Btrfs: leave btree locks spinning more often
[linux-2.6] / fs / btrfs / tree-log.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27
28 /* magic values for the inode_only field in btrfs_log_inode:
29  *
30  * LOG_INODE_ALL means to log everything
31  * LOG_INODE_EXISTS means to log just enough to recreate the inode
32  * during log replay
33  */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36
37 /*
38  * stages for the tree walking.  The first
39  * stage (0) is to only pin down the blocks we find
40  * the second stage (1) is to make sure that all the inodes
41  * we find in the log are created in the subvolume.
42  *
43  * The last stage is to deal with directories and links and extents
44  * and all the other fun semantics
45  */
46 #define LOG_WALK_PIN_ONLY 0
47 #define LOG_WALK_REPLAY_INODES 1
48 #define LOG_WALK_REPLAY_ALL 2
49
50 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51                              struct btrfs_root *root, struct inode *inode,
52                              int inode_only);
53 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
54                              struct btrfs_root *root,
55                              struct btrfs_path *path, u64 objectid);
56
57 /*
58  * tree logging is a special write ahead log used to make sure that
59  * fsyncs and O_SYNCs can happen without doing full tree commits.
60  *
61  * Full tree commits are expensive because they require commonly
62  * modified blocks to be recowed, creating many dirty pages in the
63  * extent tree an 4x-6x higher write load than ext3.
64  *
65  * Instead of doing a tree commit on every fsync, we use the
66  * key ranges and transaction ids to find items for a given file or directory
67  * that have changed in this transaction.  Those items are copied into
68  * a special tree (one per subvolume root), that tree is written to disk
69  * and then the fsync is considered complete.
70  *
71  * After a crash, items are copied out of the log-tree back into the
72  * subvolume tree.  Any file data extents found are recorded in the extent
73  * allocation tree, and the log-tree freed.
74  *
75  * The log tree is read three times, once to pin down all the extents it is
76  * using in ram and once, once to create all the inodes logged in the tree
77  * and once to do all the other items.
78  */
79
80 /*
81  * start a sub transaction and setup the log tree
82  * this increments the log tree writer count to make the people
83  * syncing the tree wait for us to finish
84  */
85 static int start_log_trans(struct btrfs_trans_handle *trans,
86                            struct btrfs_root *root)
87 {
88         int ret;
89
90         mutex_lock(&root->log_mutex);
91         if (root->log_root) {
92                 root->log_batch++;
93                 atomic_inc(&root->log_writers);
94                 mutex_unlock(&root->log_mutex);
95                 return 0;
96         }
97         mutex_lock(&root->fs_info->tree_log_mutex);
98         if (!root->fs_info->log_root_tree) {
99                 ret = btrfs_init_log_root_tree(trans, root->fs_info);
100                 BUG_ON(ret);
101         }
102         if (!root->log_root) {
103                 ret = btrfs_add_log_tree(trans, root);
104                 BUG_ON(ret);
105         }
106         mutex_unlock(&root->fs_info->tree_log_mutex);
107         root->log_batch++;
108         atomic_inc(&root->log_writers);
109         mutex_unlock(&root->log_mutex);
110         return 0;
111 }
112
113 /*
114  * returns 0 if there was a log transaction running and we were able
115  * to join, or returns -ENOENT if there were not transactions
116  * in progress
117  */
118 static int join_running_log_trans(struct btrfs_root *root)
119 {
120         int ret = -ENOENT;
121
122         smp_mb();
123         if (!root->log_root)
124                 return -ENOENT;
125
126         mutex_lock(&root->log_mutex);
127         if (root->log_root) {
128                 ret = 0;
129                 atomic_inc(&root->log_writers);
130         }
131         mutex_unlock(&root->log_mutex);
132         return ret;
133 }
134
135 /*
136  * indicate we're done making changes to the log tree
137  * and wake up anyone waiting to do a sync
138  */
139 static int end_log_trans(struct btrfs_root *root)
140 {
141         if (atomic_dec_and_test(&root->log_writers)) {
142                 smp_mb();
143                 if (waitqueue_active(&root->log_writer_wait))
144                         wake_up(&root->log_writer_wait);
145         }
146         return 0;
147 }
148
149
150 /*
151  * the walk control struct is used to pass state down the chain when
152  * processing the log tree.  The stage field tells us which part
153  * of the log tree processing we are currently doing.  The others
154  * are state fields used for that specific part
155  */
156 struct walk_control {
157         /* should we free the extent on disk when done?  This is used
158          * at transaction commit time while freeing a log tree
159          */
160         int free;
161
162         /* should we write out the extent buffer?  This is used
163          * while flushing the log tree to disk during a sync
164          */
165         int write;
166
167         /* should we wait for the extent buffer io to finish?  Also used
168          * while flushing the log tree to disk for a sync
169          */
170         int wait;
171
172         /* pin only walk, we record which extents on disk belong to the
173          * log trees
174          */
175         int pin;
176
177         /* what stage of the replay code we're currently in */
178         int stage;
179
180         /* the root we are currently replaying */
181         struct btrfs_root *replay_dest;
182
183         /* the trans handle for the current replay */
184         struct btrfs_trans_handle *trans;
185
186         /* the function that gets used to process blocks we find in the
187          * tree.  Note the extent_buffer might not be up to date when it is
188          * passed in, and it must be checked or read if you need the data
189          * inside it
190          */
191         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
192                             struct walk_control *wc, u64 gen);
193 };
194
195 /*
196  * process_func used to pin down extents, write them or wait on them
197  */
198 static int process_one_buffer(struct btrfs_root *log,
199                               struct extent_buffer *eb,
200                               struct walk_control *wc, u64 gen)
201 {
202         if (wc->pin) {
203                 mutex_lock(&log->fs_info->pinned_mutex);
204                 btrfs_update_pinned_extents(log->fs_info->extent_root,
205                                             eb->start, eb->len, 1);
206         }
207
208         if (btrfs_buffer_uptodate(eb, gen)) {
209                 if (wc->write)
210                         btrfs_write_tree_block(eb);
211                 if (wc->wait)
212                         btrfs_wait_tree_block_writeback(eb);
213         }
214         return 0;
215 }
216
217 /*
218  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
219  * to the src data we are copying out.
220  *
221  * root is the tree we are copying into, and path is a scratch
222  * path for use in this function (it should be released on entry and
223  * will be released on exit).
224  *
225  * If the key is already in the destination tree the existing item is
226  * overwritten.  If the existing item isn't big enough, it is extended.
227  * If it is too large, it is truncated.
228  *
229  * If the key isn't in the destination yet, a new item is inserted.
230  */
231 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
232                                    struct btrfs_root *root,
233                                    struct btrfs_path *path,
234                                    struct extent_buffer *eb, int slot,
235                                    struct btrfs_key *key)
236 {
237         int ret;
238         u32 item_size;
239         u64 saved_i_size = 0;
240         int save_old_i_size = 0;
241         unsigned long src_ptr;
242         unsigned long dst_ptr;
243         int overwrite_root = 0;
244
245         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
246                 overwrite_root = 1;
247
248         item_size = btrfs_item_size_nr(eb, slot);
249         src_ptr = btrfs_item_ptr_offset(eb, slot);
250
251         /* look for the key in the destination tree */
252         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
253         if (ret == 0) {
254                 char *src_copy;
255                 char *dst_copy;
256                 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
257                                                   path->slots[0]);
258                 if (dst_size != item_size)
259                         goto insert;
260
261                 if (item_size == 0) {
262                         btrfs_release_path(root, path);
263                         return 0;
264                 }
265                 dst_copy = kmalloc(item_size, GFP_NOFS);
266                 src_copy = kmalloc(item_size, GFP_NOFS);
267
268                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
269
270                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
271                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
272                                    item_size);
273                 ret = memcmp(dst_copy, src_copy, item_size);
274
275                 kfree(dst_copy);
276                 kfree(src_copy);
277                 /*
278                  * they have the same contents, just return, this saves
279                  * us from cowing blocks in the destination tree and doing
280                  * extra writes that may not have been done by a previous
281                  * sync
282                  */
283                 if (ret == 0) {
284                         btrfs_release_path(root, path);
285                         return 0;
286                 }
287
288         }
289 insert:
290         btrfs_release_path(root, path);
291         /* try to insert the key into the destination tree */
292         ret = btrfs_insert_empty_item(trans, root, path,
293                                       key, item_size);
294
295         /* make sure any existing item is the correct size */
296         if (ret == -EEXIST) {
297                 u32 found_size;
298                 found_size = btrfs_item_size_nr(path->nodes[0],
299                                                 path->slots[0]);
300                 if (found_size > item_size) {
301                         btrfs_truncate_item(trans, root, path, item_size, 1);
302                 } else if (found_size < item_size) {
303                         ret = btrfs_extend_item(trans, root, path,
304                                                 item_size - found_size);
305                         BUG_ON(ret);
306                 }
307         } else if (ret) {
308                 BUG();
309         }
310         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
311                                         path->slots[0]);
312
313         /* don't overwrite an existing inode if the generation number
314          * was logged as zero.  This is done when the tree logging code
315          * is just logging an inode to make sure it exists after recovery.
316          *
317          * Also, don't overwrite i_size on directories during replay.
