                 free_extent_buffer(p->nodes[i]);
125                 p->nodes[i] = NULL;
126         }
127 }
128
129 /*
130  * safely gets a reference on the root node of a tree.  A lock
131  * is not taken, so a concurrent writer may put a different node
132  * at the root of the tree.  See btrfs_lock_root_node for the
133  * looping required.
134  *
135  * The extent buffer returned by this has a reference taken, so
136  * it won't disappear.  It may stop being the root of the tree
137  * at any time because there are no locks held.
138  */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141         struct extent_buffer *eb;
142         spin_lock(&root->node_lock);
143         eb = root->node;
144         extent_buffer_get(eb);
145         spin_unlock(&root->node_lock);
146         return eb;
147 }
148
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155         struct extent_buffer *eb;
156
157         while (1) {
158                 eb = btrfs_root_node(root);
159                 btrfs_tree_lock(eb);
160
161                 spin_lock(&root->node_lock);
162                 if (eb == root->node) {
163                         spin_unlock(&root->node_lock);
164                         break;
165                 }
166                 spin_unlock(&root->node_lock);
167
168                 btrfs_tree_unlock(eb);
169                 free_extent_buffer(eb);
170         }
171         return eb;
172 }
173
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175  * put onto a simple dirty list.  transaction.c walks this to make sure they
176  * get properly updated on disk.
177  */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180         if (root->track_dirty && list_empty(&root->dirty_list)) {
181                 list_add(&root->dirty_list,
182                          &root->fs_info->dirty_cowonly_roots);
183         }
184 }
185
186 /*
187  * used by snapshot creation to make a copy of a root for a tree with
188  * a given objectid.  The buffer with the new root node is returned in
189  * cow_ret, and this func returns zero on success or a negative error code.
190  */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192                       struct btrfs_root *root,
193                       struct extent_buffer *buf,
194                       struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196         struct extent_buffer *cow;
197         u32 nritems;
198         int ret = 0;
199         int level;
200         struct btrfs_root *new_root;
201
202         new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
203         if (!new_root)
204                 return -ENOMEM;
205
206         memcpy(new_root, root, sizeof(*new_root));
207         new_root->root_key.objectid = new_root_objectid;
208
209         WARN_ON(root->ref_cows && trans->transid !=
210                 root->fs_info->running_transaction->transid);
211         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
212
213         level = btrfs_header_level(buf);
214         nritems = btrfs_header_nritems(buf);
215
216         cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
217                                      new_root_objectid, trans->transid,
218                                      level, buf->start, 0);
219         if (IS_ERR(cow)) {
220                 kfree(new_root);
221                 return PTR_ERR(cow);
222         }
223
224         copy_extent_buffer(cow, buf, 0, 0, cow->len);
225         btrfs_set_header_bytenr(cow, cow->start);
226         btrfs_set_header_generation(cow, trans->transid);
227         btrfs_set_header_owner(cow, new_root_objectid);
228         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
229
230         write_extent_buffer(cow, root->fs_info->fsid,
231                             (unsigned long)btrfs_header_fsid(cow),
232                             BTRFS_FSID_SIZE);
233
234         WARN_ON(btrfs_header_generation(buf) > trans->transid);
235         ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
236         kfree(new_root);
237
238         if (ret)
239                 return ret;
240
241         btrfs_mark_buffer_dirty(cow);
242         *cow_ret = cow;
243         return 0;
244 }
245
246 /*
247  * does the dirty work in cow of a single block.  The parent block (if
248  * supplied) is updated to point to the new cow copy.  The new buffer is marked
249  * dirty and returned locked.  If you modify the block it needs to be marked
250  * dirty again.
251  *
252  * search_start -- an allocation hint for the new block
253  *
254  * empty_size -- a hint that you plan on doing more cow.  This is the size in
255  * bytes the allocator should try to find free next to the block it returns.
256  * This is just a hint and may be ignored by the allocator.
257  */
258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259                              struct btrfs_root *root,
260                              struct extent_buffer *buf,
261                              struct extent_buffer *parent, int parent_slot,
262                              struct extent_buffer **cow_ret,
263                              u64 search_start, u64 empty_size)
264 {
265         u64 parent_start;
266         struct extent_buffer *cow;
267         u32 nritems;
268         int ret = 0;
269         int level;
270         int unlock_orig = 0;
271
272         if (*cow_ret == buf)
273                 unlock_orig = 1;
274
275         btrfs_assert_tree_locked(buf);
276
277         if (parent)
278                 parent_start = parent->start;
279         else
280                 parent_start = 0;
281
282         WARN_ON(root->ref_cows && trans->transid !=
283                 root->fs_info->running_transaction->transid);
284         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
285
286         level = btrfs_header_level(buf);
287         nritems = btrfs_header_nritems(buf);
288
289         cow = btrfs_alloc_free_block(trans, root, buf->len,
290                                      parent_start, root->root_key.objectid,
291                                      trans->transid, level,
292                                      search_start, empty_size);
293         if (IS_ERR(cow))
294                 return PTR_ERR(cow);
295
296         /* cow is set to blocking by btrfs_init_new_buffer */
297
298         copy_extent_buffer(cow, buf, 0, 0, cow->len);
299         btrfs_set_header_bytenr(cow, cow->start);
300         btrfs_set_header_generation(cow, trans->transid);
301         btrfs_set_header_owner(cow, root->root_key.objectid);
302         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
303
304         write_extent_buffer(cow, root->fs_info->fsid,
305                             (unsigned long)btrfs_header_fsid(cow),
306                             BTRFS_FSID_SIZE);
307
308         WARN_ON(btrfs_header_generation(buf) > trans->transid);
309         if (btrfs_header_generation(buf) != trans->transid) {
310                 u32 nr_extents;
311                 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
312                 if (ret)
313                         return ret;
314
315                 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
316                 WARN_ON(ret);
317         } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
318                 /*
319                  * There are only two places that can drop reference to
320                  * tree blocks owned by living reloc trees, one is here,
321                  * the other place is btrfs_drop_subtree. In both places,
322                  * we check reference count while tree block is locked.
323                  * Furthermore, if reference count is one, it won't get
324                  * increased by someone else.
325                  */
326                 u32 refs;
327                 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
328                                               buf->len, &refs);
329                 BUG_ON(ret);
330                 if (refs == 1) {
331                         ret = btrfs_update_ref(trans, root, buf, cow,
332                                                0, nritems);
333                         clean_tree_block(trans, root, buf);
334                 } else {
335                         ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
336                 }
337                 BUG_ON(ret);
338         } else {
339                 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
340                 if (ret)
341                         return ret;
342                 clean_tree_block(trans, root, buf);
343         }
344
345         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
346                 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
347                 WARN_ON(ret);
348         }
349
350         if (buf == root->node) {
351                 WARN_ON(parent && parent != buf);
352
353                 spin_lock(&root->node_lock);
354                 root->node = cow;
355                 extent_buffer_get(cow);
356                 spin_unlock(&root->node_lock);
357
358                 if (buf != root->commit_root) {
359                         btrfs_free_extent(trans, root, buf->start,
360                                           buf->len, buf->start,
361                                           root->root_key.objectid,
362                                           btrfs_header_generation(buf),
363                                           level, 1);
364                 }
365                 free_extent_buffer(buf);
366                 add_root_to_dirty_list(root);
367         } else {
368                 btrfs_set_node_blockptr(parent, parent_slot,
369                                         cow->start);
370                 WARN_ON(trans->transid == 0);
371                 btrfs_set_node_ptr_generation(parent, parent_slot,
372                                               trans->transid);
373                 btrfs_mark_buffer_dirty(parent);
374                 WARN_ON(btrfs_header_generation(parent) != trans->transid);
375                 btrfs_free_extent(trans, root, buf->start, buf->len,
376                                   parent_start, btrfs_header_owner(parent),
377                                   btrfs_header_generation(parent), level, 1);
378         }
379         if (unlock_orig)
380                 btrfs_tree_unlock(buf);
381         free_extent_buffer(buf);
382         btrfs_mark_buffer_dirty(cow);
383         *cow_ret = cow;
384         return 0;
385 }
386
387 /*
388  * cows a single block, see __btrfs_cow_block for the real work.
389  * This version of it has extra checks so that a block isn't cow'd more than
390  * once per transaction, as long as it hasn't been written yet
391  */
392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
393                     struct btrfs_root *root, struct extent_buffer *buf,
394                     struct extent_buffer *parent, int parent_slot,
395                     struct extent_buffer **cow_ret)
396 {
397         u64 search_start;
398         int ret;
399
400         if (trans->transaction != root->fs_info->running_transaction) {
401                 printk(KERN_CRIT "trans %llu running %llu\n",
402                        (unsigned long long)trans->transid,
403                        (unsigned long long)
404                        root->fs_info->running_transaction->transid);
405                 WARN_ON(1);
406         }
407         if (trans->transid != root->fs_info->generation) {
408                 printk(KERN_CRIT "trans %llu running %llu\n",
409                        (unsigned long long)trans->transid,
410                        (unsigned long long)root->fs_info->generation);
411                 WARN_ON(1);
412         }
413
414         if (btrfs_header_generation(buf) == trans->transid &&
415             btrfs_header_owner(buf) == root->root_key.objectid &&
416             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
417                 *cow_ret = buf;
418                 return 0;
419         }
420
421         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
422
423         if (parent)
424                 btrfs_set_lock_blocking(parent);
425         btrfs_set_lock_blocking(buf);
426
427         ret = __btrfs_cow_block(trans, root, buf, parent,
428                                  parent_slot, cow_ret, search_start, 0);
429         return ret;
430 }
431
432 /*
433  * helper function for defrag to decide if two blocks pointed to by a
434  * node are actually close by
435  */
436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
437 {
438         if (blocknr < other && other - (blocknr + blocksize) < 32768)
439                 return 1;
440         if (blocknr > other && blocknr - (other + blocksize) < 32768)
441                 return 1;
442         return 0;
443 }
444
445 /*
446  * compare two keys in a memcmp fashion
447  */
448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
449 {
450         struct btrfs_key k1;
451
452         btrfs_disk_key_to_cpu(&k1, disk);
453
454         if (k1.objectid > k2->objectid)
455                 return 1;
456         if (k1.objectid < k2->objectid)
457                 return -1;
458         if (k1.type > k2->type)
459                 return 1;
460         if (k1.type < k2->type)
461                 return -1;
462         if (k1.offset > k2->offset)
463                 return 1;
464         if (k1.offset < k2->offset)
465                 return -1;
466         return 0;
467 }
468
469 /*
470  * same as comp_keys only with two btrfs_key's
471  */
472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
473 {
474         if (k1->objectid > k2->objectid)
475                 return 1;
476         if (k1->objectid < k2->objectid)
477                 return -1;
478         if (k1->type > k2->type)
479                 return 1;
480         if (k1->type < k2->type)
481                 return -1;
482         if (k1->offset > k2->offset)
483                 return 1;
484         if (k1->offset < k2->offset)
485                 return -1;
486         return 0;
487 }
488
489 /*
490  * this is used by the defrag code to go through all the
491  * leaves pointed to by a node and reallocate them so that
492  * disk order is close to key order
493  */
494 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
495                        struct btrfs_root *root, struct extent_buffer *parent,
496                        int start_slot, int cache_only, u64 *last_ret,
497                        struct btrfs_key *progress)
498 {
499         struct extent_buffer *cur;
500         u64 blocknr;
501         u64 gen;
502         u64 search_start = *last_ret;
503         u64 last_block = 0;
504         u64 other;
505         u32 parent_nritems;
506         int end_slot;
507         int i;
508         int err = 0;
509         int parent_level;
510         int uptodate;
511         u32 blocksize;
512         int progress_passed = 0;
513         struct btrfs_disk_key disk_key;
514
515         parent_level = btrfs_header_level(parent);
516         if (cache_only && parent_level != 1)
517                 return 0;
518
519         if (trans->transaction != root->fs_info->running_transaction)
520                 WARN_ON(1);
521         if (trans->transid != root->fs_info->generation)
522                 WARN_ON(1);
523
524         parent_nritems = btrfs_header_nritems(parent);
525         blocksize = btrfs_level_size(root, parent_level - 1);
526         end_slot = parent_nritems;
527
528         if (parent_nritems == 1)
529                 return 0;
530
531         btrfs_set_lock_blocking(parent);
532
533         for (i = start_slot; i < end_slot; i++) {
534                 int close = 1;
535
536                 if (!parent->map_token) {
537                         map_extent_buffer(parent,
538                                         btrfs_node_key_ptr_offset(i),
539                                         sizeof(struct btrfs_key_ptr),
540                                         &parent->map_token, &parent->kaddr,
541                                         &parent->map_start, &parent->map_len,
542                                         KM_USER1);
543                 }
544                 btrfs_node_key(parent, &disk_key, i);
545                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
546                         continue;
547
548                 progress_passed = 1;
549                 blocknr = btrfs_node_blockptr(parent, i);
550                 gen = btrfs_node_ptr_generation(parent, i);
551                 if (last_block == 0)
552                         last_block = blocknr;
553
554                 if (i > 0) {
555                         other = btrfs_node_blockptr(parent, i - 1);
556                         close = close_blocks(blocknr, other, blocksize);
557                 }
558                 if (!close && i < end_slot - 2) {
559                         other = btrfs_node_blockptr(parent, i + 1);
560                         close = close_blocks(blocknr, other, blocksize);
561                 }
562                 if (close) {
563                         last_block = blocknr;
564                         continue;
565                 }
566                 if (parent->map_token) {
567                         unmap_extent_buffer(parent, parent->map_token,
568                                             KM_USER1);
569                         parent->map_token = NULL;
570                 }
571
572                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
573                 if (cur)
574                         uptodate = btrfs_buffer_uptodate(cur, gen);
575                 else
576                         uptodate = 0;
577                 if (!cur || !uptodate) {
578                         if (cache_only) {
579                                 free_extent_buffer(cur);
580                                 continue;
581                         }
582                         if (!cur) {
583                                 cur = read_tree_block(root, blocknr,
584                                                          blocksize, gen);
585                         } else if (!uptodate) {
586                                 btrfs_read_buffer(cur, gen);
587                         }
588                 }
589                 if (search_start == 0)
590                         search_start = last_block;
591
592                 btrfs_tree_lock(cur);
593                 btrfs_set_lock_blocking(cur);
594                 err = __btrfs_cow_block(trans, root, cur, parent, i,
595                                         &cur, search_start,
596                                         min(16 * blocksize,
597                                             (end_slot - i) * blocksize));
598                 if (err) {
599                         btrfs_tree_unlock(cur);
600                         free_extent_buffer(cur);
601                         break;
602                 }
603                 search_start = cur->start;
604                 last_block = cur->start;
605                 *last_ret = search_start;
606                 btrfs_tree_unlock(cur);
607                 free_extent_buffer(cur);
608         }
609         if (parent->map_token) {
610                 unmap_extent_buffer(parent, parent->map_token,
611                                     KM_USER1);
612                 parent->map_token = NULL;
613         }
614         return err;
615 }
616
617 /*
618  * The leaf data grows from end-to-front in the node.
