Btrfs: leave btree locks spinning more often
[linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90                                    struct page *locked_page,
91                                    u64 start, u64 end, int *page_started,
92                                    unsigned long *nr_written, int unlock);
93
94 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
95 {
96         int err;
97
98         err = btrfs_init_acl(inode, dir);
99         if (!err)
100                 err = btrfs_xattr_security_init(inode, dir);
101         return err;
102 }
103
104 /*
105  * this does all the hard work for inserting an inline extent into
106  * the btree.  The caller should have done a btrfs_drop_extents so that
107  * no overlapping inline items exist in the btree
108  */
109 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
110                                 struct btrfs_root *root, struct inode *inode,
111                                 u64 start, size_t size, size_t compressed_size,
112                                 struct page **compressed_pages)
113 {
114         struct btrfs_key key;
115         struct btrfs_path *path;
116         struct extent_buffer *leaf;
117         struct page *page = NULL;
118         char *kaddr;
119         unsigned long ptr;
120         struct btrfs_file_extent_item *ei;
121         int err = 0;
122         int ret;
123         size_t cur_size = size;
124         size_t datasize;
125         unsigned long offset;
126         int use_compress = 0;
127
128         if (compressed_size && compressed_pages) {
129                 use_compress = 1;
130                 cur_size = compressed_size;
131         }
132
133         path = btrfs_alloc_path();
134         if (!path)
135                 return -ENOMEM;
136
137         path->leave_spinning = 1;
138         btrfs_set_trans_block_group(trans, inode);
139
140         key.objectid = inode->i_ino;
141         key.offset = start;
142         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143         datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145         inode_add_bytes(inode, size);
146         ret = btrfs_insert_empty_item(trans, root, path, &key,
147                                       datasize);
148         BUG_ON(ret);
149         if (ret) {
150                 err = ret;
151                 goto fail;
152         }
153         leaf = path->nodes[0];
154         ei = btrfs_item_ptr(leaf, path->slots[0],
155                             struct btrfs_file_extent_item);
156         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158         btrfs_set_file_extent_encryption(leaf, ei, 0);
159         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161         ptr = btrfs_file_extent_inline_start(ei);
162
163         if (use_compress) {
164                 struct page *cpage;
165                 int i = 0;
166                 while (compressed_size > 0) {
167                         cpage = compressed_pages[i];
168                         cur_size = min_t(unsigned long, compressed_size,
169                                        PAGE_CACHE_SIZE);
170
171                         kaddr = kmap_atomic(cpage, KM_USER0);
172                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
173                         kunmap_atomic(kaddr, KM_USER0);
174
175                         i++;
176                         ptr += cur_size;
177                         compressed_size -= cur_size;
178                 }
179                 btrfs_set_file_extent_compression(leaf, ei,
180                                                   BTRFS_COMPRESS_ZLIB);
181         } else {
182                 page = find_get_page(inode->i_mapping,
183                                      start >> PAGE_CACHE_SHIFT);
184                 btrfs_set_file_extent_compression(leaf, ei, 0);
185                 kaddr = kmap_atomic(page, KM_USER0);
186                 offset = start & (PAGE_CACHE_SIZE - 1);
187                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188                 kunmap_atomic(kaddr, KM_USER0);
189                 page_cache_release(page);
190         }
191         btrfs_mark_buffer_dirty(leaf);
192         btrfs_free_path(path);
193
194         BTRFS_I(inode)->disk_i_size = inode->i_size;
195         btrfs_update_inode(trans, root, inode);
196         return 0;
197 fail:
198         btrfs_free_path(path);
199         return err;
200 }
201
202
203 /*
204  * conditionally insert an inline extent into the file.  This
205  * does the checks required to make sure the data is small enough
206  * to fit as an inline extent.
207  */
208 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
209                                  struct btrfs_root *root,
210                                  struct inode *inode, u64 start, u64 end,
211                                  size_t compressed_size,
212                                  struct page **compressed_pages)
213 {
214         u64 isize = i_size_read(inode);
215         u64 actual_end = min(end + 1, isize);
216         u64 inline_len = actual_end - start;
217         u64 aligned_end = (end + root->sectorsize - 1) &
218                         ~((u64)root->sectorsize - 1);
219         u64 hint_byte;
220         u64 data_len = inline_len;
221         int ret;
222
223         if (compressed_size)
224                 data_len = compressed_size;
225
226         if (start > 0 ||
227             actual_end >= PAGE_CACHE_SIZE ||
228             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
229             (!compressed_size &&
230             (actual_end & (root->sectorsize - 1)) == 0) ||
231             end + 1 < isize ||
232             data_len > root->fs_info->max_inline) {
233                 return 1;
234         }
235
236         ret = btrfs_drop_extents(trans, root, inode, start,
237                                  aligned_end, start, &hint_byte);
238         BUG_ON(ret);
239
240         if (isize > actual_end)
241                 inline_len = min_t(u64, isize, actual_end);
242         ret = insert_inline_extent(trans, root, inode, start,
243                                    inline_len, compressed_size,
244                                    compressed_pages);
245         BUG_ON(ret);
246         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
247         return 0;
248 }
249
250 struct async_extent {
251         u64 start;
252         u64 ram_size;
253         u64 compressed_size;
254         struct page **pages;
255         unsigned long nr_pages;
256         struct list_head list;
257 };
258
259 struct async_cow {
260         struct inode *inode;
261         struct btrfs_root *root;
262         struct page *locked_page;
263         u64 start;
264         u64 end;
265         struct list_head extents;
266         struct btrfs_work work;
267 };
268
269 static noinline int add_async_extent(struct async_cow *cow,
270                                      u64 start, u64 ram_size,
271                                      u64 compressed_size,
272                                      struct page **pages,
273                                      unsigned long nr_pages)
274 {
275         struct async_extent *async_extent;
276
277         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
278         async_extent->start = start;
279         async_extent->ram_size = ram_size;
280         async_extent->compressed_size = compressed_size;
281         async_extent->pages = pages;
282         async_extent->nr_pages = nr_pages;
283         list_add_tail(&async_extent->list, &cow->extents);
284         return 0;
285 }
286
287 /*
288  * we create compressed extents in two phases.  The first
289  * phase compresses a range of pages that have already been
290  * locked (both pages and state bits are locked).
291  *
292  * This is done inside an ordered work queue, and the compression
293  * is spread across many cpus.  The actual IO submission is step
294  * two, and the ordered work queue takes care of making sure that
295  * happens in the same order things were put onto the queue by
296  * writepages and friends.
297  *
298  * If this code finds it can't get good compression, it puts an
299  * entry onto the work queue to write the uncompressed bytes.  This
300  * makes sure that both compressed inodes and uncompressed inodes
301  * are written in the same order that pdflush sent them down.
302  */
303 static noinline int compress_file_range(struct inode *inode,
304                                         struct page *locked_page,
305                                         u64 start, u64 end,
306                                         struct async_cow *async_cow,
307                                         int *num_added)
308 {
309         struct btrfs_root *root = BTRFS_I(inode)->root;
310         struct btrfs_trans_handle *trans;
311         u64 num_bytes;
312         u64 orig_start;
313         u64 disk_num_bytes;
314         u64 blocksize = root->sectorsize;
315         u64 actual_end;
316         u64 isize = i_size_read(inode);
317         int ret = 0;
318         struct page **pages = NULL;
319         unsigned long nr_pages;
320         unsigned long nr_pages_ret = 0;
321         unsigned long total_compressed = 0;
322         unsigned long total_in = 0;
323         unsigned long max_compressed = 128 * 1024;
324         unsigned long max_uncompressed = 128 * 1024;
325         int i;
326         int will_compress;
327
328         orig_start = start;
329
330         actual_end = min_t(u64, isize, end + 1);
331 again:
332         will_compress = 0;
333         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
334         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
335
336         /*
337          * we don't want to send crud past the end of i_size through
338          * compression, that's just a waste of CPU time.  So, if the
339          * end of the file is before the start of our current
340          * requested range of bytes, we bail out to the uncompressed
341          * cleanup code that can deal with all of this.
342          *
343          * It isn't really the fastest way to fix things, but this is a
344          * very uncommon corner.
345          */
346         if (actual_end <= start)
347                 goto cleanup_and_bail_uncompressed;
348
349         total_compressed = actual_end - start;
350
351         /* we want to make sure that amount of ram required to uncompress
352          * an extent is reasonable, so we limit the total size in ram
353          * of a compressed extent to 128k.  This is a crucial number
354          * because it also controls how easily we can spread reads across
355          * cpus for decompression.
356          *
357          * We also want to make sure the amount of IO required to do
358          * a random read is reasonably small, so we limit the size of
359          * a compressed extent to 128k.
360          */
361         total_compressed = min(total_compressed, max_uncompressed);
362         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
363         num_bytes = max(blocksize,  num_bytes);
364         disk_num_bytes = num_bytes;
365         total_in = 0;
366         ret = 0;
367
368         /*
369          * we do compression for mount -o compress and when the
370          * inode has not been flagged as nocompress.  This flag can
371          * change at any time if we discover bad compression ratios.
372          */
373         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
374             btrfs_test_opt(root, COMPRESS)) {
375                 WARN_ON(pages);
376                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
377
378                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
379                                                 total_compressed, pages,
380                                                 nr_pages, &nr_pages_ret,
381                                                 &total_in,
382                                                 &total_compressed,
383                                                 max_compressed);
384
385                 if (!ret) {
386                         unsigned long offset = total_compressed &
387                                 (PAGE_CACHE_SIZE - 1);
388                         struct page *page = pages[nr_pages_ret - 1];
389                         char *kaddr;
390
391                         /* zero the tail end of the last page, we might be
392                          * sending it down to disk
393                          */
394                         if (offset) {
395                                 kaddr = kmap_atomic(page, KM_USER0);
396                                 memset(kaddr + offset, 0,
397                                        PAGE_CACHE_SIZE - offset);
398                                 kunmap_atomic(kaddr, KM_USER0);
399                         }
400                         will_compress = 1;
401                 }
402         }
403         if (start == 0) {
404                 trans = btrfs_join_transaction(root, 1);
405                 BUG_ON(!trans);
406                 btrfs_set_trans_block_group(trans, inode);
407
408                 /* lets try to make an inline extent */
409                 if (ret || total_in < (actual_end - start)) {
410                         /* we didn't compress the entire range, try
411                          * to make an uncompressed inline extent.
412                          */
413                         ret = cow_file_range_inline(trans, root, inode,
414                                                     start, end, 0, NULL);
415                 } else {
416                         /* try making a compressed inline extent */
417                         ret = cow_file_range_inline(trans, root, inode,
418                                                     start, end,
419                                                     total_compressed, pages);
420                 }
421                 btrfs_end_transaction(trans, root);
422                 if (ret == 0) {
423                         /*
424                          * inline extent creation worked, we don't need
425                          * to create any more async work items.  Unlock
426                          * and free up our temp pages.
427                          */
428                         extent_clear_unlock_delalloc(inode,
429                                                      &BTRFS_I(inode)->io_tree,
430                                                      start, end, NULL, 1, 0,
431                                                      0, 1, 1, 1);
432                         ret = 0;
433                         goto free_pages_out;
434                 }
435         }
436
437         if (will_compress) {
438                 /*
439                  * we aren't doing an inline extent round the compressed size
440                  * up to a block size boundary so the allocator does sane
441                  * things
442                  */
443                 total_compressed = (total_compressed + blocksize - 1) &
444                         ~(blocksize - 1);
445
446                 /*
447                  * one last check to make sure the compression is really a
448                  * win, compare the page count read with the blocks on disk
449                  */
450                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
451                         ~(PAGE_CACHE_SIZE - 1);
452                 if (total_compressed >= total_in) {
453                         will_compress = 0;
454                 } else {
455                         disk_num_bytes = total_compressed;
456                         num_bytes = total_in;
457                 }
458         }
459         if (!will_compress && pages) {
460                 /*
461                  * the compression code ran but failed to make things smaller,
462                  * free any pages it allocated and our page pointer array
463                  */
464                 for (i = 0; i < nr_pages_ret; i++) {
465                         WARN_ON(pages[i]->mapping);
466                         page_cache_release(pages[i]);
467                 }
468                 kfree(pages);
469                 pages = NULL;
470                 total_compressed = 0;
471                 nr_pages_ret = 0;
472
473                 /* flag the file so we don't compress in the future */
474                 btrfs_set_flag(inode, NOCOMPRESS);
475         }
476         if (will_compress) {
477                 *num_added += 1;
478
479                 /* the async work queues will take care of doing actual
480                  * allocation on disk for these compressed pages,
481                  * and will submit them to the elevator.
482                  */
483                 add_async_extent(async_cow, start, num_bytes,
484                                  total_compressed, pages, nr_pages_ret);
485
486                 if (start + num_bytes < end && start + num_bytes < actual_end) {
487                         start += num_bytes;
488                         pages = NULL;
489                         cond_resched();
490                         goto again;
491                 }
492         } else {
493 cleanup_and_bail_uncompressed:
494                 /*
495                  * No compression, but we still need to write the pages in
496                  * the file we've been given so far.  redirty the locked
497                  * page if it corresponds to our extent and set things up
498                  * for the async work queue to run cow_file_range to do
499                  * the normal delalloc dance
500                  */
501                 if (page_offset(locked_page) >= start &&
502                     page_offset(locked_page) <= end) {
503                         __set_page_dirty_nobuffers(locked_page);
504                         /* unlocked later on in the async handlers */
505                 }
506                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
507                 *num_added += 1;
508         }
509
510 out:
511         return 0;
512
513 free_pages_out:
514         for (i = 0; i < nr_pages_ret; i++) {
515                 WARN_ON(pages[i]->mapping);
516                 page_cache_release(pages[i]);
517         }
518         kfree(pages);
519
520         goto out;
521 }
522
523 /*
524  * phase two of compressed writeback.  This is the ordered portion
525  * of the code, which only gets called in the order the work was
526  * queued.  We walk all the async extents created by compress_file_range
527  * and send them down to the disk.
528  */
529 static noinline int submit_compressed_extents(struct inode *inode,
530                                               struct async_cow *async_cow)
531 {
532         struct async_extent *async_extent;
533         u64 alloc_hint = 0;
534         struct btrfs_trans_handle *trans;
535         struct btrfs_key ins;
536         struct extent_map *em;
537         struct btrfs_root *root = BTRFS_I(inode)->root;
538         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
539         struct extent_io_tree *io_tree;
540         int ret;
541
542         if (list_empty(&async_cow->extents))
543                 return 0;
544
545         trans = btrfs_join_transaction(root, 1);
546
547         while (!list_empty(&async_cow->extents)) {
548                 async_extent = list_entry(async_cow->extents.next,
549                                           struct async_extent, list);
550                 list_del(&async_extent->list);
551
552                 io_tree = &BTRFS_I(inode)->io_tree;
553
554                 /* did the compression code fall back to uncompressed IO? */
555                 if (!async_extent->pages) {
556                         int page_started = 0;
557                         unsigned long nr_written = 0;
558
559                         lock_extent(io_tree, async_extent->start,
560                                     async_extent->start +
561                                     async_extent->ram_size - 1, GFP_NOFS);
562
563                         /* allocate blocks */
564                         cow_file_range(inode, async_cow->locked_page,
565                                        async_extent->start,
566                                        async_extent->start +
567                                        async_extent->ram_size - 1,
568                                        &page_started, &nr_written, 0);
569
570                         /*
571                          * if page_started, cow_file_range inserted an
572                          * inline extent and took care of all the unlocking
573                          * and IO for us.  Otherwise, we need to submit
574                          * all those pages down to the drive.
575                          */
576                         if (!page_started)
577                                 extent_write_locked_range(io_tree,
578                                                   inode, async_extent->start,
579                                                   async_extent->start +
580                                                   async_extent->ram_size - 1,
581                                                   btrfs_get_extent,
582                                                   WB_SYNC_ALL);
583                         kfree(async_extent);
584                         cond_resched();
585                         continue;
586                 }
587
588                 lock_extent(io_tree, async_extent->start,
589                             async_extent->start + async_extent->ram_size - 1,
590                             GFP_NOFS);
591                 /*
592                  * here we're doing allocation and writeback of the
593                  * compressed pages
594                  */
595                 btrfs_drop_extent_cache(inode, async_extent->start,
596                                         async_extent->start +
597                                         async_extent->ram_size - 1, 0);
598
599                 ret = btrfs_reserve_extent(trans, root,
600                                            async_extent->compressed_size,
601                                            async_extent->compressed_size,
602                                            0, alloc_hint,
603                                            (u64)-1, &ins, 1);
604                 BUG_ON(ret);
605                 em = alloc_extent_map(GFP_NOFS);
606                 em->start = async_extent->start;
607                 em->len = async_extent->ram_size;
608                 em->orig_start = em->start;
609
610                 em->block_start = ins.objectid;
611                 em->block_len = ins.offset;
612                 em->bdev = root->fs_info->fs_devices->latest_bdev;
613                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
614                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
615
616                 while (1) {
617                         spin_lock(&em_tree->lock);
618                         ret = add_extent_mapping(em_tree, em);
619                         spin_unlock(&em_tree->lock);
620                         if (ret != -EEXIST) {
621                                 free_extent_map(em);
622                                 break;
623                         }
624                         btrfs_drop_extent_cache(inode, async_extent->start,
625                                                 async_extent->start +
626                                                 async_extent->ram_size - 1, 0);
627                 }
628
629                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
630                                                ins.objectid,
631                                                async_extent->ram_size,
632                                                ins.offset,
633                                                BTRFS_ORDERED_COMPRESSED);
634                 BUG_ON(ret);
635
636                 btrfs_end_transaction(trans, root);
637
638                 /*
639                  * clear dirty, set writeback and unlock the pages.
640                  */
641                 extent_clear_unlock_delalloc(inode,
642                                              &BTRFS_I(inode)->io_tree,
643                                              async_extent->start,
644                                              async_extent->start +
645                                              async_extent->ram_size - 1,
646                                              NULL, 1, 1, 0, 1, 1, 0);
647
648                 ret = btrfs_submit_compressed_write(inode,
649                                     async_extent->start,
650                                     async_extent->ram_size,
651                                     ins.objectid,
652                                     ins.offset, async_extent->pages,
653                                     async_extent->nr_pages);
654
655                 BUG_ON(ret);
656                 trans = btrfs_join_transaction(root, 1);
657                 alloc_hint = ins.objectid + ins.offset;
658                 kfree(async_extent);
659                 cond_resched();
660         }
661
662         btrfs_end_transaction(trans, root);
663         return 0;
664 }
665
666 /*
667  * when extent_io.c finds a delayed allocation range in the file,
668  * the call backs end up in this code.  The basic idea is to
669  * allocate extents on disk for the range, and create ordered data structs
670  * in ram to track those extents.
671  *
672  * locked_page is the page that writepage had locked already.  We use
673  * it to make sure we don't do extra locks or unlocks.
674  *
675  * *page_started is set to one if we unlock locked_page and do everything
676  * required to start IO on it.  It may be clean and already done with
677  * IO when we return.