318          * log replay inserts and removes directory items based on the
319          * state of the tree found in the subvolume, and i_size is modified
320          * as it goes
321          */
322         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
323                 struct btrfs_inode_item *src_item;
324                 struct btrfs_inode_item *dst_item;
325
326                 src_item = (struct btrfs_inode_item *)src_ptr;
327                 dst_item = (struct btrfs_inode_item *)dst_ptr;
328
329                 if (btrfs_inode_generation(eb, src_item) == 0)
330                         goto no_copy;
331
332                 if (overwrite_root &&
333                     S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
334                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
335                         save_old_i_size = 1;
336                         saved_i_size = btrfs_inode_size(path->nodes[0],
337                                                         dst_item);
338                 }
339         }
340
341         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
342                            src_ptr, item_size);
343
344         if (save_old_i_size) {
345                 struct btrfs_inode_item *dst_item;
346                 dst_item = (struct btrfs_inode_item *)dst_ptr;
347                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
348         }
349
350         /* make sure the generation is filled in */
351         if (key->type == BTRFS_INODE_ITEM_KEY) {
352                 struct btrfs_inode_item *dst_item;
353                 dst_item = (struct btrfs_inode_item *)dst_ptr;
354                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
355                         btrfs_set_inode_generation(path->nodes[0], dst_item,
356                                                    trans->transid);
357                 }
358         }
359 no_copy:
360         btrfs_mark_buffer_dirty(path->nodes[0]);
361         btrfs_release_path(root, path);
362         return 0;
363 }
364
365 /*
366  * simple helper to read an inode off the disk from a given root
367  * This can only be called for subvolume roots and not for the log
368  */
369 static noinline struct inode *read_one_inode(struct btrfs_root *root,
370                                              u64 objectid)
371 {
372         struct inode *inode;
373         inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
374         if (inode->i_state & I_NEW) {
375                 BTRFS_I(inode)->root = root;
376                 BTRFS_I(inode)->location.objectid = objectid;
377                 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
378                 BTRFS_I(inode)->location.offset = 0;
379                 btrfs_read_locked_inode(inode);
380                 unlock_new_inode(inode);
381
382         }
383         if (is_bad_inode(inode)) {
384                 iput(inode);
385                 inode = NULL;
386         }
387         return inode;
388 }
389
390 /* replays a single extent in 'eb' at 'slot' with 'key' into the
391  * subvolume 'root'.  path is released on entry and should be released
392  * on exit.
393  *
394  * extents in the log tree have not been allocated out of the extent
395  * tree yet.  So, this completes the allocation, taking a reference
396  * as required if the extent already exists or creating a new extent
397  * if it isn't in the extent allocation tree yet.
398  *
399  * The extent is inserted into the file, dropping any existing extents
400  * from the file that overlap the new one.
401  */
402 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
403                                       struct btrfs_root *root,
404                                       struct btrfs_path *path,
405                                       struct extent_buffer *eb, int slot,
406                                       struct btrfs_key *key)
407 {
408         int found_type;
409         u64 mask = root->sectorsize - 1;
410         u64 extent_end;
411         u64 alloc_hint;
412         u64 start = key->offset;
413         u64 saved_nbytes;
414         struct btrfs_file_extent_item *item;
415         struct inode *inode = NULL;
416         unsigned long size;
417         int ret = 0;
418
419         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
420         found_type = btrfs_file_extent_type(eb, item);
421
422         if (found_type == BTRFS_FILE_EXTENT_REG ||
423             found_type == BTRFS_FILE_EXTENT_PREALLOC)
424                 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
425         else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
426                 size = btrfs_file_extent_inline_len(eb, item);
427                 extent_end = (start + size + mask) & ~mask;
428         } else {
429                 ret = 0;
430                 goto out;
431         }
432
433         inode = read_one_inode(root, key->objectid);
434         if (!inode) {
435                 ret = -EIO;
436                 goto out;
437         }
438
439         /*
440          * first check to see if we already have this extent in the
441          * file.  This must be done before the btrfs_drop_extents run
442          * so we don't try to drop this extent.
443          */
444         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
445                                        start, 0);
446
447         if (ret == 0 &&
448             (found_type == BTRFS_FILE_EXTENT_REG ||
449              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
450                 struct btrfs_file_extent_item cmp1;
451                 struct btrfs_file_extent_item cmp2;
452                 struct btrfs_file_extent_item *existing;
453                 struct extent_buffer *leaf;
454
455                 leaf = path->nodes[0];
456                 existing = btrfs_item_ptr(leaf, path->slots[0],
457                                           struct btrfs_file_extent_item);
458
459                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
460                                    sizeof(cmp1));
461                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
462                                    sizeof(cmp2));
463
464                 /*
465                  * we already have a pointer to this exact extent,
466                  * we don't have to do anything
467                  */
468                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
469                         btrfs_release_path(root, path);
470                         goto out;
471                 }
472         }
473         btrfs_release_path(root, path);
474
475         saved_nbytes = inode_get_bytes(inode);
476         /* drop any overlapping extents */
477         ret = btrfs_drop_extents(trans, root, inode,
478                          start, extent_end, start, &alloc_hint);
479         BUG_ON(ret);
480
481         if (found_type == BTRFS_FILE_EXTENT_REG ||
482             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
483                 unsigned long dest_offset;
484                 struct btrfs_key ins;
485
486                 ret = btrfs_insert_empty_item(trans, root, path, key,
487                                               sizeof(*item));
488                 BUG_ON(ret);
489                 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
490                                                     path->slots[0]);
491                 copy_extent_buffer(path->nodes[0], eb, dest_offset,
492                                 (unsigned long)item,  sizeof(*item));
493
494                 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
495                 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
496                 ins.type = BTRFS_EXTENT_ITEM_KEY;
497
498                 if (ins.objectid > 0) {
499                         u64 csum_start;
500                         u64 csum_end;
501                         LIST_HEAD(ordered_sums);
502                         /*
503                          * is this extent already allocated in the extent
504                          * allocation tree?  If so, just add a reference
505                          */
506                         ret = btrfs_lookup_extent(root, ins.objectid,
507                                                 ins.offset);
508                         if (ret == 0) {
509                                 ret = btrfs_inc_extent_ref(trans, root,
510                                                 ins.objectid, ins.offset,
511                                                 path->nodes[0]->start,
512                                                 root->root_key.objectid,
513                                                 trans->transid, key->objectid);
514                         } else {
515                                 /*
516                                  * insert the extent pointer in the extent
517                                  * allocation tree
518                                  */
519                                 ret = btrfs_alloc_logged_extent(trans, root,
520                                                 path->nodes[0]->start,
521                                                 root->root_key.objectid,
522                                                 trans->transid, key->objectid,
523                                                 &ins);
524                                 BUG_ON(ret);
525                         }
526                         btrfs_release_path(root, path);
527
528                         if (btrfs_file_extent_compression(eb, item)) {
529                                 csum_start = ins.objectid;
530                                 csum_end = csum_start + ins.offset;
531                         } else {
532                                 csum_start = ins.objectid +
533                                         btrfs_file_extent_offset(eb, item);
534                                 csum_end = csum_start +
535                                         btrfs_file_extent_num_bytes(eb, item);
536                         }
537
538                         ret = btrfs_lookup_csums_range(root->log_root,
539                                                 csum_start, csum_end - 1,
540                                                 &ordered_sums);
541                         BUG_ON(ret);
542                         while (!list_empty(&ordered_sums)) {
543                                 struct btrfs_ordered_sum *sums;
544                                 sums = list_entry(ordered_sums.next,
545                                                 struct btrfs_ordered_sum,
546                                                 list);
547                                 ret = btrfs_csum_file_blocks(trans,
548                                                 root->fs_info->csum_root,
549                                                 sums);
550                                 BUG_ON(ret);
551                                 list_del(&sums->list);
552                                 kfree(sums);
553                         }
554                 } else {
555                         btrfs_release_path(root, path);
556                 }
557         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
558                 /* inline extents are easy, we just overwrite them */
559                 ret = overwrite_item(trans, root, path, eb, slot, key);
560                 BUG_ON(ret);
561         }
562
563         inode_set_bytes(inode, saved_nbytes);
564         btrfs_update_inode(trans, root, inode);
565 out:
566         if (inode)
567                 iput(inode);
568         return ret;
569 }
570
571 /*
572  * when cleaning up conflicts between the directory names in the
573  * subvolume, directory names in the log and directory names in the
574  * inode back references, we may have to unlink inodes from directories.
575  *
576  * This is a helper function to do the unlink of a specific directory
577  * item
578  */
579 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
580                                       struct btrfs_root *root,
581                                       struct btrfs_path *path,
582                                       struct inode *dir,
583                                       struct btrfs_dir_item *di)
584 {
585         struct inode *inode;
586         char *name;
587         int name_len;
588         struct extent_buffer *leaf;
589         struct btrfs_key location;
590         int ret;
591
592         leaf = path->nodes[0];
593
594         btrfs_dir_item_key_to_cpu(leaf, di, &location);
595         name_len = btrfs_dir_name_len(leaf, di);
596         name = kmalloc(name_len, GFP_NOFS);
597         read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
598         btrfs_release_path(root, path);
599
600         inode = read_one_inode(root, location.objectid);
601         BUG_ON(!inode);
602
603         ret = link_to_fixup_dir(trans, root, path, location.objectid);
604         BUG_ON(ret);
605         ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
606         BUG_ON(ret);
607         kfree(name);
608
609         iput(inode);
610         return ret;
611 }
612
613 /*
614  * helper function to see if a given name and sequence number found
615  * in an inode back reference are already in a directory and correctly
616  * point to this inode
617  */
618 static noinline int inode_in_dir(struct btrfs_root *root,
619                                  struct btrfs_path *path,
620                                  u64 dirid, u64 objectid, u64 index,
621                                  const char *name, int name_len)
622 {
623         struct btrfs_dir_item *di;
624         struct btrfs_key location;
625         int match = 0;
626
627         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
628                                          index, name, name_len, 0);
629         if (di && !IS_ERR(di)) {
630                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
631                 if (location.objectid != objectid)
632                         goto out;
633         } else
634                 goto out;
635         btrfs_release_path(root, path);
636
637         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
638         if (di && !IS_ERR(di)) {
639                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
640                 if (location.objectid != objectid)
641                         goto out;
642         } else
643                 goto out;
644         match = 1;
645 out:
646         btrfs_release_path(root, path);
647         return match;
648 }
649
650 /*
651  * helper function to check a log tree for a named back reference in
652  * an inode.  This is used to decide if a back reference that is
653  * found in the subvolume conflicts with what we find in the log.