619  * this returns the address of the start of the last item,
620  * which is the stop of the leaf data stack
621  */
622 static inline unsigned int leaf_data_end(struct btrfs_root *root,
623                                          struct extent_buffer *leaf)
624 {
625         u32 nr = btrfs_header_nritems(leaf);
626         if (nr == 0)
627                 return BTRFS_LEAF_DATA_SIZE(root);
628         return btrfs_item_offset_nr(leaf, nr - 1);
629 }
630
631 /*
632  * extra debugging checks to make sure all the items in a key are
633  * well formed and in the proper order
634  */
635 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
636                       int level)
637 {
638         struct extent_buffer *parent = NULL;
639         struct extent_buffer *node = path->nodes[level];
640         struct btrfs_disk_key parent_key;
641         struct btrfs_disk_key node_key;
642         int parent_slot;
643         int slot;
644         struct btrfs_key cpukey;
645         u32 nritems = btrfs_header_nritems(node);
646
647         if (path->nodes[level + 1])
648                 parent = path->nodes[level + 1];
649
650         slot = path->slots[level];
651         BUG_ON(nritems == 0);
652         if (parent) {
653                 parent_slot = path->slots[level + 1];
654                 btrfs_node_key(parent, &parent_key, parent_slot);
655                 btrfs_node_key(node, &node_key, 0);
656                 BUG_ON(memcmp(&parent_key, &node_key,
657                               sizeof(struct btrfs_disk_key)));
658                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
659                        btrfs_header_bytenr(node));
660         }
661         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
662         if (slot != 0) {
663                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
664                 btrfs_node_key(node, &node_key, slot);
665                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
666         }
667         if (slot < nritems - 1) {
668                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
669                 btrfs_node_key(node, &node_key, slot);
670                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
671         }
672         return 0;
673 }
674
675 /*
676  * extra checking to make sure all the items in a leaf are
677  * well formed and in the proper order
678  */
679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
680                       int level)
681 {
682         struct extent_buffer *leaf = path->nodes[level];
683         struct extent_buffer *parent = NULL;
684         int parent_slot;
685         struct btrfs_key cpukey;
686         struct btrfs_disk_key parent_key;
687         struct btrfs_disk_key leaf_key;
688         int slot = path->slots[0];
689
690         u32 nritems = btrfs_header_nritems(leaf);
691
692         if (path->nodes[level + 1])
693                 parent = path->nodes[level + 1];
694
695         if (nritems == 0)
696                 return 0;
697
698         if (parent) {
699                 parent_slot = path->slots[level + 1];
700                 btrfs_node_key(parent, &parent_key, parent_slot);
701                 btrfs_item_key(leaf, &leaf_key, 0);
702
703                 BUG_ON(memcmp(&parent_key, &leaf_key,
704                        sizeof(struct btrfs_disk_key)));
705                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
706                        btrfs_header_bytenr(leaf));
707         }
708         if (slot != 0 && slot < nritems - 1) {
709                 btrfs_item_key(leaf, &leaf_key, slot);
710                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
711                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
712                         btrfs_print_leaf(root, leaf);
713                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
714                         BUG_ON(1);
715                 }
716                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
717                        btrfs_item_end_nr(leaf, slot)) {
718                         btrfs_print_leaf(root, leaf);
719                         printk(KERN_CRIT "slot %d offset bad\n", slot);
720                         BUG_ON(1);
721                 }
722         }
723         if (slot < nritems - 1) {
724                 btrfs_item_key(leaf, &leaf_key, slot);
725                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
726                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
727                 if (btrfs_item_offset_nr(leaf, slot) !=
728                         btrfs_item_end_nr(leaf, slot + 1)) {
729                         btrfs_print_leaf(root, leaf);
730                         printk(KERN_CRIT "slot %d offset bad\n", slot);
731                         BUG_ON(1);
732                 }
733         }
734         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
735                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
736         return 0;
737 }
738
739 static noinline int check_block(struct btrfs_root *root,
740                                 struct btrfs_path *path, int level)
741 {
742         return 0;
743         if (level == 0)
744                 return check_leaf(root, path, level);
745         return check_node(root, path, level);
746 }
747
748 /*
749  * search for key in the extent_buffer.  The items start at offset p,
750  * and they are item_size apart.  There are 'max' items in p.
751  *
752  * the slot in the array is returned via slot, and it points to
753  * the place where you would insert key if it is not found in
754  * the array.
755  *
756  * slot may point to max if the key is bigger than all of the keys
757  */
758 static noinline int generic_bin_search(struct extent_buffer *eb,
759                                        unsigned long p,
760                                        int item_size, struct btrfs_key *key,
761                                        int max, int *slot)
762 {
763         int low = 0;
764         int high = max;
765         int mid;
766         int ret;
767         struct btrfs_disk_key *tmp = NULL;
768         struct btrfs_disk_key unaligned;
769         unsigned long offset;
770         char *map_token = NULL;
771         char *kaddr = NULL;
772         unsigned long map_start = 0;
773         unsigned long map_len = 0;
774         int err;
775
776         while (low < high) {
777                 mid = (low + high) / 2;
778                 offset = p + mid * item_size;
779
780                 if (!map_token || offset < map_start ||
781                     (offset + sizeof(struct btrfs_disk_key)) >
782                     map_start + map_len) {
783                         if (map_token) {
784                                 unmap_extent_buffer(eb, map_token, KM_USER0);
785                                 map_token = NULL;
786                         }
787
788                         err = map_private_extent_buffer(eb, offset,
789                                                 sizeof(struct btrfs_disk_key),
790                                                 &map_token, &kaddr,
791                                                 &map_start, &map_len, KM_USER0);
792
793                         if (!err) {
794                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
795                                                         map_start);
796                         } else {
797                                 read_extent_buffer(eb, &unaligned,
798                                                    offset, sizeof(unaligned));
799                                 tmp = &unaligned;
800                         }
801
802                 } else {
803                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
804                                                         map_start);
805                 }
806                 ret = comp_keys(tmp, key);
807
808                 if (ret < 0)
809                         low = mid + 1;
810                 else if (ret > 0)
811                         high = mid;
812                 else {
813                         *slot = mid;
814                         if (map_token)
815                                 unmap_extent_buffer(eb, map_token, KM_USER0);
816                         return 0;
817                 }
818         }
819         *slot = low;
820         if (map_token)
821                 unmap_extent_buffer(eb, map_token, KM_USER0);
822         return 1;
823 }
824
825 /*
826  * simple bin_search frontend that does the right thing for
827  * leaves vs nodes
828  */
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830                       int level, int *slot)
831 {
832         if (level == 0) {
833                 return generic_bin_search(eb,
834                                           offsetof(struct btrfs_leaf, items),
835                                           sizeof(struct btrfs_item),
836                                           key, btrfs_header_nritems(eb),
837                                           slot);
838         } else {
839                 return generic_bin_search(eb,
840                                           offsetof(struct btrfs_node, ptrs),
841                                           sizeof(struct btrfs_key_ptr),
842                                           key, btrfs_header_nritems(eb),
843                                           slot);
844         }
845         return -1;
846 }
847
848 /* given a node and slot number, this reads the blocks it points to.  The
849  * extent buffer is returned with a reference taken (but unlocked).
850  * NULL is returned on error.
851  */
852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
853                                    struct extent_buffer *parent, int slot)
854 {
855         int level = btrfs_header_level(parent);
856         if (slot < 0)
857                 return NULL;
858         if (slot >= btrfs_header_nritems(parent))
859                 return NULL;
860
861         BUG_ON(level == 0);
862
863         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
864                        btrfs_level_size(root, level - 1),
865                        btrfs_node_ptr_generation(parent, slot));
866 }
867
868 /*
869  * node level balancing, used to make sure nodes are in proper order for
870  * item deletion.  We balance from the top down, so we have to make sure
871  * that a deletion won't leave an node completely empty later on.
872  */
873 static noinline int balance_level(struct btrfs_trans_handle *trans,
874                          struct btrfs_root *root,
875                          struct btrfs_path *path, int level)
876 {
877         struct extent_buffer *right = NULL;
878         struct extent_buffer *mid;
879         struct extent_buffer *left = NULL;
880         struct extent_buffer *parent = NULL;
881         int ret = 0;
882         int wret;
883         int pslot;
884         int orig_slot = path->slots[level];
885         int err_on_enospc = 0;
886         u64 orig_ptr;
887
888         if (level == 0)
889                 return 0;
890
891         mid = path->nodes[level];
892
893         WARN_ON(!path->locks[level]);
894         WARN_ON(btrfs_header_generation(mid) != trans->transid);
895
896         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
897
898         if (level < BTRFS_MAX_LEVEL - 1)
899                 parent = path->nodes[level + 1];
900         pslot = path->slots[level + 1];
901
902         /*
903          * deal with the case where there is only one pointer in the root
904          * by promoting the node below to a root
905          */
906         if (!parent) {
907                 struct extent_buffer *child;
908
909                 if (btrfs_header_nritems(mid) != 1)
910                         return 0;
911
912                 /* promote the child to a root */
913                 child = read_node_slot(root, mid, 0);
914                 BUG_ON(!child);
915                 btrfs_tree_lock(child);
916                 btrfs_set_lock_blocking(child);
917                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918                 BUG_ON(ret);
919
920                 spin_lock(&root->node_lock);
921                 root->node = child;
922                 spin_unlock(&root->node_lock);
923
924                 ret = btrfs_update_extent_ref(trans, root, child->start,
925                                               child->len,
926                                               mid->start, child->start,
927                                               root->root_key.objectid,
928                                               trans->transid, level - 1);
929                 BUG_ON(ret);
930
931                 add_root_to_dirty_list(root);
932                 btrfs_tree_unlock(child);
933
934                 path->locks[level] = 0;
935                 path->nodes[level] = NULL;
936                 clean_tree_block(trans, root, mid);
937                 btrfs_tree_unlock(mid);
938                 /* once for the path */
939                 free_extent_buffer(mid);
940                 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
941                                         mid->start, root->root_key.objectid,
942                                         btrfs_header_generation(mid),
943                                         level, 1);
944                 /* once for the root ptr */
945                 free_extent_buffer(mid);
946                 return ret;
947         }
948         if (btrfs_header_nritems(mid) >
949             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
950                 return 0;
951
952         if (btrfs_header_nritems(mid) < 2)
953                 err_on_enospc = 1;
954
955         left = read_node_slot(root, parent, pslot - 1);
956         if (left) {
957                 btrfs_tree_lock(left);
958                 btrfs_set_lock_blocking(left);
959                 wret = btrfs_cow_block(trans, root, left,
960                                        parent, pslot - 1, &left);
961                 if (wret) {
962                         ret = wret;
963                         goto enospc;
964                 }
965         }
966         right = read_node_slot(root, parent, pslot + 1);
967         if (right) {
968                 btrfs_tree_lock(right);
969                 btrfs_set_lock_blocking(right);
970                 wret = btrfs_cow_block(trans, root, right,
971                                        parent, pslot + 1, &right);
972                 if (wret) {
973                         ret = wret;
974                         goto enospc;
975                 }
976         }
977
978         /* first, try to make some room in the middle buffer */
979         if (left) {
980                 orig_slot += btrfs_header_nritems(left);
981                 wret = push_node_left(trans, root, left, mid, 1);
982                 if (wret < 0)
983                         ret = wret;
984                 if (btrfs_header_nritems(mid) < 2)
985                         err_on_enospc = 1;
986         }
987
988         /*
989          * then try to empty the right most buffer into the middle
990          */
991         if (right) {
992                 wret = push_node_left(trans, root, mid, right, 1);
993                 if (wret < 0 && wret != -ENOSPC)
994                         ret = wret;
995                 if (btrfs_header_nritems(right) == 0) {
996                         u64 bytenr = right->start;
997                         u64 generation = btrfs_header_generation(parent);
998                         u32 blocksize = right->len;
999
1000                         clean_tree_block(trans, root, right);
1001                         btrfs_tree_unlock(right);
1002                         free_extent_buffer(right);
1003                         right = NULL;
1004                         wret = del_ptr(trans, root, path, level + 1, pslot +
1005                                        1);
1006                         if (wret)
1007                                 ret = wret;
1008                         wret = btrfs_free_extent(trans, root, bytenr,
1009                                                  blocksize, parent->start,
1010                                                  btrfs_header_owner(parent),
1011                                                  generation, level, 1);
1012                         if (wret)
1013                                 ret = wret;
1014                 } else {
1015                         struct btrfs_disk_key right_key;
1016                         btrfs_node_key(right, &right_key, 0);
1017                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1018                         btrfs_mark_buffer_dirty(parent);
1019                 }
1020         }
1021         if (btrfs_header_nritems(mid) == 1) {
1022                 /*
1023                  * we're not allowed to leave a node with one item in the
1024                  * tree during a delete.  A deletion from lower in the tree
1025                  * could try to delete the only pointer in this node.
1026                  * So, pull some keys from the left.
1027                  * There has to be a left pointer at this point because
1028                  * otherwise we would have pulled some pointers from the
1029                  * right
1030                  */
1031                 BUG_ON(!left);
1032                 wret = balance_node_right(trans, root, mid, left);
1033                 if (wret < 0) {
1034                         ret = wret;
1035                         goto enospc;
1036                 }
1037                 if (wret == 1) {
1038                         wret = push_node_left(trans, root, left, mid, 1);
1039                         if (wret < 0)
1040                                 ret = wret;
1041                 }
1042                 BUG_ON(wret == 1);
1043         }
1044         if (btrfs_header_nritems(mid) == 0) {
1045                 /* we've managed to empty the middle node, drop it */
1046                 u64 root_gen = btrfs_header_generation(parent);
1047                 u64 bytenr = mid->start;
1048                 u32 blocksize = mid->len;
1049
1050                 clean_tree_block(trans, root, mid);
1051                 btrfs_tree_unlock(mid);
1052                 free_extent_buffer(mid);
1053                 mid = NULL;
1054                 wret = del_ptr(trans, root, path, level + 1, pslot);
1055                 if (wret)
1056                         ret = wret;
1057                 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1058                                          parent->start,
1059                                          btrfs_header_owner(parent),
1060                                          root_gen, level, 1);
1061                 if (wret)
1062                         ret = wret;
1063         } else {
1064                 /* update the parent key to reflect our changes */
1065                 struct btrfs_disk_key mid_key;
1066                 btrfs_node_key(mid, &mid_key, 0);
1067                 btrfs_set_node_key(parent, &mid_key, pslot);
1068                 btrfs_mark_buffer_dirty(parent);
1069         }
1070
1071         /* update the path */
1072         if (left) {
1073                 if (btrfs_header_nritems(left) > orig_slot) {
1074                         extent_buffer_get(left);
1075                         /* left was locked after cow */
1076                         path->nodes[level] = left;
1077                         path->slots[level + 1] -= 1;
1078                         path->slots[level] = orig_slot;
1079                         if (mid) {
1080                                 btrfs_tree_unlock(mid);
1081                                 free_extent_buffer(mid);
1082                         }
1083                 } else {
1084                         orig_slot -= btrfs_header_nritems(left);
1085                         path->slots[level] = orig_slot;
1086                 }
1087         }
1088         /* double check we haven't messed things up */
1089         check_block(root, path, level);
1090         if (orig_ptr !=
1091             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1092                 BUG();
1093 enospc:
1094         if (right) {
1095                 btrfs_tree_unlock(right);
1096                 free_extent_buffer(right);
1097         }
1098         if (left) {
1099                 if (path->nodes[level] != left)
1100                         btrfs_tree_unlock(left);
1101                 free_extent_buffer(left);
1102         }
1103         return ret;
1104 }
1105
1106 /* Node balancing for insertion.  Here we only split or push nodes around
1107  * when they are completely full.  This is also done top down, so we
1108  * have to be pessimistic.