678  */
679 static noinline int cow_file_range(struct inode *inode,
680                                    struct page *locked_page,
681                                    u64 start, u64 end, int *page_started,
682                                    unsigned long *nr_written,
683                                    int unlock)
684 {
685         struct btrfs_root *root = BTRFS_I(inode)->root;
686         struct btrfs_trans_handle *trans;
687         u64 alloc_hint = 0;
688         u64 num_bytes;
689         unsigned long ram_size;
690         u64 disk_num_bytes;
691         u64 cur_alloc_size;
692         u64 blocksize = root->sectorsize;
693         u64 actual_end;
694         u64 isize = i_size_read(inode);
695         struct btrfs_key ins;
696         struct extent_map *em;
697         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
698         int ret = 0;
699
700         trans = btrfs_join_transaction(root, 1);
701         BUG_ON(!trans);
702         btrfs_set_trans_block_group(trans, inode);
703
704         actual_end = min_t(u64, isize, end + 1);
705
706         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
707         num_bytes = max(blocksize,  num_bytes);
708         disk_num_bytes = num_bytes;
709         ret = 0;
710
711         if (start == 0) {
712                 /* lets try to make an inline extent */
713                 ret = cow_file_range_inline(trans, root, inode,
714                                             start, end, 0, NULL);
715                 if (ret == 0) {
716                         extent_clear_unlock_delalloc(inode,
717                                                      &BTRFS_I(inode)->io_tree,
718                                                      start, end, NULL, 1, 1,
719                                                      1, 1, 1, 1);
720                         *nr_written = *nr_written +
721                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
722                         *page_started = 1;
723                         ret = 0;
724                         goto out;
725                 }
726         }
727
728         BUG_ON(disk_num_bytes >
729                btrfs_super_total_bytes(&root->fs_info->super_copy));
730
731         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
732
733         while (disk_num_bytes > 0) {
734                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
735                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
736                                            root->sectorsize, 0, alloc_hint,
737                                            (u64)-1, &ins, 1);
738                 BUG_ON(ret);
739
740                 em = alloc_extent_map(GFP_NOFS);
741                 em->start = start;
742                 em->orig_start = em->start;
743
744                 ram_size = ins.offset;
745                 em->len = ins.offset;
746
747                 em->block_start = ins.objectid;
748                 em->block_len = ins.offset;
749                 em->bdev = root->fs_info->fs_devices->latest_bdev;
750                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
751
752                 while (1) {
753                         spin_lock(&em_tree->lock);
754                         ret = add_extent_mapping(em_tree, em);
755                         spin_unlock(&em_tree->lock);
756                         if (ret != -EEXIST) {
757                                 free_extent_map(em);
758                                 break;
759                         }
760                         btrfs_drop_extent_cache(inode, start,
761                                                 start + ram_size - 1, 0);
762                 }
763
764                 cur_alloc_size = ins.offset;
765                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
766                                                ram_size, cur_alloc_size, 0);
767                 BUG_ON(ret);
768
769                 if (root->root_key.objectid ==
770                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
771                         ret = btrfs_reloc_clone_csums(inode, start,
772                                                       cur_alloc_size);
773                         BUG_ON(ret);
774                 }
775
776                 if (disk_num_bytes < cur_alloc_size)
777                         break;
778
779                 /* we're not doing compressed IO, don't unlock the first
780                  * page (which the caller expects to stay locked), don't
781                  * clear any dirty bits and don't set any writeback bits
782                  */
783                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784                                              start, start + ram_size - 1,
785                                              locked_page, unlock, 1,
786                                              1, 0, 0, 0);
787                 disk_num_bytes -= cur_alloc_size;
788                 num_bytes -= cur_alloc_size;
789                 alloc_hint = ins.objectid + ins.offset;
790                 start += cur_alloc_size;
791         }
792 out:
793         ret = 0;
794         btrfs_end_transaction(trans, root);
795
796         return ret;
797 }
798
799 /*
800  * work queue call back to started compression on a file and pages
801  */
802 static noinline void async_cow_start(struct btrfs_work *work)
803 {
804         struct async_cow *async_cow;
805         int num_added = 0;
806         async_cow = container_of(work, struct async_cow, work);
807
808         compress_file_range(async_cow->inode, async_cow->locked_page,
809                             async_cow->start, async_cow->end, async_cow,
810                             &num_added);
811         if (num_added == 0)
812                 async_cow->inode = NULL;
813 }
814
815 /*
816  * work queue call back to submit previously compressed pages
817  */
818 static noinline void async_cow_submit(struct btrfs_work *work)
819 {
820         struct async_cow *async_cow;
821         struct btrfs_root *root;
822         unsigned long nr_pages;
823
824         async_cow = container_of(work, struct async_cow, work);
825
826         root = async_cow->root;
827         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828                 PAGE_CACHE_SHIFT;
829
830         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831
832         if (atomic_read(&root->fs_info->async_delalloc_pages) <
833             5 * 1042 * 1024 &&
834             waitqueue_active(&root->fs_info->async_submit_wait))
835                 wake_up(&root->fs_info->async_submit_wait);
836
837         if (async_cow->inode)
838                 submit_compressed_extents(async_cow->inode, async_cow);
839 }
840
841 static noinline void async_cow_free(struct btrfs_work *work)
842 {
843         struct async_cow *async_cow;
844         async_cow = container_of(work, struct async_cow, work);
845         kfree(async_cow);
846 }
847
848 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
849                                 u64 start, u64 end, int *page_started,
850                                 unsigned long *nr_written)
851 {
852         struct async_cow *async_cow;
853         struct btrfs_root *root = BTRFS_I(inode)->root;
854         unsigned long nr_pages;
855         u64 cur_end;
856         int limit = 10 * 1024 * 1042;
857
858         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
859                          EXTENT_DELALLOC, 1, 0, GFP_NOFS);
860         while (start < end) {
861                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
862                 async_cow->inode = inode;
863                 async_cow->root = root;
864                 async_cow->locked_page = locked_page;
865                 async_cow->start = start;
866
867                 if (btrfs_test_flag(inode, NOCOMPRESS))
868                         cur_end = end;
869                 else
870                         cur_end = min(end, start + 512 * 1024 - 1);
871
872                 async_cow->end = cur_end;
873                 INIT_LIST_HEAD(&async_cow->extents);
874
875                 async_cow->work.func = async_cow_start;
876                 async_cow->work.ordered_func = async_cow_submit;
877                 async_cow->work.ordered_free = async_cow_free;
878                 async_cow->work.flags = 0;
879
880                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
881                         PAGE_CACHE_SHIFT;
882                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
883
884                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
885                                    &async_cow->work);
886
887                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
888                         wait_event(root->fs_info->async_submit_wait,
889                            (atomic_read(&root->fs_info->async_delalloc_pages) <
890                             limit));
891                 }
892
893                 while (atomic_read(&root->fs_info->async_submit_draining) &&
894                       atomic_read(&root->fs_info->async_delalloc_pages)) {
895                         wait_event(root->fs_info->async_submit_wait,
896                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
897                            0));
898                 }
899
900                 *nr_written += nr_pages;
901                 start = cur_end + 1;
902         }
903         *page_started = 1;
904         return 0;
905 }
906
907 static noinline int csum_exist_in_range(struct btrfs_root *root,
908                                         u64 bytenr, u64 num_bytes)
909 {
910         int ret;
911         struct btrfs_ordered_sum *sums;
912         LIST_HEAD(list);
913
914         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
915                                        bytenr + num_bytes - 1, &list);
916         if (ret == 0 && list_empty(&list))
917                 return 0;
918
919         while (!list_empty(&list)) {
920                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
921                 list_del(&sums->list);
922                 kfree(sums);
923         }
924         return 1;
925 }
926
927 /*
928  * when nowcow writeback call back.  This checks for snapshots or COW copies
929  * of the extents that exist in the file, and COWs the file as required.
930  *
931  * If no cow copies or snapshots exist, we write directly to the existing
932  * blocks on disk
933  */
934 static noinline int run_delalloc_nocow(struct inode *inode,
935                                        struct page *locked_page,
936                               u64 start, u64 end, int *page_started, int force,
937                               unsigned long *nr_written)
938 {
939         struct btrfs_root *root = BTRFS_I(inode)->root;
940         struct btrfs_trans_handle *trans;
941         struct extent_buffer *leaf;
942         struct btrfs_path *path;
943         struct btrfs_file_extent_item *fi;
944         struct btrfs_key found_key;
945         u64 cow_start;
946         u64 cur_offset;
947         u64 extent_end;
948         u64 disk_bytenr;
949         u64 num_bytes;
950         int extent_type;
951         int ret;
952         int type;
953         int nocow;
954         int check_prev = 1;
955
956         path = btrfs_alloc_path();
957         BUG_ON(!path);
958         trans = btrfs_join_transaction(root, 1);
959         BUG_ON(!trans);
960
961         cow_start = (u64)-1;
962         cur_offset = start;
963         while (1) {
964                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
965                                                cur_offset, 0);
966                 BUG_ON(ret < 0);
967                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
968                         leaf = path->nodes[0];
969                         btrfs_item_key_to_cpu(leaf, &found_key,
970                                               path->slots[0] - 1);
971                         if (found_key.objectid == inode->i_ino &&
972                             found_key.type == BTRFS_EXTENT_DATA_KEY)
973                                 path->slots[0]--;
974                 }
975                 check_prev = 0;
976 next_slot:
977                 leaf = path->nodes[0];
978                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
979                         ret = btrfs_next_leaf(root, path);
980                         if (ret < 0)
981                                 BUG_ON(1);
982                         if (ret > 0)
983                                 break;
984                         leaf = path->nodes[0];
985                 }
986
987                 nocow = 0;
988                 disk_bytenr = 0;
989                 num_bytes = 0;
990                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
991
992                 if (found_key.objectid > inode->i_ino ||
993                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
994                     found_key.offset > end)
995                         break;
996
997                 if (found_key.offset > cur_offset) {
998                         extent_end = found_key.offset;
999                         goto out_check;
1000                 }
1001
1002                 fi = btrfs_item_ptr(leaf, path->slots[0],
1003                                     struct btrfs_file_extent_item);
1004                 extent_type = btrfs_file_extent_type(leaf, fi);
1005
1006                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1007                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1008                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1009                         extent_end = found_key.offset +
1010                                 btrfs_file_extent_num_bytes(leaf, fi);
1011                         if (extent_end <= start) {
1012                                 path->slots[0]++;
1013                                 goto next_slot;
1014                         }
1015                         if (disk_bytenr == 0)
1016                                 goto out_check;
1017                         if (btrfs_file_extent_compression(leaf, fi) ||
1018                             btrfs_file_extent_encryption(leaf, fi) ||
1019                             btrfs_file_extent_other_encoding(leaf, fi))
1020                                 goto out_check;
1021                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022                                 goto out_check;
1023                         if (btrfs_extent_readonly(root, disk_bytenr))
1024                                 goto out_check;
1025                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1026                                                   disk_bytenr))
1027                                 goto out_check;
1028                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1029                         disk_bytenr += cur_offset - found_key.offset;
1030                         num_bytes = min(end + 1, extent_end) - cur_offset;
1031                         /*
1032                          * force cow if csum exists in the range.
1033                          * this ensure that csum for a given extent are
1034                          * either valid or do not exist.
1035                          */
1036                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1037                                 goto out_check;
1038                         nocow = 1;
1039                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1040                         extent_end = found_key.offset +
1041                                 btrfs_file_extent_inline_len(leaf, fi);
1042                         extent_end = ALIGN(extent_end, root->sectorsize);
1043                 } else {
1044                         BUG_ON(1);
1045                 }
1046 out_check:
1047                 if (extent_end <= start) {
1048                         path->slots[0]++;
1049                         goto next_slot;
1050                 }
1051                 if (!nocow) {
1052                         if (cow_start == (u64)-1)
1053                                 cow_start = cur_offset;
1054                         cur_offset = extent_end;
1055                         if (cur_offset > end)
1056                                 break;
1057                         path->slots[0]++;
1058                         goto next_slot;
1059                 }
1060
1061                 btrfs_release_path(root, path);
1062                 if (cow_start != (u64)-1) {
1063                         ret = cow_file_range(inode, locked_page, cow_start,
1064                                         found_key.offset - 1, page_started,
1065                                         nr_written, 1);
1066                         BUG_ON(ret);
1067                         cow_start = (u64)-1;
1068                 }
1069
1070                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1071                         struct extent_map *em;
1072                         struct extent_map_tree *em_tree;
1073                         em_tree = &BTRFS_I(inode)->extent_tree;
1074                         em = alloc_extent_map(GFP_NOFS);
1075                         em->start = cur_offset;
1076                         em->orig_start = em->start;
1077                         em->len = num_bytes;
1078                         em->block_len = num_bytes;
1079                         em->block_start = disk_bytenr;
1080                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1081                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1082                         while (1) {
1083                                 spin_lock(&em_tree->lock);
1084                                 ret = add_extent_mapping(em_tree, em);
1085                                 spin_unlock(&em_tree->lock);
1086                                 if (ret != -EEXIST) {
1087                                         free_extent_map(em);
1088                                         break;
1089                                 }
1090                                 btrfs_drop_extent_cache(inode, em->start,
1091                                                 em->start + em->len - 1, 0);
1092                         }
1093                         type = BTRFS_ORDERED_PREALLOC;
1094                 } else {
1095                         type = BTRFS_ORDERED_NOCOW;
1096                 }
1097
1098                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1099                                                num_bytes, num_bytes, type);
1100                 BUG_ON(ret);
1101
1102                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1103                                         cur_offset, cur_offset + num_bytes - 1,
1104                                         locked_page, 1, 1, 1, 0, 0, 0);
1105                 cur_offset = extent_end;
1106                 if (cur_offset > end)
1107                         break;
1108         }
1109         btrfs_release_path(root, path);
1110
1111         if (cur_offset <= end && cow_start == (u64)-1)
1112                 cow_start = cur_offset;
1113         if (cow_start != (u64)-1) {
1114                 ret = cow_file_range(inode, locked_page, cow_start, end,
1115                                      page_started, nr_written, 1);
1116                 BUG_ON(ret);
1117         }
1118
1119         ret = btrfs_end_transaction(trans, root);
1120         BUG_ON(ret);
1121         btrfs_free_path(path);
1122         return 0;
1123 }
1124
1125 /*
1126  * extent_io.c call back to do delayed allocation processing
1127  */
1128 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1129                               u64 start, u64 end, int *page_started,
1130                               unsigned long *nr_written)
1131 {
1132         int ret;
1133         struct btrfs_root *root = BTRFS_I(inode)->root;
1134
1135         if (btrfs_test_flag(inode, NODATACOW))
1136                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1137                                          page_started, 1, nr_written);
1138         else if (btrfs_test_flag(inode, PREALLOC))
1139                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1140                                          page_started, 0, nr_written);
1141         else if (!btrfs_test_opt(root, COMPRESS))
1142                 ret = cow_file_range(inode, locked_page, start, end,
1143                                       page_started, nr_written, 1);
1144         else
1145                 ret = cow_file_range_async(inode, locked_page, start, end,
1146                                            page_started, nr_written);
1147         return ret;
1148 }
1149
1150 /*
1151  * extent_io.c set_bit_hook, used to track delayed allocation
1152  * bytes in this file, and to maintain the list of inodes that
1153  * have pending delalloc work to be done.
1154  */
1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1156                        unsigned long old, unsigned long bits)
1157 {
1158         /*
1159          * set_bit and clear bit hooks normally require _irqsave/restore
1160          * but in this case, we are only testeing for the DELALLOC
1161          * bit, which is only set or cleared with irqs on
1162          */
1163         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1164                 struct btrfs_root *root = BTRFS_I(inode)->root;
1165                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1166                 spin_lock(&root->fs_info->delalloc_lock);
1167                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1168                 root->fs_info->delalloc_bytes += end - start + 1;
1169                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171                                       &root->fs_info->delalloc_inodes);
1172                 }
1173                 spin_unlock(&root->fs_info->delalloc_lock);
1174         }
1175         return 0;
1176 }
1177
1178 /*
1179  * extent_io.c clear_bit_hook, see set_bit_hook for why
1180  */
1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1182                          unsigned long old, unsigned long bits)
1183 {
1184         /*
1185          * set_bit and clear bit hooks normally require _irqsave/restore
1186          * but in this case, we are only testeing for the DELALLOC
1187          * bit, which is only set or cleared with irqs on
1188          */
1189         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1190                 struct btrfs_root *root = BTRFS_I(inode)->root;
1191
1192                 spin_lock(&root->fs_info->delalloc_lock);
1193                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1194                         printk(KERN_INFO "btrfs warning: delalloc account "
1195                                "%llu %llu\n",
1196                                (unsigned long long)end - start + 1,
1197                                (unsigned long long)
1198                                root->fs_info->delalloc_bytes);
1199                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1200                         root->fs_info->delalloc_bytes = 0;
1201                         BTRFS_I(inode)->delalloc_bytes = 0;
1202                 } else {
1203                         btrfs_delalloc_free_space(root, inode,
1204                                                   end - start + 1);
1205                         root->fs_info->delalloc_bytes -= end - start + 1;
1206                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207                 }
1208                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211                 }
1212                 spin_unlock(&root->fs_info->delalloc_lock);
1213         }
1214         return 0;
1215 }
1216
1217 /*
1218  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219  * we don't create bios that span stripes or chunks
1220  */
1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222                          size_t size, struct bio *bio,
1223                          unsigned long bio_flags)
1224 {
1225         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226         struct btrfs_mapping_tree *map_tree;
1227         u64 logical = (u64)bio->bi_sector << 9;
1228         u64 length = 0;
1229         u64 map_length;
1230         int ret;
1231
1232         if (bio_flags & EXTENT_BIO_COMPRESSED)
1233                 return 0;
1234
1235         length = bio->bi_size;
1236         map_tree = &root->fs_info->mapping_tree;
1237         map_length = length;
1238         ret = btrfs_map_block(map_tree, READ, logical,
1239                               &map_length, NULL, 0);
1240
1241         if (map_length < length + size)
1242                 return 1;
1243         return 0;
1244 }
1245
1246 /*
1247  * in order to insert checksums into the metadata in large chunks,
1248  * we wait until bio submission time.   All the pages in the bio are
1249  * checksummed and sums are attached onto the ordered extent record.
1250  *
1251  * At IO completion time the cums attached on the ordered extent record
1252  * are inserted into the btree
1253  */
1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255                                     struct bio *bio, int mirror_num,
1256                                     unsigned long bio_flags)
1257 {
1258         struct btrfs_root *root = BTRFS_I(inode)->root;
1259         int ret = 0;
1260
1261         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1262         BUG_ON(ret);
1263         return 0;
1264 }
1265
1266 /*
1267  * in order to insert checksums into the metadata in large chunks,
1268  * we wait until bio submission time.   All the pages in the bio are
1269  * checksummed and sums are attached onto the ordered extent record.
1270  *
1271  * At IO completion time the cums attached on the ordered extent record
1272  * are inserted into the btree
1273  */
1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275                           int mirror_num, unsigned long bio_flags)
1276 {
1277         struct btrfs_root *root = BTRFS_I(inode)->root;
1278         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1279 }
1280
1281 /*
1282  * extent_io.c submission hook. This does the right thing for csum calculation
1283  * on write, or reading the csums from the tree before a read
1284  */
1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286                           int mirror_num, unsigned long bio_flags)
1287 {
1288         struct btrfs_root *root = BTRFS_I(inode)->root;
1289         int ret = 0;
1290         int skip_sum;
1291
1292         skip_sum = btrfs_test_flag(inode, NODATASUM);
1293
1294         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295         BUG_ON(ret);
1296
1297         if (!(rw & (1 << BIO_RW))) {
1298                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299                         return btrfs_submit_compressed_read(inode, bio,
1300                                                     mirror_num, bio_flags);
1301                 } else if (!skip_sum)
1302                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303                 goto mapit;
1304         } else if (!skip_sum) {
1305                 /* csum items have already been cloned */
1306                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307                         goto mapit;
1308                 /* we're doing a write, do the async checksumming */
1309                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310                                    inode, rw, bio, mirror_num,
1311                                    bio_flags, __btrfs_submit_bio_start,
1312                                    __btrfs_submit_bio_done);
1313         }
1314
1315 mapit:
1316         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1317 }
1318
1319 /*
1320  * given a list of ordered sums record them in the inode.  This happens
1321  * at IO completion time based on sums calculated at bio submission time.