654  *
655  * inode backreferences may have multiple refs in a single item,
656  * during replay we process one reference at a time, and we don't
657  * want to delete valid links to a file from the subvolume if that
658  * link is also in the log.
659  */
660 static noinline int backref_in_log(struct btrfs_root *log,
661                                    struct btrfs_key *key,
662                                    char *name, int namelen)
663 {
664         struct btrfs_path *path;
665         struct btrfs_inode_ref *ref;
666         unsigned long ptr;
667         unsigned long ptr_end;
668         unsigned long name_ptr;
669         int found_name_len;
670         int item_size;
671         int ret;
672         int match = 0;
673
674         path = btrfs_alloc_path();
675         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
676         if (ret != 0)
677                 goto out;
678
679         item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
680         ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
681         ptr_end = ptr + item_size;
682         while (ptr < ptr_end) {
683                 ref = (struct btrfs_inode_ref *)ptr;
684                 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
685                 if (found_name_len == namelen) {
686                         name_ptr = (unsigned long)(ref + 1);
687                         ret = memcmp_extent_buffer(path->nodes[0], name,
688                                                    name_ptr, namelen);
689                         if (ret == 0) {
690                                 match = 1;
691                                 goto out;
692                         }
693                 }
694                 ptr = (unsigned long)(ref + 1) + found_name_len;
695         }
696 out:
697         btrfs_free_path(path);
698         return match;
699 }
700
701
702 /*
703  * replay one inode back reference item found in the log tree.
704  * eb, slot and key refer to the buffer and key found in the log tree.
705  * root is the destination we are replaying into, and path is for temp
706  * use by this function.  (it should be released on return).
707  */
708 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
709                                   struct btrfs_root *root,
710                                   struct btrfs_root *log,
711                                   struct btrfs_path *path,
712                                   struct extent_buffer *eb, int slot,
713                                   struct btrfs_key *key)
714 {
715         struct inode *dir;
716         int ret;
717         struct btrfs_key location;
718         struct btrfs_inode_ref *ref;
719         struct btrfs_dir_item *di;
720         struct inode *inode;
721         char *name;
722         int namelen;
723         unsigned long ref_ptr;
724         unsigned long ref_end;
725
726         location.objectid = key->objectid;
727         location.type = BTRFS_INODE_ITEM_KEY;
728         location.offset = 0;
729
730         /*
731          * it is possible that we didn't log all the parent directories
732          * for a given inode.  If we don't find the dir, just don't
733          * copy the back ref in.  The link count fixup code will take
734          * care of the rest
735          */
736         dir = read_one_inode(root, key->offset);
737         if (!dir)
738                 return -ENOENT;
739
740         inode = read_one_inode(root, key->objectid);
741         BUG_ON(!dir);
742
743         ref_ptr = btrfs_item_ptr_offset(eb, slot);
744         ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
745
746 again:
747         ref = (struct btrfs_inode_ref *)ref_ptr;
748
749         namelen = btrfs_inode_ref_name_len(eb, ref);
750         name = kmalloc(namelen, GFP_NOFS);
751         BUG_ON(!name);
752
753         read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
754
755         /* if we already have a perfect match, we're done */
756         if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
757                          btrfs_inode_ref_index(eb, ref),
758                          name, namelen)) {
759                 goto out;
760         }
761
762         /*
763          * look for a conflicting back reference in the metadata.
764          * if we find one we have to unlink that name of the file
765          * before we add our new link.  Later on, we overwrite any
766          * existing back reference, and we don't want to create
767          * dangling pointers in the directory.
768          */
769 conflict_again:
770         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
771         if (ret == 0) {
772                 char *victim_name;
773                 int victim_name_len;
774                 struct btrfs_inode_ref *victim_ref;
775                 unsigned long ptr;
776                 unsigned long ptr_end;
777                 struct extent_buffer *leaf = path->nodes[0];
778
779                 /* are we trying to overwrite a back ref for the root directory
780                  * if so, just jump out, we're done
781                  */
782                 if (key->objectid == key->offset)
783                         goto out_nowrite;
784
785                 /* check all the names in this back reference to see
786                  * if they are in the log.  if so, we allow them to stay
787                  * otherwise they must be unlinked as a conflict
788                  */
789                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
790                 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
791                 while (ptr < ptr_end) {
792                         victim_ref = (struct btrfs_inode_ref *)ptr;
793                         victim_name_len = btrfs_inode_ref_name_len(leaf,
794                                                                    victim_ref);
795                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
796                         BUG_ON(!victim_name);
797
798                         read_extent_buffer(leaf, victim_name,
799                                            (unsigned long)(victim_ref + 1),
800                                            victim_name_len);
801
802                         if (!backref_in_log(log, key, victim_name,
803                                             victim_name_len)) {
804                                 btrfs_inc_nlink(inode);
805                                 btrfs_release_path(root, path);
806                                 ret = btrfs_unlink_inode(trans, root, dir,
807                                                          inode, victim_name,
808                                                          victim_name_len);
809                                 kfree(victim_name);
810                                 btrfs_release_path(root, path);
811                                 goto conflict_again;
812                         }
813                         kfree(victim_name);
814                         ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
815                 }
816                 BUG_ON(ret);
817         }
818         btrfs_release_path(root, path);
819
820         /* look for a conflicting sequence number */
821         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
822                                          btrfs_inode_ref_index(eb, ref),
823                                          name, namelen, 0);
824         if (di && !IS_ERR(di)) {
825                 ret = drop_one_dir_item(trans, root, path, dir, di);
826                 BUG_ON(ret);
827         }
828         btrfs_release_path(root, path);
829
830
831         /* look for a conflicting name */
832         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
833                                    name, namelen, 0);
834         if (di && !IS_ERR(di)) {
835                 ret = drop_one_dir_item(trans, root, path, dir, di);
836                 BUG_ON(ret);
837         }
838         btrfs_release_path(root, path);
839
840         /* insert our name */
841         ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
842                              btrfs_inode_ref_index(eb, ref));
843         BUG_ON(ret);
844
845         btrfs_update_inode(trans, root, inode);
846
847 out:
848         ref_ptr = (unsigned long)(ref + 1) + namelen;
849         kfree(name);
850         if (ref_ptr < ref_end)
851                 goto again;
852
853         /* finally write the back reference in the inode */
854         ret = overwrite_item(trans, root, path, eb, slot, key);
855         BUG_ON(ret);
856
857 out_nowrite:
858         btrfs_release_path(root, path);
859         iput(dir);
860         iput(inode);
861         return 0;
862 }
863
864 /*
865  * There are a few corners where the link count of the file can't
866  * be properly maintained during replay.  So, instead of adding
867  * lots of complexity to the log code, we just scan the backrefs
868  * for any file that has been through replay.
869  *
870  * The scan will update the link count on the inode to reflect the
871  * number of back refs found.  If it goes down to zero, the iput
872  * will free the inode.
873  */
874 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
875                                            struct btrfs_root *root,
876                                            struct inode *inode)
877 {
878         struct btrfs_path *path;
879         int ret;
880         struct btrfs_key key;
881         u64 nlink = 0;
882         unsigned long ptr;
883         unsigned long ptr_end;
884         int name_len;
885
886         key.objectid = inode->i_ino;
887         key.type = BTRFS_INODE_REF_KEY;
888         key.offset = (u64)-1;
889
890         path = btrfs_alloc_path();
891
892         while (1) {
893                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
894                 if (ret < 0)
895                         break;
896                 if (ret > 0) {
897                         if (path->slots[0] == 0)
898                                 break;
899                         path->slots[0]--;
900                 }
901                 btrfs_item_key_to_cpu(path->nodes[0], &key,
902                                       path->slots[0]);
903                 if (key.objectid != inode->i_ino ||
904                     key.type != BTRFS_INODE_REF_KEY)
905                         break;
906                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
907                 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
908                                                    path->slots[0]);
909                 while (ptr < ptr_end) {
910                         struct btrfs_inode_ref *ref;
911
912                         ref = (struct btrfs_inode_ref *)ptr;
913                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
914                                                             ref);
915                         ptr = (unsigned long)(ref + 1) + name_len;
916                         nlink++;
917                 }
918
919                 if (key.offset == 0)
920                         break;
921                 key.offset--;
922                 btrfs_release_path(root, path);
923         }
924         btrfs_free_path(path);
925         if (nlink != inode->i_nlink) {
926                 inode->i_nlink = nlink;
927                 btrfs_update_inode(trans, root, inode);
928         }
929         BTRFS_I(inode)->index_cnt = (u64)-1;
930
931         return 0;
932 }
933
934 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
935                                             struct btrfs_root *root,
936                                             struct btrfs_path *path)
937 {
938         int ret;
939         struct btrfs_key key;
940         struct inode *inode;
941
942         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
943         key.type = BTRFS_ORPHAN_ITEM_KEY;
944         key.offset = (u64)-1;
945         while (1) {
946                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
947                 if (ret < 0)
948                         break;
949
950                 if (ret == 1) {
951                         if (path->slots[0] == 0)
952                                 break;
953                         path->slots[0]--;
954                 }
955
956                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
957                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
958                     key.type != BTRFS_ORPHAN_ITEM_KEY)
959                         break;
960
961                 ret = btrfs_del_item(trans, root, path);
962                 BUG_ON(ret);
963
964                 btrfs_release_path(root, path);
965                 inode = read_one_inode(root, key.offset);
966                 BUG_ON(!inode);
967
968                 ret = fixup_inode_link_count(trans, root, inode);
969                 BUG_ON(ret);
970
971                 iput(inode);
972
973                 if (key.offset == 0)
974                         break;
975                 key.offset--;
976         }
977         btrfs_release_path(root, path);
978         return 0;
979 }
980
981
982 /*
983  * record a given inode in the fixup dir so we can check its link
984  * count when replay is done.  The link count is incremented here
985  * so the inode won't go away until we check it
986  */
987 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
988                                       struct btrfs_root *root,
989                                       struct btrfs_path *path,
990                                       u64 objectid)
991 {
992         struct btrfs_key key;
993         int ret = 0;
994         struct inode *inode;
995
996         inode = read_one_inode(root, objectid);
997         BUG_ON(!inode);
998
999         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1000         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1001         key.offset = objectid;
1002
1003         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1004
1005         btrfs_release_path(root, path);
1006         if (ret == 0) {
1007                 btrfs_inc_nlink(inode);
1008                 btrfs_update_inode(trans, root, inode);
1009         } else if (ret == -EEXIST) {
1010                 ret = 0;
1011         } else {
1012                 BUG();
1013         }
1014         iput(inode);
1015
1016         return ret;
1017 }
1018
1019 /*
1020  * when replaying the log for a directory, we only insert names
1021  * for inodes that actually exist.  This means an fsync on a directory
1022  * does not implicitly fsync all the new files in it
1023  */
1024 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1025                                     struct btrfs_root *root,
1026                                     struct btrfs_path *path,
1027                                     u64 dirid, u64 index,
1028                                     char *name, int name_len, u8 type,
1029                                     struct btrfs_key *location)
1030 {
1031         struct inode *inode;
1032         struct inode *dir;
1033         int ret;
1034
1035         inode = read_one_inode(root, location->objectid);
1036         if (!inode)
1037                 return -ENOENT;
1038
1039         dir = read_one_inode(root, dirid);
1040         if (!dir) {
1041                 iput(inode);
1042                 return -EIO;
1043         }
1044         ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1045
1046         /* FIXME, put inode into FIXUP list */
1047
1048         iput(inode);
1049         iput(dir);
1050         return ret;
1051 }
1052
1053 /*
1054  * take a single entry in a log directory item and replay it into
1055  * the subvolume.