1109  */
1110 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1111                                           struct btrfs_root *root,
1112                                           struct btrfs_path *path, int level)
1113 {
1114         struct extent_buffer *right = NULL;
1115         struct extent_buffer *mid;
1116         struct extent_buffer *left = NULL;
1117         struct extent_buffer *parent = NULL;
1118         int ret = 0;
1119         int wret;
1120         int pslot;
1121         int orig_slot = path->slots[level];
1122         u64 orig_ptr;
1123
1124         if (level == 0)
1125                 return 1;
1126
1127         mid = path->nodes[level];
1128         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1129         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1130
1131         if (level < BTRFS_MAX_LEVEL - 1)
1132                 parent = path->nodes[level + 1];
1133         pslot = path->slots[level + 1];
1134
1135         if (!parent)
1136                 return 1;
1137
1138         left = read_node_slot(root, parent, pslot - 1);
1139
1140         /* first, try to make some room in the middle buffer */
1141         if (left) {
1142                 u32 left_nr;
1143
1144                 btrfs_tree_lock(left);
1145                 btrfs_set_lock_blocking(left);
1146
1147                 left_nr = btrfs_header_nritems(left);
1148                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1149                         wret = 1;
1150                 } else {
1151                         ret = btrfs_cow_block(trans, root, left, parent,
1152                                               pslot - 1, &left);
1153                         if (ret)
1154                                 wret = 1;
1155                         else {
1156                                 wret = push_node_left(trans, root,
1157                                                       left, mid, 0);
1158                         }
1159                 }
1160                 if (wret < 0)
1161                         ret = wret;
1162                 if (wret == 0) {
1163                         struct btrfs_disk_key disk_key;
1164                         orig_slot += left_nr;
1165                         btrfs_node_key(mid, &disk_key, 0);
1166                         btrfs_set_node_key(parent, &disk_key, pslot);
1167                         btrfs_mark_buffer_dirty(parent);
1168                         if (btrfs_header_nritems(left) > orig_slot) {
1169                                 path->nodes[level] = left;
1170                                 path->slots[level + 1] -= 1;
1171                                 path->slots[level] = orig_slot;
1172                                 btrfs_tree_unlock(mid);
1173                                 free_extent_buffer(mid);
1174                         } else {
1175                                 orig_slot -=
1176                                         btrfs_header_nritems(left);
1177                                 path->slots[level] = orig_slot;
1178                                 btrfs_tree_unlock(left);
1179                                 free_extent_buffer(left);
1180                         }
1181                         return 0;
1182                 }
1183                 btrfs_tree_unlock(left);
1184                 free_extent_buffer(left);
1185         }
1186         right = read_node_slot(root, parent, pslot + 1);
1187
1188         /*
1189          * then try to empty the right most buffer into the middle
1190          */
1191         if (right) {
1192                 u32 right_nr;
1193
1194                 btrfs_tree_lock(right);
1195                 btrfs_set_lock_blocking(right);
1196
1197                 right_nr = btrfs_header_nritems(right);
1198                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1199                         wret = 1;
1200                 } else {
1201                         ret = btrfs_cow_block(trans, root, right,
1202                                               parent, pslot + 1,
1203                                               &right);
1204                         if (ret)
1205                                 wret = 1;
1206                         else {
1207                                 wret = balance_node_right(trans, root,
1208                                                           right, mid);
1209                         }
1210                 }
1211                 if (wret < 0)
1212                         ret = wret;
1213                 if (wret == 0) {
1214                         struct btrfs_disk_key disk_key;
1215
1216                         btrfs_node_key(right, &disk_key, 0);
1217                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1218                         btrfs_mark_buffer_dirty(parent);
1219
1220                         if (btrfs_header_nritems(mid) <= orig_slot) {
1221                                 path->nodes[level] = right;
1222                                 path->slots[level + 1] += 1;
1223                                 path->slots[level] = orig_slot -
1224                                         btrfs_header_nritems(mid);
1225                                 btrfs_tree_unlock(mid);
1226                                 free_extent_buffer(mid);
1227                         } else {
1228                                 btrfs_tree_unlock(right);
1229                                 free_extent_buffer(right);
1230                         }
1231                         return 0;
1232                 }
1233                 btrfs_tree_unlock(right);
1234                 free_extent_buffer(right);
1235         }
1236         return 1;
1237 }
1238
1239 /*
1240  * readahead one full node of leaves, finding things that are close
1241  * to the block in 'slot', and triggering ra on them.
1242  */
1243 static noinline void reada_for_search(struct btrfs_root *root,
1244                                       struct btrfs_path *path,
1245                                       int level, int slot, u64 objectid)
1246 {
1247         struct extent_buffer *node;
1248         struct btrfs_disk_key disk_key;
1249         u32 nritems;
1250         u64 search;
1251         u64 target;
1252         u64 nread = 0;
1253         int direction = path->reada;
1254         struct extent_buffer *eb;
1255         u32 nr;
1256         u32 blocksize;
1257         u32 nscan = 0;
1258
1259         if (level != 1)
1260                 return;
1261
1262         if (!path->nodes[level])
1263                 return;
1264
1265         node = path->nodes[level];
1266
1267         search = btrfs_node_blockptr(node, slot);
1268         blocksize = btrfs_level_size(root, level - 1);
1269         eb = btrfs_find_tree_block(root, search, blocksize);
1270         if (eb) {
1271                 free_extent_buffer(eb);
1272                 return;
1273         }
1274
1275         target = search;
1276
1277         nritems = btrfs_header_nritems(node);
1278         nr = slot;
1279         while (1) {
1280                 if (direction < 0) {
1281                         if (nr == 0)
1282                                 break;
1283                         nr--;
1284                 } else if (direction > 0) {
1285                         nr++;
1286                         if (nr >= nritems)
1287                                 break;
1288                 }
1289                 if (path->reada < 0 && objectid) {
1290                         btrfs_node_key(node, &disk_key, nr);
1291                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1292                                 break;
1293                 }
1294                 search = btrfs_node_blockptr(node, nr);
1295                 if ((search <= target && target - search <= 65536) ||
1296                     (search > target && search - target <= 65536)) {
1297                         readahead_tree_block(root, search, blocksize,
1298                                      btrfs_node_ptr_generation(node, nr));
1299                         nread += blocksize;
1300                 }
1301                 nscan++;
1302                 if ((nread > 65536 || nscan > 32))
1303                         break;
1304         }
1305 }
1306
1307 /*
1308  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1309  * cache
1310  */
1311 static noinline int reada_for_balance(struct btrfs_root *root,
1312                                       struct btrfs_path *path, int level)
1313 {
1314         int slot;
1315         int nritems;
1316         struct extent_buffer *parent;
1317         struct extent_buffer *eb;
1318         u64 gen;
1319         u64 block1 = 0;
1320         u64 block2 = 0;
1321         int ret = 0;
1322         int blocksize;
1323
1324         parent = path->nodes[level - 1];
1325         if (!parent)
1326                 return 0;
1327
1328         nritems = btrfs_header_nritems(parent);
1329         slot = path->slots[level];
1330         blocksize = btrfs_level_size(root, level);
1331
1332         if (slot > 0) {
1333                 block1 = btrfs_node_blockptr(parent, slot - 1);
1334                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1335                 eb = btrfs_find_tree_block(root, block1, blocksize);
1336                 if (eb && btrfs_buffer_uptodate(eb, gen))
1337                         block1 = 0;
1338                 free_extent_buffer(eb);
1339         }
1340         if (slot < nritems) {
1341                 block2 = btrfs_node_blockptr(parent, slot + 1);
1342                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1343                 eb = btrfs_find_tree_block(root, block2, blocksize);
1344                 if (eb && btrfs_buffer_uptodate(eb, gen))
1345                         block2 = 0;
1346                 free_extent_buffer(eb);
1347         }
1348         if (block1 || block2) {
1349                 ret = -EAGAIN;
1350                 btrfs_release_path(root, path);
1351                 if (block1)
1352                         readahead_tree_block(root, block1, blocksize, 0);
1353                 if (block2)
1354                         readahead_tree_block(root, block2, blocksize, 0);
1355
1356                 if (block1) {
1357                         eb = read_tree_block(root, block1, blocksize, 0);
1358                         free_extent_buffer(eb);
1359                 }
1360                 if (block1) {
1361                         eb = read_tree_block(root, block2, blocksize, 0);
1362                         free_extent_buffer(eb);
1363                 }
1364         }
1365         return ret;
1366 }
1367
1368
1369 /*
1370  * when we walk down the tree, it is usually safe to unlock the higher layers
1371  * in the tree.  The exceptions are when our path goes through slot 0, because
1372  * operations on the tree might require changing key pointers higher up in the
1373  * tree.
1374  *
1375  * callers might also have set path->keep_locks, which tells this code to keep
1376  * the lock if the path points to the last slot in the block.  This is part of
1377  * walking through the tree, and selecting the next slot in the higher block.
1378  *
1379  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1380  * if lowest_unlock is 1, level 0 won't be unlocked
1381  */
1382 static noinline void unlock_up(struct btrfs_path *path, int level,
1383                                int lowest_unlock)
1384 {
1385         int i;
1386         int skip_level = level;
1387         int no_skips = 0;
1388         struct extent_buffer *t;
1389
1390         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1391                 if (!path->nodes[i])
1392                         break;
1393                 if (!path->locks[i])
1394                         break;
1395                 if (!no_skips && path->slots[i] == 0) {
1396                         skip_level = i + 1;
1397                         continue;
1398                 }
1399                 if (!no_skips && path->keep_locks) {
1400                         u32 nritems;
1401                         t = path->nodes[i];
1402                         nritems = btrfs_header_nritems(t);
1403                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1404                                 skip_level = i + 1;
1405                                 continue;
1406                         }
1407                 }
1408                 if (skip_level < i && i >= lowest_unlock)
1409                         no_skips = 1;
1410
1411                 t = path->nodes[i];
1412                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1413                         btrfs_tree_unlock(t);
1414                         path->locks[i] = 0;
1415                 }
1416         }
1417 }
1418
1419 /*
1420  * This releases any locks held in the path starting at level and
1421  * going all the way up to the root.
1422  *
1423  * btrfs_search_slot will keep the lock held on higher nodes in a few
1424  * corner cases, such as COW of the block at slot zero in the node.  This
1425  * ignores those rules, and it should only be called when there are no
1426  * more updates to be done higher up in the tree.
1427  */
1428 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1429 {
1430         int i;
1431
1432         if (path->keep_locks || path->lowest_level)
1433                 return;
1434
1435         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1436                 if (!path->nodes[i])
1437                         continue;
1438                 if (!path->locks[i])
1439                         continue;
1440                 btrfs_tree_unlock(path->nodes[i]);
1441                 path->locks[i] = 0;
1442         }
1443 }
1444
1445 /*
1446  * look for key in the tree.  path is filled in with nodes along the way
1447  * if key is found, we return zero and you can find the item in the leaf
1448  * level of the path (level 0)
1449  *
1450  * If the key isn't found, the path points to the slot where it should
1451  * be inserted, and 1 is returned.  If there are other errors during the
1452  * search a negative error number is returned.
1453  *
1454  * if ins_len > 0, nodes and leaves will be split as we walk down the
1455  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1456  * possible)
1457  */
1458 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1459                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1460                       ins_len, int cow)
1461 {
1462         struct extent_buffer *b;
1463         struct extent_buffer *tmp;
1464         int slot;
1465         int ret;
1466         int level;
1467         int should_reada = p->reada;
1468         int lowest_unlock = 1;
1469         int blocksize;
1470         u8 lowest_level = 0;
1471         u64 blocknr;
1472         u64 gen;
1473
1474         lowest_level = p->lowest_level;
1475         WARN_ON(lowest_level && ins_len > 0);
1476         WARN_ON(p->nodes[0] != NULL);
1477
1478         if (ins_len < 0)
1479                 lowest_unlock = 2;
1480
1481 again:
1482         if (p->skip_locking)
1483                 b = btrfs_root_node(root);
1484         else
1485                 b = btrfs_lock_root_node(root);
1486
1487         while (b) {
1488                 level = btrfs_header_level(b);
1489
1490                 /*
1491                  * setup the path here so we can release it under lock
1492                  * contention with the cow code
1493                  */
1494                 p->nodes[level] = b;
1495                 if (!p->skip_locking)
1496                         p->locks[level] = 1;
1497
1498                 if (cow) {
1499                         int wret;
1500
1501                         /* is a cow on this block not required */
1502                         if (btrfs_header_generation(b) == trans->transid &&
1503                             btrfs_header_owner(b) == root->root_key.objectid &&
1504                             !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1505                                 goto cow_done;
1506                         }
1507                         btrfs_set_path_blocking(p);
1508
1509                         wret = btrfs_cow_block(trans, root, b,
1510                                                p->nodes[level + 1],
1511                                                p->slots[level + 1], &b);
1512                         if (wret) {
1513                                 free_extent_buffer(b);
1514                                 ret = wret;
1515                                 goto done;
1516                         }
1517                 }
1518 cow_done:
1519                 BUG_ON(!cow && ins_len);
1520                 if (level != btrfs_header_level(b))
1521                         WARN_ON(1);
1522                 level = btrfs_header_level(b);
1523
1524                 p->nodes[level] = b;
1525                 if (!p->skip_locking)
1526                         p->locks[level] = 1;
1527
1528                 btrfs_clear_path_blocking(p, NULL);
1529
1530                 /*
1531                  * we have a lock on b and as long as we aren't changing
1532                  * the tree, there is no way to for the items in b to change.
1533                  * It is safe to drop the lock on our parent before we
1534                  * go through the expensive btree search on b.
1535                  *
1536                  * If cow is true, then we might be changing slot zero,
1537                  * which may require changing the parent.  So, we can't
1538                  * drop the lock until after we know which slot we're
1539                  * operating on.
1540                  */
1541                 if (!cow)
1542                         btrfs_unlock_up_safe(p, level + 1);
1543
1544                 ret = check_block(root, p, level);
1545                 if (ret) {
1546                         ret = -1;
1547                         goto done;
1548                 }
1549
1550                 ret = bin_search(b, key, level, &slot);
1551
1552                 if (level != 0) {
1553                         if (ret && slot > 0)
1554                                 slot -= 1;
1555                         p->slots[level] = slot;
1556                         if ((p->search_for_split || ins_len > 0) &&
1557                             btrfs_header_nritems(b) >=
1558                             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1559                                 int sret;
1560
1561                                 sret = reada_for_balance(root, p, level);
1562                                 if (sret)
1563                                         goto again;
1564
1565                                 btrfs_set_path_blocking(p);
1566                                 sret = split_node(trans, root, p, level);
1567                                 btrfs_clear_path_blocking(p, NULL);
1568
1569                                 BUG_ON(sret > 0);
1570                                 if (sret) {
1571                                         ret = sret;
1572                                         goto done;
1573                                 }
1574                                 b = p->nodes[level];
1575                                 slot = p->slots[level];
1576                         } else if (ins_len < 0 &&
1577                                    btrfs_header_nritems(b) <
1578                                    BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1579                                 int sret;
1580
1581                                 sret = reada_for_balance(root, p, level);
1582                                 if (sret)
1583                                         goto again;
1584
1585                                 btrfs_set_path_blocking(p);
1586                                 sret = balance_level(trans, root, p, level);
1587                                 btrfs_clear_path_blocking(p, NULL);
1588
1589                                 if (sret) {
1590                                         ret = sret;
1591                                         goto done;
1592                                 }
1593                                 b = p->nodes[level];
1594                                 if (!b) {
1595                                         btrfs_release_path(NULL, p);
1596                                         goto again;
1597                                 }
1598                                 slot = p->slots[level];
1599                                 BUG_ON(btrfs_header_nritems(b) == 1);
1600                         }
1601                         unlock_up(p, level, lowest_unlock);
1602
1603                         /* this is only true while dropping a snapshot */
1604                         if (level == lowest_level) {
1605                                 ret = 0;
1606                                 goto done;
1607                         }
1608
1609                         blocknr = btrfs_node_blockptr(b, slot);
1610                         gen = btrfs_node_ptr_generation(b, slot);
1611                         blocksize = btrfs_level_size(root, level - 1);
1612
1613                         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1614                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1615                                 b = tmp;
1616                         } else {
1617                                 /*
1618                                  * reduce lock contention at high levels
1619                                  * of the btree by dropping locks before
1620                                  * we read.
1621                                  */
1622                                 if (level > 0) {
1623                                         btrfs_release_path(NULL, p);
1624                                         if (tmp)
1625                                                 free_extent_buffer(tmp);
1626                                         if (should_reada)
1627                                                 reada_for_search(root, p,
1628                                                                  level, slot,
1629                                                                  key->objectid);
1630
1631                                         tmp = read_tree_block(root, blocknr,
1632                                                          blocksize, gen);
1633                                         if (tmp)
1634                                                 free_extent_buffer(tmp);
1635                                         goto again;
1636                                 } else {
1637                                         btrfs_set_path_blocking(p);
1638                                         if (tmp)
1639                                                 free_extent_buffer(tmp);
1640                                         if (should_reada)
1641                                                 reada_for_search(root, p,
1642                                                                  level, slot,
1643                                                                  key->objectid);
1644                                         b = read_node_slot(root, b, slot);
1645                                 }
1646                         }
1647                         if (!p->skip_locking) {
1648                                 int lret;
1649
1650                                 btrfs_clear_path_blocking(p, NULL);
1651                                 lret = btrfs_try_spin_lock(b);
1652
1653                                 if (!lret) {
1654                                         btrfs_set_path_blocking(p);
1655                                         btrfs_tree_lock(b);
1656                                         btrfs_clear_path_blocking(p, b);
1657                                 }
1658                         }
1659                 } else {
1660                         p->slots[level] = slot;
1661                         if (ins_len > 0 &&
1662                             btrfs_leaf_free_space(root, b) < ins_len) {
1663                                 int sret;
1664
1665                                 btrfs_set_path_blocking(p);
1666                                 sret = split_leaf(trans, root, key,
1667                                                       p, ins_len, ret == 0);
1668                                 btrfs_clear_path_blocking(p, NULL);
1669
1670                                 BUG_ON(sret > 0);
1671                                 if (sret) {
1672                                         ret = sret;
1673                                         goto done;
1674                                 }
1675                         }
1676                         if (!p->search_for_split)
1677                                 unlock_up(p, level, lowest_unlock);
1678                         goto done;
1679                 }
1680         }
1681         ret = 1;
1682 done:
1683         /*
1684          * we don't really know what they plan on doing with the path
1685          * from here on, so for now just mark it as blocking
1686          */
1687         if (!p->leave_spinning)
1688                 btrfs_set_path_blocking(p);
1689         return ret;
1690 }
1691
1692 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1693                      struct btrfs_root *root,
1694                      struct btrfs_key *node_keys,
1695                      u64 *nodes, int lowest_level)
1696 {
1697         struct extent_buffer *eb;
1698         struct extent_buffer *parent;
1699         struct btrfs_key key;
1700         u64 bytenr;
1701         u64 generation;
1702         u32 blocksize;
1703         int level;
1704         int slot;
1705         int key_match;
1706         int ret;
1707
1708         eb = btrfs_lock_root_node(root);
1709         ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
1710         BUG_ON(ret);
1711
1712         btrfs_set_lock_blocking(eb);
1713
1714         parent = eb;
1715         while (1) {
1716                 level = btrfs_header_level(parent);
1717                 if (level == 0 || level <= lowest_level)
1718                         break;
1719
1720                 ret = bin_search(parent, &node_keys[lowest_level], level,
1721                                  &slot);
1722                 if (ret && slot > 0)
1723                         slot--;
1724
1725                 bytenr = btrfs_node_blockptr(parent, slot);
1726                 if (nodes[level - 1] == bytenr)
1727                         break;
1728
1729                 blocksize = btrfs_level_size(root, level - 1);
1730                 generation = btrfs_node_ptr_generation(parent, slot);
1731                 btrfs_node_key_to_cpu(eb, &key, slot);
1732                 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1733
1734                 if (generation == trans->transid) {
1735                         eb = read_tree_block(root, bytenr, blocksize,
1736                                              generation);
1737                         btrfs_tree_lock(eb);
1738                         btrfs_set_lock_blocking(eb);
1739                 }
1740
1741                 /*
1742                  * if node keys match and node pointer hasn't been modified
1743                  * in the running transaction, we can merge the path. for
1744                  * blocks owened by reloc trees, the node pointer check is
1745                  * skipped, this is because these blocks are fully controlled
1746                  * by the space balance code, no one else can modify them.