1322  */
1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324                              struct inode *inode, u64 file_offset,
1325                              struct list_head *list)
1326 {
1327         struct btrfs_ordered_sum *sum;
1328
1329         btrfs_set_trans_block_group(trans, inode);
1330
1331         list_for_each_entry(sum, list, list) {
1332                 btrfs_csum_file_blocks(trans,
1333                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1334         }
1335         return 0;
1336 }
1337
1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339 {
1340         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341                 WARN_ON(1);
1342         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343                                    GFP_NOFS);
1344 }
1345
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1348         struct page *page;
1349         struct btrfs_work work;
1350 };
1351
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1353 {
1354         struct btrfs_writepage_fixup *fixup;
1355         struct btrfs_ordered_extent *ordered;
1356         struct page *page;
1357         struct inode *inode;
1358         u64 page_start;
1359         u64 page_end;
1360
1361         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362         page = fixup->page;
1363 again:
1364         lock_page(page);
1365         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366                 ClearPageChecked(page);
1367                 goto out_page;
1368         }
1369
1370         inode = page->mapping->host;
1371         page_start = page_offset(page);
1372         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373
1374         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1375
1376         /* already ordered? We're done */
1377         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378                              EXTENT_ORDERED, 0)) {
1379                 goto out;
1380         }
1381
1382         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383         if (ordered) {
1384                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385                               page_end, GFP_NOFS);
1386                 unlock_page(page);
1387                 btrfs_start_ordered_extent(inode, ordered, 1);
1388                 goto again;
1389         }
1390
1391         btrfs_set_extent_delalloc(inode, page_start, page_end);
1392         ClearPageChecked(page);
1393 out:
1394         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395 out_page:
1396         unlock_page(page);
1397         page_cache_release(page);
1398 }
1399
1400 /*
1401  * There are a few paths in the higher layers of the kernel that directly
1402  * set the page dirty bit without asking the filesystem if it is a
1403  * good idea.  This causes problems because we want to make sure COW
1404  * properly happens and the data=ordered rules are followed.
1405  *
1406  * In our case any range that doesn't have the ORDERED bit set
1407  * hasn't been properly setup for IO.  We kick off an async process
1408  * to fix it up.  The async helper will wait for ordered extents, set
1409  * the delalloc bit and make it safe to write the page.
1410  */
1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1412 {
1413         struct inode *inode = page->mapping->host;
1414         struct btrfs_writepage_fixup *fixup;
1415         struct btrfs_root *root = BTRFS_I(inode)->root;
1416         int ret;
1417
1418         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419                              EXTENT_ORDERED, 0);
1420         if (ret)
1421                 return 0;
1422
1423         if (PageChecked(page))
1424                 return -EAGAIN;
1425
1426         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427         if (!fixup)
1428                 return -EAGAIN;
1429
1430         SetPageChecked(page);
1431         page_cache_get(page);
1432         fixup->work.func = btrfs_writepage_fixup_worker;
1433         fixup->page = page;
1434         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435         return -EAGAIN;
1436 }
1437
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439                                        struct inode *inode, u64 file_pos,
1440                                        u64 disk_bytenr, u64 disk_num_bytes,
1441                                        u64 num_bytes, u64 ram_bytes,
1442                                        u8 compression, u8 encryption,
1443                                        u16 other_encoding, int extent_type)
1444 {
1445         struct btrfs_root *root = BTRFS_I(inode)->root;
1446         struct btrfs_file_extent_item *fi;
1447         struct btrfs_path *path;
1448         struct extent_buffer *leaf;
1449         struct btrfs_key ins;
1450         u64 hint;
1451         int ret;
1452
1453         path = btrfs_alloc_path();
1454         BUG_ON(!path);
1455
1456         path->leave_spinning = 1;
1457         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1458                                  file_pos + num_bytes, file_pos, &hint);
1459         BUG_ON(ret);
1460
1461         ins.objectid = inode->i_ino;
1462         ins.offset = file_pos;
1463         ins.type = BTRFS_EXTENT_DATA_KEY;
1464         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1465         BUG_ON(ret);
1466         leaf = path->nodes[0];
1467         fi = btrfs_item_ptr(leaf, path->slots[0],
1468                             struct btrfs_file_extent_item);
1469         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1470         btrfs_set_file_extent_type(leaf, fi, extent_type);
1471         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1472         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1473         btrfs_set_file_extent_offset(leaf, fi, 0);
1474         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1475         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1476         btrfs_set_file_extent_compression(leaf, fi, compression);
1477         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1478         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1479
1480         btrfs_unlock_up_safe(path, 1);
1481         btrfs_set_lock_blocking(leaf);
1482
1483         btrfs_mark_buffer_dirty(leaf);
1484
1485         inode_add_bytes(inode, num_bytes);
1486         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1487
1488         ins.objectid = disk_bytenr;
1489         ins.offset = disk_num_bytes;
1490         ins.type = BTRFS_EXTENT_ITEM_KEY;
1491         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1492                                           root->root_key.objectid,
1493                                           trans->transid, inode->i_ino, &ins);
1494         BUG_ON(ret);
1495         btrfs_free_path(path);
1496
1497         return 0;
1498 }
1499
1500 /* as ordered data IO finishes, this gets called so we can finish
1501  * an ordered extent if the range of bytes in the file it covers are
1502  * fully written.
1503  */
1504 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1505 {
1506         struct btrfs_root *root = BTRFS_I(inode)->root;
1507         struct btrfs_trans_handle *trans;
1508         struct btrfs_ordered_extent *ordered_extent;
1509         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1510         struct btrfs_path *path;
1511         int compressed = 0;
1512         int ret;
1513
1514         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1515         if (!ret)
1516                 return 0;
1517
1518         /*
1519          * before we join the transaction, try to do some of our IO.
1520          * This will limit the amount of IO that we have to do with
1521          * the transaction running.  We're unlikely to need to do any
1522          * IO if the file extents are new, the disk_i_size checks
1523          * covers the most common case.
1524          */
1525         if (start < BTRFS_I(inode)->disk_i_size) {
1526                 path = btrfs_alloc_path();
1527                 if (path) {
1528                         ret = btrfs_lookup_file_extent(NULL, root, path,
1529                                                        inode->i_ino,
1530                                                        start, 0);
1531                         btrfs_free_path(path);
1532                 }
1533         }
1534
1535         trans = btrfs_join_transaction(root, 1);
1536
1537         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1538         BUG_ON(!ordered_extent);
1539         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1540                 goto nocow;
1541
1542         lock_extent(io_tree, ordered_extent->file_offset,
1543                     ordered_extent->file_offset + ordered_extent->len - 1,
1544                     GFP_NOFS);
1545
1546         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1547                 compressed = 1;
1548         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1549                 BUG_ON(compressed);
1550                 ret = btrfs_mark_extent_written(trans, root, inode,
1551                                                 ordered_extent->file_offset,
1552                                                 ordered_extent->file_offset +
1553                                                 ordered_extent->len);
1554                 BUG_ON(ret);
1555         } else {
1556                 ret = insert_reserved_file_extent(trans, inode,
1557                                                 ordered_extent->file_offset,
1558                                                 ordered_extent->start,
1559                                                 ordered_extent->disk_len,
1560                                                 ordered_extent->len,
1561                                                 ordered_extent->len,
1562                                                 compressed, 0, 0,
1563                                                 BTRFS_FILE_EXTENT_REG);
1564                 BUG_ON(ret);
1565         }
1566         unlock_extent(io_tree, ordered_extent->file_offset,
1567                     ordered_extent->file_offset + ordered_extent->len - 1,
1568                     GFP_NOFS);
1569 nocow:
1570         add_pending_csums(trans, inode, ordered_extent->file_offset,
1571                           &ordered_extent->list);
1572
1573         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1574         btrfs_ordered_update_i_size(inode, ordered_extent);
1575         btrfs_update_inode(trans, root, inode);
1576         btrfs_remove_ordered_extent(inode, ordered_extent);
1577         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1578
1579         /* once for us */
1580         btrfs_put_ordered_extent(ordered_extent);
1581         /* once for the tree */
1582         btrfs_put_ordered_extent(ordered_extent);
1583
1584         btrfs_end_transaction(trans, root);
1585         return 0;
1586 }
1587
1588 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1589                                 struct extent_state *state, int uptodate)
1590 {
1591         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1592 }
1593
1594 /*
1595  * When IO fails, either with EIO or csum verification fails, we
1596  * try other mirrors that might have a good copy of the data.  This
1597  * io_failure_record is used to record state as we go through all the
1598  * mirrors.  If another mirror has good data, the page is set up to date
1599  * and things continue.  If a good mirror can't be found, the original
1600  * bio end_io callback is called to indicate things have failed.
1601  */
1602 struct io_failure_record {
1603         struct page *page;
1604         u64 start;
1605         u64 len;
1606         u64 logical;
1607         unsigned long bio_flags;
1608         int last_mirror;
1609 };
1610
1611 static int btrfs_io_failed_hook(struct bio *failed_bio,
1612                          struct page *page, u64 start, u64 end,
1613                          struct extent_state *state)
1614 {
1615         struct io_failure_record *failrec = NULL;
1616         u64 private;
1617         struct extent_map *em;
1618         struct inode *inode = page->mapping->host;
1619         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1620         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1621         struct bio *bio;
1622         int num_copies;
1623         int ret;
1624         int rw;
1625         u64 logical;
1626
1627         ret = get_state_private(failure_tree, start, &private);
1628         if (ret) {
1629                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1630                 if (!failrec)
1631                         return -ENOMEM;
1632                 failrec->start = start;
1633                 failrec->len = end - start + 1;
1634                 failrec->last_mirror = 0;
1635                 failrec->bio_flags = 0;
1636
1637                 spin_lock(&em_tree->lock);
1638                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1639                 if (em->start > start || em->start + em->len < start) {
1640                         free_extent_map(em);
1641                         em = NULL;
1642                 }
1643                 spin_unlock(&em_tree->lock);
1644
1645                 if (!em || IS_ERR(em)) {
1646                         kfree(failrec);
1647                         return -EIO;
1648                 }
1649                 logical = start - em->start;
1650                 logical = em->block_start + logical;
1651                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1652                         logical = em->block_start;
1653                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1654                 }
1655                 failrec->logical = logical;
1656                 free_extent_map(em);
1657                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1658                                 EXTENT_DIRTY, GFP_NOFS);
1659                 set_state_private(failure_tree, start,
1660                                  (u64)(unsigned long)failrec);
1661         } else {
1662                 failrec = (struct io_failure_record *)(unsigned long)private;
1663         }
1664         num_copies = btrfs_num_copies(
1665                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1666                               failrec->logical, failrec->len);
1667         failrec->last_mirror++;
1668         if (!state) {
1669                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1670                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1671                                                     failrec->start,
1672                                                     EXTENT_LOCKED);
1673                 if (state && state->start != failrec->start)
1674                         state = NULL;
1675                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1676         }
1677         if (!state || failrec->last_mirror > num_copies) {
1678                 set_state_private(failure_tree, failrec->start, 0);
1679                 clear_extent_bits(failure_tree, failrec->start,
1680                                   failrec->start + failrec->len - 1,
1681                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1682                 kfree(failrec);
1683                 return -EIO;
1684         }
1685         bio = bio_alloc(GFP_NOFS, 1);
1686         bio->bi_private = state;
1687         bio->bi_end_io = failed_bio->bi_end_io;
1688         bio->bi_sector = failrec->logical >> 9;
1689         bio->bi_bdev = failed_bio->bi_bdev;
1690         bio->bi_size = 0;
1691
1692         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1693         if (failed_bio->bi_rw & (1 << BIO_RW))
1694                 rw = WRITE;
1695         else
1696                 rw = READ;
1697
1698         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1699                                                       failrec->last_mirror,
1700                                                       failrec->bio_flags);
1701         return 0;
1702 }
1703
1704 /*
1705  * each time an IO finishes, we do a fast check in the IO failure tree
1706  * to see if we need to process or clean up an io_failure_record
1707  */
1708 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1709 {
1710         u64 private;
1711         u64 private_failure;
1712         struct io_failure_record *failure;
1713         int ret;
1714
1715         private = 0;
1716         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1717                              (u64)-1, 1, EXTENT_DIRTY)) {
1718                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1719                                         start, &private_failure);
1720                 if (ret == 0) {
1721                         failure = (struct io_failure_record *)(unsigned long)
1722                                    private_failure;
1723                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1724                                           failure->start, 0);
1725                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1726                                           failure->start,
1727                                           failure->start + failure->len - 1,
1728                                           EXTENT_DIRTY | EXTENT_LOCKED,
1729                                           GFP_NOFS);
1730                         kfree(failure);
1731                 }
1732         }
1733         return 0;
1734 }
1735
1736 /*
1737  * when reads are done, we need to check csums to verify the data is correct
1738  * if there's a match, we allow the bio to finish.  If not, we go through
1739  * the io_failure_record routines to find good copies
1740  */
1741 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1742                                struct extent_state *state)
1743 {
1744         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1745         struct inode *inode = page->mapping->host;
1746         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1747         char *kaddr;
1748         u64 private = ~(u32)0;
1749         int ret;
1750         struct btrfs_root *root = BTRFS_I(inode)->root;
1751         u32 csum = ~(u32)0;
1752
1753         if (PageChecked(page)) {
1754                 ClearPageChecked(page);
1755                 goto good;
1756         }
1757         if (btrfs_test_flag(inode, NODATASUM))
1758                 return 0;
1759
1760         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1761             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1762                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1763                                   GFP_NOFS);
1764                 return 0;
1765         }
1766
1767         if (state && state->start == start) {
1768                 private = state->private;
1769                 ret = 0;
1770         } else {
1771                 ret = get_state_private(io_tree, start, &private);
1772         }
1773         kaddr = kmap_atomic(page, KM_USER0);
1774         if (ret)
1775                 goto zeroit;
1776
1777         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1778         btrfs_csum_final(csum, (char *)&csum);
1779         if (csum != private)
1780                 goto zeroit;
1781
1782         kunmap_atomic(kaddr, KM_USER0);
1783 good:
1784         /* if the io failure tree for this inode is non-empty,
1785          * check to see if we've recovered from a failed IO
1786          */
1787         btrfs_clean_io_failures(inode, start);
1788         return 0;
1789
1790 zeroit:
1791         printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1792                "private %llu\n", page->mapping->host->i_ino,
1793                (unsigned long long)start, csum,
1794                (unsigned long long)private);
1795         memset(kaddr + offset, 1, end - start + 1);
1796         flush_dcache_page(page);
1797         kunmap_atomic(kaddr, KM_USER0);
1798         if (private == 0)
1799                 return 0;
1800         return -EIO;
1801 }
1802
1803 /*
1804  * This creates an orphan entry for the given inode in case something goes
1805  * wrong in the middle of an unlink/truncate.
1806  */
1807 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1808 {
1809         struct btrfs_root *root = BTRFS_I(inode)->root;
1810         int ret = 0;
1811
1812         spin_lock(&root->list_lock);
1813
1814         /* already on the orphan list, we're good */
1815         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1816                 spin_unlock(&root->list_lock);
1817                 return 0;
1818         }
1819
1820         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1821
1822         spin_unlock(&root->list_lock);
1823
1824         /*
1825          * insert an orphan item to track this unlinked/truncated file
1826          */
1827         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1828
1829         return ret;
1830 }
1831
1832 /*
1833  * We have done the truncate/delete so we can go ahead and remove the orphan
1834  * item for this particular inode.
1835  */
1836 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1837 {
1838         struct btrfs_root *root = BTRFS_I(inode)->root;
1839         int ret = 0;
1840
1841         spin_lock(&root->list_lock);
1842
1843         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1844                 spin_unlock(&root->list_lock);
1845                 return 0;
1846         }
1847
1848         list_del_init(&BTRFS_I(inode)->i_orphan);
1849         if (!trans) {
1850                 spin_unlock(&root->list_lock);
1851                 return 0;
1852         }
1853
1854         spin_unlock(&root->list_lock);
1855
1856         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1857
1858         return ret;
1859 }
1860
1861 /*
1862  * this cleans up any orphans that may be left on the list from the last use
1863  * of this root.
1864  */
1865 void btrfs_orphan_cleanup(struct btrfs_root *root)
1866 {
1867         struct btrfs_path *path;
1868         struct extent_buffer *leaf;
1869         struct btrfs_item *item;
1870         struct btrfs_key key, found_key;
1871         struct btrfs_trans_handle *trans;
1872         struct inode *inode;
1873         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1874
1875         path = btrfs_alloc_path();
1876         if (!path)
1877                 return;
1878         path->reada = -1;
1879
1880         key.objectid = BTRFS_ORPHAN_OBJECTID;
1881         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1882         key.offset = (u64)-1;
1883
1884
1885         while (1) {
1886                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1887                 if (ret < 0) {
1888                         printk(KERN_ERR "Error searching slot for orphan: %d"
1889                                "\n", ret);
1890                         break;
1891                 }
1892
1893                 /*
1894                  * if ret == 0 means we found what we were searching for, which
1895                  * is weird, but possible, so only screw with path if we didnt
1896                  * find the key and see if we have stuff that matches
1897                  */
1898                 if (ret > 0) {
1899                         if (path->slots[0] == 0)
1900                                 break;
1901                         path->slots[0]--;
1902                 }
1903
1904                 /* pull out the item */
1905                 leaf = path->nodes[0];
1906                 item = btrfs_item_nr(leaf, path->slots[0]);
1907                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1908
1909                 /* make sure the item matches what we want */
1910                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1911                         break;
1912                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1913                         break;
1914
1915                 /* release the path since we're done with it */
1916                 btrfs_release_path(root, path);
1917
1918                 /*
1919                  * this is where we are basically btrfs_lookup, without the
1920                  * crossing root thing.  we store the inode number in the
1921                  * offset of the orphan item.