1056  *
1057  * if a conflicting item exists in the subdirectory already,
1058  * the inode it points to is unlinked and put into the link count
1059  * fix up tree.
1060  *
1061  * If a name from the log points to a file or directory that does
1062  * not exist in the FS, it is skipped.  fsyncs on directories
1063  * do not force down inodes inside that directory, just changes to the
1064  * names or unlinks in a directory.
1065  */
1066 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1067                                     struct btrfs_root *root,
1068                                     struct btrfs_path *path,
1069                                     struct extent_buffer *eb,
1070                                     struct btrfs_dir_item *di,
1071                                     struct btrfs_key *key)
1072 {
1073         char *name;
1074         int name_len;
1075         struct btrfs_dir_item *dst_di;
1076         struct btrfs_key found_key;
1077         struct btrfs_key log_key;
1078         struct inode *dir;
1079         u8 log_type;
1080         int exists;
1081         int ret;
1082
1083         dir = read_one_inode(root, key->objectid);
1084         BUG_ON(!dir);
1085
1086         name_len = btrfs_dir_name_len(eb, di);
1087         name = kmalloc(name_len, GFP_NOFS);
1088         log_type = btrfs_dir_type(eb, di);
1089         read_extent_buffer(eb, name, (unsigned long)(di + 1),
1090                    name_len);
1091
1092         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1093         exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1094         if (exists == 0)
1095                 exists = 1;
1096         else
1097                 exists = 0;
1098         btrfs_release_path(root, path);
1099
1100         if (key->type == BTRFS_DIR_ITEM_KEY) {
1101                 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1102                                        name, name_len, 1);
1103         } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1104                 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1105                                                      key->objectid,
1106                                                      key->offset, name,
1107                                                      name_len, 1);
1108         } else {
1109                 BUG();
1110         }
1111         if (!dst_di || IS_ERR(dst_di)) {
1112                 /* we need a sequence number to insert, so we only
1113                  * do inserts for the BTRFS_DIR_INDEX_KEY types
1114                  */
1115                 if (key->type != BTRFS_DIR_INDEX_KEY)
1116                         goto out;
1117                 goto insert;
1118         }
1119
1120         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1121         /* the existing item matches the logged item */
1122         if (found_key.objectid == log_key.objectid &&
1123             found_key.type == log_key.type &&
1124             found_key.offset == log_key.offset &&
1125             btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1126                 goto out;
1127         }
1128
1129         /*
1130          * don't drop the conflicting directory entry if the inode
1131          * for the new entry doesn't exist
1132          */
1133         if (!exists)
1134                 goto out;
1135
1136         ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1137         BUG_ON(ret);
1138
1139         if (key->type == BTRFS_DIR_INDEX_KEY)
1140                 goto insert;
1141 out:
1142         btrfs_release_path(root, path);
1143         kfree(name);
1144         iput(dir);
1145         return 0;
1146
1147 insert:
1148         btrfs_release_path(root, path);
1149         ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1150                               name, name_len, log_type, &log_key);
1151
1152         if (ret && ret != -ENOENT)
1153                 BUG();
1154         goto out;
1155 }
1156
1157 /*
1158  * find all the names in a directory item and reconcile them into
1159  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1160  * one name in a directory item, but the same code gets used for
1161  * both directory index types
1162  */
1163 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1164                                         struct btrfs_root *root,
1165                                         struct btrfs_path *path,
1166                                         struct extent_buffer *eb, int slot,
1167                                         struct btrfs_key *key)
1168 {
1169         int ret;
1170         u32 item_size = btrfs_item_size_nr(eb, slot);
1171         struct btrfs_dir_item *di;
1172         int name_len;
1173         unsigned long ptr;
1174         unsigned long ptr_end;
1175
1176         ptr = btrfs_item_ptr_offset(eb, slot);
1177         ptr_end = ptr + item_size;
1178         while (ptr < ptr_end) {
1179                 di = (struct btrfs_dir_item *)ptr;
1180                 name_len = btrfs_dir_name_len(eb, di);
1181                 ret = replay_one_name(trans, root, path, eb, di, key);
1182                 BUG_ON(ret);
1183                 ptr = (unsigned long)(di + 1);
1184                 ptr += name_len;
1185         }
1186         return 0;
1187 }
1188
1189 /*
1190  * directory replay has two parts.  There are the standard directory
1191  * items in the log copied from the subvolume, and range items
1192  * created in the log while the subvolume was logged.
1193  *
1194  * The range items tell us which parts of the key space the log
1195  * is authoritative for.  During replay, if a key in the subvolume
1196  * directory is in a logged range item, but not actually in the log
1197  * that means it was deleted from the directory before the fsync
1198  * and should be removed.
1199  */
1200 static noinline int find_dir_range(struct btrfs_root *root,
1201                                    struct btrfs_path *path,
1202                                    u64 dirid, int key_type,
1203                                    u64 *start_ret, u64 *end_ret)
1204 {
1205         struct btrfs_key key;
1206         u64 found_end;
1207         struct btrfs_dir_log_item *item;
1208         int ret;
1209         int nritems;
1210
1211         if (*start_ret == (u64)-1)
1212                 return 1;
1213
1214         key.objectid = dirid;
1215         key.type = key_type;
1216         key.offset = *start_ret;
1217
1218         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1219         if (ret < 0)
1220                 goto out;
1221         if (ret > 0) {
1222                 if (path->slots[0] == 0)
1223                         goto out;
1224                 path->slots[0]--;
1225         }
1226         if (ret != 0)
1227                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1228
1229         if (key.type != key_type || key.objectid != dirid) {
1230                 ret = 1;
1231                 goto next;
1232         }
1233         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1234                               struct btrfs_dir_log_item);
1235         found_end = btrfs_dir_log_end(path->nodes[0], item);
1236
1237         if (*start_ret >= key.offset && *start_ret <= found_end) {
1238                 ret = 0;
1239                 *start_ret = key.offset;
1240                 *end_ret = found_end;
1241                 goto out;
1242         }
1243         ret = 1;
1244 next:
1245         /* check the next slot in the tree to see if it is a valid item */
1246         nritems = btrfs_header_nritems(path->nodes[0]);
1247         if (path->slots[0] >= nritems) {
1248                 ret = btrfs_next_leaf(root, path);
1249                 if (ret)
1250                         goto out;
1251         } else {
1252                 path->slots[0]++;
1253         }
1254
1255         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1256
1257         if (key.type != key_type || key.objectid != dirid) {
1258                 ret = 1;
1259                 goto out;
1260         }
1261         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1262                               struct btrfs_dir_log_item);
1263         found_end = btrfs_dir_log_end(path->nodes[0], item);
1264         *start_ret = key.offset;
1265         *end_ret = found_end;
1266         ret = 0;
1267 out:
1268         btrfs_release_path(root, path);
1269         return ret;
1270 }
1271
1272 /*
1273  * this looks for a given directory item in the log.  If the directory
1274  * item is not in the log, the item is removed and the inode it points
1275  * to is unlinked
1276  */
1277 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1278                                       struct btrfs_root *root,
1279                                       struct btrfs_root *log,
1280                                       struct btrfs_path *path,
1281                                       struct btrfs_path *log_path,
1282                                       struct inode *dir,
1283                                       struct btrfs_key *dir_key)
1284 {
1285         int ret;
1286         struct extent_buffer *eb;
1287         int slot;
1288         u32 item_size;
1289         struct btrfs_dir_item *di;
1290         struct btrfs_dir_item *log_di;
1291         int name_len;
1292         unsigned long ptr;
1293         unsigned long ptr_end;
1294         char *name;
1295         struct inode *inode;
1296         struct btrfs_key location;
1297
1298 again:
1299         eb = path->nodes[0];
1300         slot = path->slots[0];
1301         item_size = btrfs_item_size_nr(eb, slot);
1302         ptr = btrfs_item_ptr_offset(eb, slot);
1303         ptr_end = ptr + item_size;
1304         while (ptr < ptr_end) {
1305                 di = (struct btrfs_dir_item *)ptr;
1306                 name_len = btrfs_dir_name_len(eb, di);
1307                 name = kmalloc(name_len, GFP_NOFS);
1308                 if (!name) {
1309                         ret = -ENOMEM;
1310                         goto out;
1311                 }
1312                 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1313                                   name_len);
1314                 log_di = NULL;
1315                 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1316                         log_di = btrfs_lookup_dir_item(trans, log, log_path,
1317                                                        dir_key->objectid,
1318                                                        name, name_len, 0);
1319                 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1320                         log_di = btrfs_lookup_dir_index_item(trans, log,
1321                                                      log_path,
1322                                                      dir_key->objectid,
1323                                                      dir_key->offset,
1324                                                      name, name_len, 0);
1325                 }
1326                 if (!log_di || IS_ERR(log_di)) {
1327                         btrfs_dir_item_key_to_cpu(eb, di, &location);
1328                         btrfs_release_path(root, path);
1329                         btrfs_release_path(log, log_path);
1330                         inode = read_one_inode(root, location.objectid);
1331                         BUG_ON(!inode);
1332
1333                         ret = link_to_fixup_dir(trans, root,
1334                                                 path, location.objectid);
1335                         BUG_ON(ret);
1336                         btrfs_inc_nlink(inode);
1337                         ret = btrfs_unlink_inode(trans, root, dir, inode,
1338                                                  name, name_len);
1339                         BUG_ON(ret);
1340                         kfree(name);
1341                         iput(inode);
1342
1343                         /* there might still be more names under this key
1344                          * check and repeat if required
1345                          */
1346                         ret = btrfs_search_slot(NULL, root, dir_key, path,
1347                                                 0, 0);
1348                         if (ret == 0)
1349                                 goto again;
1350                         ret = 0;
1351                         goto out;
1352                 }
1353                 btrfs_release_path(log, log_path);
1354                 kfree(name);
1355
1356                 ptr = (unsigned long)(di + 1);
1357                 ptr += name_len;
1358         }
1359         ret = 0;
1360 out:
1361         btrfs_release_path(root, path);
1362         btrfs_release_path(log, log_path);
1363         return ret;
1364 }
1365
1366 /*
1367  * deletion replay happens before we copy any new directory items
1368  * out of the log or out of backreferences from inodes.  It
1369  * scans the log to find ranges of keys that log is authoritative for,
1370  * and then scans the directory to find items in those ranges that are
1371  * not present in the log.