1747                  */
1748                 if (!nodes[level - 1] || !key_match ||
1749                     (generation == trans->transid &&
1750                      btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1751                         if (level == 1 || level == lowest_level + 1) {
1752                                 if (generation == trans->transid) {
1753                                         btrfs_tree_unlock(eb);
1754                                         free_extent_buffer(eb);
1755                                 }
1756                                 break;
1757                         }
1758
1759                         if (generation != trans->transid) {
1760                                 eb = read_tree_block(root, bytenr, blocksize,
1761                                                 generation);
1762                                 btrfs_tree_lock(eb);
1763                                 btrfs_set_lock_blocking(eb);
1764                         }
1765
1766                         ret = btrfs_cow_block(trans, root, eb, parent, slot,
1767                                               &eb);
1768                         BUG_ON(ret);
1769
1770                         if (root->root_key.objectid ==
1771                             BTRFS_TREE_RELOC_OBJECTID) {
1772                                 if (!nodes[level - 1]) {
1773                                         nodes[level - 1] = eb->start;
1774                                         memcpy(&node_keys[level - 1], &key,
1775                                                sizeof(node_keys[0]));
1776                                 } else {
1777                                         WARN_ON(1);
1778                                 }
1779                         }
1780
1781                         btrfs_tree_unlock(parent);
1782                         free_extent_buffer(parent);
1783                         parent = eb;
1784                         continue;
1785                 }
1786
1787                 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1788                 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1789                 btrfs_mark_buffer_dirty(parent);
1790
1791                 ret = btrfs_inc_extent_ref(trans, root,
1792                                         nodes[level - 1],
1793                                         blocksize, parent->start,
1794                                         btrfs_header_owner(parent),
1795                                         btrfs_header_generation(parent),
1796                                         level - 1);
1797                 BUG_ON(ret);
1798
1799                 /*
1800                  * If the block was created in the running transaction,
1801                  * it's possible this is the last reference to it, so we
1802                  * should drop the subtree.
1803                  */
1804                 if (generation == trans->transid) {
1805                         ret = btrfs_drop_subtree(trans, root, eb, parent);
1806                         BUG_ON(ret);
1807                         btrfs_tree_unlock(eb);
1808                         free_extent_buffer(eb);
1809                 } else {
1810                         ret = btrfs_free_extent(trans, root, bytenr,
1811                                         blocksize, parent->start,
1812                                         btrfs_header_owner(parent),
1813                                         btrfs_header_generation(parent),
1814                                         level - 1, 1);
1815                         BUG_ON(ret);
1816                 }
1817                 break;
1818         }
1819         btrfs_tree_unlock(parent);
1820         free_extent_buffer(parent);
1821         return 0;
1822 }
1823
1824 /*
1825  * adjust the pointers going up the tree, starting at level
1826  * making sure the right key of each node is points to 'key'.
1827  * This is used after shifting pointers to the left, so it stops
1828  * fixing up pointers when a given leaf/node is not in slot 0 of the
1829  * higher levels
1830  *
1831  * If this fails to write a tree block, it returns -1, but continues
1832  * fixing up the blocks in ram so the tree is consistent.
1833  */
1834 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1835                           struct btrfs_root *root, struct btrfs_path *path,
1836                           struct btrfs_disk_key *key, int level)
1837 {
1838         int i;
1839         int ret = 0;
1840         struct extent_buffer *t;
1841
1842         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1843                 int tslot = path->slots[i];
1844                 if (!path->nodes[i])
1845                         break;
1846                 t = path->nodes[i];
1847                 btrfs_set_node_key(t, key, tslot);
1848                 btrfs_mark_buffer_dirty(path->nodes[i]);
1849                 if (tslot != 0)
1850                         break;
1851         }
1852         return ret;
1853 }
1854
1855 /*
1856  * update item key.
1857  *
1858  * This function isn't completely safe. It's the caller's responsibility
1859  * that the new key won't break the order
1860  */
1861 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1862                             struct btrfs_root *root, struct btrfs_path *path,
1863                             struct btrfs_key *new_key)
1864 {
1865         struct btrfs_disk_key disk_key;
1866         struct extent_buffer *eb;
1867         int slot;
1868
1869         eb = path->nodes[0];
1870         slot = path->slots[0];
1871         if (slot > 0) {
1872                 btrfs_item_key(eb, &disk_key, slot - 1);
1873                 if (comp_keys(&disk_key, new_key) >= 0)
1874                         return -1;
1875         }
1876         if (slot < btrfs_header_nritems(eb) - 1) {
1877                 btrfs_item_key(eb, &disk_key, slot + 1);
1878                 if (comp_keys(&disk_key, new_key) <= 0)
1879                         return -1;
1880         }
1881
1882         btrfs_cpu_key_to_disk(&disk_key, new_key);
1883         btrfs_set_item_key(eb, &disk_key, slot);
1884         btrfs_mark_buffer_dirty(eb);
1885         if (slot == 0)
1886                 fixup_low_keys(trans, root, path, &disk_key, 1);
1887         return 0;
1888 }
1889
1890 /*
1891  * try to push data from one node into the next node left in the
1892  * tree.
1893  *
1894  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1895  * error, and > 0 if there was no room in the left hand block.
1896  */
1897 static int push_node_left(struct btrfs_trans_handle *trans,
1898                           struct btrfs_root *root, struct extent_buffer *dst,
1899                           struct extent_buffer *src, int empty)
1900 {
1901         int push_items = 0;
1902         int src_nritems;
1903         int dst_nritems;
1904         int ret = 0;
1905
1906         src_nritems = btrfs_header_nritems(src);
1907         dst_nritems = btrfs_header_nritems(dst);
1908         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1909         WARN_ON(btrfs_header_generation(src) != trans->transid);
1910         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1911
1912         if (!empty && src_nritems <= 8)
1913                 return 1;
1914
1915         if (push_items <= 0)
1916                 return 1;
1917
1918         if (empty) {
1919                 push_items = min(src_nritems, push_items);
1920                 if (push_items < src_nritems) {
1921                         /* leave at least 8 pointers in the node if
1922                          * we aren't going to empty it
1923                          */
1924                         if (src_nritems - push_items < 8) {
1925                                 if (push_items <= 8)
1926                                         return 1;
1927                                 push_items -= 8;
1928                         }
1929                 }
1930         } else
1931                 push_items = min(src_nritems - 8, push_items);
1932
1933         copy_extent_buffer(dst, src,
1934                            btrfs_node_key_ptr_offset(dst_nritems),
1935                            btrfs_node_key_ptr_offset(0),
1936                            push_items * sizeof(struct btrfs_key_ptr));
1937
1938         if (push_items < src_nritems) {
1939                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1940                                       btrfs_node_key_ptr_offset(push_items),
1941                                       (src_nritems - push_items) *
1942                                       sizeof(struct btrfs_key_ptr));
1943         }
1944         btrfs_set_header_nritems(src, src_nritems - push_items);
1945         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1946         btrfs_mark_buffer_dirty(src);
1947         btrfs_mark_buffer_dirty(dst);
1948
1949         ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1950         BUG_ON(ret);
1951
1952         return ret;
1953 }
1954
1955 /*
1956  * try to push data from one node into the next node right in the
1957  * tree.
1958  *
1959  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1960  * error, and > 0 if there was no room in the right hand block.
1961  *
1962  * this will  only push up to 1/2 the contents of the left node over
1963  */
1964 static int balance_node_right(struct btrfs_trans_handle *trans,
1965                               struct btrfs_root *root,
1966                               struct extent_buffer *dst,
1967                               struct extent_buffer *src)
1968 {
1969         int push_items = 0;
1970         int max_push;
1971         int src_nritems;
1972         int dst_nritems;
1973         int ret = 0;
1974
1975         WARN_ON(btrfs_header_generation(src) != trans->transid);
1976         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1977
1978         src_nritems = btrfs_header_nritems(src);
1979         dst_nritems = btrfs_header_nritems(dst);
1980         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1981         if (push_items <= 0)
1982                 return 1;
1983
1984         if (src_nritems < 4)
1985                 return 1;
1986
1987         max_push = src_nritems / 2 + 1;
1988         /* don't try to empty the node */
1989         if (max_push >= src_nritems)
1990                 return 1;
1991
1992         if (max_push < push_items)
1993                 push_items = max_push;
1994
1995         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1996                                       btrfs_node_key_ptr_offset(0),
1997                                       (dst_nritems) *
1998                                       sizeof(struct btrfs_key_ptr));
1999
2000         copy_extent_buffer(dst, src,
2001                            btrfs_node_key_ptr_offset(0),
2002                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2003                            push_items * sizeof(struct btrfs_key_ptr));
2004
2005         btrfs_set_header_nritems(src, src_nritems - push_items);
2006         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2007
2008         btrfs_mark_buffer_dirty(src);
2009         btrfs_mark_buffer_dirty(dst);
2010
2011         ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2012         BUG_ON(ret);
2013
2014         return ret;
2015 }
2016
2017 /*
2018  * helper function to insert a new root level in the tree.
2019  * A new node is allocated, and a single item is inserted to
2020  * point to the existing root
2021  *
2022  * returns zero on success or < 0 on failure.
2023  */
2024 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2025                            struct btrfs_root *root,
2026                            struct btrfs_path *path, int level)
2027 {
2028         u64 lower_gen;
2029         struct extent_buffer *lower;
2030         struct extent_buffer *c;
2031         struct extent_buffer *old;
2032         struct btrfs_disk_key lower_key;
2033         int ret;
2034
2035         BUG_ON(path->nodes[level]);
2036         BUG_ON(path->nodes[level-1] != root->node);
2037
2038         lower = path->nodes[level-1];
2039         if (level == 1)
2040                 btrfs_item_key(lower, &lower_key, 0);
2041         else
2042                 btrfs_node_key(lower, &lower_key, 0);
2043
2044         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2045                                    root->root_key.objectid, trans->transid,
2046                                    level, root->node->start, 0);
2047         if (IS_ERR(c))
2048                 return PTR_ERR(c);
2049
2050         memset_extent_buffer(c, 0, 0, root->nodesize);
2051         btrfs_set_header_nritems(c, 1);
2052         btrfs_set_header_level(c, level);
2053         btrfs_set_header_bytenr(c, c->start);
2054         btrfs_set_header_generation(c, trans->transid);
2055         btrfs_set_header_owner(c, root->root_key.objectid);
2056
2057         write_extent_buffer(c, root->fs_info->fsid,
2058                             (unsigned long)btrfs_header_fsid(c),
2059                             BTRFS_FSID_SIZE);
2060
2061         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2062                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2063                             BTRFS_UUID_SIZE);
2064
2065         btrfs_set_node_key(c, &lower_key, 0);
2066         btrfs_set_node_blockptr(c, 0, lower->start);
2067         lower_gen = btrfs_header_generation(lower);
2068         WARN_ON(lower_gen != trans->transid);
2069
2070         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2071
2072         btrfs_mark_buffer_dirty(c);
2073
2074         spin_lock(&root->node_lock);
2075         old = root->node;
2076         root->node = c;
2077         spin_unlock(&root->node_lock);
2078
2079         ret = btrfs_update_extent_ref(trans, root, lower->start,
2080                                       lower->len, lower->start, c->start,
2081                                       root->root_key.objectid,
2082                                       trans->transid, level - 1);
2083         BUG_ON(ret);
2084
2085         /* the super has an extra ref to root->node */
2086         free_extent_buffer(old);
2087
2088         add_root_to_dirty_list(root);
2089         extent_buffer_get(c);
2090         path->nodes[level] = c;
2091         path->locks[level] = 1;
2092         path->slots[level] = 0;
2093         return 0;
2094 }
2095
2096 /*
2097  * worker function to insert a single pointer in a node.
2098  * the node should have enough room for the pointer already
2099  *
2100  * slot and level indicate where you want the key to go, and
2101  * blocknr is the block the key points to.
2102  *
2103  * returns zero on success and < 0 on any error
2104  */
2105 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2106                       *root, struct btrfs_path *path, struct btrfs_disk_key
2107                       *key, u64 bytenr, int slot, int level)
2108 {
2109         struct extent_buffer *lower;
2110         int nritems;
2111
2112         BUG_ON(!path->nodes[level]);
2113         lower = path->nodes[level];
2114         nritems = btrfs_header_nritems(lower);
2115         if (slot > nritems)
2116                 BUG();
2117         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2118                 BUG();
2119         if (slot != nritems) {
2120                 memmove_extent_buffer(lower,
2121                               btrfs_node_key_ptr_offset(slot + 1),
2122                               btrfs_node_key_ptr_offset(slot),
2123                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2124         }
2125         btrfs_set_node_key(lower, key, slot);
2126         btrfs_set_node_blockptr(lower, slot, bytenr);
2127         WARN_ON(trans->transid == 0);
2128         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2129         btrfs_set_header_nritems(lower, nritems + 1);
2130         btrfs_mark_buffer_dirty(lower);
2131         return 0;
2132 }
2133
2134 /*
2135  * split the node at the specified level in path in two.
2136  * The path is corrected to point to the appropriate node after the split
2137  *
2138  * Before splitting this tries to make some room in the node by pushing
2139  * left and right, if either one works, it returns right away.