1922                  */
1923                 inode = btrfs_iget_locked(root->fs_info->sb,
1924                                           found_key.offset, root);
1925                 if (!inode)
1926                         break;
1927
1928                 if (inode->i_state & I_NEW) {
1929                         BTRFS_I(inode)->root = root;
1930
1931                         /* have to set the location manually */
1932                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1933                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1934                         BTRFS_I(inode)->location.offset = 0;
1935
1936                         btrfs_read_locked_inode(inode);
1937                         unlock_new_inode(inode);
1938                 }
1939
1940                 /*
1941                  * add this inode to the orphan list so btrfs_orphan_del does
1942                  * the proper thing when we hit it
1943                  */
1944                 spin_lock(&root->list_lock);
1945                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1946                 spin_unlock(&root->list_lock);
1947
1948                 /*
1949                  * if this is a bad inode, means we actually succeeded in
1950                  * removing the inode, but not the orphan record, which means
1951                  * we need to manually delete the orphan since iput will just
1952                  * do a destroy_inode
1953                  */
1954                 if (is_bad_inode(inode)) {
1955                         trans = btrfs_start_transaction(root, 1);
1956                         btrfs_orphan_del(trans, inode);
1957                         btrfs_end_transaction(trans, root);
1958                         iput(inode);
1959                         continue;
1960                 }
1961
1962                 /* if we have links, this was a truncate, lets do that */
1963                 if (inode->i_nlink) {
1964                         nr_truncate++;
1965                         btrfs_truncate(inode);
1966                 } else {
1967                         nr_unlink++;
1968                 }
1969
1970                 /* this will do delete_inode and everything for us */
1971                 iput(inode);
1972         }
1973
1974         if (nr_unlink)
1975                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1976         if (nr_truncate)
1977                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1978
1979         btrfs_free_path(path);
1980 }
1981
1982 /*
1983  * read an inode from the btree into the in-memory inode
1984  */
1985 void btrfs_read_locked_inode(struct inode *inode)
1986 {
1987         struct btrfs_path *path;
1988         struct extent_buffer *leaf;
1989         struct btrfs_inode_item *inode_item;
1990         struct btrfs_timespec *tspec;
1991         struct btrfs_root *root = BTRFS_I(inode)->root;
1992         struct btrfs_key location;
1993         u64 alloc_group_block;
1994         u32 rdev;
1995         int ret;
1996
1997         path = btrfs_alloc_path();
1998         BUG_ON(!path);
1999         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2000
2001         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2002         if (ret)
2003                 goto make_bad;
2004
2005         leaf = path->nodes[0];
2006         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2007                                     struct btrfs_inode_item);
2008
2009         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2010         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2011         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2012         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2013         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2014
2015         tspec = btrfs_inode_atime(inode_item);
2016         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2017         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2018
2019         tspec = btrfs_inode_mtime(inode_item);
2020         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2021         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2022
2023         tspec = btrfs_inode_ctime(inode_item);
2024         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2025         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2026
2027         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2028         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2029         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2030         inode->i_generation = BTRFS_I(inode)->generation;
2031         inode->i_rdev = 0;
2032         rdev = btrfs_inode_rdev(leaf, inode_item);
2033
2034         BTRFS_I(inode)->index_cnt = (u64)-1;
2035         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2036
2037         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2038
2039         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2040                                                 alloc_group_block, 0);
2041         btrfs_free_path(path);
2042         inode_item = NULL;
2043
2044         switch (inode->i_mode & S_IFMT) {
2045         case S_IFREG:
2046                 inode->i_mapping->a_ops = &btrfs_aops;
2047                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2048                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2049                 inode->i_fop = &btrfs_file_operations;
2050                 inode->i_op = &btrfs_file_inode_operations;
2051                 break;
2052         case S_IFDIR:
2053                 inode->i_fop = &btrfs_dir_file_operations;
2054                 if (root == root->fs_info->tree_root)
2055                         inode->i_op = &btrfs_dir_ro_inode_operations;
2056                 else
2057                         inode->i_op = &btrfs_dir_inode_operations;
2058                 break;
2059         case S_IFLNK:
2060                 inode->i_op = &btrfs_symlink_inode_operations;
2061                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2062                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2063                 break;
2064         default:
2065                 inode->i_op = &btrfs_special_inode_operations;
2066                 init_special_inode(inode, inode->i_mode, rdev);
2067                 break;
2068         }
2069         return;
2070
2071 make_bad:
2072         btrfs_free_path(path);
2073         make_bad_inode(inode);
2074 }
2075
2076 /*
2077  * given a leaf and an inode, copy the inode fields into the leaf
2078  */
2079 static void fill_inode_item(struct btrfs_trans_handle *trans,
2080                             struct extent_buffer *leaf,
2081                             struct btrfs_inode_item *item,
2082                             struct inode *inode)
2083 {
2084         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2085         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2086         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2087         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2088         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2089
2090         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2091                                inode->i_atime.tv_sec);
2092         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2093                                 inode->i_atime.tv_nsec);
2094
2095         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2096                                inode->i_mtime.tv_sec);
2097         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2098                                 inode->i_mtime.tv_nsec);
2099
2100         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2101                                inode->i_ctime.tv_sec);
2102         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2103                                 inode->i_ctime.tv_nsec);
2104
2105         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2106         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2107         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2108         btrfs_set_inode_transid(leaf, item, trans->transid);
2109         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2110         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2111         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2112 }
2113
2114 /*
2115  * copy everything in the in-memory inode into the btree.
2116  */
2117 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2118                                 struct btrfs_root *root, struct inode *inode)
2119 {
2120         struct btrfs_inode_item *inode_item;
2121         struct btrfs_path *path;
2122         struct extent_buffer *leaf;
2123         int ret;
2124
2125         path = btrfs_alloc_path();
2126         BUG_ON(!path);
2127         path->leave_spinning = 1;
2128         ret = btrfs_lookup_inode(trans, root, path,
2129                                  &BTRFS_I(inode)->location, 1);
2130         if (ret) {
2131                 if (ret > 0)
2132                         ret = -ENOENT;
2133                 goto failed;
2134         }
2135
2136         btrfs_unlock_up_safe(path, 1);
2137         leaf = path->nodes[0];
2138         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2139                                   struct btrfs_inode_item);
2140
2141         fill_inode_item(trans, leaf, inode_item, inode);
2142         btrfs_mark_buffer_dirty(leaf);
2143         btrfs_set_inode_last_trans(trans, inode);
2144         ret = 0;
2145 failed:
2146         btrfs_free_path(path);
2147         return ret;
2148 }
2149
2150
2151 /*
2152  * unlink helper that gets used here in inode.c and in the tree logging
2153  * recovery code.  It remove a link in a directory with a given name, and
2154  * also drops the back refs in the inode to the directory
2155  */
2156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2157                        struct btrfs_root *root,
2158                        struct inode *dir, struct inode *inode,
2159                        const char *name, int name_len)
2160 {
2161         struct btrfs_path *path;
2162         int ret = 0;
2163         struct extent_buffer *leaf;
2164         struct btrfs_dir_item *di;
2165         struct btrfs_key key;
2166         u64 index;
2167
2168         path = btrfs_alloc_path();
2169         if (!path) {
2170                 ret = -ENOMEM;
2171                 goto err;
2172         }
2173
2174         path->leave_spinning = 1;
2175         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2176                                     name, name_len, -1);
2177         if (IS_ERR(di)) {
2178                 ret = PTR_ERR(di);
2179                 goto err;
2180         }
2181         if (!di) {
2182                 ret = -ENOENT;
2183                 goto err;
2184         }
2185         leaf = path->nodes[0];
2186         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2187         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2188         if (ret)
2189                 goto err;
2190         btrfs_release_path(root, path);
2191
2192         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2193                                   inode->i_ino,
2194                                   dir->i_ino, &index);
2195         if (ret) {
2196                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2197                        "inode %lu parent %lu\n", name_len, name,
2198                        inode->i_ino, dir->i_ino);
2199                 goto err;
2200         }
2201
2202         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2203                                          index, name, name_len, -1);
2204         if (IS_ERR(di)) {
2205                 ret = PTR_ERR(di);
2206                 goto err;
2207         }
2208         if (!di) {
2209                 ret = -ENOENT;
2210                 goto err;
2211         }
2212         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2213         btrfs_release_path(root, path);
2214
2215         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2216                                          inode, dir->i_ino);
2217         BUG_ON(ret != 0 && ret != -ENOENT);
2218         if (ret != -ENOENT)
2219                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2220
2221         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2222                                            dir, index);
2223         BUG_ON(ret);
2224 err:
2225         btrfs_free_path(path);
2226         if (ret)
2227                 goto out;
2228
2229         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2230         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2231         btrfs_update_inode(trans, root, dir);
2232         btrfs_drop_nlink(inode);
2233         ret = btrfs_update_inode(trans, root, inode);
2234         dir->i_sb->s_dirt = 1;
2235 out:
2236         return ret;
2237 }
2238
2239 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2240 {
2241         struct btrfs_root *root;
2242         struct btrfs_trans_handle *trans;
2243         struct inode *inode = dentry->d_inode;
2244         int ret;
2245         unsigned long nr = 0;
2246
2247         root = BTRFS_I(dir)->root;
2248
2249         trans = btrfs_start_transaction(root, 1);
2250
2251         btrfs_set_trans_block_group(trans, dir);
2252         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2253                                  dentry->d_name.name, dentry->d_name.len);
2254
2255         if (inode->i_nlink == 0)
2256                 ret = btrfs_orphan_add(trans, inode);
2257
2258         nr = trans->blocks_used;
2259
2260         btrfs_end_transaction_throttle(trans, root);
2261         btrfs_btree_balance_dirty(root, nr);
2262         return ret;
2263 }
2264
2265 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2266 {
2267         struct inode *inode = dentry->d_inode;
2268         int err = 0;
2269         int ret;
2270         struct btrfs_root *root = BTRFS_I(dir)->root;
2271         struct btrfs_trans_handle *trans;
2272         unsigned long nr = 0;
2273
2274         /*
2275          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2276          * the root of a subvolume or snapshot
2277          */
2278         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2279             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2280                 return -ENOTEMPTY;
2281         }
2282
2283         trans = btrfs_start_transaction(root, 1);
2284         btrfs_set_trans_block_group(trans, dir);
2285
2286         err = btrfs_orphan_add(trans, inode);
2287         if (err)
2288                 goto fail_trans;
2289
2290         /* now the directory is empty */
2291         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2292                                  dentry->d_name.name, dentry->d_name.len);
2293         if (!err)
2294                 btrfs_i_size_write(inode, 0);
2295
2296 fail_trans:
2297         nr = trans->blocks_used;
2298         ret = btrfs_end_transaction_throttle(trans, root);
2299         btrfs_btree_balance_dirty(root, nr);
2300
2301         if (ret && !err)
2302                 err = ret;
2303         return err;
2304 }
2305
2306 #if 0
2307 /*
2308  * when truncating bytes in a file, it is possible to avoid reading
2309  * the leaves that contain only checksum items.  This can be the
2310  * majority of the IO required to delete a large file, but it must
2311  * be done carefully.
2312  *
2313  * The keys in the level just above the leaves are checked to make sure
2314  * the lowest key in a given leaf is a csum key, and starts at an offset
2315  * after the new  size.
2316  *
2317  * Then the key for the next leaf is checked to make sure it also has
2318  * a checksum item for the same file.  If it does, we know our target leaf
2319  * contains only checksum items, and it can be safely freed without reading
2320  * it.
2321  *
2322  * This is just an optimization targeted at large files.  It may do
2323  * nothing.  It will return 0 unless things went badly.
2324  */
2325 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2326                                      struct btrfs_root *root,
2327                                      struct btrfs_path *path,
2328                                      struct inode *inode, u64 new_size)
2329 {
2330         struct btrfs_key key;
2331         int ret;
2332         int nritems;
2333         struct btrfs_key found_key;
2334         struct btrfs_key other_key;
2335         struct btrfs_leaf_ref *ref;
2336         u64 leaf_gen;
2337         u64 leaf_start;
2338
2339         path->lowest_level = 1;
2340         key.objectid = inode->i_ino;
2341         key.type = BTRFS_CSUM_ITEM_KEY;
2342         key.offset = new_size;
2343 again:
2344         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2345         if (ret < 0)
2346                 goto out;
2347
2348         if (path->nodes[1] == NULL) {
2349                 ret = 0;
2350                 goto out;
2351         }
2352         ret = 0;
2353         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2354         nritems = btrfs_header_nritems(path->nodes[1]);
2355
2356         if (!nritems)
2357                 goto out;
2358
2359         if (path->slots[1] >= nritems)
2360                 goto next_node;
2361
2362         /* did we find a key greater than anything we want to delete? */
2363         if (found_key.objectid > inode->i_ino ||
2364            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2365                 goto out;
2366
2367         /* we check the next key in the node to make sure the leave contains
2368          * only checksum items.  This comparison doesn't work if our
2369          * leaf is the last one in the node
2370          */
2371         if (path->slots[1] + 1 >= nritems) {
2372 next_node:
2373                 /* search forward from the last key in the node, this
2374                  * will bring us into the next node in the tree
2375                  */
2376                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2377
2378                 /* unlikely, but we inc below, so check to be safe */
2379                 if (found_key.offset == (u64)-1)
2380                         goto out;
2381
2382                 /* search_forward needs a path with locks held, do the
2383                  * search again for the original key.  It is possible
2384                  * this will race with a balance and return a path that
2385                  * we could modify, but this drop is just an optimization
2386                  * and is allowed to miss some leaves.
2387                  */
2388                 btrfs_release_path(root, path);
2389                 found_key.offset++;
2390
2391                 /* setup a max key for search_forward */
2392                 other_key.offset = (u64)-1;
2393                 other_key.type = key.type;
2394                 other_key.objectid = key.objectid;
2395
2396                 path->keep_locks = 1;
2397                 ret = btrfs_search_forward(root, &found_key, &other_key,
2398                                            path, 0, 0);
2399                 path->keep_locks = 0;
2400                 if (ret || found_key.objectid != key.objectid ||
2401                     found_key.type != key.type) {
2402                         ret = 0;
2403                         goto out;
2404                 }
2405
2406                 key.offset = found_key.offset;
2407                 btrfs_release_path(root, path);
2408                 cond_resched();
2409                 goto again;
2410         }
2411
2412         /* we know there's one more slot after us in the tree,
2413          * read that key so we can verify it is also a checksum item
2414          */
2415         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2416
2417         if (found_key.objectid < inode->i_ino)
2418                 goto next_key;
2419
2420         if (found_key.type != key.type || found_key.offset < new_size)
2421                 goto next_key;
2422
2423         /*
2424          * if the key for the next leaf isn't a csum key from this objectid,
2425          * we can't be sure there aren't good items inside this leaf.
2426          * Bail out
2427          */
2428         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2429                 goto out;
2430
2431         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2432         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2433         /*
2434          * it is safe to delete this leaf, it contains only
2435          * csum items from this inode at an offset >= new_size
2436          */
2437         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2438         BUG_ON(ret);
2439
2440         if (root->ref_cows && leaf_gen < trans->transid) {
2441                 ref = btrfs_alloc_leaf_ref(root, 0);
2442                 if (ref) {
2443                         ref->root_gen = root->root_key.offset;
2444                         ref->bytenr = leaf_start;
2445                         ref->owner = 0;
2446                         ref->generation = leaf_gen;
2447                         ref->nritems = 0;
2448
2449                         btrfs_sort_leaf_ref(ref);
2450
2451                         ret = btrfs_add_leaf_ref(root, ref, 0);
2452                         WARN_ON(ret);
2453                         btrfs_free_leaf_ref(root, ref);
2454                 } else {
2455                         WARN_ON(1);
2456                 }
2457         }
2458 next_key:
2459         btrfs_release_path(root, path);
2460
2461         if (other_key.objectid == inode->i_ino &&
2462             other_key.type == key.type && other_key.offset > key.offset) {
2463                 key.offset = other_key.offset;
2464                 cond_resched();
2465                 goto again;
2466         }
2467         ret = 0;
2468 out:
2469         /* fixup any changes we've made to the path */
2470         path->lowest_level = 0;
2471         path->keep_locks = 0;
2472         btrfs_release_path(root, path);
2473         return ret;
2474 }
2475
2476 #endif
2477
2478 /*
2479  * this can truncate away extent items, csum items and directory items.
2480  * It starts at a high offset and removes keys until it can't find
2481  * any higher than new_size
2482  *
2483  * csum items that cross the new i_size are truncated to the new size
2484  * as well.
2485  *
2486  * min_type is the minimum key type to truncate down to.  If set to 0, this
2487  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2488  */
2489 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2490                                         struct btrfs_root *root,
2491                                         struct inode *inode,
2492                                         u64 new_size, u32 min_type)
2493 {
2494         int ret;
2495         struct btrfs_path *path;
2496         struct btrfs_key key;
2497         struct btrfs_key found_key;
2498         u32 found_type = (u8)-1;
2499         struct extent_buffer *leaf;
2500         struct btrfs_file_extent_item *fi;
2501         u64 extent_start = 0;
2502         u64 extent_num_bytes = 0;
2503         u64 item_end = 0;
2504         u64 root_gen = 0;
2505         u64 root_owner = 0;
2506         int found_extent;
2507         int del_item;
2508         int pending_del_nr = 0;
2509         int pending_del_slot = 0;
2510         int extent_type = -1;
2511         int encoding;
2512         u64 mask = root->sectorsize - 1;
2513
2514         if (root->ref_cows)
2515                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2516         path = btrfs_alloc_path();
2517         path->reada = -1;
2518         BUG_ON(!path);
2519
2520         /* FIXME, add redo link to tree so we don't leak on crash */
2521         key.objectid = inode->i_ino;
2522         key.offset = (u64)-1;
2523         key.type = (u8)-1;
2524
2525 search_again:
2526         path->leave_spinning = 1;
2527         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2528         if (ret < 0)
2529                 goto error;
2530
2531         if (ret > 0) {
2532                 /* there are no items in the tree for us to truncate, we're
2533                  * done
2534                  */
2535                 if (path->slots[0] == 0) {
2536                         ret = 0;
2537                         goto error;
2538                 }
2539                 path->slots[0]--;
2540         }
2541
2542         while (1) {
2543                 fi = NULL;
2544                 leaf = path->nodes[0];
2545                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2546                 found_type = btrfs_key_type(&found_key);
2547                 encoding = 0;
2548
2549                 if (found_key.objectid != inode->i_ino)
2550                         break;
2551
2552                 if (found_type < min_type)
2553                         break;
2554
2555                 item_end = found_key.offset;
2556                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2557                         fi = btrfs_item_ptr(leaf, path->slots[0],
2558                                             struct btrfs_file_extent_item);
2559                         extent_type = btrfs_file_extent_type(leaf, fi);
2560                         encoding = btrfs_file_extent_compression(leaf, fi);
2561                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2562                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2563
2564                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2565                                 item_end +=
2566                                     btrfs_file_extent_num_bytes(leaf, fi);
2567                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2568                                 item_end += btrfs_file_extent_inline_len(leaf,
2569                                                                          fi);
2570                         }
2571                         item_end--;
2572                 }
2573                 if (item_end < new_size) {
2574                         if (found_type == BTRFS_DIR_ITEM_KEY)
2575                                 found_type = BTRFS_INODE_ITEM_KEY;
2576                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2577                                 found_type = BTRFS_EXTENT_DATA_KEY;
2578                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2579                                 found_type = BTRFS_XATTR_ITEM_KEY;
2580                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2581                                 found_type = BTRFS_INODE_REF_KEY;
2582                         else if (found_type)
2583                                 found_type--;
2584                         else
2585                                 break;
2586                         btrfs_set_key_type(&key, found_type);
2587                         goto next;
2588                 }
2589                 if (found_key.offset >= new_size)
2590                         del_item = 1;
2591                 else
2592                         del_item = 0;
2593                 found_extent = 0;
2594
2595                 /* FIXME, shrink the extent if the ref count is only 1 */
2596                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2597                         goto delete;
2598
2599                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2600                         u64 num_dec;
2601                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2602                         if (!del_item && !encoding) {
2603                                 u64 orig_num_bytes =
2604                                         btrfs_file_extent_num_bytes(leaf, fi);
2605                                 extent_num_bytes = new_size -
2606                                         found_key.offset + root->sectorsize - 1;
2607                                 extent_num_bytes = extent_num_bytes &
2608                                         ~((u64)root->sectorsize - 1);
2609                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2610                                                          extent_num_bytes);
2611                                 num_dec = (orig_num_bytes -
2612                                            extent_num_bytes);
2613                                 if (root->ref_cows && extent_start != 0)
2614                                         inode_sub_bytes(inode, num_dec);
2615                                 btrfs_mark_buffer_dirty(leaf);
2616                         } else {
2617                                 extent_num_bytes =
2618                                         btrfs_file_extent_disk_num_bytes(leaf,
2619                                                                          fi);
2620                                 /* FIXME blocksize != 4096 */
2621                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2622                                 if (extent_start != 0) {
2623                                         found_extent = 1;
2624                                         if (root->ref_cows)
2625                                                 inode_sub_bytes(inode, num_dec);
2626                                 }
2627                                 root_gen = btrfs_header_generation(leaf);
2628                                 root_owner = btrfs_header_owner(leaf);
2629                         }
2630                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2631                         /*
2632                          * we can't truncate inline items that have had
2633                          * special encodings
2634                          */
2635                         if (!del_item &&
2636                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2637                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2638                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2639                                 u32 size = new_size - found_key.offset;
2640
2641                                 if (root->ref_cows) {
2642                                         inode_sub_bytes(inode, item_end + 1 -
2643                                                         new_size);
2644                                 }
2645                                 size =
2646                                     btrfs_file_extent_calc_inline_size(size);
2647                                 ret = btrfs_truncate_item(trans, root, path,
2648                                                           size, 1);
2649                                 BUG_ON(ret);
2650                         } else if (root->ref_cows) {
2651                                 inode_sub_bytes(inode, item_end + 1 -
2652                                                 found_key.offset);
2653                         }
2654                 }
2655 delete:
2656                 if (del_item) {
2657                         if (!pending_del_nr) {
2658                                 /* no pending yet, add ourselves */
2659                                 pending_del_slot = path->slots[0];
2660                                 pending_del_nr = 1;
2661                         } else if (pending_del_nr &&
2662                                    path->slots[0] + 1 == pending_del_slot) {
2663                                 /* hop on the pending chunk */
2664                                 pending_del_nr++;
2665                                 pending_del_slot = path->slots[0];
2666                         } else {
2667                                 BUG();
2668                         }
2669                 } else {
2670                         break;
2671                 }
2672                 if (found_extent) {
2673                         btrfs_set_path_blocking(path);
2674                         ret = btrfs_free_extent(trans, root, extent_start,
2675                                                 extent_num_bytes,
2676                                                 leaf->start, root_owner,
2677                                                 root_gen, inode->i_ino, 0);
2678                         BUG_ON(ret);
2679                 }
2680 next:
2681                 if (path->slots[0] == 0) {
2682                         if (pending_del_nr)
2683                                 goto del_pending;
2684                         btrfs_release_path(root, path);
2685                         if (found_type == BTRFS_INODE_ITEM_KEY)
2686                                 break;
2687                         goto search_again;
2688                 }
2689
2690                 path->slots[0]--;
2691                 if (pending_del_nr &&
2692                     path->slots[0] + 1 != pending_del_slot) {
2693                         struct btrfs_key debug;
2694 del_pending:
2695                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2696                                               pending_del_slot);
2697                         ret = btrfs_del_items(trans, root, path,
2698                                               pending_del_slot,
2699                                               pending_del_nr);
2700                         BUG_ON(ret);
2701                         pending_del_nr = 0;
2702                         btrfs_release_path(root, path);
2703                         if (found_type == BTRFS_INODE_ITEM_KEY)
2704                                 break;
2705                         goto search_again;
2706                 }
2707         }
2708         ret = 0;
2709 error:
2710         if (pending_del_nr) {
2711                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2712                                       pending_del_nr);
2713         }
2714         btrfs_free_path(path);
2715         inode->i_sb->s_dirt = 1;
2716         return ret;
2717 }
2718
2719 /*
2720  * taken from block_truncate_page, but does cow as it zeros out
2721  * any bytes left in the last page in the file.