1372  *
1373  * Anything we don't find in the log is unlinked and removed from the
1374  * directory.
1375  */
1376 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1377                                        struct btrfs_root *root,
1378                                        struct btrfs_root *log,
1379                                        struct btrfs_path *path,
1380                                        u64 dirid)
1381 {
1382         u64 range_start;
1383         u64 range_end;
1384         int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1385         int ret = 0;
1386         struct btrfs_key dir_key;
1387         struct btrfs_key found_key;
1388         struct btrfs_path *log_path;
1389         struct inode *dir;
1390
1391         dir_key.objectid = dirid;
1392         dir_key.type = BTRFS_DIR_ITEM_KEY;
1393         log_path = btrfs_alloc_path();
1394         if (!log_path)
1395                 return -ENOMEM;
1396
1397         dir = read_one_inode(root, dirid);
1398         /* it isn't an error if the inode isn't there, that can happen
1399          * because we replay the deletes before we copy in the inode item
1400          * from the log
1401          */
1402         if (!dir) {
1403                 btrfs_free_path(log_path);
1404                 return 0;
1405         }
1406 again:
1407         range_start = 0;
1408         range_end = 0;
1409         while (1) {
1410                 ret = find_dir_range(log, path, dirid, key_type,
1411                                      &range_start, &range_end);
1412                 if (ret != 0)
1413                         break;
1414
1415                 dir_key.offset = range_start;
1416                 while (1) {
1417                         int nritems;
1418                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
1419                                                 0, 0);
1420                         if (ret < 0)
1421                                 goto out;
1422
1423                         nritems = btrfs_header_nritems(path->nodes[0]);
1424                         if (path->slots[0] >= nritems) {
1425                                 ret = btrfs_next_leaf(root, path);
1426                                 if (ret)
1427                                         break;
1428                         }
1429                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1430                                               path->slots[0]);
1431                         if (found_key.objectid != dirid ||
1432                             found_key.type != dir_key.type)
1433                                 goto next_type;
1434
1435                         if (found_key.offset > range_end)
1436                                 break;
1437
1438                         ret = check_item_in_log(trans, root, log, path,
1439                                                 log_path, dir, &found_key);
1440                         BUG_ON(ret);
1441                         if (found_key.offset == (u64)-1)
1442                                 break;
1443                         dir_key.offset = found_key.offset + 1;
1444                 }
1445                 btrfs_release_path(root, path);
1446                 if (range_end == (u64)-1)
1447                         break;
1448                 range_start = range_end + 1;
1449         }
1450
1451 next_type:
1452         ret = 0;
1453         if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1454                 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1455                 dir_key.type = BTRFS_DIR_INDEX_KEY;
1456                 btrfs_release_path(root, path);
1457                 goto again;
1458         }
1459 out:
1460         btrfs_release_path(root, path);
1461         btrfs_free_path(log_path);
1462         iput(dir);
1463         return ret;
1464 }
1465
1466 /*
1467  * the process_func used to replay items from the log tree.  This
1468  * gets called in two different stages.  The first stage just looks
1469  * for inodes and makes sure they are all copied into the subvolume.
1470  *
1471  * The second stage copies all the other item types from the log into
1472  * the subvolume.  The two stage approach is slower, but gets rid of
1473  * lots of complexity around inodes referencing other inodes that exist
1474  * only in the log (references come from either directory items or inode
1475  * back refs).
1476  */
1477 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1478                              struct walk_control *wc, u64 gen)
1479 {
1480         int nritems;
1481         struct btrfs_path *path;
1482         struct btrfs_root *root = wc->replay_dest;
1483         struct btrfs_key key;
1484         u32 item_size;
1485         int level;
1486         int i;
1487         int ret;
1488
1489         btrfs_read_buffer(eb, gen);
1490
1491         level = btrfs_header_level(eb);
1492
1493         if (level != 0)
1494                 return 0;
1495
1496         path = btrfs_alloc_path();
1497         BUG_ON(!path);
1498
1499         nritems = btrfs_header_nritems(eb);
1500         for (i = 0; i < nritems; i++) {
1501                 btrfs_item_key_to_cpu(eb, &key, i);
1502                 item_size = btrfs_item_size_nr(eb, i);
1503
1504                 /* inode keys are done during the first stage */
1505                 if (key.type == BTRFS_INODE_ITEM_KEY &&
1506                     wc->stage == LOG_WALK_REPLAY_INODES) {
1507                         struct inode *inode;
1508                         struct btrfs_inode_item *inode_item;
1509                         u32 mode;
1510
1511                         inode_item = btrfs_item_ptr(eb, i,
1512                                             struct btrfs_inode_item);
1513                         mode = btrfs_inode_mode(eb, inode_item);
1514                         if (S_ISDIR(mode)) {
1515                                 ret = replay_dir_deletes(wc->trans,
1516                                          root, log, path, key.objectid);
1517                                 BUG_ON(ret);
1518                         }
1519                         ret = overwrite_item(wc->trans, root, path,
1520                                              eb, i, &key);
1521                         BUG_ON(ret);
1522
1523                         /* for regular files, truncate away
1524                          * extents past the new EOF
1525                          */
1526                         if (S_ISREG(mode)) {
1527                                 inode = read_one_inode(root,
1528                                                        key.objectid);
1529                                 BUG_ON(!inode);
1530
1531                                 ret = btrfs_truncate_inode_items(wc->trans,
1532                                         root, inode, inode->i_size,
1533                                         BTRFS_EXTENT_DATA_KEY);
1534                                 BUG_ON(ret);
1535                                 iput(inode);
1536                         }
1537                         ret = link_to_fixup_dir(wc->trans, root,
1538                                                 path, key.objectid);
1539                         BUG_ON(ret);
1540                 }
1541                 if (wc->stage < LOG_WALK_REPLAY_ALL)
1542                         continue;
1543
1544                 /* these keys are simply copied */
1545                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1546                         ret = overwrite_item(wc->trans, root, path,
1547                                              eb, i, &key);
1548                         BUG_ON(ret);
1549                 } else if (key.type == BTRFS_INODE_REF_KEY) {
1550                         ret = add_inode_ref(wc->trans, root, log, path,
1551                                             eb, i, &key);
1552                         BUG_ON(ret && ret != -ENOENT);
1553                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1554                         ret = replay_one_extent(wc->trans, root, path,
1555                                                 eb, i, &key);
1556                         BUG_ON(ret);
1557                 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1558                            key.type == BTRFS_DIR_INDEX_KEY) {
1559                         ret = replay_one_dir_item(wc->trans, root, path,
1560                                                   eb, i, &key);
1561                         BUG_ON(ret);
1562                 }
1563         }
1564         btrfs_free_path(path);
1565         return 0;
1566 }
1567
1568 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1569                                    struct btrfs_root *root,
1570                                    struct btrfs_path *path, int *level,
1571                                    struct walk_control *wc)
1572 {
1573         u64 root_owner;
1574         u64 root_gen;
1575         u64 bytenr;
1576         u64 ptr_gen;
1577         struct extent_buffer *next;
1578         struct extent_buffer *cur;
1579         struct extent_buffer *parent;
1580         u32 blocksize;
1581         int ret = 0;
1582
1583         WARN_ON(*level < 0);
1584         WARN_ON(*level >= BTRFS_MAX_LEVEL);
1585
1586         while (*level > 0) {
1587                 WARN_ON(*level < 0);
1588                 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1589                 cur = path->nodes[*level];
1590
1591                 if (btrfs_header_level(cur) != *level)
1592                         WARN_ON(1);
1593
1594                 if (path->slots[*level] >=
1595                     btrfs_header_nritems(cur))
1596                         break;
1597
1598                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1599                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1600                 blocksize = btrfs_level_size(root, *level - 1);
1601
1602                 parent = path->nodes[*level];
1603                 root_owner = btrfs_header_owner(parent);
1604                 root_gen = btrfs_header_generation(parent);
1605
1606                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1607
1608                 wc->process_func(root, next, wc, ptr_gen);
1609
1610                 if (*level == 1) {
1611                         path->slots[*level]++;
1612                         if (wc->free) {
1613                                 btrfs_read_buffer(next, ptr_gen);
1614
1615                                 btrfs_tree_lock(next);
1616                                 clean_tree_block(trans, root, next);
1617                                 btrfs_set_lock_blocking(next);
1618                                 btrfs_wait_tree_block_writeback(next);
1619                                 btrfs_tree_unlock(next);
1620
1621                                 ret = btrfs_drop_leaf_ref(trans, root, next);
1622                                 BUG_ON(ret);
1623
1624                                 WARN_ON(root_owner !=
1625                                         BTRFS_TREE_LOG_OBJECTID);
1626                                 ret = btrfs_free_reserved_extent(root,
1627                                                          bytenr, blocksize);
1628                                 BUG_ON(ret);
1629                         }
1630                         free_extent_buffer(next);
1631                         continue;
1632                 }
1633                 btrfs_read_buffer(next, ptr_gen);
1634
1635                 WARN_ON(*level <= 0);
1636                 if (path->nodes[*level-1])
1637                         free_extent_buffer(path->nodes[*level-1]);
1638                 path->nodes[*level-1] = next;
1639                 *level = btrfs_header_level(next);
1640                 path->slots[*level] = 0;
1641                 cond_resched();
1642         }
1643         WARN_ON(*level < 0);
1644         WARN_ON(*level >= BTRFS_MAX_LEVEL);
1645