2140  *
2141  * returns 0 on success and < 0 on failure
2142  */
2143 static noinline int split_node(struct btrfs_trans_handle *trans,
2144                                struct btrfs_root *root,
2145                                struct btrfs_path *path, int level)
2146 {
2147         struct extent_buffer *c;
2148         struct extent_buffer *split;
2149         struct btrfs_disk_key disk_key;
2150         int mid;
2151         int ret;
2152         int wret;
2153         u32 c_nritems;
2154
2155         c = path->nodes[level];
2156         WARN_ON(btrfs_header_generation(c) != trans->transid);
2157         if (c == root->node) {
2158                 /* trying to split the root, lets make a new one */
2159                 ret = insert_new_root(trans, root, path, level + 1);
2160                 if (ret)
2161                         return ret;
2162         } else {
2163                 ret = push_nodes_for_insert(trans, root, path, level);
2164                 c = path->nodes[level];
2165                 if (!ret && btrfs_header_nritems(c) <
2166                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2167                         return 0;
2168                 if (ret < 0)
2169                         return ret;
2170         }
2171
2172         c_nritems = btrfs_header_nritems(c);
2173
2174         split = btrfs_alloc_free_block(trans, root, root->nodesize,
2175                                         path->nodes[level + 1]->start,
2176                                         root->root_key.objectid,
2177                                         trans->transid, level, c->start, 0);
2178         if (IS_ERR(split))
2179                 return PTR_ERR(split);
2180
2181         btrfs_set_header_flags(split, btrfs_header_flags(c));
2182         btrfs_set_header_level(split, btrfs_header_level(c));
2183         btrfs_set_header_bytenr(split, split->start);
2184         btrfs_set_header_generation(split, trans->transid);
2185         btrfs_set_header_owner(split, root->root_key.objectid);
2186         btrfs_set_header_flags(split, 0);
2187         write_extent_buffer(split, root->fs_info->fsid,
2188                             (unsigned long)btrfs_header_fsid(split),
2189                             BTRFS_FSID_SIZE);
2190         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2191                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2192                             BTRFS_UUID_SIZE);
2193
2194         mid = (c_nritems + 1) / 2;
2195
2196         copy_extent_buffer(split, c,
2197                            btrfs_node_key_ptr_offset(0),
2198                            btrfs_node_key_ptr_offset(mid),
2199                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2200         btrfs_set_header_nritems(split, c_nritems - mid);
2201         btrfs_set_header_nritems(c, mid);
2202         ret = 0;
2203
2204         btrfs_mark_buffer_dirty(c);
2205         btrfs_mark_buffer_dirty(split);
2206
2207         btrfs_node_key(split, &disk_key, 0);
2208         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2209                           path->slots[level + 1] + 1,
2210                           level + 1);
2211         if (wret)
2212                 ret = wret;
2213
2214         ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2215         BUG_ON(ret);
2216
2217         if (path->slots[level] >= mid) {
2218                 path->slots[level] -= mid;
2219                 btrfs_tree_unlock(c);
2220                 free_extent_buffer(c);
2221                 path->nodes[level] = split;
2222                 path->slots[level + 1] += 1;
2223         } else {
2224                 btrfs_tree_unlock(split);
2225                 free_extent_buffer(split);
2226         }
2227         return ret;
2228 }
2229
2230 /*
2231  * how many bytes are required to store the items in a leaf.  start
2232  * and nr indicate which items in the leaf to check.  This totals up the
2233  * space used both by the item structs and the item data
2234  */
2235 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2236 {
2237         int data_len;
2238         int nritems = btrfs_header_nritems(l);
2239         int end = min(nritems, start + nr) - 1;
2240
2241         if (!nr)
2242                 return 0;
2243         data_len = btrfs_item_end_nr(l, start);
2244         data_len = data_len - btrfs_item_offset_nr(l, end);
2245         data_len += sizeof(struct btrfs_item) * nr;
2246         WARN_ON(data_len < 0);
2247         return data_len;
2248 }
2249
2250 /*
2251  * The space between the end of the leaf items and
2252  * the start of the leaf data.  IOW, how much room
2253  * the leaf has left for both items and data
2254  */
2255 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2256                                    struct extent_buffer *leaf)
2257 {
2258         int nritems = btrfs_header_nritems(leaf);
2259         int ret;
2260         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2261         if (ret < 0) {
2262                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2263                        "used %d nritems %d\n",
2264                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2265                        leaf_space_used(leaf, 0, nritems), nritems);
2266         }
2267         return ret;
2268 }
2269
2270 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2271                                       struct btrfs_root *root,
2272                                       struct btrfs_path *path,
2273                                       int data_size, int empty,
2274                                       struct extent_buffer *right,
2275                                       int free_space, u32 left_nritems)
2276 {
2277         struct extent_buffer *left = path->nodes[0];
2278         struct extent_buffer *upper = path->nodes[1];
2279         struct btrfs_disk_key disk_key;
2280         int slot;
2281         u32 i;
2282         int push_space = 0;
2283         int push_items = 0;
2284         struct btrfs_item *item;
2285         u32 nr;
2286         u32 right_nritems;
2287         u32 data_end;
2288         u32 this_item_size;
2289         int ret;
2290
2291         if (empty)
2292                 nr = 0;
2293         else
2294                 nr = 1;
2295
2296         if (path->slots[0] >= left_nritems)
2297                 push_space += data_size;
2298
2299         slot = path->slots[1];
2300         i = left_nritems - 1;
2301         while (i >= nr) {
2302                 item = btrfs_item_nr(left, i);
2303
2304                 if (!empty && push_items > 0) {
2305                         if (path->slots[0] > i)
2306                                 break;
2307                         if (path->slots[0] == i) {
2308                                 int space = btrfs_leaf_free_space(root, left);
2309                                 if (space + push_space * 2 > free_space)
2310                                         break;
2311                         }
2312                 }
2313
2314                 if (path->slots[0] == i)
2315                         push_space += data_size;
2316
2317                 if (!left->map_token) {
2318                         map_extent_buffer(left, (unsigned long)item,
2319                                         sizeof(struct btrfs_item),
2320                                         &left->map_token, &left->kaddr,
2321                                         &left->map_start, &left->map_len,
2322                                         KM_USER1);
2323                 }
2324
2325                 this_item_size = btrfs_item_size(left, item);
2326                 if (this_item_size + sizeof(*item) + push_space > free_space)
2327                         break;
2328
2329                 push_items++;
2330                 push_space += this_item_size + sizeof(*item);
2331                 if (i == 0)
2332                         break;
2333                 i--;
2334         }
2335         if (left->map_token) {
2336                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2337                 left->map_token = NULL;
2338         }
2339
2340         if (push_items == 0)
2341                 goto out_unlock;
2342
2343         if (!empty && push_items == left_nritems)
2344                 WARN_ON(1);
2345
2346         /* push left to right */
2347         right_nritems = btrfs_header_nritems(right);
2348
2349         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2350         push_space -= leaf_data_end(root, left);
2351
2352         /* make room in the right data area */
2353         data_end = leaf_data_end(root, right);
2354         memmove_extent_buffer(right,
2355                               btrfs_leaf_data(right) + data_end - push_space,
2356                               btrfs_leaf_data(right) + data_end,
2357                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2358
2359         /* copy from the left data area */
2360         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2361                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2362                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2363                      push_space);
2364
2365         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2366                               btrfs_item_nr_offset(0),
2367                               right_nritems * sizeof(struct btrfs_item));
2368
2369         /* copy the items from left to right */
2370         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2371                    btrfs_item_nr_offset(left_nritems - push_items),
2372                    push_items * sizeof(struct btrfs_item));
2373
2374         /* update the item pointers */
2375         right_nritems += push_items;
2376         btrfs_set_header_nritems(right, right_nritems);
2377         push_space = BTRFS_LEAF_DATA_SIZE(root);
2378         for (i = 0; i < right_nritems; i++) {
2379                 item = btrfs_item_nr(right, i);
2380                 if (!right->map_token) {
2381                         map_extent_buffer(right, (unsigned long)item,
2382                                         sizeof(struct btrfs_item),
2383                                         &right->map_token, &right->kaddr,
2384                                         &right->map_start, &right->map_len,
2385                                         KM_USER1);
2386                 }
2387                 push_space -= btrfs_item_size(right, item);
2388                 btrfs_set_item_offset(right, item, push_space);
2389         }
2390
2391         if (right->map_token) {
2392                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2393                 right->map_token = NULL;
2394         }
2395         left_nritems -= push_items;
2396         btrfs_set_header_nritems(left, left_nritems);
2397
2398         if (left_nritems)
2399                 btrfs_mark_buffer_dirty(left);
2400         btrfs_mark_buffer_dirty(right);
2401
2402         ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2403         BUG_ON(ret);
2404
2405         btrfs_item_key(right, &disk_key, 0);
2406         btrfs_set_node_key(upper, &disk_key, slot + 1);
2407         btrfs_mark_buffer_dirty(upper);
2408
2409         /* then fixup the leaf pointer in the path */
2410         if (path->slots[0] >= left_nritems) {
2411                 path->slots[0] -= left_nritems;
2412                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2413                         clean_tree_block(trans, root, path->nodes[0]);
2414                 btrfs_tree_unlock(path->nodes[0]);
2415                 free_extent_buffer(path->nodes[0]);
2416                 path->nodes[0] = right;
2417                 path->slots[1] += 1;
2418         } else {
2419                 btrfs_tree_unlock(right);
2420                 free_extent_buffer(right);
2421         }
2422         return 0;
2423
2424 out_unlock:
2425         btrfs_tree_unlock(right);
2426         free_extent_buffer(right);
2427         return 1;
2428 }
2429
2430 /*
2431  * push some data in the path leaf to the right, trying to free up at
2432  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2433  *
2434  * returns 1 if the push failed because the other node didn't have enough
2435  * room, 0 if everything worked out and < 0 if there were major errors.
2436  */
2437 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2438                            *root, struct btrfs_path *path, int data_size,
2439                            int empty)
2440 {
2441         struct extent_buffer *left = path->nodes[0];
2442         struct extent_buffer *right;
2443         struct extent_buffer *upper;
2444         int slot;
2445         int free_space;
2446         u32 left_nritems;
2447         int ret;
2448
2449         if (!path->nodes[1])
2450                 return 1;
2451
2452         slot = path->slots[1];
2453         upper = path->nodes[1];
2454         if (slot >= btrfs_header_nritems(upper) - 1)
2455                 return 1;
2456
2457         btrfs_assert_tree_locked(path->nodes[1]);
2458
2459         right = read_node_slot(root, upper, slot + 1);
2460         btrfs_tree_lock(right);
2461         btrfs_set_lock_blocking(right);
2462
2463         free_space = btrfs_leaf_free_space(root, right);
2464         if (free_space < data_size)
2465                 goto out_unlock;
2466
2467         /* cow and double check */
2468         ret = btrfs_cow_block(trans, root, right, upper,
2469                               slot + 1, &right);
2470         if (ret)
2471                 goto out_unlock;
2472
2473         free_space = btrfs_leaf_free_space(root, right);
2474         if (free_space < data_size)
2475                 goto out_unlock;
2476
2477         left_nritems = btrfs_header_nritems(left);
2478         if (left_nritems == 0)
2479                 goto out_unlock;
2480
2481         return __push_leaf_right(trans, root, path, data_size, empty,
2482                                 right, free_space, left_nritems);
2483 out_unlock:
2484         btrfs_tree_unlock(right);
2485         free_extent_buffer(right);
2486         return 1;
2487 }
2488
2489 /*
2490  * push some data in the path leaf to the left, trying to free up at
2491  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2492  */
2493 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2494                                      struct btrfs_root *root,
2495                                      struct btrfs_path *path, int data_size,
2496                                      int empty, struct extent_buffer *left,
2497                                      int free_space, int right_nritems)
2498 {
2499         struct btrfs_disk_key disk_key;
2500         struct extent_buffer *right = path->nodes[0];
2501         int slot;
2502         int i;
2503         int push_space = 0;
2504         int push_items = 0;
2505         struct btrfs_item *item;
2506         u32 old_left_nritems;
2507         u32 nr;
2508         int ret = 0;
2509         int wret;
2510         u32 this_item_size;
2511         u32 old_left_item_size;
2512
2513         slot = path->slots[1];
2514
2515         if (empty)
2516                 nr = right_nritems;
2517         else
2518                 nr = right_nritems - 1;
2519
2520         for (i = 0; i < nr; i++) {
2521                 item = btrfs_item_nr(right, i);
2522                 if (!right->map_token) {
2523                         map_extent_buffer(right, (unsigned long)item,
2524                                         sizeof(struct btrfs_item),
2525                                         &right->map_token, &right->kaddr,
2526                                         &right->map_start, &right->map_len,
2527                                         KM_USER1);
2528                 }
2529
2530                 if (!empty && push_items > 0) {
2531                         if (path->slots[0] < i)
2532                                 break;
2533                         if (path->slots[0] == i) {
2534                                 int space = btrfs_leaf_free_space(root, right);
2535                                 if (space + push_space * 2 > free_space)
2536                                         break;
2537                         }
2538                 }
2539
2540                 if (path->slots[0] == i)
2541                         push_space += data_size;
2542
2543                 this_item_size = btrfs_item_size(right, item);
2544                 if (this_item_size + sizeof(*item) + push_space > free_space)
2545                         break;
2546
2547                 push_items++;
2548                 push_space += this_item_size + sizeof(*item);
2549         }
2550
2551         if (right->map_token) {
2552                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2553                 right->map_token = NULL;
2554         }
2555
2556         if (push_items == 0) {
2557                 ret = 1;
2558                 goto out;
2559         }
2560         if (!empty && push_items == btrfs_header_nritems(right))
2561                 WARN_ON(1);
2562
2563         /* push data from right to left */
2564         copy_extent_buffer(left, right,
2565                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2566                            btrfs_item_nr_offset(0),
2567                            push_items * sizeof(struct btrfs_item));
2568
2569         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2570                      btrfs_item_offset_nr(right, push_items - 1);
2571
2572         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2573                      leaf_data_end(root, left) - push_space,
2574                      btrfs_leaf_data(right) +
2575                      btrfs_item_offset_nr(right, push_items - 1),
2576                      push_space);
2577         old_left_nritems = btrfs_header_nritems(left);
2578         BUG_ON(old_left_nritems <= 0);
2579
2580         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2581         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2582                 u32 ioff;
2583
2584                 item = btrfs_item_nr(left, i);
2585                 if (!left->map_token) {
2586                         map_extent_buffer(left, (unsigned long)item,
2587                                         sizeof(struct btrfs_item),
2588                                         &left->map_token, &left->kaddr,
2589                                         &left->map_start, &left->map_len,
2590                                         KM_USER1);
2591                 }
2592
2593                 ioff = btrfs_item_offset(left, item);
2594                 btrfs_set_item_offset(left, item,
2595                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2596         }
2597         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2598         if (left->map_token) {
2599                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2600                 left->map_token = NULL;
2601         }
2602
2603         /* fixup right node */
2604         if (push_items > right_nritems) {
2605                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2606                        right_nritems);
2607                 WARN_ON(1);
2608         }
2609
2610         if (push_items < right_nritems) {
2611                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2612                                                   leaf_data_end(root, right);
2613                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2614                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2615                                       btrfs_leaf_data(right) +
2616                                       leaf_data_end(root, right), push_space);
2617
2618                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2619                               btrfs_item_nr_offset(push_items),
2620                              (btrfs_header_nritems(right) - push_items) *
2621                              sizeof(struct btrfs_item));
2622         }
2623         right_nritems -= push_items;
2624         btrfs_set_header_nritems(right, right_nritems);
2625         push_space = BTRFS_LEAF_DATA_SIZE(root);
2626         for (i = 0; i < right_nritems; i++) {
2627                 item = btrfs_item_nr(right, i);
2628
2629                 if (!right->map_token) {
2630                         map_extent_buffer(right, (unsigned long)item,
2631                                         sizeof(struct btrfs_item),
2632                                         &right->map_token, &right->kaddr,
2633                                         &right->map_start, &right->map_len,
2634                                         KM_USER1);
2635                 }
2636
2637                 push_space = push_space - btrfs_item_size(right, item);
2638                 btrfs_set_item_offset(right, item, push_space);
2639         }
2640         if (right->map_token) {
2641                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2642                 right->map_token = NULL;
2643         }
2644
2645         btrfs_mark_buffer_dirty(left);
2646         if (right_nritems)
2647                 btrfs_mark_buffer_dirty(right);
2648
2649         ret = btrfs_update_ref(trans, root, right, left,
2650                                old_left_nritems, push_items);
2651         BUG_ON(ret);
2652
2653         btrfs_item_key(right, &disk_key, 0);
2654         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2655         if (wret)
2656                 ret = wret;
2657
2658         /* then fixup the leaf pointer in the path */
2659         if (path->slots[0] < push_items) {
2660                 path->slots[0] += old_left_nritems;
2661                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2662                         clean_tree_block(trans, root, path->nodes[0]);
2663                 btrfs_tree_unlock(path->nodes[0]);
2664                 free_extent_buffer(path->nodes[0]);
2665                 path->nodes[0] = left;
2666                 path->slots[1] -= 1;
2667         } else {
2668                 btrfs_tree_unlock(left);
2669                 free_extent_buffer(left);
2670                 path->slots[0] -= push_items;
2671         }
2672         BUG_ON(path->slots[0] < 0);
2673         return ret;
2674 out:
2675         btrfs_tree_unlock(left);
2676         free_extent_buffer(left);
2677         return ret;
2678 }
2679
2680 /*
2681  * push some data in the path leaf to the left, trying to free up at
2682  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2683  */
2684 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2685                           *root, struct btrfs_path *path, int data_size,
2686                           int empty)
2687 {
2688         struct extent_buffer *right = path->nodes[0];
2689         struct extent_buffer *left;
2690         int slot;
2691         int free_space;
2692         u32 right_nritems;
2693         int ret = 0;
2694
2695         slot = path->slots[1];
2696         if (slot == 0)
2697                 return 1;
2698         if (!path->nodes[1])
2699                 return 1;
2700
2701         right_nritems = btrfs_header_nritems(right);
2702         if (right_nritems == 0)
2703                 return 1;
2704
2705         btrfs_assert_tree_locked(path->nodes[1]);
2706
2707         left = read_node_slot(root, path->nodes[1], slot - 1);
2708         btrfs_tree_lock(left);
2709         btrfs_set_lock_blocking(left);
2710
2711         free_space = btrfs_leaf_free_space(root, left);
2712         if (free_space < data_size) {
2713                 ret = 1;
2714                 goto out;
2715         }
2716
2717         /* cow and double check */
2718         ret = btrfs_cow_block(trans, root, left,
2719                               path->nodes[1], slot - 1, &left);
2720         if (ret) {
2721                 /* we hit -ENOSPC, but it isn't fatal here */
2722                 ret = 1;
2723                 goto out;
2724         }
2725
2726         free_space = btrfs_leaf_free_space(root, left);
2727         if (free_space < data_size) {
2728                 ret = 1;
2729                 goto out;
2730         }
2731
2732         return __push_leaf_left(trans, root, path, data_size,
2733                                empty, left, free_space, right_nritems);
2734 out:
2735         btrfs_tree_unlock(left);
2736         free_extent_buffer(left);
2737         return ret;
2738 }
2739
2740 /*
2741  * split the path's leaf in two, making sure there is at least data_size
2742  * available for the resulting leaf level of the path.