2722  */
2723 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2724 {
2725         struct inode *inode = mapping->host;
2726         struct btrfs_root *root = BTRFS_I(inode)->root;
2727         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2728         struct btrfs_ordered_extent *ordered;
2729         char *kaddr;
2730         u32 blocksize = root->sectorsize;
2731         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2732         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2733         struct page *page;
2734         int ret = 0;
2735         u64 page_start;
2736         u64 page_end;
2737
2738         if ((offset & (blocksize - 1)) == 0)
2739                 goto out;
2740
2741         ret = -ENOMEM;
2742 again:
2743         page = grab_cache_page(mapping, index);
2744         if (!page)
2745                 goto out;
2746
2747         page_start = page_offset(page);
2748         page_end = page_start + PAGE_CACHE_SIZE - 1;
2749
2750         if (!PageUptodate(page)) {
2751                 ret = btrfs_readpage(NULL, page);
2752                 lock_page(page);
2753                 if (page->mapping != mapping) {
2754                         unlock_page(page);
2755                         page_cache_release(page);
2756                         goto again;
2757                 }
2758                 if (!PageUptodate(page)) {
2759                         ret = -EIO;
2760                         goto out_unlock;
2761                 }
2762         }
2763         wait_on_page_writeback(page);
2764
2765         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2766         set_page_extent_mapped(page);
2767
2768         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2769         if (ordered) {
2770                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2771                 unlock_page(page);
2772                 page_cache_release(page);
2773                 btrfs_start_ordered_extent(inode, ordered, 1);
2774                 btrfs_put_ordered_extent(ordered);
2775                 goto again;
2776         }
2777
2778         btrfs_set_extent_delalloc(inode, page_start, page_end);
2779         ret = 0;
2780         if (offset != PAGE_CACHE_SIZE) {
2781                 kaddr = kmap(page);
2782                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2783                 flush_dcache_page(page);
2784                 kunmap(page);
2785         }
2786         ClearPageChecked(page);
2787         set_page_dirty(page);
2788         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2789
2790 out_unlock:
2791         unlock_page(page);
2792         page_cache_release(page);
2793 out:
2794         return ret;
2795 }
2796
2797 int btrfs_cont_expand(struct inode *inode, loff_t size)
2798 {
2799         struct btrfs_trans_handle *trans;
2800         struct btrfs_root *root = BTRFS_I(inode)->root;
2801         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2802         struct extent_map *em;
2803         u64 mask = root->sectorsize - 1;
2804         u64 hole_start = (inode->i_size + mask) & ~mask;
2805         u64 block_end = (size + mask) & ~mask;
2806         u64 last_byte;
2807         u64 cur_offset;
2808         u64 hole_size;
2809         int err;
2810
2811         if (size <= hole_start)
2812                 return 0;
2813
2814         err = btrfs_check_metadata_free_space(root);
2815         if (err)
2816                 return err;
2817
2818         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2819
2820         while (1) {
2821                 struct btrfs_ordered_extent *ordered;
2822                 btrfs_wait_ordered_range(inode, hole_start,
2823                                          block_end - hole_start);
2824                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2825                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2826                 if (!ordered)
2827                         break;
2828                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2829                 btrfs_put_ordered_extent(ordered);
2830         }
2831
2832         trans = btrfs_start_transaction(root, 1);
2833         btrfs_set_trans_block_group(trans, inode);
2834
2835         cur_offset = hole_start;
2836         while (1) {
2837                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2838                                 block_end - cur_offset, 0);
2839                 BUG_ON(IS_ERR(em) || !em);
2840                 last_byte = min(extent_map_end(em), block_end);
2841                 last_byte = (last_byte + mask) & ~mask;
2842                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2843                         u64 hint_byte = 0;
2844                         hole_size = last_byte - cur_offset;
2845                         err = btrfs_drop_extents(trans, root, inode,
2846                                                  cur_offset,
2847                                                  cur_offset + hole_size,
2848                                                  cur_offset, &hint_byte);
2849                         if (err)
2850                                 break;
2851                         err = btrfs_insert_file_extent(trans, root,
2852                                         inode->i_ino, cur_offset, 0,
2853                                         0, hole_size, 0, hole_size,
2854                                         0, 0, 0);
2855                         btrfs_drop_extent_cache(inode, hole_start,
2856                                         last_byte - 1, 0);
2857                 }
2858                 free_extent_map(em);
2859                 cur_offset = last_byte;
2860                 if (err || cur_offset >= block_end)
2861                         break;
2862         }
2863
2864         btrfs_end_transaction(trans, root);
2865         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2866         return err;
2867 }
2868
2869 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2870 {
2871         struct inode *inode = dentry->d_inode;
2872         int err;
2873
2874         err = inode_change_ok(inode, attr);
2875         if (err)
2876                 return err;
2877
2878         if (S_ISREG(inode->i_mode) &&
2879             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2880                 err = btrfs_cont_expand(inode, attr->ia_size);
2881                 if (err)
2882                         return err;
2883         }
2884
2885         err = inode_setattr(inode, attr);
2886
2887         if (!err && ((attr->ia_valid & ATTR_MODE)))
2888                 err = btrfs_acl_chmod(inode);
2889         return err;
2890 }
2891
2892 void btrfs_delete_inode(struct inode *inode)
2893 {
2894         struct btrfs_trans_handle *trans;
2895         struct btrfs_root *root = BTRFS_I(inode)->root;
2896         unsigned long nr;
2897         int ret;
2898
2899         truncate_inode_pages(&inode->i_data, 0);
2900         if (is_bad_inode(inode)) {
2901                 btrfs_orphan_del(NULL, inode);
2902                 goto no_delete;
2903         }
2904         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2905
2906         btrfs_i_size_write(inode, 0);
2907         trans = btrfs_join_transaction(root, 1);
2908
2909         btrfs_set_trans_block_group(trans, inode);
2910         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2911         if (ret) {
2912                 btrfs_orphan_del(NULL, inode);
2913                 goto no_delete_lock;
2914         }
2915
2916         btrfs_orphan_del(trans, inode);
2917
2918         nr = trans->blocks_used;
2919         clear_inode(inode);
2920
2921         btrfs_end_transaction(trans, root);
2922         btrfs_btree_balance_dirty(root, nr);
2923         return;
2924
2925 no_delete_lock:
2926         nr = trans->blocks_used;
2927         btrfs_end_transaction(trans, root);
2928         btrfs_btree_balance_dirty(root, nr);
2929 no_delete:
2930         clear_inode(inode);
2931 }
2932
2933 /*
2934  * this returns the key found in the dir entry in the location pointer.
2935  * If no dir entries were found, location->objectid is 0.
2936  */
2937 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2938                                struct btrfs_key *location)
2939 {
2940         const char *name = dentry->d_name.name;
2941         int namelen = dentry->d_name.len;
2942         struct btrfs_dir_item *di;
2943         struct btrfs_path *path;
2944         struct btrfs_root *root = BTRFS_I(dir)->root;
2945         int ret = 0;
2946
2947         path = btrfs_alloc_path();
2948         BUG_ON(!path);
2949
2950         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2951                                     namelen, 0);
2952         if (IS_ERR(di))
2953                 ret = PTR_ERR(di);
2954
2955         if (!di || IS_ERR(di))
2956                 goto out_err;
2957
2958         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2959 out:
2960         btrfs_free_path(path);
2961         return ret;
2962 out_err:
2963         location->objectid = 0;
2964         goto out;
2965 }
2966
2967 /*
2968  * when we hit a tree root in a directory, the btrfs part of the inode
2969  * needs to be changed to reflect the root directory of the tree root.  This
2970  * is kind of like crossing a mount point.
2971  */
2972 static int fixup_tree_root_location(struct btrfs_root *root,
2973                              struct btrfs_key *location,
2974                              struct btrfs_root **sub_root,
2975                              struct dentry *dentry)
2976 {
2977         struct btrfs_root_item *ri;
2978
2979         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2980                 return 0;
2981         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2982                 return 0;
2983
2984         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2985                                         dentry->d_name.name,
2986                                         dentry->d_name.len);
2987         if (IS_ERR(*sub_root))
2988                 return PTR_ERR(*sub_root);
2989
2990         ri = &(*sub_root)->root_item;
2991         location->objectid = btrfs_root_dirid(ri);
2992         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2993         location->offset = 0;
2994
2995         return 0;
2996 }
2997
2998 static noinline void init_btrfs_i(struct inode *inode)
2999 {
3000         struct btrfs_inode *bi = BTRFS_I(inode);
3001
3002         bi->i_acl = NULL;
3003         bi->i_default_acl = NULL;
3004
3005         bi->generation = 0;
3006         bi->sequence = 0;
3007         bi->last_trans = 0;
3008         bi->logged_trans = 0;
3009         bi->delalloc_bytes = 0;
3010         bi->reserved_bytes = 0;
3011         bi->disk_i_size = 0;
3012         bi->flags = 0;
3013         bi->index_cnt = (u64)-1;
3014         bi->log_dirty_trans = 0;
3015         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3016         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3017                              inode->i_mapping, GFP_NOFS);
3018         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3019                              inode->i_mapping, GFP_NOFS);
3020         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3021         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3022         mutex_init(&BTRFS_I(inode)->extent_mutex);
3023         mutex_init(&BTRFS_I(inode)->log_mutex);
3024 }
3025
3026 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3027 {
3028         struct btrfs_iget_args *args = p;
3029         inode->i_ino = args->ino;
3030         init_btrfs_i(inode);
3031         BTRFS_I(inode)->root = args->root;
3032         btrfs_set_inode_space_info(args->root, inode);
3033         return 0;
3034 }
3035
3036 static int btrfs_find_actor(struct inode *inode, void *opaque)
3037 {
3038         struct btrfs_iget_args *args = opaque;
3039         return args->ino == inode->i_ino &&
3040                 args->root == BTRFS_I(inode)->root;
3041 }
3042
3043 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3044                             struct btrfs_root *root, int wait)
3045 {
3046         struct inode *inode;
3047         struct btrfs_iget_args args;
3048         args.ino = objectid;
3049         args.root = root;
3050
3051         if (wait) {
3052                 inode = ilookup5(s, objectid, btrfs_find_actor,
3053                                  (void *)&args);
3054         } else {
3055                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3056                                         (void *)&args);
3057         }
3058         return inode;
3059 }
3060
3061 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3062                                 struct btrfs_root *root)
3063 {
3064         struct inode *inode;
3065         struct btrfs_iget_args args;
3066         args.ino = objectid;
3067         args.root = root;
3068
3069         inode = iget5_locked(s, objectid, btrfs_find_actor,
3070                              btrfs_init_locked_inode,
3071                              (void *)&args);
3072         return inode;
3073 }
3074
3075 /* Get an inode object given its location and corresponding root.
3076  * Returns in *is_new if the inode was read from disk
3077  */
3078 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3079                          struct btrfs_root *root, int *is_new)
3080 {
3081         struct inode *inode;
3082
3083         inode = btrfs_iget_locked(s, location->objectid, root);
3084         if (!inode)
3085                 return ERR_PTR(-EACCES);
3086
3087         if (inode->i_state & I_NEW) {
3088                 BTRFS_I(inode)->root = root;
3089                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3090                 btrfs_read_locked_inode(inode);
3091                 unlock_new_inode(inode);
3092                 if (is_new)
3093                         *is_new = 1;
3094         } else {
3095                 if (is_new)
3096                         *is_new = 0;
3097         }
3098
3099         return inode;
3100 }
3101
3102 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3103 {
3104         struct inode *inode;
3105         struct btrfs_inode *bi = BTRFS_I(dir);
3106         struct btrfs_root *root = bi->root;
3107         struct btrfs_root *sub_root = root;
3108         struct btrfs_key location;
3109         int ret, new;
3110
3111         if (dentry->d_name.len > BTRFS_NAME_LEN)
3112                 return ERR_PTR(-ENAMETOOLONG);
3113
3114         ret = btrfs_inode_by_name(dir, dentry, &location);
3115
3116         if (ret < 0)
3117                 return ERR_PTR(ret);
3118
3119         inode = NULL;
3120         if (location.objectid) {
3121                 ret = fixup_tree_root_location(root, &location, &sub_root,
3122                                                 dentry);
3123                 if (ret < 0)
3124                         return ERR_PTR(ret);
3125                 if (ret > 0)
3126                         return ERR_PTR(-ENOENT);
3127                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3128                 if (IS_ERR(inode))
3129                         return ERR_CAST(inode);
3130         }
3131         return inode;
3132 }
3133
3134 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3135                                    struct nameidata *nd)
3136 {
3137         struct inode *inode;
3138
3139         if (dentry->d_name.len > BTRFS_NAME_LEN)
3140                 return ERR_PTR(-ENAMETOOLONG);
3141
3142         inode = btrfs_lookup_dentry(dir, dentry);
3143         if (IS_ERR(inode))
3144                 return ERR_CAST(inode);
3145
3146         return d_splice_alias(inode, dentry);
3147 }
3148
3149 static unsigned char btrfs_filetype_table[] = {
3150         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3151 };
3152
3153 static int btrfs_real_readdir(struct file *filp, void *dirent,
3154                               filldir_t filldir)
3155 {
3156         struct inode *inode = filp->f_dentry->d_inode;
3157         struct btrfs_root *root = BTRFS_I(inode)->root;
3158         struct btrfs_item *item;
3159         struct btrfs_dir_item *di;
3160         struct btrfs_key key;
3161         struct btrfs_key found_key;
3162         struct btrfs_path *path;
3163         int ret;
3164         u32 nritems;
3165         struct extent_buffer *leaf;
3166         int slot;
3167         int advance;
3168         unsigned char d_type;
3169         int over = 0;
3170         u32 di_cur;
3171         u32 di_total;
3172         u32 di_len;
3173         int key_type = BTRFS_DIR_INDEX_KEY;
3174         char tmp_name[32];
3175         char *name_ptr;
3176         int name_len;
3177
3178         /* FIXME, use a real flag for deciding about the key type */
3179         if (root->fs_info->tree_root == root)
3180                 key_type = BTRFS_DIR_ITEM_KEY;
3181
3182         /* special case for "." */
3183         if (filp->f_pos == 0) {
3184                 over = filldir(dirent, ".", 1,
3185                                1, inode->i_ino,
3186                                DT_DIR);
3187                 if (over)
3188                         return 0;
3189                 filp->f_pos = 1;
3190         }
3191         /* special case for .., just use the back ref */
3192         if (filp->f_pos == 1) {
3193                 u64 pino = parent_ino(filp->f_path.dentry);
3194                 over = filldir(dirent, "..", 2,
3195                                2, pino, DT_DIR);
3196                 if (over)
3197                         return 0;
3198                 filp->f_pos = 2;
3199         }
3200         path = btrfs_alloc_path();
3201         path->reada = 2;
3202
3203         btrfs_set_key_type(&key, key_type);
3204         key.offset = filp->f_pos;
3205         key.objectid = inode->i_ino;
3206
3207         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3208         if (ret < 0)
3209                 goto err;
3210         advance = 0;
3211
3212         while (1) {
3213                 leaf = path->nodes[0];
3214                 nritems = btrfs_header_nritems(leaf);
3215                 slot = path->slots[0];
3216                 if (advance || slot >= nritems) {
3217                         if (slot >= nritems - 1) {
3218                                 ret = btrfs_next_leaf(root, path);
3219                                 if (ret)
3220                                         break;
3221                                 leaf = path->nodes[0];
3222                                 nritems = btrfs_header_nritems(leaf);
3223                                 slot = path->slots[0];
3224                         } else {
3225                                 slot++;
3226                                 path->slots[0]++;
3227                         }
3228                 }
3229
3230                 advance = 1;
3231                 item = btrfs_item_nr(leaf, slot);
3232                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3233
3234                 if (found_key.objectid != key.objectid)
3235                         break;
3236                 if (btrfs_key_type(&found_key) != key_type)
3237                         break;
3238                 if (found_key.offset < filp->f_pos)
3239                         continue;
3240
3241                 filp->f_pos = found_key.offset;
3242
3243                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3244                 di_cur = 0;
3245                 di_total = btrfs_item_size(leaf, item);
3246
3247                 while (di_cur < di_total) {
3248                         struct btrfs_key location;
3249
3250                         name_len = btrfs_dir_name_len(leaf, di);
3251                         if (name_len <= sizeof(tmp_name)) {
3252                                 name_ptr = tmp_name;
3253                         } else {
3254                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3255                                 if (!name_ptr) {
3256                                         ret = -ENOMEM;
3257                                         goto err;
3258                                 }
3259                         }
3260                         read_extent_buffer(leaf, name_ptr,
3261                                            (unsigned long)(di + 1), name_len);
3262
3263                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3264                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3265
3266                         /* is this a reference to our own snapshot? If so
3267                          * skip it
3268                          */
3269                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3270                             location.objectid == root->root_key.objectid) {
3271                                 over = 0;
3272                                 goto skip;
3273                         }
3274                         over = filldir(dirent, name_ptr, name_len,
3275                                        found_key.offset, location.objectid,
3276                                        d_type);
3277
3278 skip:
3279                         if (name_ptr != tmp_name)
3280                                 kfree(name_ptr);
3281
3282                         if (over)
3283                                 goto nopos;
3284                         di_len = btrfs_dir_name_len(leaf, di) +
3285                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3286                         di_cur += di_len;
3287                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3288                 }
3289         }
3290
3291         /* Reached end of directory/root. Bump pos past the last item. */
3292         if (key_type == BTRFS_DIR_INDEX_KEY)
3293                 filp->f_pos = INT_LIMIT(off_t);
3294         else
3295                 filp->f_pos++;
3296 nopos:
3297         ret = 0;
3298 err:
3299         btrfs_free_path(path);
3300         return ret;
3301 }
3302
3303 int btrfs_write_inode(struct inode *inode, int wait)
3304 {
3305         struct btrfs_root *root = BTRFS_I(inode)->root;
3306         struct btrfs_trans_handle *trans;
3307         int ret = 0;
3308
3309         if (root->fs_info->btree_inode == inode)
3310                 return 0;
3311
3312         if (wait) {
3313                 trans = btrfs_join_transaction(root, 1);
3314                 btrfs_set_trans_block_group(trans, inode);
3315                 ret = btrfs_commit_transaction(trans, root);
3316         }
3317         return ret;
3318 }
3319
3320 /*
3321  * This is somewhat expensive, updating the tree every time the
3322  * inode changes.  But, it is most likely to find the inode in cache.