1646         if (path->nodes[*level] == root->node)
1647                 parent = path->nodes[*level];
1648         else
1649                 parent = path->nodes[*level + 1];
1650
1651         bytenr = path->nodes[*level]->start;
1652
1653         blocksize = btrfs_level_size(root, *level);
1654         root_owner = btrfs_header_owner(parent);
1655         root_gen = btrfs_header_generation(parent);
1656
1657         wc->process_func(root, path->nodes[*level], wc,
1658                          btrfs_header_generation(path->nodes[*level]));
1659
1660         if (wc->free) {
1661                 next = path->nodes[*level];
1662                 btrfs_tree_lock(next);
1663                 clean_tree_block(trans, root, next);
1664                 btrfs_set_lock_blocking(next);
1665                 btrfs_wait_tree_block_writeback(next);
1666                 btrfs_tree_unlock(next);
1667
1668                 if (*level == 0) {
1669                         ret = btrfs_drop_leaf_ref(trans, root, next);
1670                         BUG_ON(ret);
1671                 }
1672                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1673                 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1674                 BUG_ON(ret);
1675         }
1676         free_extent_buffer(path->nodes[*level]);
1677         path->nodes[*level] = NULL;
1678         *level += 1;
1679
1680         cond_resched();
1681         return 0;
1682 }
1683
1684 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1685                                  struct btrfs_root *root,
1686                                  struct btrfs_path *path, int *level,
1687                                  struct walk_control *wc)
1688 {
1689         u64 root_owner;
1690         u64 root_gen;
1691         int i;
1692         int slot;
1693         int ret;
1694
1695         for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1696                 slot = path->slots[i];
1697                 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1698                         struct extent_buffer *node;
1699                         node = path->nodes[i];
1700                         path->slots[i]++;
1701                         *level = i;
1702                         WARN_ON(*level == 0);
1703                         return 0;
1704                 } else {
1705                         struct extent_buffer *parent;
1706                         if (path->nodes[*level] == root->node)
1707                                 parent = path->nodes[*level];
1708                         else
1709                                 parent = path->nodes[*level + 1];
1710
1711                         root_owner = btrfs_header_owner(parent);
1712                         root_gen = btrfs_header_generation(parent);
1713                         wc->process_func(root, path->nodes[*level], wc,
1714                                  btrfs_header_generation(path->nodes[*level]));
1715                         if (wc->free) {
1716                                 struct extent_buffer *next;
1717
1718                                 next = path->nodes[*level];
1719
1720                                 btrfs_tree_lock(next);
1721                                 clean_tree_block(trans, root, next);
1722                                 btrfs_set_lock_blocking(next);
1723                                 btrfs_wait_tree_block_writeback(next);
1724                                 btrfs_tree_unlock(next);
1725
1726                                 if (*level == 0) {
1727                                         ret = btrfs_drop_leaf_ref(trans, root,
1728                                                                   next);
1729                                         BUG_ON(ret);
1730                                 }
1731
1732                                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1733                                 ret = btrfs_free_reserved_extent(root,
1734                                                 path->nodes[*level]->start,
1735                                                 path->nodes[*level]->len);
1736                                 BUG_ON(ret);
1737                         }
1738                         free_extent_buffer(path->nodes[*level]);
1739                         path->nodes[*level] = NULL;
1740                         *level = i + 1;
1741                 }
1742         }
1743         return 1;
1744 }
1745
1746 /*
1747  * drop the reference count on the tree rooted at 'snap'.  This traverses
1748  * the tree freeing any blocks that have a ref count of zero after being
1749  * decremented.
1750  */
1751 static int walk_log_tree(struct btrfs_trans_handle *trans,
1752                          struct btrfs_root *log, struct walk_control *wc)
1753 {
1754         int ret = 0;
1755         int wret;
1756         int level;
1757         struct btrfs_path *path;
1758         int i;
1759         int orig_level;
1760
1761         path = btrfs_alloc_path();
1762         BUG_ON(!path);
1763
1764         level = btrfs_header_level(log->node);
1765         orig_level = level;
1766         path->nodes[level] = log->node;
1767         extent_buffer_get(log->node);
1768         path->slots[level] = 0;
1769
1770         while (1) {
1771                 wret = walk_down_log_tree(trans, log, path, &level, wc);
1772                 if (wret > 0)
1773                         break;
1774                 if (wret < 0)
1775                         ret = wret;
1776
1777                 wret = walk_up_log_tree(trans, log, path, &level, wc);
1778                 if (wret > 0)
1779                         break;
1780                 if (wret < 0)
1781                         ret = wret;
1782         }
1783
1784         /* was the root node processed? if not, catch it here */
1785         if (path->nodes[orig_level]) {
1786                 wc->process_func(log, path->nodes[orig_level], wc,
1787                          btrfs_header_generation(path->nodes[orig_level]));
1788                 if (wc->free) {
1789                         struct extent_buffer *next;
1790
1791                         next = path->nodes[orig_level];
1792
1793                         btrfs_tree_lock(next);
1794                         clean_tree_block(trans, log, next);
1795                         btrfs_set_lock_blocking(next);
1796                         btrfs_wait_tree_block_writeback(next);
1797                         btrfs_tree_unlock(next);
1798
1799                         if (orig_level == 0) {
1800                                 ret = btrfs_drop_leaf_ref(trans, log,
1801                                                           next);
1802                                 BUG_ON(ret);
1803                         }
1804                         WARN_ON(log->root_key.objectid !=
1805                                 BTRFS_TREE_LOG_OBJECTID);
1806                         ret = btrfs_free_reserved_extent(log, next->start,
1807                                                          next->len);
1808                         BUG_ON(ret);
1809                 }
1810         }
1811
1812         for (i = 0; i <= orig_level; i++) {
1813                 if (path->nodes[i]) {
1814                         free_extent_buffer(path->nodes[i]);
1815                         path->nodes[i] = NULL;
1816                 }
1817         }
1818         btrfs_free_path(path);
1819         return ret;
1820 }
1821
1822 /*
1823  * helper function to update the item for a given subvolumes log root
1824  * in the tree of log roots
1825  */
1826 static int update_log_root(struct btrfs_trans_handle *trans,
1827                            struct btrfs_root *log)
1828 {
1829         int ret;
1830
1831         if (log->log_transid == 1) {
1832                 /* insert root item on the first sync */
1833                 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1834                                 &log->root_key, &log->root_item);
1835         } else {
1836                 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1837                                 &log->root_key, &log->root_item);
1838         }
1839         return ret;
1840 }
1841
1842 static int wait_log_commit(struct btrfs_root *root, unsigned long transid)
1843 {
1844         DEFINE_WAIT(wait);
1845         int index = transid % 2;
1846
1847         /*
1848          * we only allow two pending log transactions at a time,
1849          * so we know that if ours is more than 2 older than the
1850          * current transaction, we're done
1851          */
1852         do {
1853                 prepare_to_wait(&root->log_commit_wait[index],
1854                                 &wait, TASK_UNINTERRUPTIBLE);
1855                 mutex_unlock(&root->log_mutex);
1856                 if (root->log_transid < transid + 2 &&
1857                     atomic_read(&root->log_commit[index]))
1858                         schedule();
1859                 finish_wait(&root->log_commit_wait[index], &wait);
1860                 mutex_lock(&root->log_mutex);
1861         } while (root->log_transid < transid + 2 &&
1862                  atomic_read(&root->log_commit[index]));
1863         return 0;
1864 }
1865
1866 static int wait_for_writer(struct btrfs_root *root)
1867 {
1868         DEFINE_WAIT(wait);
1869         while (atomic_read(&root->log_writers)) {
1870                 prepare_to_wait(&root->log_writer_wait,
1871                                 &wait, TASK_UNINTERRUPTIBLE);
1872                 mutex_unlock(&root->log_mutex);
1873                 if (atomic_read(&root->log_writers))
1874                         schedule();
1875                 mutex_lock(&root->log_mutex);
1876                 finish_wait(&root->log_writer_wait, &wait);
1877         }
1878         return 0;
1879 }
1880
1881 /*
1882  * btrfs_sync_log does sends a given tree log down to the disk and
1883  * updates the super blocks to record it.  When this call is done,
1884  * you know that any inodes previously logged are safely on disk
1885  */
1886 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1887                    struct btrfs_root *root)
1888 {
1889         int index1;
1890         int index2;
1891         int ret;
1892         struct btrfs_root *log = root->log_root;
1893         struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1894
1895         mutex_lock(&root->log_mutex);
1896         index1 = root->log_transid % 2;
1897         if (atomic_read(&root->log_commit[index1])) {
1898                 wait_log_commit(root, root->log_transid);
1899                 mutex_unlock(&root->log_mutex);
1900                 return 0;
1901         }
1902         atomic_set(&root->log_commit[index1], 1);
1903
1904         /* wait for previous tree log sync to complete */
1905         if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1906                 wait_log_commit(root, root->log_transid - 1);
1907
1908         while (1) {
1909                 unsigned long batch = root->log_batch;
1910                 mutex_unlock(&root->log_mutex);
1911                 schedule_timeout_uninterruptible(1);
1912                 mutex_lock(&root->log_mutex);
1913                 wait_for_writer(root);
1914                 if (batch == root->log_batch)
1915                         break;
1916         }
1917
1918         ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
1919         BUG_ON(ret);
1920
1921         btrfs_set_root_bytenr(&log->root_item, log->node->start);
1922         btrfs_set_root_generation(&log->root_item, trans->transid);
1923         btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
1924
1925         root->log_batch = 0;
1926         root->log_transid++;
1927         log->log_transid = root->log_transid;
1928         smp_mb();
1929         /*
1930          * log tree has been flushed to disk, new modifications of
1931          * the log will be written to new positions. so it's safe to
1932          * allow log writers to go in.