2743  *
2744  * returns 0 if all went well and < 0 on failure.
2745  */
2746 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2747                                struct btrfs_root *root,
2748                                struct btrfs_path *path,
2749                                struct extent_buffer *l,
2750                                struct extent_buffer *right,
2751                                int slot, int mid, int nritems)
2752 {
2753         int data_copy_size;
2754         int rt_data_off;
2755         int i;
2756         int ret = 0;
2757         int wret;
2758         struct btrfs_disk_key disk_key;
2759
2760         nritems = nritems - mid;
2761         btrfs_set_header_nritems(right, nritems);
2762         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2763
2764         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2765                            btrfs_item_nr_offset(mid),
2766                            nritems * sizeof(struct btrfs_item));
2767
2768         copy_extent_buffer(right, l,
2769                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2770                      data_copy_size, btrfs_leaf_data(l) +
2771                      leaf_data_end(root, l), data_copy_size);
2772
2773         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2774                       btrfs_item_end_nr(l, mid);
2775
2776         for (i = 0; i < nritems; i++) {
2777                 struct btrfs_item *item = btrfs_item_nr(right, i);
2778                 u32 ioff;
2779
2780                 if (!right->map_token) {
2781                         map_extent_buffer(right, (unsigned long)item,
2782                                         sizeof(struct btrfs_item),
2783                                         &right->map_token, &right->kaddr,
2784                                         &right->map_start, &right->map_len,
2785                                         KM_USER1);
2786                 }
2787
2788                 ioff = btrfs_item_offset(right, item);
2789                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2790         }
2791
2792         if (right->map_token) {
2793                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2794                 right->map_token = NULL;
2795         }
2796
2797         btrfs_set_header_nritems(l, mid);
2798         ret = 0;
2799         btrfs_item_key(right, &disk_key, 0);
2800         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2801                           path->slots[1] + 1, 1);
2802         if (wret)
2803                 ret = wret;
2804
2805         btrfs_mark_buffer_dirty(right);
2806         btrfs_mark_buffer_dirty(l);
2807         BUG_ON(path->slots[0] != slot);
2808
2809         ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2810         BUG_ON(ret);
2811
2812         if (mid <= slot) {
2813                 btrfs_tree_unlock(path->nodes[0]);
2814                 free_extent_buffer(path->nodes[0]);
2815                 path->nodes[0] = right;
2816                 path->slots[0] -= mid;
2817                 path->slots[1] += 1;
2818         } else {
2819                 btrfs_tree_unlock(right);
2820                 free_extent_buffer(right);
2821         }
2822
2823         BUG_ON(path->slots[0] < 0);
2824
2825         return ret;
2826 }
2827
2828 /*
2829  * split the path's leaf in two, making sure there is at least data_size
2830  * available for the resulting leaf level of the path.
2831  *
2832  * returns 0 if all went well and < 0 on failure.
2833  */
2834 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2835                                struct btrfs_root *root,
2836                                struct btrfs_key *ins_key,
2837                                struct btrfs_path *path, int data_size,
2838                                int extend)
2839 {
2840         struct extent_buffer *l;
2841         u32 nritems;
2842         int mid;
2843         int slot;
2844         struct extent_buffer *right;
2845         int ret = 0;
2846         int wret;
2847         int double_split;
2848         int num_doubles = 0;
2849
2850         /* first try to make some room by pushing left and right */
2851         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2852                 wret = push_leaf_right(trans, root, path, data_size, 0);
2853                 if (wret < 0)
2854                         return wret;
2855                 if (wret) {
2856                         wret = push_leaf_left(trans, root, path, data_size, 0);
2857                         if (wret < 0)
2858                                 return wret;
2859                 }
2860                 l = path->nodes[0];
2861
2862                 /* did the pushes work? */
2863                 if (btrfs_leaf_free_space(root, l) >= data_size)
2864                         return 0;
2865         }
2866
2867         if (!path->nodes[1]) {
2868                 ret = insert_new_root(trans, root, path, 1);
2869                 if (ret)
2870                         return ret;
2871         }
2872 again:
2873         double_split = 0;
2874         l = path->nodes[0];
2875         slot = path->slots[0];
2876         nritems = btrfs_header_nritems(l);
2877         mid = (nritems + 1) / 2;
2878
2879         right = btrfs_alloc_free_block(trans, root, root->leafsize,
2880                                         path->nodes[1]->start,
2881                                         root->root_key.objectid,
2882                                         trans->transid, 0, l->start, 0);
2883         if (IS_ERR(right)) {
2884                 BUG_ON(1);
2885                 return PTR_ERR(right);
2886         }
2887
2888         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2889         btrfs_set_header_bytenr(right, right->start);
2890         btrfs_set_header_generation(right, trans->transid);
2891         btrfs_set_header_owner(right, root->root_key.objectid);
2892         btrfs_set_header_level(right, 0);
2893         write_extent_buffer(right, root->fs_info->fsid,
2894                             (unsigned long)btrfs_header_fsid(right),
2895                             BTRFS_FSID_SIZE);
2896
2897         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2898                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
2899                             BTRFS_UUID_SIZE);
2900
2901         if (mid <= slot) {
2902                 if (nritems == 1 ||
2903                     leaf_space_used(l, mid, nritems - mid) + data_size >
2904                         BTRFS_LEAF_DATA_SIZE(root)) {
2905                         if (slot >= nritems) {
2906                                 struct btrfs_disk_key disk_key;
2907
2908                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2909                                 btrfs_set_header_nritems(right, 0);
2910                                 wret = insert_ptr(trans, root, path,
2911                                                   &disk_key, right->start,
2912                                                   path->slots[1] + 1, 1);
2913                                 if (wret)
2914                                         ret = wret;
2915
2916                                 btrfs_tree_unlock(path->nodes[0]);
2917                                 free_extent_buffer(path->nodes[0]);
2918                                 path->nodes[0] = right;
2919                                 path->slots[0] = 0;
2920                                 path->slots[1] += 1;
2921                                 btrfs_mark_buffer_dirty(right);
2922                                 return ret;
2923                         }
2924                         mid = slot;
2925                         if (mid != nritems &&
2926                             leaf_space_used(l, mid, nritems - mid) +
2927                             data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2928                                 double_split = 1;
2929                         }
2930                 }
2931         } else {
2932                 if (leaf_space_used(l, 0, mid) + data_size >
2933                         BTRFS_LEAF_DATA_SIZE(root)) {
2934                         if (!extend && data_size && slot == 0) {
2935                                 struct btrfs_disk_key disk_key;
2936
2937                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2938                                 btrfs_set_header_nritems(right, 0);
2939                                 wret = insert_ptr(trans, root, path,
2940                                                   &disk_key,
2941                                                   right->start,
2942                                                   path->slots[1], 1);
2943                                 if (wret)
2944                                         ret = wret;
2945                                 btrfs_tree_unlock(path->nodes[0]);
2946                                 free_extent_buffer(path->nodes[0]);
2947                                 path->nodes[0] = right;
2948                                 path->slots[0] = 0;
2949                                 if (path->slots[1] == 0) {
2950                                         wret = fixup_low_keys(trans, root,
2951                                                       path, &disk_key, 1);
2952                                         if (wret)
2953                                                 ret = wret;
2954                                 }
2955                                 btrfs_mark_buffer_dirty(right);
2956                                 return ret;
2957                         } else if ((extend || !data_size) && slot == 0) {
2958                                 mid = 1;
2959                         } else {
2960                                 mid = slot;
2961                                 if (mid != nritems &&
2962                                     leaf_space_used(l, mid, nritems - mid) +
2963                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2964                                         double_split = 1;
2965                                 }
2966                         }
2967                 }
2968         }
2969
2970         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2971         BUG_ON(ret);
2972
2973         if (double_split) {
2974                 BUG_ON(num_doubles != 0);
2975                 num_doubles++;
2976                 goto again;
2977         }
2978
2979         return ret;
2980 }
2981
2982 /*
2983  * This function splits a single item into two items,
2984  * giving 'new_key' to the new item and splitting the
2985  * old one at split_offset (from the start of the item).
2986  *
2987  * The path may be released by this operation.  After
2988  * the split, the path is pointing to the old item.  The
2989  * new item is going to be in the same node as the old one.
2990  *
2991  * Note, the item being split must be smaller enough to live alone on
2992  * a tree block with room for one extra struct btrfs_item
2993  *
2994  * This allows us to split the item in place, keeping a lock on the
2995  * leaf the entire time.
2996  */
2997 int btrfs_split_item(struct btrfs_trans_handle *trans,
2998                      struct btrfs_root *root,
2999                      struct btrfs_path *path,
3000                      struct btrfs_key *new_key,
3001                      unsigned long split_offset)
3002 {
3003         u32 item_size;
3004         struct extent_buffer *leaf;
3005         struct btrfs_key orig_key;
3006         struct btrfs_item *item;
3007         struct btrfs_item *new_item;
3008         int ret = 0;
3009         int slot;
3010         u32 nritems;
3011         u32 orig_offset;
3012         struct btrfs_disk_key disk_key;
3013         char *buf;
3014
3015         leaf = path->nodes[0];
3016         btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3017         if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3018                 goto split;
3019
3020         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3021         btrfs_release_path(root, path);
3022
3023         path->search_for_split = 1;
3024         path->keep_locks = 1;
3025
3026         ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3027         path->search_for_split = 0;
3028
3029         /* if our item isn't there or got smaller, return now */
3030         if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3031                                                         path->slots[0])) {
3032                 path->keep_locks = 0;
3033                 return -EAGAIN;
3034         }
3035
3036         btrfs_set_path_blocking(path);
3037         ret = split_leaf(trans, root, &orig_key, path,
3038                          sizeof(struct btrfs_item), 1);
3039         path->keep_locks = 0;
3040         BUG_ON(ret);
3041
3042         btrfs_unlock_up_safe(path, 1);
3043         leaf = path->nodes[0];
3044         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3045
3046 split:
3047         /*
3048          * make sure any changes to the path from split_leaf leave it
3049          * in a blocking state
3050          */
3051         btrfs_set_path_blocking(path);
3052
3053         item = btrfs_item_nr(leaf, path->slots[0]);
3054         orig_offset = btrfs_item_offset(leaf, item);
3055         item_size = btrfs_item_size(leaf, item);
3056
3057         buf = kmalloc(item_size, GFP_NOFS);
3058         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3059                             path->slots[0]), item_size);
3060         slot = path->slots[0] + 1;
3061         leaf = path->nodes[0];
3062
3063         nritems = btrfs_header_nritems(leaf);
3064
3065         if (slot != nritems) {
3066                 /* shift the items */
3067                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3068                               btrfs_item_nr_offset(slot),
3069                               (nritems - slot) * sizeof(struct btrfs_item));
3070
3071         }
3072
3073         btrfs_cpu_key_to_disk(&disk_key, new_key);
3074         btrfs_set_item_key(leaf, &disk_key, slot);
3075
3076         new_item = btrfs_item_nr(leaf, slot);
3077
3078         btrfs_set_item_offset(leaf, new_item, orig_offset);
3079         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3080
3081         btrfs_set_item_offset(leaf, item,
3082                               orig_offset + item_size - split_offset);
3083         btrfs_set_item_size(leaf, item, split_offset);
3084
3085         btrfs_set_header_nritems(leaf, nritems + 1);
3086
3087         /* write the data for the start of the original item */
3088         write_extent_buffer(leaf, buf,
3089                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3090                             split_offset);
3091
3092         /* write the data for the new item */
3093         write_extent_buffer(leaf, buf + split_offset,
3094                             btrfs_item_ptr_offset(leaf, slot),
3095                             item_size - split_offset);
3096         btrfs_mark_buffer_dirty(leaf);
3097
3098         ret = 0;
3099         if (btrfs_leaf_free_space(root, leaf) < 0) {
3100                 btrfs_print_leaf(root, leaf);
3101                 BUG();
3102         }
3103         kfree(buf);
3104         return ret;
3105 }
3106
3107 /*
3108  * make the item pointed to by the path smaller.  new_size indicates
3109  * how small to make it, and from_end tells us if we just chop bytes
3110  * off the end of the item or if we shift the item to chop bytes off
3111  * the front.
3112  */
3113 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3114                         struct btrfs_root *root,
3115                         struct btrfs_path *path,
3116                         u32 new_size, int from_end)
3117 {
3118         int ret = 0;
3119         int slot;
3120         int slot_orig;
3121         struct extent_buffer *leaf;
3122         struct btrfs_item *item;
3123         u32 nritems;
3124         unsigned int data_end;
3125         unsigned int old_data_start;
3126         unsigned int old_size;
3127         unsigned int size_diff;
3128         int i;
3129
3130         slot_orig = path->slots[0];
3131         leaf = path->nodes[0];
3132         slot = path->slots[0];
3133
3134         old_size = btrfs_item_size_nr(leaf, slot);
3135         if (old_size == new_size)
3136                 return 0;
3137
3138         nritems = btrfs_header_nritems(leaf);
3139         data_end = leaf_data_end(root, leaf);
3140
3141         old_data_start = btrfs_item_offset_nr(leaf, slot);
3142
3143         size_diff = old_size - new_size;
3144
3145         BUG_ON(slot < 0);
3146         BUG_ON(slot >= nritems);
3147
3148         /*
3149          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3150          */
3151         /* first correct the data pointers */
3152         for (i = slot; i < nritems; i++) {
3153                 u32 ioff;
3154                 item = btrfs_item_nr(leaf, i);
3155
3156                 if (!leaf->map_token) {
3157                         map_extent_buffer(leaf, (unsigned long)item,
3158                                         sizeof(struct btrfs_item),
3159                                         &leaf->map_token, &leaf->kaddr,
3160                                         &leaf->map_start, &leaf->map_len,
3161                                         KM_USER1);
3162                 }
3163
3164                 ioff = btrfs_item_offset(leaf, item);
3165                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3166         }
3167
3168         if (leaf->map_token) {
3169                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3170                 leaf->map_token = NULL;
3171         }
3172
3173         /* shift the data */
3174         if (from_end) {
3175                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3176                               data_end + size_diff, btrfs_leaf_data(leaf) +
3177                               data_end, old_data_start + new_size - data_end);
3178         } else {
3179                 struct btrfs_disk_key disk_key;
3180                 u64 offset;
3181
3182                 btrfs_item_key(leaf, &disk_key, slot);
3183
3184                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3185                         unsigned long ptr;
3186                         struct btrfs_file_extent_item *fi;
3187
3188                         fi = btrfs_item_ptr(leaf, slot,
3189                                             struct btrfs_file_extent_item);
3190                         fi = (struct btrfs_file_extent_item *)(
3191                              (unsigned long)fi - size_diff);
3192
3193                         if (btrfs_file_extent_type(leaf, fi) ==
3194                             BTRFS_FILE_EXTENT_INLINE) {
3195                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3196                                 memmove_extent_buffer(leaf, ptr,
3197                                       (unsigned long)fi,
3198                                       offsetof(struct btrfs_file_extent_item,
3199                                                  disk_bytenr));
3200                         }
3201                 }
3202
3203                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3204                               data_end + size_diff, btrfs_leaf_data(leaf) +
3205                               data_end, old_data_start - data_end);
3206
3207                 offset = btrfs_disk_key_offset(&disk_key);
3208                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3209                 btrfs_set_item_key(leaf, &disk_key, slot);
3210                 if (slot == 0)
3211                         fixup_low_keys(trans, root, path, &disk_key, 1);
3212         }
3213
3214         item = btrfs_item_nr(leaf, slot);
3215         btrfs_set_item_size(leaf, item, new_size);
3216         btrfs_mark_buffer_dirty(leaf);
3217
3218         ret = 0;
3219         if (btrfs_leaf_free_space(root, leaf) < 0) {
3220                 btrfs_print_leaf(root, leaf);
3221                 BUG();
3222         }
3223         return ret;
3224 }
3225
3226 /*
3227  * make the item pointed to by the path bigger, data_size is the new size.