3323  * FIXME, needs more benchmarking...there are no reasons other than performance
3324  * to keep or drop this code.
3325  */
3326 void btrfs_dirty_inode(struct inode *inode)
3327 {
3328         struct btrfs_root *root = BTRFS_I(inode)->root;
3329         struct btrfs_trans_handle *trans;
3330
3331         trans = btrfs_join_transaction(root, 1);
3332         btrfs_set_trans_block_group(trans, inode);
3333         btrfs_update_inode(trans, root, inode);
3334         btrfs_end_transaction(trans, root);
3335 }
3336
3337 /*
3338  * find the highest existing sequence number in a directory
3339  * and then set the in-memory index_cnt variable to reflect
3340  * free sequence numbers
3341  */
3342 static int btrfs_set_inode_index_count(struct inode *inode)
3343 {
3344         struct btrfs_root *root = BTRFS_I(inode)->root;
3345         struct btrfs_key key, found_key;
3346         struct btrfs_path *path;
3347         struct extent_buffer *leaf;
3348         int ret;
3349
3350         key.objectid = inode->i_ino;
3351         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3352         key.offset = (u64)-1;
3353
3354         path = btrfs_alloc_path();
3355         if (!path)
3356                 return -ENOMEM;
3357
3358         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3359         if (ret < 0)
3360                 goto out;
3361         /* FIXME: we should be able to handle this */
3362         if (ret == 0)
3363                 goto out;
3364         ret = 0;
3365
3366         /*
3367          * MAGIC NUMBER EXPLANATION:
3368          * since we search a directory based on f_pos we have to start at 2
3369          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3370          * else has to start at 2
3371          */
3372         if (path->slots[0] == 0) {
3373                 BTRFS_I(inode)->index_cnt = 2;
3374                 goto out;
3375         }
3376
3377         path->slots[0]--;
3378
3379         leaf = path->nodes[0];
3380         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3381
3382         if (found_key.objectid != inode->i_ino ||
3383             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3384                 BTRFS_I(inode)->index_cnt = 2;
3385                 goto out;
3386         }
3387
3388         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3389 out:
3390         btrfs_free_path(path);
3391         return ret;
3392 }
3393
3394 /*
3395  * helper to find a free sequence number in a given directory.  This current
3396  * code is very simple, later versions will do smarter things in the btree
3397  */
3398 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3399 {
3400         int ret = 0;
3401
3402         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3403                 ret = btrfs_set_inode_index_count(dir);
3404                 if (ret)
3405                         return ret;
3406         }
3407
3408         *index = BTRFS_I(dir)->index_cnt;
3409         BTRFS_I(dir)->index_cnt++;
3410
3411         return ret;
3412 }
3413
3414 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3415                                      struct btrfs_root *root,
3416                                      struct inode *dir,
3417                                      const char *name, int name_len,
3418                                      u64 ref_objectid, u64 objectid,
3419                                      u64 alloc_hint, int mode, u64 *index)
3420 {
3421         struct inode *inode;
3422         struct btrfs_inode_item *inode_item;
3423         struct btrfs_key *location;
3424         struct btrfs_path *path;
3425         struct btrfs_inode_ref *ref;
3426         struct btrfs_key key[2];
3427         u32 sizes[2];
3428         unsigned long ptr;
3429         int ret;
3430         int owner;
3431
3432         path = btrfs_alloc_path();
3433         BUG_ON(!path);
3434
3435         inode = new_inode(root->fs_info->sb);
3436         if (!inode)
3437                 return ERR_PTR(-ENOMEM);
3438
3439         if (dir) {
3440                 ret = btrfs_set_inode_index(dir, index);
3441                 if (ret)
3442                         return ERR_PTR(ret);
3443         }
3444         /*
3445          * index_cnt is ignored for everything but a dir,
3446          * btrfs_get_inode_index_count has an explanation for the magic
3447          * number
3448          */
3449         init_btrfs_i(inode);
3450         BTRFS_I(inode)->index_cnt = 2;
3451         BTRFS_I(inode)->root = root;
3452         BTRFS_I(inode)->generation = trans->transid;
3453         btrfs_set_inode_space_info(root, inode);
3454
3455         if (mode & S_IFDIR)
3456                 owner = 0;
3457         else
3458                 owner = 1;
3459         BTRFS_I(inode)->block_group =
3460                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3461         if ((mode & S_IFREG)) {
3462                 if (btrfs_test_opt(root, NODATASUM))
3463                         btrfs_set_flag(inode, NODATASUM);
3464                 if (btrfs_test_opt(root, NODATACOW))
3465                         btrfs_set_flag(inode, NODATACOW);
3466         }
3467
3468         key[0].objectid = objectid;
3469         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3470         key[0].offset = 0;
3471
3472         key[1].objectid = objectid;
3473         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3474         key[1].offset = ref_objectid;
3475
3476         sizes[0] = sizeof(struct btrfs_inode_item);
3477         sizes[1] = name_len + sizeof(*ref);
3478
3479         path->leave_spinning = 1;
3480         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3481         if (ret != 0)
3482                 goto fail;
3483
3484         if (objectid > root->highest_inode)
3485                 root->highest_inode = objectid;
3486
3487         inode->i_uid = current_fsuid();
3488
3489         if (dir && (dir->i_mode & S_ISGID)) {
3490                 inode->i_gid = dir->i_gid;
3491                 if (S_ISDIR(mode))
3492                         mode |= S_ISGID;
3493         } else
3494                 inode->i_gid = current_fsgid();
3495
3496         inode->i_mode = mode;
3497         inode->i_ino = objectid;
3498         inode_set_bytes(inode, 0);
3499         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3500         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3501                                   struct btrfs_inode_item);
3502         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3503
3504         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3505                              struct btrfs_inode_ref);
3506         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3507         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3508         ptr = (unsigned long)(ref + 1);
3509         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3510
3511         btrfs_mark_buffer_dirty(path->nodes[0]);
3512         btrfs_free_path(path);
3513
3514         location = &BTRFS_I(inode)->location;
3515         location->objectid = objectid;
3516         location->offset = 0;
3517         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3518
3519         insert_inode_hash(inode);
3520         return inode;
3521 fail:
3522         if (dir)
3523                 BTRFS_I(dir)->index_cnt--;
3524         btrfs_free_path(path);
3525         return ERR_PTR(ret);
3526 }
3527
3528 static inline u8 btrfs_inode_type(struct inode *inode)
3529 {
3530         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3531 }
3532
3533 /*
3534  * utility function to add 'inode' into 'parent_inode' with
3535  * a give name and a given sequence number.
3536  * if 'add_backref' is true, also insert a backref from the
3537  * inode to the parent directory.
3538  */
3539 int btrfs_add_link(struct btrfs_trans_handle *trans,
3540                    struct inode *parent_inode, struct inode *inode,
3541                    const char *name, int name_len, int add_backref, u64 index)
3542 {
3543         int ret;
3544         struct btrfs_key key;
3545         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3546
3547         key.objectid = inode->i_ino;
3548         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3549         key.offset = 0;
3550
3551         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3552                                     parent_inode->i_ino,
3553                                     &key, btrfs_inode_type(inode),
3554                                     index);
3555         if (ret == 0) {
3556                 if (add_backref) {
3557                         ret = btrfs_insert_inode_ref(trans, root,
3558                                                      name, name_len,
3559                                                      inode->i_ino,
3560                                                      parent_inode->i_ino,
3561                                                      index);
3562                 }
3563                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3564                                    name_len * 2);
3565                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3566                 ret = btrfs_update_inode(trans, root, parent_inode);
3567         }
3568         return ret;
3569 }
3570
3571 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3572                             struct dentry *dentry, struct inode *inode,
3573                             int backref, u64 index)
3574 {
3575         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3576                                  inode, dentry->d_name.name,
3577                                  dentry->d_name.len, backref, index);
3578         if (!err) {
3579                 d_instantiate(dentry, inode);
3580                 return 0;
3581         }
3582         if (err > 0)
3583                 err = -EEXIST;
3584         return err;
3585 }
3586
3587 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3588                         int mode, dev_t rdev)
3589 {
3590         struct btrfs_trans_handle *trans;
3591         struct btrfs_root *root = BTRFS_I(dir)->root;
3592         struct inode *inode = NULL;
3593         int err;
3594         int drop_inode = 0;
3595         u64 objectid;
3596         unsigned long nr = 0;
3597         u64 index = 0;
3598
3599         if (!new_valid_dev(rdev))
3600                 return -EINVAL;
3601
3602         err = btrfs_check_metadata_free_space(root);
3603         if (err)
3604                 goto fail;
3605
3606         trans = btrfs_start_transaction(root, 1);
3607         btrfs_set_trans_block_group(trans, dir);
3608
3609         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3610         if (err) {
3611                 err = -ENOSPC;
3612                 goto out_unlock;
3613         }
3614
3615         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3616                                 dentry->d_name.len,
3617                                 dentry->d_parent->d_inode->i_ino, objectid,
3618                                 BTRFS_I(dir)->block_group, mode, &index);
3619         err = PTR_ERR(inode);
3620         if (IS_ERR(inode))
3621                 goto out_unlock;
3622
3623         err = btrfs_init_inode_security(inode, dir);
3624         if (err) {
3625                 drop_inode = 1;
3626                 goto out_unlock;
3627         }
3628
3629         btrfs_set_trans_block_group(trans, inode);
3630         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3631         if (err)
3632                 drop_inode = 1;
3633         else {
3634                 inode->i_op = &btrfs_special_inode_operations;
3635                 init_special_inode(inode, inode->i_mode, rdev);
3636                 btrfs_update_inode(trans, root, inode);
3637         }
3638         dir->i_sb->s_dirt = 1;
3639         btrfs_update_inode_block_group(trans, inode);
3640         btrfs_update_inode_block_group(trans, dir);
3641 out_unlock:
3642         nr = trans->blocks_used;
3643         btrfs_end_transaction_throttle(trans, root);
3644 fail:
3645         if (drop_inode) {
3646                 inode_dec_link_count(inode);
3647                 iput(inode);
3648         }
3649         btrfs_btree_balance_dirty(root, nr);
3650         return err;
3651 }
3652
3653 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3654                         int mode, struct nameidata *nd)
3655 {
3656         struct btrfs_trans_handle *trans;
3657         struct btrfs_root *root = BTRFS_I(dir)->root;
3658         struct inode *inode = NULL;
3659         int err;
3660         int drop_inode = 0;
3661         unsigned long nr = 0;
3662         u64 objectid;
3663         u64 index = 0;
3664
3665         err = btrfs_check_metadata_free_space(root);
3666         if (err)
3667                 goto fail;
3668         trans = btrfs_start_transaction(root, 1);
3669         btrfs_set_trans_block_group(trans, dir);
3670
3671         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3672         if (err) {
3673                 err = -ENOSPC;
3674                 goto out_unlock;
3675         }
3676
3677         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3678                                 dentry->d_name.len,
3679                                 dentry->d_parent->d_inode->i_ino,
3680                                 objectid, BTRFS_I(dir)->block_group, mode,
3681                                 &index);
3682         err = PTR_ERR(inode);
3683         if (IS_ERR(inode))
3684                 goto out_unlock;
3685
3686         err = btrfs_init_inode_security(inode, dir);
3687         if (err) {
3688                 drop_inode = 1;
3689                 goto out_unlock;
3690         }
3691
3692         btrfs_set_trans_block_group(trans, inode);
3693         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3694         if (err)
3695                 drop_inode = 1;
3696         else {
3697                 inode->i_mapping->a_ops = &btrfs_aops;
3698                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3699                 inode->i_fop = &btrfs_file_operations;
3700                 inode->i_op = &btrfs_file_inode_operations;
3701                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3702         }
3703         dir->i_sb->s_dirt = 1;
3704         btrfs_update_inode_block_group(trans, inode);
3705         btrfs_update_inode_block_group(trans, dir);
3706 out_unlock:
3707         nr = trans->blocks_used;
3708         btrfs_end_transaction_throttle(trans, root);
3709 fail:
3710         if (drop_inode) {
3711                 inode_dec_link_count(inode);
3712                 iput(inode);
3713         }
3714         btrfs_btree_balance_dirty(root, nr);
3715         return err;
3716 }
3717
3718 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3719                       struct dentry *dentry)
3720 {
3721         struct btrfs_trans_handle *trans;
3722         struct btrfs_root *root = BTRFS_I(dir)->root;
3723         struct inode *inode = old_dentry->d_inode;
3724         u64 index;
3725         unsigned long nr = 0;
3726         int err;
3727         int drop_inode = 0;
3728
3729         if (inode->i_nlink == 0)
3730                 return -ENOENT;
3731
3732         btrfs_inc_nlink(inode);
3733         err = btrfs_check_metadata_free_space(root);
3734         if (err)
3735                 goto fail;
3736         err = btrfs_set_inode_index(dir, &index);
3737         if (err)
3738                 goto fail;
3739
3740         trans = btrfs_start_transaction(root, 1);
3741
3742         btrfs_set_trans_block_group(trans, dir);
3743         atomic_inc(&inode->i_count);
3744
3745         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3746
3747         if (err)
3748                 drop_inode = 1;
3749
3750         dir->i_sb->s_dirt = 1;
3751         btrfs_update_inode_block_group(trans, dir);
3752         err = btrfs_update_inode(trans, root, inode);
3753
3754         if (err)
3755                 drop_inode = 1;
3756
3757         nr = trans->blocks_used;
3758         btrfs_end_transaction_throttle(trans, root);
3759 fail:
3760         if (drop_inode) {
3761                 inode_dec_link_count(inode);
3762                 iput(inode);
3763         }
3764         btrfs_btree_balance_dirty(root, nr);
3765         return err;
3766 }
3767
3768 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3769 {
3770         struct inode *inode = NULL;
3771         struct btrfs_trans_handle *trans;
3772         struct btrfs_root *root = BTRFS_I(dir)->root;
3773         int err = 0;
3774         int drop_on_err = 0;
3775         u64 objectid = 0;
3776         u64 index = 0;
3777         unsigned long nr = 1;
3778
3779         err = btrfs_check_metadata_free_space(root);
3780         if (err)
3781                 goto out_unlock;
3782
3783         trans = btrfs_start_transaction(root, 1);
3784         btrfs_set_trans_block_group(trans, dir);
3785
3786         if (IS_ERR(trans)) {
3787                 err = PTR_ERR(trans);
3788                 goto out_unlock;
3789         }
3790
3791         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3792         if (err) {
3793                 err = -ENOSPC;
3794                 goto out_unlock;
3795         }
3796
3797         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3798                                 dentry->d_name.len,
3799                                 dentry->d_parent->d_inode->i_ino, objectid,
3800                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3801                                 &index);
3802         if (IS_ERR(inode)) {
3803                 err = PTR_ERR(inode);
3804                 goto out_fail;
3805         }
3806
3807         drop_on_err = 1;
3808
3809         err = btrfs_init_inode_security(inode, dir);
3810         if (err)
3811                 goto out_fail;
3812
3813         inode->i_op = &btrfs_dir_inode_operations;
3814         inode->i_fop = &btrfs_dir_file_operations;
3815         btrfs_set_trans_block_group(trans, inode);
3816
3817         btrfs_i_size_write(inode, 0);
3818         err = btrfs_update_inode(trans, root, inode);
3819         if (err)
3820                 goto out_fail;
3821
3822         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3823                                  inode, dentry->d_name.name,
3824                                  dentry->d_name.len, 0, index);
3825         if (err)
3826                 goto out_fail;
3827
3828         d_instantiate(dentry, inode);
3829         drop_on_err = 0;
3830         dir->i_sb->s_dirt = 1;
3831         btrfs_update_inode_block_group(trans, inode);
3832         btrfs_update_inode_block_group(trans, dir);
3833
3834 out_fail:
3835         nr = trans->blocks_used;
3836         btrfs_end_transaction_throttle(trans, root);
3837
3838 out_unlock:
3839         if (drop_on_err)
3840                 iput(inode);
3841         btrfs_btree_balance_dirty(root, nr);
3842         return err;
3843 }
3844
3845 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3846  * and an extent that you want to insert, deal with overlap and insert
3847  * the new extent into the tree.
3848  */
3849 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3850                                 struct extent_map *existing,
3851                                 struct extent_map *em,
3852                                 u64 map_start, u64 map_len)
3853 {
3854         u64 start_diff;
3855
3856         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3857         start_diff = map_start - em->start;
3858         em->start = map_start;
3859         em->len = map_len;
3860         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3861             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3862                 em->block_start += start_diff;
3863                 em->block_len -= start_diff;
3864         }
3865         return add_extent_mapping(em_tree, em);
3866 }
3867
3868 static noinline int uncompress_inline(struct btrfs_path *path,
3869                                       struct inode *inode, struct page *page,
3870                                       size_t pg_offset, u64 extent_offset,
3871                                       struct btrfs_file_extent_item *item)
3872 {
3873         int ret;
3874         struct extent_buffer *leaf = path->nodes[0];
3875         char *tmp;
3876         size_t max_size;
3877         unsigned long inline_size;
3878         unsigned long ptr;
3879
3880         WARN_ON(pg_offset != 0);
3881         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3882         inline_size = btrfs_file_extent_inline_item_len(leaf,
3883                                         btrfs_item_nr(leaf, path->slots[0]));
3884         tmp = kmalloc(inline_size, GFP_NOFS);
3885         ptr = btrfs_file_extent_inline_start(item);
3886
3887         read_extent_buffer(leaf, tmp, ptr, inline_size);
3888
3889         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3890         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3891                                     inline_size, max_size);
3892         if (ret) {
3893                 char *kaddr = kmap_atomic(page, KM_USER0);
3894                 unsigned long copy_size = min_t(u64,
3895                                   PAGE_CACHE_SIZE - pg_offset,
3896                                   max_size - extent_offset);
3897                 memset(kaddr + pg_offset, 0, copy_size);
3898                 kunmap_atomic(kaddr, KM_USER0);
3899         }
3900         kfree(tmp);
3901         return 0;
3902 }
3903
3904 /*
3905  * a bit scary, this does extent mapping from logical file offset to the disk.
3906  * the ugly parts come from merging extents from the disk with the in-ram
3907  * representation.  This gets more complex because of the data=ordered code,
3908  * where the in-ram extents might be locked pending data=ordered completion.
3909  *
3910  * This also copies inline extents directly into the page.