1933          */
1934         mutex_unlock(&root->log_mutex);
1935
1936         mutex_lock(&log_root_tree->log_mutex);
1937         log_root_tree->log_batch++;
1938         atomic_inc(&log_root_tree->log_writers);
1939         mutex_unlock(&log_root_tree->log_mutex);
1940
1941         ret = update_log_root(trans, log);
1942         BUG_ON(ret);
1943
1944         mutex_lock(&log_root_tree->log_mutex);
1945         if (atomic_dec_and_test(&log_root_tree->log_writers)) {
1946                 smp_mb();
1947                 if (waitqueue_active(&log_root_tree->log_writer_wait))
1948                         wake_up(&log_root_tree->log_writer_wait);
1949         }
1950
1951         index2 = log_root_tree->log_transid % 2;
1952         if (atomic_read(&log_root_tree->log_commit[index2])) {
1953                 wait_log_commit(log_root_tree, log_root_tree->log_transid);
1954                 mutex_unlock(&log_root_tree->log_mutex);
1955                 goto out;
1956         }
1957         atomic_set(&log_root_tree->log_commit[index2], 1);
1958
1959         if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2]))
1960                 wait_log_commit(log_root_tree, log_root_tree->log_transid - 1);
1961
1962         wait_for_writer(log_root_tree);
1963
1964         ret = btrfs_write_and_wait_marked_extents(log_root_tree,
1965                                 &log_root_tree->dirty_log_pages);
1966         BUG_ON(ret);
1967
1968         btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1969                                 log_root_tree->node->start);
1970         btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1971                                 btrfs_header_level(log_root_tree->node));
1972
1973         log_root_tree->log_batch = 0;
1974         log_root_tree->log_transid++;
1975         smp_mb();
1976
1977         mutex_unlock(&log_root_tree->log_mutex);
1978
1979         /*
1980          * nobody else is going to jump in and write the the ctree
1981          * super here because the log_commit atomic below is protecting
1982          * us.  We must be called with a transaction handle pinning
1983          * the running transaction open, so a full commit can't hop
1984          * in and cause problems either.
1985          */
1986         write_ctree_super(trans, root->fs_info->tree_root, 2);
1987
1988         atomic_set(&log_root_tree->log_commit[index2], 0);
1989         smp_mb();
1990         if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
1991                 wake_up(&log_root_tree->log_commit_wait[index2]);
1992 out:
1993         atomic_set(&root->log_commit[index1], 0);
1994         smp_mb();
1995         if (waitqueue_active(&root->log_commit_wait[index1]))
1996                 wake_up(&root->log_commit_wait[index1]);
1997         return 0;
1998 }
1999
2000 /* * free all the extents used by the tree log.  This should be called
2001  * at commit time of the full transaction
2002  */
2003 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2004 {
2005         int ret;
2006         struct btrfs_root *log;
2007         struct key;
2008         u64 start;
2009         u64 end;
2010         struct walk_control wc = {
2011                 .free = 1,
2012                 .process_func = process_one_buffer
2013         };
2014
2015         if (!root->log_root || root->fs_info->log_root_recovering)
2016                 return 0;
2017
2018         log = root->log_root;
2019         ret = walk_log_tree(trans, log, &wc);
2020         BUG_ON(ret);
2021
2022         while (1) {
2023                 ret = find_first_extent_bit(&log->dirty_log_pages,
2024                                     0, &start, &end, EXTENT_DIRTY);
2025                 if (ret)
2026                         break;
2027
2028                 clear_extent_dirty(&log->dirty_log_pages,
2029                                    start, end, GFP_NOFS);
2030         }
2031
2032         if (log->log_transid > 0) {
2033                 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2034                                      &log->root_key);
2035                 BUG_ON(ret);
2036         }
2037         root->log_root = NULL;
2038         free_extent_buffer(log->node);
2039         kfree(log);
2040         return 0;
2041 }
2042
2043 /*
2044  * If both a file and directory are logged, and unlinks or renames are
2045  * mixed in, we have a few interesting corners:
2046  *
2047  * create file X in dir Y
2048  * link file X to X.link in dir Y
2049  * fsync file X
2050  * unlink file X but leave X.link
2051  * fsync dir Y
2052  *
2053  * After a crash we would expect only X.link to exist.  But file X
2054  * didn't get fsync'd again so the log has back refs for X and X.link.
2055  *
2056  * We solve this by removing directory entries and inode backrefs from the
2057  * log when a file that was logged in the current transaction is
2058  * unlinked.  Any later fsync will include the updated log entries, and
2059  * we'll be able to reconstruct the proper directory items from backrefs.
2060  *
2061  * This optimizations allows us to avoid relogging the entire inode
2062  * or the entire directory.
2063  */
2064 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2065                                  struct btrfs_root *root,
2066                                  const char *name, int name_len,
2067                                  struct inode *dir, u64 index)
2068 {
2069         struct btrfs_root *log;
2070         struct btrfs_dir_item *di;
2071         struct btrfs_path *path;
2072         int ret;
2073         int bytes_del = 0;
2074
2075         if (BTRFS_I(dir)->logged_trans < trans->transid)
2076                 return 0;
2077
2078         ret = join_running_log_trans(root);
2079         if (ret)
2080                 return 0;
2081
2082         mutex_lock(&BTRFS_I(dir)->log_mutex);
2083
2084         log = root->log_root;
2085         path = btrfs_alloc_path();
2086         di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2087                                    name, name_len, -1);
2088         if (di && !IS_ERR(di)) {
2089                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2090                 bytes_del += name_len;
2091                 BUG_ON(ret);
2092         }
2093         btrfs_release_path(log, path);
2094         di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2095                                          index, name, name_len, -1);
2096         if (di && !IS_ERR(di)) {
2097                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2098                 bytes_del += name_len;
2099                 BUG_ON(ret);
2100         }
2101
2102         /* update the directory size in the log to reflect the names
2103          * we have removed
2104          */
2105         if (bytes_del) {
2106                 struct btrfs_key key;
2107
2108                 key.objectid = dir->i_ino;
2109                 key.offset = 0;
2110                 key.type = BTRFS_INODE_ITEM_KEY;
2111                 btrfs_release_path(log, path);
2112
2113                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2114                 if (ret == 0) {
2115                         struct btrfs_inode_item *item;
2116                         u64 i_size;
2117
2118                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2119                                               struct btrfs_inode_item);
2120                         i_size = btrfs_inode_size(path->nodes[0], item);
2121                         if (i_size > bytes_del)
2122                                 i_size -= bytes_del;
2123                         else
2124                                 i_size = 0;
2125                         btrfs_set_inode_size(path->nodes[0], item, i_size);
2126                         btrfs_mark_buffer_dirty(path->nodes[0]);
2127                 } else
2128                         ret = 0;
2129                 btrfs_release_path(log, path);
2130         }
2131
2132         btrfs_free_path(path);
2133         mutex_unlock(&BTRFS_I(dir)->log_mutex);
2134         end_log_trans(root);
2135
2136         return 0;
2137 }
2138
2139 /* see comments for btrfs_del_dir_entries_in_log */
2140 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2141                                struct btrfs_root *root,
2142                                const char *name, int name_len,
2143                                struct inode *inode, u64 dirid)
2144 {
2145         struct btrfs_root *log;
2146         u64 index;
2147         int ret;
2148
2149         if (BTRFS_I(inode)->logged_trans < trans->transid)
2150                 return 0;
2151
2152         ret = join_running_log_trans(root);
2153         if (ret)
2154                 return 0;
2155         log = root->log_root;
2156         mutex_lock(&BTRFS_I(inode)->log_mutex);
2157
2158         ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2159                                   dirid, &index);
2160         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2161         end_log_trans(root);
2162
2163         return ret;
2164 }
2165
2166 /*
2167  * creates a range item in the log for 'dirid'.  first_offset and
2168  * last_offset tell us which parts of the key space the log should
2169  * be considered authoritative for.