3228  */
3229 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3230                       struct btrfs_root *root, struct btrfs_path *path,
3231                       u32 data_size)
3232 {
3233         int ret = 0;
3234         int slot;
3235         int slot_orig;
3236         struct extent_buffer *leaf;
3237         struct btrfs_item *item;
3238         u32 nritems;
3239         unsigned int data_end;
3240         unsigned int old_data;
3241         unsigned int old_size;
3242         int i;
3243
3244         slot_orig = path->slots[0];
3245         leaf = path->nodes[0];
3246
3247         nritems = btrfs_header_nritems(leaf);
3248         data_end = leaf_data_end(root, leaf);
3249
3250         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3251                 btrfs_print_leaf(root, leaf);
3252                 BUG();
3253         }
3254         slot = path->slots[0];
3255         old_data = btrfs_item_end_nr(leaf, slot);
3256
3257         BUG_ON(slot < 0);
3258         if (slot >= nritems) {
3259                 btrfs_print_leaf(root, leaf);
3260                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3261                        slot, nritems);
3262                 BUG_ON(1);
3263         }
3264
3265         /*
3266          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3267          */
3268         /* first correct the data pointers */
3269         for (i = slot; i < nritems; i++) {
3270                 u32 ioff;
3271                 item = btrfs_item_nr(leaf, i);
3272
3273                 if (!leaf->map_token) {
3274                         map_extent_buffer(leaf, (unsigned long)item,
3275                                         sizeof(struct btrfs_item),
3276                                         &leaf->map_token, &leaf->kaddr,
3277                                         &leaf->map_start, &leaf->map_len,
3278                                         KM_USER1);
3279                 }
3280                 ioff = btrfs_item_offset(leaf, item);
3281                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3282         }
3283
3284         if (leaf->map_token) {
3285                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3286                 leaf->map_token = NULL;
3287         }
3288
3289         /* shift the data */
3290         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3291                       data_end - data_size, btrfs_leaf_data(leaf) +
3292                       data_end, old_data - data_end);
3293
3294         data_end = old_data;
3295         old_size = btrfs_item_size_nr(leaf, slot);
3296         item = btrfs_item_nr(leaf, slot);
3297         btrfs_set_item_size(leaf, item, old_size + data_size);
3298         btrfs_mark_buffer_dirty(leaf);
3299
3300         ret = 0;
3301         if (btrfs_leaf_free_space(root, leaf) < 0) {
3302                 btrfs_print_leaf(root, leaf);
3303                 BUG();
3304         }
3305         return ret;
3306 }
3307
3308 /*
3309  * Given a key and some data, insert items into the tree.
3310  * This does all the path init required, making room in the tree if needed.
3311  * Returns the number of keys that were inserted.
3312  */
3313 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3314                             struct btrfs_root *root,
3315                             struct btrfs_path *path,
3316                             struct btrfs_key *cpu_key, u32 *data_size,
3317                             int nr)
3318 {
3319         struct extent_buffer *leaf;
3320         struct btrfs_item *item;
3321         int ret = 0;
3322         int slot;
3323         int i;
3324         u32 nritems;
3325         u32 total_data = 0;
3326         u32 total_size = 0;
3327         unsigned int data_end;
3328         struct btrfs_disk_key disk_key;
3329         struct btrfs_key found_key;
3330
3331         for (i = 0; i < nr; i++) {
3332                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3333                     BTRFS_LEAF_DATA_SIZE(root)) {
3334                         break;
3335                         nr = i;
3336                 }
3337                 total_data += data_size[i];
3338                 total_size += data_size[i] + sizeof(struct btrfs_item);
3339         }
3340         BUG_ON(nr == 0);
3341
3342         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3343         if (ret == 0)
3344                 return -EEXIST;
3345         if (ret < 0)
3346                 goto out;
3347
3348         leaf = path->nodes[0];
3349
3350         nritems = btrfs_header_nritems(leaf);
3351         data_end = leaf_data_end(root, leaf);
3352
3353         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3354                 for (i = nr; i >= 0; i--) {
3355                         total_data -= data_size[i];
3356                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3357                         if (total_size < btrfs_leaf_free_space(root, leaf))
3358                                 break;
3359                 }
3360                 nr = i;
3361         }
3362
3363         slot = path->slots[0];
3364         BUG_ON(slot < 0);
3365
3366         if (slot != nritems) {
3367                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3368
3369                 item = btrfs_item_nr(leaf, slot);
3370                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3371
3372                 /* figure out how many keys we can insert in here */
3373                 total_data = data_size[0];
3374                 for (i = 1; i < nr; i++) {
3375                         if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3376                                 break;
3377                         total_data += data_size[i];
3378                 }
3379                 nr = i;
3380
3381                 if (old_data < data_end) {
3382                         btrfs_print_leaf(root, leaf);
3383                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3384                                slot, old_data, data_end);
3385                         BUG_ON(1);
3386                 }
3387                 /*
3388                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3389                  */
3390                 /* first correct the data pointers */
3391                 WARN_ON(leaf->map_token);
3392                 for (i = slot; i < nritems; i++) {
3393                         u32 ioff;
3394
3395                         item = btrfs_item_nr(leaf, i);
3396                         if (!leaf->map_token) {
3397                                 map_extent_buffer(leaf, (unsigned long)item,
3398                                         sizeof(struct btrfs_item),
3399                                         &leaf->map_token, &leaf->kaddr,
3400                                         &leaf->map_start, &leaf->map_len,
3401                                         KM_USER1);
3402                         }
3403
3404                         ioff = btrfs_item_offset(leaf, item);
3405                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3406                 }
3407                 if (leaf->map_token) {
3408                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3409                         leaf->map_token = NULL;
3410                 }
3411
3412                 /* shift the items */
3413                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3414                               btrfs_item_nr_offset(slot),
3415                               (nritems - slot) * sizeof(struct btrfs_item));
3416
3417                 /* shift the data */
3418                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3419                               data_end - total_data, btrfs_leaf_data(leaf) +
3420                               data_end, old_data - data_end);
3421                 data_end = old_data;
3422         } else {
3423                 /*
3424                  * this sucks but it has to be done, if we are inserting at
3425                  * the end of the leaf only insert 1 of the items, since we
3426                  * have no way of knowing whats on the next leaf and we'd have
3427                  * to drop our current locks to figure it out
3428                  */
3429                 nr = 1;
3430         }
3431
3432         /* setup the item for the new data */
3433         for (i = 0; i < nr; i++) {
3434                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3435                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3436                 item = btrfs_item_nr(leaf, slot + i);
3437                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3438                 data_end -= data_size[i];
3439                 btrfs_set_item_size(leaf, item, data_size[i]);
3440         }
3441         btrfs_set_header_nritems(leaf, nritems + nr);
3442         btrfs_mark_buffer_dirty(leaf);
3443
3444         ret = 0;
3445         if (slot == 0) {
3446                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3447                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3448         }
3449
3450         if (btrfs_leaf_free_space(root, leaf) < 0) {
3451                 btrfs_print_leaf(root, leaf);
3452                 BUG();
3453         }
3454 out:
3455         if (!ret)
3456                 ret = nr;
3457         return ret;
3458 }
3459
3460 /*
3461  * this is a helper for btrfs_insert_empty_items, the main goal here is
3462  * to save stack depth by doing the bulk of the work in a function
3463  * that doesn't call btrfs_search_slot
3464  */
3465 static noinline_for_stack int
3466 setup_items_for_insert(struct btrfs_trans_handle *trans,
3467                       struct btrfs_root *root, struct btrfs_path *path,
3468                       struct btrfs_key *cpu_key, u32 *data_size,
3469                       u32 total_data, u32 total_size, int nr)
3470 {
3471         struct btrfs_item *item;
3472         int i;
3473         u32 nritems;
3474         unsigned int data_end;
3475         struct btrfs_disk_key disk_key;
3476         int ret;
3477         struct extent_buffer *leaf;
3478         int slot;
3479
3480         leaf = path->nodes[0];
3481         slot = path->slots[0];
3482
3483         nritems = btrfs_header_nritems(leaf);
3484         data_end = leaf_data_end(root, leaf);
3485
3486         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3487                 btrfs_print_leaf(root, leaf);
3488                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3489                        total_size, btrfs_leaf_free_space(root, leaf));
3490                 BUG();
3491         }
3492
3493         if (slot != nritems) {
3494                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3495
3496                 if (old_data < data_end) {
3497                         btrfs_print_leaf(root, leaf);
3498                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3499                                slot, old_data, data_end);
3500                         BUG_ON(1);
3501                 }
3502                 /*
3503                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3504                  */
3505                 /* first correct the data pointers */
3506                 WARN_ON(leaf->map_token);
3507                 for (i = slot; i < nritems; i++) {
3508                         u32 ioff;
3509
3510                         item = btrfs_item_nr(leaf, i);
3511                         if (!leaf->map_token) {
3512                                 map_extent_buffer(leaf, (unsigned long)item,
3513                                         sizeof(struct btrfs_item),
3514                                         &leaf->map_token, &leaf->kaddr,
3515                                         &leaf->map_start, &leaf->map_len,
3516                                         KM_USER1);
3517                         }
3518
3519                         ioff = btrfs_item_offset(leaf, item);
3520                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3521                 }
3522                 if (leaf->map_token) {
3523                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3524                         leaf->map_token = NULL;
3525                 }
3526
3527                 /* shift the items */
3528                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3529                               btrfs_item_nr_offset(slot),
3530                               (nritems - slot) * sizeof(struct btrfs_item));
3531
3532                 /* shift the data */
3533                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3534                               data_end - total_data, btrfs_leaf_data(leaf) +
3535                               data_end, old_data - data_end);
3536                 data_end = old_data;
3537         }
3538
3539         /* setup the item for the new data */
3540         for (i = 0; i < nr; i++) {
3541                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3542                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3543                 item = btrfs_item_nr(leaf, slot + i);
3544                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3545                 data_end -= data_size[i];
3546                 btrfs_set_item_size(leaf, item, data_size[i]);
3547         }
3548
3549         btrfs_set_header_nritems(leaf, nritems + nr);
3550
3551         ret = 0;
3552         if (slot == 0) {
3553                 struct btrfs_disk_key disk_key;
3554                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3555                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3556         }
3557         btrfs_unlock_up_safe(path, 1);
3558         btrfs_mark_buffer_dirty(leaf);
3559
3560         if (btrfs_leaf_free_space(root, leaf) < 0) {
3561                 btrfs_print_leaf(root, leaf);
3562                 BUG();
3563         }
3564         return ret;
3565 }
3566
3567 /*
3568  * Given a key and some data, insert items into the tree.
3569  * This does all the path init required, making room in the tree if needed.
3570  */
3571 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3572                             struct btrfs_root *root,
3573                             struct btrfs_path *path,
3574                             struct btrfs_key *cpu_key, u32 *data_size,
3575                             int nr)
3576 {
3577         struct extent_buffer *leaf;
3578         int ret = 0;
3579         int slot;
3580         int i;
3581         u32 total_size = 0;
3582         u32 total_data = 0;
3583
3584         for (i = 0; i < nr; i++)
3585                 total_data += data_size[i];
3586
3587         total_size = total_data + (nr * sizeof(struct btrfs_item));
3588         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3589         if (ret == 0)
3590                 return -EEXIST;
3591         if (ret < 0)
3592                 goto out;
3593
3594         leaf = path->nodes[0];
3595         slot = path->slots[0];
3596         BUG_ON(slot < 0);
3597
3598         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3599                                total_data, total_size, nr);
3600
3601 out:
3602         return ret;
3603 }
3604
3605 /*
3606  * Given a key and some data, insert an item into the tree.
3607  * This does all the path init required, making room in the tree if needed.
3608  */
3609 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3610                       *root, struct btrfs_key *cpu_key, void *data, u32
3611                       data_size)
3612 {
3613         int ret = 0;
3614         struct btrfs_path *path;
3615         struct extent_buffer *leaf;
3616         unsigned long ptr;
3617
3618         path = btrfs_alloc_path();
3619         BUG_ON(!path);
3620         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3621         if (!ret) {
3622                 leaf = path->nodes[0];
3623                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3624                 write_extent_buffer(leaf, data, ptr, data_size);
3625                 btrfs_mark_buffer_dirty(leaf);
3626         }
3627         btrfs_free_path(path);
3628         return ret;
3629 }
3630
3631 /*
3632  * delete the pointer from a given node.
3633  *
3634  * the tree should have been previously balanced so the deletion does not
3635  * empty a node.
3636  */
3637 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3638                    struct btrfs_path *path, int level, int slot)
3639 {
3640         struct extent_buffer *parent = path->nodes[level];
3641         u32 nritems;
3642         int ret = 0;
3643         int wret;
3644
3645         nritems = btrfs_header_nritems(parent);
3646         if (slot != nritems - 1) {
3647                 memmove_extent_buffer(parent,
3648                               btrfs_node_key_ptr_offset(slot),
3649                               btrfs_node_key_ptr_offset(slot + 1),
3650                               sizeof(struct btrfs_key_ptr) *
3651                               (nritems - slot - 1));
3652         }
3653         nritems--;
3654         btrfs_set_header_nritems(parent, nritems);
3655         if (nritems == 0 && parent == root->node) {
3656                 BUG_ON(btrfs_header_level(root->node) != 1);
3657                 /* just turn the root into a leaf and break */
3658                 btrfs_set_header_level(root->node, 0);
3659         } else if (slot == 0) {
3660                 struct btrfs_disk_key disk_key;
3661
3662                 btrfs_node_key(parent, &disk_key, 0);
3663                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3664                 if (wret)
3665                         ret = wret;
3666         }
3667         btrfs_mark_buffer_dirty(parent);
3668         return ret;
3669 }
3670
3671 /*
3672  * a helper function to delete the leaf pointed to by path->slots[1] and
3673  * path->nodes[1].  bytenr is the node block pointer, but since the callers
3674  * already know it, it is faster to have them pass it down than to
3675  * read it out of the node again.
3676  *
3677  * This deletes the pointer in path->nodes[1] and frees the leaf
3678  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3679  *
3680  * The path must have already been setup for deleting the leaf, including
3681  * all the proper balancing.  path->nodes[1] must be locked.