3911  */
3912
3913 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3914                                     size_t pg_offset, u64 start, u64 len,
3915                                     int create)
3916 {
3917         int ret;
3918         int err = 0;
3919         u64 bytenr;
3920         u64 extent_start = 0;
3921         u64 extent_end = 0;
3922         u64 objectid = inode->i_ino;
3923         u32 found_type;
3924         struct btrfs_path *path = NULL;
3925         struct btrfs_root *root = BTRFS_I(inode)->root;
3926         struct btrfs_file_extent_item *item;
3927         struct extent_buffer *leaf;
3928         struct btrfs_key found_key;
3929         struct extent_map *em = NULL;
3930         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3931         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3932         struct btrfs_trans_handle *trans = NULL;
3933         int compressed;
3934
3935 again:
3936         spin_lock(&em_tree->lock);
3937         em = lookup_extent_mapping(em_tree, start, len);
3938         if (em)
3939                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3940         spin_unlock(&em_tree->lock);
3941
3942         if (em) {
3943                 if (em->start > start || em->start + em->len <= start)
3944                         free_extent_map(em);
3945                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3946                         free_extent_map(em);
3947                 else
3948                         goto out;
3949         }
3950         em = alloc_extent_map(GFP_NOFS);
3951         if (!em) {
3952                 err = -ENOMEM;
3953                 goto out;
3954         }
3955         em->bdev = root->fs_info->fs_devices->latest_bdev;
3956         em->start = EXTENT_MAP_HOLE;
3957         em->orig_start = EXTENT_MAP_HOLE;
3958         em->len = (u64)-1;
3959         em->block_len = (u64)-1;
3960
3961         if (!path) {
3962                 path = btrfs_alloc_path();
3963                 BUG_ON(!path);
3964         }
3965
3966         ret = btrfs_lookup_file_extent(trans, root, path,
3967                                        objectid, start, trans != NULL);
3968         if (ret < 0) {
3969                 err = ret;
3970                 goto out;
3971         }
3972
3973         if (ret != 0) {
3974                 if (path->slots[0] == 0)
3975                         goto not_found;
3976                 path->slots[0]--;
3977         }
3978
3979         leaf = path->nodes[0];
3980         item = btrfs_item_ptr(leaf, path->slots[0],
3981                               struct btrfs_file_extent_item);
3982         /* are we inside the extent that was found? */
3983         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3984         found_type = btrfs_key_type(&found_key);
3985         if (found_key.objectid != objectid ||
3986             found_type != BTRFS_EXTENT_DATA_KEY) {
3987                 goto not_found;
3988         }
3989
3990         found_type = btrfs_file_extent_type(leaf, item);
3991         extent_start = found_key.offset;
3992         compressed = btrfs_file_extent_compression(leaf, item);
3993         if (found_type == BTRFS_FILE_EXTENT_REG ||
3994             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3995                 extent_end = extent_start +
3996                        btrfs_file_extent_num_bytes(leaf, item);
3997         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3998                 size_t size;
3999                 size = btrfs_file_extent_inline_len(leaf, item);
4000                 extent_end = (extent_start + size + root->sectorsize - 1) &
4001                         ~((u64)root->sectorsize - 1);
4002         }
4003
4004         if (start >= extent_end) {
4005                 path->slots[0]++;
4006                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4007                         ret = btrfs_next_leaf(root, path);
4008                         if (ret < 0) {
4009                                 err = ret;
4010                                 goto out;
4011                         }
4012                         if (ret > 0)
4013                                 goto not_found;
4014                         leaf = path->nodes[0];
4015                 }
4016                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4017                 if (found_key.objectid != objectid ||
4018                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4019                         goto not_found;
4020                 if (start + len <= found_key.offset)
4021                         goto not_found;
4022                 em->start = start;
4023                 em->len = found_key.offset - start;
4024                 goto not_found_em;
4025         }
4026
4027         if (found_type == BTRFS_FILE_EXTENT_REG ||
4028             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4029                 em->start = extent_start;
4030                 em->len = extent_end - extent_start;
4031                 em->orig_start = extent_start -
4032                                  btrfs_file_extent_offset(leaf, item);
4033                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4034                 if (bytenr == 0) {
4035                         em->block_start = EXTENT_MAP_HOLE;
4036                         goto insert;
4037                 }
4038                 if (compressed) {
4039                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4040                         em->block_start = bytenr;
4041                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4042                                                                          item);
4043                 } else {
4044                         bytenr += btrfs_file_extent_offset(leaf, item);
4045                         em->block_start = bytenr;
4046                         em->block_len = em->len;
4047                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4048                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4049                 }
4050                 goto insert;
4051         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4052                 unsigned long ptr;
4053                 char *map;
4054                 size_t size;
4055                 size_t extent_offset;
4056                 size_t copy_size;
4057
4058                 em->block_start = EXTENT_MAP_INLINE;
4059                 if (!page || create) {
4060                         em->start = extent_start;
4061                         em->len = extent_end - extent_start;
4062                         goto out;
4063                 }
4064
4065                 size = btrfs_file_extent_inline_len(leaf, item);
4066                 extent_offset = page_offset(page) + pg_offset - extent_start;
4067                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4068                                 size - extent_offset);
4069                 em->start = extent_start + extent_offset;
4070                 em->len = (copy_size + root->sectorsize - 1) &
4071                         ~((u64)root->sectorsize - 1);
4072                 em->orig_start = EXTENT_MAP_INLINE;
4073                 if (compressed)
4074                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4075                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4076                 if (create == 0 && !PageUptodate(page)) {
4077                         if (btrfs_file_extent_compression(leaf, item) ==
4078                             BTRFS_COMPRESS_ZLIB) {
4079                                 ret = uncompress_inline(path, inode, page,
4080                                                         pg_offset,
4081                                                         extent_offset, item);
4082                                 BUG_ON(ret);
4083                         } else {
4084                                 map = kmap(page);
4085                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4086                                                    copy_size);
4087                                 kunmap(page);
4088                         }
4089                         flush_dcache_page(page);
4090                 } else if (create && PageUptodate(page)) {
4091                         if (!trans) {
4092                                 kunmap(page);
4093                                 free_extent_map(em);
4094                                 em = NULL;
4095                                 btrfs_release_path(root, path);
4096                                 trans = btrfs_join_transaction(root, 1);
4097                                 goto again;
4098                         }
4099                         map = kmap(page);
4100                         write_extent_buffer(leaf, map + pg_offset, ptr,
4101                                             copy_size);
4102                         kunmap(page);
4103                         btrfs_mark_buffer_dirty(leaf);
4104                 }
4105                 set_extent_uptodate(io_tree, em->start,
4106                                     extent_map_end(em) - 1, GFP_NOFS);
4107                 goto insert;
4108         } else {
4109                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4110                 WARN_ON(1);
4111         }
4112 not_found:
4113         em->start = start;
4114         em->len = len;
4115 not_found_em:
4116         em->block_start = EXTENT_MAP_HOLE;
4117         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4118 insert:
4119         btrfs_release_path(root, path);
4120         if (em->start > start || extent_map_end(em) <= start) {
4121                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4122                        "[%llu %llu]\n", (unsigned long long)em->start,
4123                        (unsigned long long)em->len,
4124                        (unsigned long long)start,
4125                        (unsigned long long)len);
4126                 err = -EIO;
4127                 goto out;
4128         }
4129
4130         err = 0;
4131         spin_lock(&em_tree->lock);
4132         ret = add_extent_mapping(em_tree, em);
4133         /* it is possible that someone inserted the extent into the tree
4134          * while we had the lock dropped.  It is also possible that
4135          * an overlapping map exists in the tree
4136          */
4137         if (ret == -EEXIST) {
4138                 struct extent_map *existing;
4139
4140                 ret = 0;
4141
4142                 existing = lookup_extent_mapping(em_tree, start, len);
4143                 if (existing && (existing->start > start ||
4144                     existing->start + existing->len <= start)) {
4145                         free_extent_map(existing);
4146                         existing = NULL;
4147                 }
4148                 if (!existing) {
4149                         existing = lookup_extent_mapping(em_tree, em->start,
4150                                                          em->len);
4151                         if (existing) {
4152                                 err = merge_extent_mapping(em_tree, existing,
4153                                                            em, start,
4154                                                            root->sectorsize);
4155                                 free_extent_map(existing);
4156                                 if (err) {
4157                                         free_extent_map(em);
4158                                         em = NULL;
4159                                 }
4160                         } else {
4161                                 err = -EIO;
4162                                 free_extent_map(em);
4163                                 em = NULL;
4164                         }
4165                 } else {
4166                         free_extent_map(em);
4167                         em = existing;
4168                         err = 0;
4169                 }
4170         }
4171         spin_unlock(&em_tree->lock);
4172 out:
4173         if (path)
4174                 btrfs_free_path(path);
4175         if (trans) {
4176                 ret = btrfs_end_transaction(trans, root);
4177                 if (!err)
4178                         err = ret;
4179         }
4180         if (err) {
4181                 free_extent_map(em);
4182                 WARN_ON(1);
4183                 return ERR_PTR(err);
4184         }
4185         return em;
4186 }
4187
4188 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4189                         const struct iovec *iov, loff_t offset,
4190                         unsigned long nr_segs)
4191 {
4192         return -EINVAL;
4193 }
4194
4195 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4196                 __u64 start, __u64 len)
4197 {
4198         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4199 }
4200
4201 int btrfs_readpage(struct file *file, struct page *page)
4202 {
4203         struct extent_io_tree *tree;
4204         tree = &BTRFS_I(page->mapping->host)->io_tree;
4205         return extent_read_full_page(tree, page, btrfs_get_extent);
4206 }
4207
4208 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4209 {
4210         struct extent_io_tree *tree;
4211
4212
4213         if (current->flags & PF_MEMALLOC) {
4214                 redirty_page_for_writepage(wbc, page);
4215                 unlock_page(page);
4216                 return 0;
4217         }
4218         tree = &BTRFS_I(page->mapping->host)->io_tree;
4219         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4220 }
4221
4222 int btrfs_writepages(struct address_space *mapping,
4223                      struct writeback_control *wbc)
4224 {
4225         struct extent_io_tree *tree;
4226
4227         tree = &BTRFS_I(mapping->host)->io_tree;
4228         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4229 }
4230
4231 static int
4232 btrfs_readpages(struct file *file, struct address_space *mapping,
4233                 struct list_head *pages, unsigned nr_pages)
4234 {
4235         struct extent_io_tree *tree;
4236         tree = &BTRFS_I(mapping->host)->io_tree;
4237         return extent_readpages(tree, mapping, pages, nr_pages,
4238                                 btrfs_get_extent);
4239 }
4240 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4241 {
4242         struct extent_io_tree *tree;
4243         struct extent_map_tree *map;
4244         int ret;
4245
4246         tree = &BTRFS_I(page->mapping->host)->io_tree;
4247         map = &BTRFS_I(page->mapping->host)->extent_tree;
4248         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4249         if (ret == 1) {
4250                 ClearPagePrivate(page);
4251                 set_page_private(page, 0);
4252                 page_cache_release(page);
4253         }
4254         return ret;
4255 }
4256
4257 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4258 {
4259         if (PageWriteback(page) || PageDirty(page))
4260                 return 0;
4261         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4262 }
4263
4264 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4265 {
4266         struct extent_io_tree *tree;
4267         struct btrfs_ordered_extent *ordered;
4268         u64 page_start = page_offset(page);
4269         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4270
4271         wait_on_page_writeback(page);
4272         tree = &BTRFS_I(page->mapping->host)->io_tree;
4273         if (offset) {
4274                 btrfs_releasepage(page, GFP_NOFS);
4275                 return;
4276         }
4277
4278         lock_extent(tree, page_start, page_end, GFP_NOFS);
4279         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4280                                            page_offset(page));
4281         if (ordered) {
4282                 /*
4283                  * IO on this page will never be started, so we need
4284                  * to account for any ordered extents now
4285                  */
4286                 clear_extent_bit(tree, page_start, page_end,
4287                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4288                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
4289                 btrfs_finish_ordered_io(page->mapping->host,
4290                                         page_start, page_end);
4291                 btrfs_put_ordered_extent(ordered);
4292                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4293         }
4294         clear_extent_bit(tree, page_start, page_end,
4295                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4296                  EXTENT_ORDERED,
4297                  1, 1, GFP_NOFS);
4298         __btrfs_releasepage(page, GFP_NOFS);
4299
4300         ClearPageChecked(page);
4301         if (PagePrivate(page)) {
4302                 ClearPagePrivate(page);
4303                 set_page_private(page, 0);
4304                 page_cache_release(page);
4305         }
4306 }
4307
4308 /*
4309  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4310  * called from a page fault handler when a page is first dirtied. Hence we must
4311  * be careful to check for EOF conditions here. We set the page up correctly
4312  * for a written page which means we get ENOSPC checking when writing into
4313  * holes and correct delalloc and unwritten extent mapping on filesystems that
4314  * support these features.
4315  *
4316  * We are not allowed to take the i_mutex here so we have to play games to
4317  * protect against truncate races as the page could now be beyond EOF.  Because
4318  * vmtruncate() writes the inode size before removing pages, once we have the
4319  * page lock we can determine safely if the page is beyond EOF. If it is not
4320  * beyond EOF, then the page is guaranteed safe against truncation until we
4321  * unlock the page.
4322  */
4323 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4324 {
4325         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4326         struct btrfs_root *root = BTRFS_I(inode)->root;
4327         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4328         struct btrfs_ordered_extent *ordered;
4329         char *kaddr;
4330         unsigned long zero_start;
4331         loff_t size;
4332         int ret;
4333         u64 page_start;
4334         u64 page_end;
4335
4336         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4337         if (ret)
4338                 goto out;
4339
4340         ret = -EINVAL;
4341 again:
4342         lock_page(page);
4343         size = i_size_read(inode);
4344         page_start = page_offset(page);
4345         page_end = page_start + PAGE_CACHE_SIZE - 1;
4346
4347         if ((page->mapping != inode->i_mapping) ||
4348             (page_start >= size)) {
4349                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4350                 /* page got truncated out from underneath us */
4351                 goto out_unlock;
4352         }
4353         wait_on_page_writeback(page);
4354
4355         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4356         set_page_extent_mapped(page);
4357
4358         /*
4359          * we can't set the delalloc bits if there are pending ordered
4360          * extents.  Drop our locks and wait for them to finish
4361          */
4362         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4363         if (ordered) {
4364                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4365                 unlock_page(page);
4366                 btrfs_start_ordered_extent(inode, ordered, 1);
4367                 btrfs_put_ordered_extent(ordered);
4368                 goto again;
4369         }
4370
4371         btrfs_set_extent_delalloc(inode, page_start, page_end);
4372         ret = 0;
4373
4374         /* page is wholly or partially inside EOF */
4375         if (page_start + PAGE_CACHE_SIZE > size)
4376                 zero_start = size & ~PAGE_CACHE_MASK;
4377         else
4378                 zero_start = PAGE_CACHE_SIZE;
4379
4380         if (zero_start != PAGE_CACHE_SIZE) {
4381                 kaddr = kmap(page);
4382                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4383                 flush_dcache_page(page);
4384                 kunmap(page);
4385         }
4386         ClearPageChecked(page);
4387         set_page_dirty(page);
4388         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4389
4390 out_unlock:
4391         unlock_page(page);
4392 out:
4393         return ret;
4394 }
4395
4396 static void btrfs_truncate(struct inode *inode)
4397 {
4398         struct btrfs_root *root = BTRFS_I(inode)->root;
4399         int ret;
4400         struct btrfs_trans_handle *trans;
4401         unsigned long nr;
4402         u64 mask = root->sectorsize - 1;
4403
4404         if (!S_ISREG(inode->i_mode))
4405                 return;
4406         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4407                 return;
4408
4409         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4410         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4411
4412         trans = btrfs_start_transaction(root, 1);
4413         btrfs_set_trans_block_group(trans, inode);
4414         btrfs_i_size_write(inode, inode->i_size);
4415
4416         ret = btrfs_orphan_add(trans, inode);
4417         if (ret)
4418                 goto out;
4419         /* FIXME, add redo link to tree so we don't leak on crash */
4420         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4421                                       BTRFS_EXTENT_DATA_KEY);
4422         btrfs_update_inode(trans, root, inode);
4423
4424         ret = btrfs_orphan_del(trans, inode);
4425         BUG_ON(ret);
4426
4427 out:
4428         nr = trans->blocks_used;
4429         ret = btrfs_end_transaction_throttle(trans, root);
4430         BUG_ON(ret);
4431         btrfs_btree_balance_dirty(root, nr);
4432 }
4433
4434 /*
4435  * create a new subvolume directory/inode (helper for the ioctl).
4436  */
4437 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4438                              struct btrfs_root *new_root, struct dentry *dentry,
4439                              u64 new_dirid, u64 alloc_hint)
4440 {
4441         struct inode *inode;
4442         int error;
4443         u64 index = 0;
4444
4445         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4446                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4447         if (IS_ERR(inode))
4448                 return PTR_ERR(inode);
4449         inode->i_op = &btrfs_dir_inode_operations;
4450         inode->i_fop = &btrfs_dir_file_operations;
4451
4452         inode->i_nlink = 1;
4453         btrfs_i_size_write(inode, 0);
4454
4455         error = btrfs_update_inode(trans, new_root, inode);
4456         if (error)
4457                 return error;
4458
4459         d_instantiate(dentry, inode);
4460         return 0;
4461 }
4462
4463 /* helper function for file defrag and space balancing.  This
4464  * forces readahead on a given range of bytes in an inode
4465  */
4466 unsigned long btrfs_force_ra(struct address_space *mapping,
4467                               struct file_ra_state *ra, struct file *file,
4468                               pgoff_t offset, pgoff_t last_index)
4469 {
4470         pgoff_t req_size = last_index - offset + 1;
4471
4472         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4473         return offset + req_size;
4474 }
4475
4476 struct inode *btrfs_alloc_inode(struct super_block *sb)
4477 {
4478         struct btrfs_inode *ei;
4479
4480         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4481         if (!ei)
4482                 return NULL;
4483         ei->last_trans = 0;
4484         ei->logged_trans = 0;
4485         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4486         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4487         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4488         INIT_LIST_HEAD(&ei->i_orphan);
4489         return &ei->vfs_inode;
4490 }
4491
4492 void btrfs_destroy_inode(struct inode *inode)
4493 {
4494         struct btrfs_ordered_extent *ordered;
4495         WARN_ON(!list_empty(&inode->i_dentry));
4496         WARN_ON(inode->i_data.nrpages);
4497
4498         if (BTRFS_I(inode)->i_acl &&
4499             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4500                 posix_acl_release(BTRFS_I(inode)->i_acl);
4501         if (BTRFS_I(inode)->i_default_acl &&
4502             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4503                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4504
4505         spin_lock(&BTRFS_I(inode)->root->list_lock);
4506         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4507                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4508                        " list\n", inode->i_ino);
4509                 dump_stack();
4510         }
4511         spin_unlock(&BTRFS_I(inode)->root->list_lock);
4512
4513         while (1) {
4514                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4515                 if (!ordered)
4516                         break;
4517                 else {
4518                         printk(KERN_ERR "btrfs found ordered "
4519                                "extent %llu %llu on inode cleanup\n",
4520                                (unsigned long long)ordered->file_offset,
4521                                (unsigned long long)ordered->len);
4522                         btrfs_remove_ordered_extent(inode, ordered);
4523                         btrfs_put_ordered_extent(ordered);
4524                         btrfs_put_ordered_extent(ordered);
4525                 }
4526         }
4527         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4528         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4529 }
4530
4531 static void init_once(void *foo)
4532 {
4533         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4534
4535         inode_init_once(&ei->vfs_inode);
4536 }
4537
4538 void btrfs_destroy_cachep(void)
4539 {
4540         if (btrfs_inode_cachep)
4541                 kmem_cache_destroy(btrfs_inode_cachep);
4542         if (btrfs_trans_handle_cachep)
4543                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4544         if (btrfs_transaction_cachep)
4545                 kmem_cache_destroy(btrfs_transaction_cachep);
4546         if (btrfs_bit_radix_cachep)
4547                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4548         if (btrfs_path_cachep)
4549                 kmem_cache_destroy(btrfs_path_cachep);
4550 }
4551
4552 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4553                                        unsigned long extra_flags,
4554                                        void (*ctor)(void *))
4555 {
4556         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4557                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4558 }
4559
4560 int btrfs_init_cachep(void)
4561 {
4562         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4563                                           sizeof(struct btrfs_inode),
4564                                           0, init_once);
4565         if (!btrfs_inode_cachep)
4566                 goto fail;
4567         btrfs_trans_handle_cachep =
4568                         btrfs_cache_create("btrfs_trans_handle_cache",
4569                                            sizeof(struct btrfs_trans_handle),
4570                                            0, NULL);
4571         if (!btrfs_trans_handle_cachep)
4572                 goto fail;
4573         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4574                                              sizeof(struct btrfs_transaction),
4575                                              0, NULL);
4576         if (!btrfs_transaction_cachep)
4577                 goto fail;
4578         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4579                                          sizeof(struct btrfs_path),
4580                                          0, NULL);
4581         if (!btrfs_path_cachep)
4582                 goto fail;
4583         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4584                                               SLAB_DESTROY_BY_RCU, NULL);
4585         if (!btrfs_bit_radix_cachep)
4586                 goto fail;
4587         return 0;
4588 fail:
4589         btrfs_destroy_cachep();
4590         return -ENOMEM;
4591 }
4592
4593 static int btrfs_getattr(struct vfsmount *mnt,
4594                          struct dentry *dentry, struct kstat *stat)
4595 {
4596         struct inode *inode = dentry->d_inode;
4597         generic_fillattr(inode, stat);
4598         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4599         stat->blksize = PAGE_CACHE_SIZE;
4600         stat->blocks = (inode_get_bytes(inode) +
4601                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4602         return 0;
4603 }
4604
4605 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4606                            struct inode *new_dir, struct dentry *new_dentry)
4607 {
4608         struct btrfs_trans_handle *trans;
4609         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4610         struct inode *new_inode = new_dentry->d_inode;
4611         struct inode *old_inode = old_dentry->d_inode;
4612         struct timespec ctime = CURRENT_TIME;
4613         u64 index = 0;
4614         int ret;
4615
4616         /* we're not allowed to rename between subvolumes */
4617         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4618             BTRFS_I(new_dir)->root->root_key.objectid)
4619                 return -EXDEV;
4620
4621         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4622             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4623                 return -ENOTEMPTY;
4624         }
4625
4626         /* to rename a snapshot or subvolume, we need to juggle the
4627          * backrefs.  This isn't coded yet
4628          */
4629         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4630                 return -EXDEV;
4631
4632         ret = btrfs_check_metadata_free_space(root);
4633         if (ret)
4634                 goto out_unlock;
4635
4636         trans = btrfs_start_transaction(root, 1);
4637
4638         btrfs_set_trans_block_group(trans, new_dir);
4639
4640         btrfs_inc_nlink(old_dentry->d_inode);
4641         old_dir->i_ctime = old_dir->i_mtime = ctime;
4642         new_dir->i_ctime = new_dir->i_mtime = ctime;
4643         old_inode->i_ctime = ctime;
4644
4645         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4646                                  old_dentry->d_name.name,
4647                                  old_dentry->d_name.len);
4648         if (ret)
4649                 goto out_fail;
4650
4651         if (new_inode) {
4652                 new_inode->i_ctime = CURRENT_TIME;
4653                 ret = btrfs_unlink_inode(trans, root, new_dir,
4654                                          new_dentry->d_inode,
4655                                          new_dentry->d_name.name,
4656                                          new_dentry->d_name.len);
4657                 if (ret)
4658                         goto out_fail;
4659                 if (new_inode->i_nlink == 0) {
4660                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4661                         if (ret)
4662                                 goto out_fail;
4663                 }
4664
4665         }
4666         ret = btrfs_set_inode_index(new_dir, &index);
4667         if (ret)
4668                 goto out_fail;
4669
4670         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4671                              old_inode, new_dentry->d_name.name,
4672                              new_dentry->d_name.len, 1, index);
4673         if (ret)
4674                 goto out_fail;
4675
4676 out_fail:
4677         btrfs_end_transaction_throttle(trans, root);
4678 out_unlock:
4679         return ret;
4680 }
4681
4682 /*
4683  * some fairly slow code that needs optimization. This walks the list
4684  * of all the inodes with pending delalloc and forces them to disk.
4685  */
4686 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4687 {
4688         struct list_head *head = &root->fs_info->delalloc_inodes;
4689         struct btrfs_inode *binode;
4690         struct inode *inode;
4691
4692         if (root->fs_info->sb->s_flags & MS_RDONLY)
4693                 return -EROFS;
4694
4695         spin_lock(&root->fs_info->delalloc_lock);
4696         while (!list_empty(head)) {
4697                 binode = list_entry(head->next, struct btrfs_inode,
4698                                     delalloc_inodes);
4699                 inode = igrab(&binode->vfs_inode);
4700                 if (!inode)
4701                         list_del_init(&binode->delalloc_inodes);
4702                 spin_unlock(&root->fs_info->delalloc_lock);
4703                 if (inode) {
4704                         filemap_flush(inode->i_mapping);
4705                         iput(inode);
4706                 }
4707                 cond_resched();
4708                 spin_lock(&root->fs_info->delalloc_lock);
4709         }
4710         spin_unlock(&root->fs_info->delalloc_lock);
4711
4712         /* the filemap_flush will queue IO into the worker threads, but
4713          * we have to make sure the IO is actually started and that
4714          * ordered extents get created before we return
4715          */
4716         atomic_inc(&root->fs_info->async_submit_draining);
4717         while (atomic_read(&root->fs_info->nr_async_submits) ||
4718               atomic_read(&root->fs_info->async_delalloc_pages)) {
4719                 wait_event(root->fs_info->async_submit_wait,
4720                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4721                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4722         }
4723         atomic_dec(&root->fs_info->async_submit_draining);
4724         return 0;
4725 }
4726
4727 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4728                          const char *symname)
4729 {
4730         struct btrfs_trans_handle *trans;
4731         struct btrfs_root *root = BTRFS_I(dir)->root;
4732         struct btrfs_path *path;
4733         struct btrfs_key key;
4734         struct inode *inode = NULL;
4735         int err;
4736         int drop_inode = 0;
4737         u64 objectid;
4738         u64 index = 0 ;
4739         int name_len;
4740         int datasize;
4741         unsigned long ptr;
4742         struct btrfs_file_extent_item *ei;
4743         struct extent_buffer *leaf;
4744         unsigned long nr = 0;
4745
4746         name_len = strlen(symname) + 1;
4747         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4748                 return -ENAMETOOLONG;
4749
4750         err = btrfs_check_metadata_free_space(root);
4751         if (err)
4752                 goto out_fail;
4753
4754         trans = btrfs_start_transaction(root, 1);
4755         btrfs_set_trans_block_group(trans, dir);
4756
4757         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4758         if (err) {
4759                 err = -ENOSPC;
4760                 goto out_unlock;
4761         }
4762
4763         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4764                                 dentry->d_name.len,
4765                                 dentry->d_parent->d_inode->i_ino, objectid,
4766                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4767                                 &index);
4768         err = PTR_ERR(inode);
4769         if (IS_ERR(inode))
4770                 goto out_unlock;
4771
4772         err = btrfs_init_inode_security(inode, dir);
4773         if (err) {
4774                 drop_inode = 1;
4775                 goto out_unlock;
4776         }
4777
4778         btrfs_set_trans_block_group(trans, inode);
4779         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4780         if (err)
4781                 drop_inode = 1;
4782         else {
4783                 inode->i_mapping->a_ops = &btrfs_aops;
4784                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4785                 inode->i_fop = &btrfs_file_operations;
4786                 inode->i_op = &btrfs_file_inode_operations;
4787                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4788         }
4789         dir->i_sb->s_dirt = 1;
4790         btrfs_update_inode_block_group(trans, inode);
4791         btrfs_update_inode_block_group(trans, dir);
4792         if (drop_inode)
4793                 goto out_unlock;
4794
4795         path = btrfs_alloc_path();
4796         BUG_ON(!path);
4797         key.objectid = inode->i_ino;
4798         key.offset = 0;
4799         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4800         datasize = btrfs_file_extent_calc_inline_size(name_len);
4801         err = btrfs_insert_empty_item(trans, root, path, &key,
4802                                       datasize);
4803         if (err) {
4804                 drop_inode = 1;
4805                 goto out_unlock;
4806         }
4807         leaf = path->nodes[0];
4808         ei = btrfs_item_ptr(leaf, path->slots[0],
4809                             struct btrfs_file_extent_item);
4810         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4811         btrfs_set_file_extent_type(leaf, ei,
4812                                    BTRFS_FILE_EXTENT_INLINE);
4813         btrfs_set_file_extent_encryption(leaf, ei, 0);
4814         btrfs_set_file_extent_compression(leaf, ei, 0);
4815         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4816         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4817
4818         ptr = btrfs_file_extent_inline_start(ei);
4819         write_extent_buffer(leaf, symname, ptr, name_len);
4820         btrfs_mark_buffer_dirty(leaf);
4821         btrfs_free_path(path);
4822
4823         inode->i_op = &btrfs_symlink_inode_operations;
4824         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4825         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4826         inode_set_bytes(inode, name_len);
4827         btrfs_i_size_write(inode, name_len - 1);
4828         err = btrfs_update_inode(trans, root, inode);
4829         if (err)
4830                 drop_inode = 1;
4831
4832 out_unlock:
4833         nr = trans->blocks_used;
4834         btrfs_end_transaction_throttle(trans, root);
4835 out_fail:
4836         if (drop_inode) {
4837                 inode_dec_link_count(inode);
4838                 iput(inode);
4839         }
4840         btrfs_btree_balance_dirty(root, nr);
4841         return err;
4842 }
4843
4844 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4845                                u64 alloc_hint, int mode)
4846 {
4847         struct btrfs_trans_handle *trans;
4848         struct btrfs_root *root = BTRFS_I(inode)->root;
4849         struct btrfs_key ins;
4850         u64 alloc_size;
4851         u64 cur_offset = start;
4852         u64 num_bytes = end - start;
4853         int ret = 0;
4854
4855         trans = btrfs_join_transaction(root, 1);
4856         BUG_ON(!trans);
4857         btrfs_set_trans_block_group(trans, inode);
4858
4859         while (num_bytes > 0) {
4860                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4861                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4862                                            root->sectorsize, 0, alloc_hint,
4863                                            (u64)-1, &ins, 1);
4864                 if (ret) {
4865                         WARN_ON(1);
4866                         goto out;
4867                 }
4868                 ret = insert_reserved_file_extent(trans, inode,
4869                                                   cur_offset, ins.objectid,
4870                                                   ins.offset, ins.offset,
4871                                                   ins.offset, 0, 0, 0,
4872                                                   BTRFS_FILE_EXTENT_PREALLOC);
4873                 BUG_ON(ret);
4874                 num_bytes -= ins.offset;
4875                 cur_offset += ins.offset;
4876                 alloc_hint = ins.objectid + ins.offset;
4877         }
4878 out:
4879         if (cur_offset > start) {
4880                 inode->i_ctime = CURRENT_TIME;
4881                 btrfs_set_flag(inode, PREALLOC);
4882                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4883                     cur_offset > i_size_read(inode))
4884                         btrfs_i_size_write(inode, cur_offset);
4885                 ret = btrfs_update_inode(trans, root, inode);
4886                 BUG_ON(ret);
4887         }
4888
4889         btrfs_end_transaction(trans, root);
4890         return ret;
4891 }
4892
4893 static long btrfs_fallocate(struct inode *inode, int mode,
4894                             loff_t offset, loff_t len)
4895 {
4896         u64 cur_offset;
4897         u64 last_byte;
4898         u64 alloc_start;
4899         u64 alloc_end;
4900         u64 alloc_hint = 0;
4901         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4902         struct extent_map *em;
4903         int ret;
4904
4905         alloc_start = offset & ~mask;
4906         alloc_end =  (offset + len + mask) & ~mask;
4907
4908         mutex_lock(&inode->i_mutex);
4909         if (alloc_start > inode->i_size) {
4910                 ret = btrfs_cont_expand(inode, alloc_start);
4911                 if (ret)
4912                         goto out;
4913         }
4914
4915         while (1) {
4916                 struct btrfs_ordered_extent *ordered;
4917                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4918                             alloc_end - 1, GFP_NOFS);
4919                 ordered = btrfs_lookup_first_ordered_extent(inode,
4920                                                             alloc_end - 1);
4921                 if (ordered &&
4922                     ordered->file_offset + ordered->len > alloc_start &&
4923                     ordered->file_offset < alloc_end) {
4924                         btrfs_put_ordered_extent(ordered);
4925                         unlock_extent(&BTRFS_I(inode)->io_tree,
4926                                       alloc_start, alloc_end - 1, GFP_NOFS);
4927                         btrfs_wait_ordered_range(inode, alloc_start,
4928                                                  alloc_end - alloc_start);
4929                 } else {
4930                         if (ordered)
4931                                 btrfs_put_ordered_extent(ordered);
4932                         break;
4933                 }
4934         }
4935
4936         cur_offset = alloc_start;
4937         while (1) {
4938                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4939                                       alloc_end - cur_offset, 0);
4940                 BUG_ON(IS_ERR(em) || !em);
4941                 last_byte = min(extent_map_end(em), alloc_end);
4942                 last_byte = (last_byte + mask) & ~mask;
4943                 if (em->block_start == EXTENT_MAP_HOLE) {
4944                         ret = prealloc_file_range(inode, cur_offset,
4945                                         last_byte, alloc_hint, mode);
4946                         if (ret < 0) {
4947                                 free_extent_map(em);
4948                                 break;
4949                         }
4950                 }
4951                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4952                         alloc_hint = em->block_start;
4953                 free_extent_map(em);
4954
4955                 cur_offset = last_byte;
4956                 if (cur_offset >= alloc_end) {
4957                         ret = 0;
4958                         break;
4959                 }
4960         }
4961         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4962                       GFP_NOFS);
4963 out:
4964         mutex_unlock(&inode->i_mutex);
4965         return ret;
4966 }
4967
4968 static int btrfs_set_page_dirty(struct page *page)
4969 {
4970         return __set_page_dirty_nobuffers(page);
4971 }
4972
4973 static int btrfs_permission(struct inode *inode, int mask)
4974 {
4975         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4976                 return -EACCES;
4977         return generic_permission(inode, mask, btrfs_check_acl);
4978 }
4979
4980 static struct inode_operations btrfs_dir_inode_operations = {
4981         .getattr        = btrfs_getattr,
4982         .lookup         = btrfs_lookup,
4983         .create         = btrfs_create,
4984         .unlink         = btrfs_unlink,
4985         .link           = btrfs_link,
4986         .mkdir          = btrfs_mkdir,
4987         .rmdir          = btrfs_rmdir,
4988         .rename         = btrfs_rename,
4989         .symlink        = btrfs_symlink,
4990         .setattr        = btrfs_setattr,
4991         .mknod          = btrfs_mknod,
4992         .setxattr       = btrfs_setxattr,
4993         .getxattr       = btrfs_getxattr,
4994         .listxattr      = btrfs_listxattr,
4995         .removexattr    = btrfs_removexattr,
4996         .permission     = btrfs_permission,
4997 };
4998 static struct inode_operations btrfs_dir_ro_inode_operations = {
4999         .lookup         = btrfs_lookup,
5000         .permission     = btrfs_permission,
5001 };
5002 static struct file_operations btrfs_dir_file_operations = {
5003         .llseek         = generic_file_llseek,
5004         .read           = generic_read_dir,
5005         .readdir        = btrfs_real_readdir,
5006         .unlocked_ioctl = btrfs_ioctl,
5007 #ifdef CONFIG_COMPAT
5008         .compat_ioctl   = btrfs_ioctl,
5009 #endif
5010         .release        = btrfs_release_file,
5011         .fsync          = btrfs_sync_file,
5012 };
5013
5014 static struct extent_io_ops btrfs_extent_io_ops = {
5015         .fill_delalloc = run_delalloc_range,
5016         .submit_bio_hook = btrfs_submit_bio_hook,
5017         .merge_bio_hook = btrfs_merge_bio_hook,
5018         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5019         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5020         .writepage_start_hook = btrfs_writepage_start_hook,
5021         .readpage_io_failed_hook = btrfs_io_failed_hook,
5022         .set_bit_hook = btrfs_set_bit_hook,
5023         .clear_bit_hook = btrfs_clear_bit_hook,
5024 };
5025
5026 /*
5027  * btrfs doesn't support the bmap operation because swapfiles
5028  * use bmap to make a mapping of extents in the file.  They assume
5029  * these extents won't change over the life of the file and they
5030  * use the bmap result to do IO directly to the drive.
5031  *
5032  * the btrfs bmap call would return logical addresses that aren't
5033  * suitable for IO and they also will change frequently as COW
5034  * operations happen.  So, swapfile + btrfs == corruption.
5035  *
5036  * For now we're avoiding this by dropping bmap.
5037  */
5038 static struct address_space_operations btrfs_aops = {
5039         .readpage       = btrfs_readpage,
5040         .writepage      = btrfs_writepage,
5041         .writepages     = btrfs_writepages,
5042         .readpages      = btrfs_readpages,
5043         .sync_page      = block_sync_page,
5044         .direct_IO      = btrfs_direct_IO,
5045         .invalidatepage = btrfs_invalidatepage,
5046         .releasepage    = btrfs_releasepage,
5047         .set_page_dirty = btrfs_set_page_dirty,
5048 };
5049
5050 static struct address_space_operations btrfs_symlink_aops = {
5051         .readpage       = btrfs_readpage,
5052         .writepage      = btrfs_writepage,
5053         .invalidatepage = btrfs_invalidatepage,
5054         .releasepage    = btrfs_releasepage,
5055 };
5056
5057 static struct inode_operations btrfs_file_inode_operations = {
5058         .truncate       = btrfs_truncate,
5059         .getattr        = btrfs_getattr,
5060         .setattr        = btrfs_setattr,
5061         .setxattr       = btrfs_setxattr,
5062         .getxattr       = btrfs_getxattr,
5063         .listxattr      = btrfs_listxattr,
5064         .removexattr    = btrfs_removexattr,
5065         .permission     = btrfs_permission,
5066         .fallocate      = btrfs_fallocate,
5067         .fiemap         = btrfs_fiemap,
5068 };
5069 static struct inode_operations btrfs_special_inode_operations = {
5070         .getattr        = btrfs_getattr,
5071         .setattr        = btrfs_setattr,
5072         .permission     = btrfs_permission,
5073         .setxattr       = btrfs_setxattr,
5074         .getxattr       = btrfs_getxattr,
5075         .listxattr      = btrfs_listxattr,
5076         .removexattr    = btrfs_removexattr,
5077 };
5078 static struct inode_operations btrfs_symlink_inode_operations = {
5079         .readlink       = generic_readlink,
5080         .follow_link    = page_follow_link_light,
5081         .put_link       = page_put_link,
5082         .permission     = btrfs_permission,
5083         .setxattr       = btrfs_setxattr,
5084         .getxattr       = btrfs_getxattr,
5085         .listxattr      = btrfs_listxattr,
5086         .removexattr    = btrfs_removexattr,
5087 };