3682  */
3683 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3684                             struct btrfs_root *root,
3685                             struct btrfs_path *path, u64 bytenr)
3686 {
3687         int ret;
3688         u64 root_gen = btrfs_header_generation(path->nodes[1]);
3689         u64 parent_start = path->nodes[1]->start;
3690         u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3691
3692         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3693         if (ret)
3694                 return ret;
3695
3696         /*
3697          * btrfs_free_extent is expensive, we want to make sure we
3698          * aren't holding any locks when we call it
3699          */
3700         btrfs_unlock_up_safe(path, 0);
3701
3702         ret = btrfs_free_extent(trans, root, bytenr,
3703                                 btrfs_level_size(root, 0),
3704                                 parent_start, parent_owner,
3705                                 root_gen, 0, 1);
3706         return ret;
3707 }
3708 /*
3709  * delete the item at the leaf level in path.  If that empties
3710  * the leaf, remove it from the tree
3711  */
3712 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3713                     struct btrfs_path *path, int slot, int nr)
3714 {
3715         struct extent_buffer *leaf;
3716         struct btrfs_item *item;
3717         int last_off;
3718         int dsize = 0;
3719         int ret = 0;
3720         int wret;
3721         int i;
3722         u32 nritems;
3723
3724         leaf = path->nodes[0];
3725         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3726
3727         for (i = 0; i < nr; i++)
3728                 dsize += btrfs_item_size_nr(leaf, slot + i);
3729
3730         nritems = btrfs_header_nritems(leaf);
3731
3732         if (slot + nr != nritems) {
3733                 int data_end = leaf_data_end(root, leaf);
3734
3735                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3736                               data_end + dsize,
3737                               btrfs_leaf_data(leaf) + data_end,
3738                               last_off - data_end);
3739
3740                 for (i = slot + nr; i < nritems; i++) {
3741                         u32 ioff;
3742
3743                         item = btrfs_item_nr(leaf, i);
3744                         if (!leaf->map_token) {
3745                                 map_extent_buffer(leaf, (unsigned long)item,
3746                                         sizeof(struct btrfs_item),
3747                                         &leaf->map_token, &leaf->kaddr,
3748                                         &leaf->map_start, &leaf->map_len,
3749                                         KM_USER1);
3750                         }
3751                         ioff = btrfs_item_offset(leaf, item);
3752                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3753                 }
3754
3755                 if (leaf->map_token) {
3756                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3757                         leaf->map_token = NULL;
3758                 }
3759
3760                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3761                               btrfs_item_nr_offset(slot + nr),
3762                               sizeof(struct btrfs_item) *
3763                               (nritems - slot - nr));
3764         }
3765         btrfs_set_header_nritems(leaf, nritems - nr);
3766         nritems -= nr;
3767
3768         /* delete the leaf if we've emptied it */
3769         if (nritems == 0) {
3770                 if (leaf == root->node) {
3771                         btrfs_set_header_level(leaf, 0);
3772                 } else {
3773                         ret = btrfs_del_leaf(trans, root, path, leaf->start);
3774                         BUG_ON(ret);
3775                 }
3776         } else {
3777                 int used = leaf_space_used(leaf, 0, nritems);
3778                 if (slot == 0) {
3779                         struct btrfs_disk_key disk_key;
3780
3781                         btrfs_item_key(leaf, &disk_key, 0);
3782                         wret = fixup_low_keys(trans, root, path,
3783                                               &disk_key, 1);
3784                         if (wret)
3785                                 ret = wret;
3786                 }
3787
3788                 /* delete the leaf if it is mostly empty */
3789                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
3790                         /* push_leaf_left fixes the path.
3791                          * make sure the path still points to our leaf
3792                          * for possible call to del_ptr below
3793                          */
3794                         slot = path->slots[1];
3795                         extent_buffer_get(leaf);
3796
3797                         btrfs_set_path_blocking(path);
3798                         wret = push_leaf_left(trans, root, path, 1, 1);
3799                         if (wret < 0 && wret != -ENOSPC)
3800                                 ret = wret;
3801
3802                         if (path->nodes[0] == leaf &&
3803                             btrfs_header_nritems(leaf)) {
3804                                 wret = push_leaf_right(trans, root, path, 1, 1);
3805                                 if (wret < 0 && wret != -ENOSPC)
3806                                         ret = wret;
3807                         }
3808
3809                         if (btrfs_header_nritems(leaf) == 0) {
3810                                 path->slots[1] = slot;
3811                                 ret = btrfs_del_leaf(trans, root, path,
3812                                                      leaf->start);
3813                                 BUG_ON(ret);
3814                                 free_extent_buffer(leaf);
3815                         } else {
3816                                 /* if we're still in the path, make sure
3817                                  * we're dirty.  Otherwise, one of the
3818                                  * push_leaf functions must have already
3819                                  * dirtied this buffer
3820                                  */
3821                                 if (path->nodes[0] == leaf)
3822                                         btrfs_mark_buffer_dirty(leaf);
3823                                 free_extent_buffer(leaf);
3824                         }
3825                 } else {
3826                         btrfs_mark_buffer_dirty(leaf);
3827                 }
3828         }
3829         return ret;
3830 }
3831
3832 /*
3833  * search the tree again to find a leaf with lesser keys
3834  * returns 0 if it found something or 1 if there are no lesser leaves.
3835  * returns < 0 on io errors.
3836  *
3837  * This may release the path, and so you may lose any locks held at the
3838  * time you call it.
3839  */
3840 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3841 {
3842         struct btrfs_key key;
3843         struct btrfs_disk_key found_key;
3844         int ret;
3845
3846         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3847
3848         if (key.offset > 0)
3849                 key.offset--;
3850         else if (key.type > 0)
3851                 key.type--;
3852         else if (key.objectid > 0)
3853                 key.objectid--;
3854         else
3855                 return 1;
3856
3857         btrfs_release_path(root, path);
3858         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3859         if (ret < 0)
3860                 return ret;
3861         btrfs_item_key(path->nodes[0], &found_key, 0);
3862         ret = comp_keys(&found_key, &key);
3863         if (ret < 0)
3864                 return 0;
3865         return 1;
3866 }
3867
3868 /*
3869  * A helper function to walk down the tree starting at min_key, and looking
3870  * for nodes or leaves that are either in cache or have a minimum
3871  * transaction id.  This is used by the btree defrag code, and tree logging
3872  *
3873  * This does not cow, but it does stuff the starting key it finds back
3874  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3875  * key and get a writable path.
3876  *
3877  * This does lock as it descends, and path->keep_locks should be set
3878  * to 1 by the caller.
3879  *
3880  * This honors path->lowest_level to prevent descent past a given level
3881  * of the tree.
3882  *
3883  * min_trans indicates the oldest transaction that you are interested
3884  * in walking through.  Any nodes or leaves older than min_trans are
3885  * skipped over (without reading them).
3886  *
3887  * returns zero if something useful was found, < 0 on error and 1 if there
3888  * was nothing in the tree that matched the search criteria.
3889  */
3890 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3891                          struct btrfs_key *max_key,
3892                          struct btrfs_path *path, int cache_only,
3893                          u64 min_trans)
3894 {
3895         struct extent_buffer *cur;
3896         struct btrfs_key found_key;
3897         int slot;
3898         int sret;
3899         u32 nritems;
3900         int level;
3901         int ret = 1;
3902
3903         WARN_ON(!path->keep_locks);
3904 again:
3905         cur = btrfs_lock_root_node(root);
3906         level = btrfs_header_level(cur);
3907         WARN_ON(path->nodes[level]);
3908         path->nodes[level] = cur;
3909         path->locks[level] = 1;
3910
3911         if (btrfs_header_generation(cur) < min_trans) {
3912                 ret = 1;
3913                 goto out;
3914         }
3915         while (1) {
3916                 nritems = btrfs_header_nritems(cur);
3917                 level = btrfs_header_level(cur);
3918                 sret = bin_search(cur, min_key, level, &slot);
3919
3920                 /* at the lowest level, we're done, setup the path and exit */
3921                 if (level == path->lowest_level) {
3922                         if (slot >= nritems)
3923                                 goto find_next_key;
3924                         ret = 0;
3925                         path->slots[level] = slot;
3926                         btrfs_item_key_to_cpu(cur, &found_key, slot);
3927                         goto out;
3928                 }
3929                 if (sret && slot > 0)
3930                         slot--;
3931                 /*
3932                  * check this node pointer against the cache_only and
3933                  * min_trans parameters.  If it isn't in cache or is too
3934                  * old, skip to the next one.
3935                  */
3936                 while (slot < nritems) {
3937                         u64 blockptr;
3938                         u64 gen;
3939                         struct extent_buffer *tmp;
3940                         struct btrfs_disk_key disk_key;
3941
3942                         blockptr = btrfs_node_blockptr(cur, slot);
3943                         gen = btrfs_node_ptr_generation(cur, slot);
3944                         if (gen < min_trans) {
3945                                 slot++;
3946                                 continue;
3947                         }
3948                         if (!cache_only)
3949                                 break;
3950
3951                         if (max_key) {
3952                                 btrfs_node_key(cur, &disk_key, slot);
3953                                 if (comp_keys(&disk_key, max_key) >= 0) {
3954                                         ret = 1;
3955                                         goto out;
3956                                 }
3957                         }
3958
3959                         tmp = btrfs_find_tree_block(root, blockptr,
3960                                             btrfs_level_size(root, level - 1));
3961
3962                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3963                                 free_extent_buffer(tmp);
3964                                 break;
3965                         }
3966                         if (tmp)
3967                                 free_extent_buffer(tmp);
3968                         slot++;
3969                 }
3970 find_next_key:
3971                 /*
3972                  * we didn't find a candidate key in this node, walk forward
3973                  * and find another one
3974                  */
3975                 if (slot >= nritems) {
3976                         path->slots[level] = slot;
3977                         btrfs_set_path_blocking(path);
3978                         sret = btrfs_find_next_key(root, path, min_key, level,
3979                                                   cache_only, min_trans);
3980                         if (sret == 0) {
3981                                 btrfs_release_path(root, path);
3982                                 goto again;
3983                         } else {
3984                                 goto out;
3985                         }
3986                 }
3987                 /* save our key for returning back */
3988                 btrfs_node_key_to_cpu(cur, &found_key, slot);
3989                 path->slots[level] = slot;
3990                 if (level == path->lowest_level) {
3991                         ret = 0;
3992                         unlock_up(path, level, 1);
3993                         goto out;
3994                 }
3995                 btrfs_set_path_blocking(path);
3996                 cur = read_node_slot(root, cur, slot);
3997
3998                 btrfs_tree_lock(cur);
3999
4000                 path->locks[level - 1] = 1;
4001                 path->nodes[level - 1] = cur;
4002                 unlock_up(path, level, 1);
4003                 btrfs_clear_path_blocking(path, NULL);
4004         }
4005 out:
4006         if (ret == 0)
4007                 memcpy(min_key, &found_key, sizeof(found_key));
4008         btrfs_set_path_blocking(path);
4009         return ret;
4010 }
4011
4012 /*
4013  * this is similar to btrfs_next_leaf, but does not try to preserve
4014  * and fixup the path.  It looks for and returns the next key in the
4015  * tree based on the current path and the cache_only and min_trans
4016  * parameters.
4017  *
4018  * 0 is returned if another key is found, < 0 if there are any errors
4019  * and 1 is returned if there are no higher keys in the tree
4020  *
4021  * path->keep_locks should be set to 1 on the search made before
4022  * calling this function.
4023  */
4024 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4025                         struct btrfs_key *key, int lowest_level,
4026                         int cache_only, u64 min_trans)
4027 {
4028         int level = lowest_level;
4029         int slot;
4030         struct extent_buffer *c;
4031
4032         WARN_ON(!path->keep_locks);
4033         while (level < BTRFS_MAX_LEVEL) {
4034                 if (!path->nodes[level])
4035                         return 1;
4036
4037                 slot = path->slots[level] + 1;
4038                 c = path->nodes[level];
4039 next:
4040                 if (slot >= btrfs_header_nritems(c)) {
4041                         level++;
4042                         if (level == BTRFS_MAX_LEVEL)
4043                                 return 1;
4044                         continue;
4045                 }
4046                 if (level == 0)
4047                         btrfs_item_key_to_cpu(c, key, slot);
4048                 else {
4049                         u64 blockptr = btrfs_node_blockptr(c, slot);
4050                         u64 gen = btrfs_node_ptr_generation(c, slot);
4051
4052                         if (cache_only) {
4053                                 struct extent_buffer *cur;
4054                                 cur = btrfs_find_tree_block(root, blockptr,
4055                                             btrfs_level_size(root, level - 1));
4056                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4057                                         slot++;
4058                                         if (cur)
4059                                                 free_extent_buffer(cur);
4060                                         goto next;
4061                                 }
4062                                 free_extent_buffer(cur);
4063                         }
4064                         if (gen < min_trans) {
4065                                 slot++;
4066                                 goto next;
4067                         }
4068                         btrfs_node_key_to_cpu(c, key, slot);
4069                 }
4070                 return 0;
4071         }
4072         return 1;
4073 }
4074
4075 /*
4076  * search the tree again to find a leaf with greater keys
4077  * returns 0 if it found something or 1 if there are no greater leaves.
4078  * returns < 0 on io errors.
4079  */
4080 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4081 {
4082         int slot;
4083         int level = 1;
4084         struct extent_buffer *c;
4085         struct extent_buffer *next = NULL;
4086         struct btrfs_key key;
4087         u32 nritems;
4088         int ret;
4089
4090         nritems = btrfs_header_nritems(path->nodes[0]);
4091         if (nritems == 0)
4092                 return 1;
4093
4094         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4095
4096         btrfs_release_path(root, path);
4097         path->keep_locks = 1;
4098         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4099         path->keep_locks = 0;
4100
4101         if (ret < 0)
4102                 return ret;
4103
4104         btrfs_set_path_blocking(path);
4105         nritems = btrfs_header_nritems(path->nodes[0]);
4106         /*
4107          * by releasing the path above we dropped all our locks.  A balance
4108          * could have added more items next to the key that used to be
4109          * at the very end of the block.  So, check again here and
4110          * advance the path if there are now more items available.
4111          */
4112         if (nritems > 0 && path->slots[0] < nritems - 1) {
4113                 path->slots[0]++;
4114                 goto done;
4115         }
4116
4117         while (level < BTRFS_MAX_LEVEL) {
4118                 if (!path->nodes[level])
4119                         return 1;
4120
4121                 slot = path->slots[level] + 1;
4122                 c = path->nodes[level];
4123                 if (slot >= btrfs_header_nritems(c)) {
4124                         level++;
4125                         if (level == BTRFS_MAX_LEVEL)
4126                                 return 1;
4127                         continue;
4128                 }
4129
4130                 if (next) {
4131                         btrfs_tree_unlock(next);
4132                         free_extent_buffer(next);
4133                 }
4134
4135                 /* the path was set to blocking above */
4136                 if (level == 1 && (path->locks[1] || path->skip_locking) &&
4137                     path->reada)
4138                         reada_for_search(root, path, level, slot, 0);
4139
4140                 next = read_node_slot(root, c, slot);
4141                 if (!path->skip_locking) {
4142                         btrfs_assert_tree_locked(c);
4143                         btrfs_tree_lock(next);
4144                         btrfs_set_lock_blocking(next);
4145                 }
4146                 break;
4147         }
4148         path->slots[level] = slot;
4149         while (1) {
4150                 level--;
4151                 c = path->nodes[level];
4152                 if (path->locks[level])
4153                         btrfs_tree_unlock(c);
4154                 free_extent_buffer(c);
4155                 path->nodes[level] = next;
4156                 path->slots[level] = 0;
4157                 if (!path->skip_locking)
4158                         path->locks[level] = 1;
4159                 if (!level)
4160                         break;
4161
4162                 btrfs_set_path_blocking(path);
4163                 if (level == 1 && path->locks[1] && path->reada)
4164                         reada_for_search(root, path, level, slot, 0);
4165                 next = read_node_slot(root, next, 0);
4166                 if (!path->skip_locking) {
4167                         btrfs_assert_tree_locked(path->nodes[level]);
4168                         btrfs_tree_lock(next);
4169                         btrfs_set_lock_blocking(next);
4170                 }
4171         }
4172 done:
4173         unlock_up(path, 0, 1);
4174         return 0;
4175 }
4176
4177 /*
4178  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4179  * searching until it gets past min_objectid or finds an item of 'type'
4180  *
4181  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4182  */
4183 int btrfs_previous_item(struct btrfs_root *root,
4184                         struct btrfs_path *path, u64 min_objectid,
4185                         int type)
4186 {
4187         struct btrfs_key found_key;
4188         struct extent_buffer *leaf;
4189         u32 nritems;
4190         int ret;
4191
4192         while (1) {
4193                 if (path->slots[0] == 0) {
4194                         btrfs_set_path_blocking(path);
4195                         ret = btrfs_prev_leaf(root, path);
4196                         if (ret != 0)
4197                                 return ret;
4198                 } else {
4199                         path->slots[0]--;
4200                 }
4201                 leaf = path->nodes[0];
4202                 nritems = btrfs_header_nritems(leaf);
4203                 if (nritems == 0)
4204                         return 1;
4205                 if (path->slots[0] == nritems)
4206                         path->slots[0]--;
4207
4208                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4209                 if (found_key.type == type)
4210                         return 0;
4211                 if (found_key.objectid < min_objectid)
4212                         break;
4213                 if (found_key.objectid == min_objectid &&
4214                     found_key.type < type)
4215                         break;
4216         }
4217         return 1;
4218 }