2170  */
2171 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2172                                        struct btrfs_root *log,
2173                                        struct btrfs_path *path,
2174                                        int key_type, u64 dirid,
2175                                        u64 first_offset, u64 last_offset)
2176 {
2177         int ret;
2178         struct btrfs_key key;
2179         struct btrfs_dir_log_item *item;
2180
2181         key.objectid = dirid;
2182         key.offset = first_offset;
2183         if (key_type == BTRFS_DIR_ITEM_KEY)
2184                 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2185         else
2186                 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2187         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2188         BUG_ON(ret);
2189
2190         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2191                               struct btrfs_dir_log_item);
2192         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2193         btrfs_mark_buffer_dirty(path->nodes[0]);
2194         btrfs_release_path(log, path);
2195         return 0;
2196 }
2197
2198 /*
2199  * log all the items included in the current transaction for a given
2200  * directory.  This also creates the range items in the log tree required
2201  * to replay anything deleted before the fsync
2202  */
2203 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2204                           struct btrfs_root *root, struct inode *inode,
2205                           struct btrfs_path *path,
2206                           struct btrfs_path *dst_path, int key_type,
2207                           u64 min_offset, u64 *last_offset_ret)
2208 {
2209         struct btrfs_key min_key;
2210         struct btrfs_key max_key;
2211         struct btrfs_root *log = root->log_root;
2212         struct extent_buffer *src;
2213         int ret;
2214         int i;
2215         int nritems;
2216         u64 first_offset = min_offset;
2217         u64 last_offset = (u64)-1;
2218
2219         log = root->log_root;
2220         max_key.objectid = inode->i_ino;
2221         max_key.offset = (u64)-1;
2222         max_key.type = key_type;
2223
2224         min_key.objectid = inode->i_ino;
2225         min_key.type = key_type;
2226         min_key.offset = min_offset;
2227
2228         path->keep_locks = 1;
2229
2230         ret = btrfs_search_forward(root, &min_key, &max_key,
2231                                    path, 0, trans->transid);
2232
2233         /*
2234          * we didn't find anything from this transaction, see if there
2235          * is anything at all
2236          */
2237         if (ret != 0 || min_key.objectid != inode->i_ino ||
2238             min_key.type != key_type) {
2239                 min_key.objectid = inode->i_ino;
2240                 min_key.type = key_type;
2241                 min_key.offset = (u64)-1;
2242                 btrfs_release_path(root, path);
2243                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2244                 if (ret < 0) {
2245                         btrfs_release_path(root, path);
2246                         return ret;
2247                 }
2248                 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2249
2250                 /* if ret == 0 there are items for this type,
2251                  * create a range to tell us the last key of this type.
2252                  * otherwise, there are no items in this directory after
2253                  * *min_offset, and we create a range to indicate that.
2254                  */
2255                 if (ret == 0) {
2256                         struct btrfs_key tmp;
2257                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2258                                               path->slots[0]);
2259                         if (key_type == tmp.type)
2260                                 first_offset = max(min_offset, tmp.offset) + 1;
2261                 }
2262                 goto done;
2263         }
2264
2265         /* go backward to find any previous key */
2266         ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2267         if (ret == 0) {
2268                 struct btrfs_key tmp;
2269                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2270                 if (key_type == tmp.type) {
2271                         first_offset = tmp.offset;
2272                         ret = overwrite_item(trans, log, dst_path,
2273                                              path->nodes[0], path->slots[0],
2274                                              &tmp);
2275                 }
2276         }
2277         btrfs_release_path(root, path);
2278
2279         /* find the first key from this transaction again */
2280         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2281         if (ret != 0) {
2282                 WARN_ON(1);
2283                 goto done;
2284         }
2285
2286         /*
2287          * we have a block from this transaction, log every item in it
2288          * from our directory
2289          */
2290         while (1) {
2291                 struct btrfs_key tmp;
2292                 src = path->nodes[0];
2293                 nritems = btrfs_header_nritems(src);
2294                 for (i = path->slots[0]; i < nritems; i++) {
2295                         btrfs_item_key_to_cpu(src, &min_key, i);
2296
2297                         if (min_key.objectid != inode->i_ino ||
2298                             min_key.type != key_type)
2299                                 goto done;
2300                         ret = overwrite_item(trans, log, dst_path, src, i,
2301                                              &min_key);
2302                         BUG_ON(ret);
2303                 }
2304                 path->slots[0] = nritems;
2305
2306                 /*
2307                  * look ahead to the next item and see if it is also
2308                  * from this directory and from this transaction
2309                  */
2310                 ret = btrfs_next_leaf(root, path);
2311                 if (ret == 1) {
2312                         last_offset = (u64)-1;
2313                         goto done;
2314                 }
2315                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2316                 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2317                         last_offset = (u64)-1;
2318                         goto done;
2319                 }
2320                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2321                         ret = overwrite_item(trans, log, dst_path,
2322                                              path->nodes[0], path->slots[0],
2323                                              &tmp);
2324
2325                         BUG_ON(ret);
2326                         last_offset = tmp.offset;
2327                         goto done;
2328                 }
2329         }
2330 done:
2331         *last_offset_ret = last_offset;
2332         btrfs_release_path(root, path);
2333         btrfs_release_path(log, dst_path);
2334
2335         /* insert the log range keys to indicate where the log is valid */
2336         ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2337                                  first_offset, last_offset);
2338         BUG_ON(ret);
2339         return 0;
2340 }
2341
2342 /*
2343  * logging directories is very similar to logging inodes, We find all the items
2344  * from the current transaction and write them to the log.
2345  *
2346  * The recovery code scans the directory in the subvolume, and if it finds a
2347  * key in the range logged that is not present in the log tree, then it means
2348  * that dir entry was unlinked during the transaction.
2349  *
2350  * In order for that scan to work, we must include one key smaller than
2351  * the smallest logged by this transaction and one key larger than the largest
2352  * key logged by this transaction.
2353  */
2354 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2355                           struct btrfs_root *root, struct inode *inode,
2356                           struct btrfs_path *path,
2357                           struct btrfs_path *dst_path)
2358 {
2359         u64 min_key;
2360         u64 max_key;
2361         int ret;
2362         int key_type = BTRFS_DIR_ITEM_KEY;
2363
2364 again:
2365         min_key = 0;
2366         max_key = 0;
2367         while (1) {
2368                 ret = log_dir_items(trans, root, inode, path,
2369                                     dst_path, key_type, min_key,
2370                                     &max_key);
2371                 BUG_ON(ret);
2372                 if (max_key == (u64)-1)
2373                         break;
2374                 min_key = max_key + 1;
2375         }
2376
2377         if (key_type == BTRFS_DIR_ITEM_KEY) {
2378                 key_type = BTRFS_DIR_INDEX_KEY;
2379                 goto again;
2380         }
2381         return 0;
2382 }
2383
2384 /*
2385  * a helper function to drop items from the log before we relog an
2386  * inode.  max_key_type indicates the highest item type to remove.
2387  * This cannot be run for file data extents because it does not
2388  * free the extents they point to.
2389  */
2390 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2391                                   struct btrfs_root *log,
2392                                   struct btrfs_path *path,
2393                                   u64 objectid, int max_key_type)
2394 {
2395         int ret;
2396         struct btrfs_key key;
2397         struct btrfs_key found_key;
2398
2399         key.objectid = objectid;
2400         key.type = max_key_type;
2401         key.offset = (u64)-1;
2402
2403         while (1) {
2404                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2405
2406                 if (ret != 1)
2407                         break;
2408
2409                 if (path->slots[0] == 0)
2410                         break;
2411
2412                 path->slots[0]--;
2413                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2414                                       path->slots[0]);
2415
2416                 if (found_key.objectid != objectid)
2417                         break;
2418
2419                 ret = btrfs_del_item(trans, log, path);
2420                 BUG_ON(ret);
2421                 btrfs_release_path(log, path);
2422         }
2423         btrfs_release_path(log, path);
2424         return 0;
2425 }
2426
2427 static noinline int copy_items(struct btrfs_trans_handle *trans,
2428                                struct btrfs_root *log,
2429                                struct btrfs_path *dst_path,
2430                                struct extent_buffer *src,
2431                                int start_slot, int nr, int inode_only)
2432 {
2433         unsigned long src_offset;
2434         unsigned long dst_offset;
2435         struct btrfs_file_extent_item *extent;
2436         struct btrfs_inode_item *inode_item;
2437         int ret;
2438         struct btrfs_key *ins_keys;
2439         u32 *ins_sizes;
2440         char *ins_data;
2441         int i;
2442         struct list_head ordered_sums;
2443
2444         INIT_LIST_HEAD(&ordered_sums);
2445
2446         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2447                            nr * sizeof(u32), GFP_NOFS);
2448         ins_sizes = (u32 *)ins_data;
2449         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2450
2451         for (i = 0; i < nr; i++) {
2452                 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2453                 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2454         }
2455         ret = btrfs_insert_empty_items(trans, log, dst_path,
2456                                        ins_keys, ins_sizes, nr);
2457         BUG_ON(ret);
2458
2459         for (i = 0; i < nr; i++) {
2460                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2461                                                    dst_path->slots[0]);
2462
2463                 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2464
2465                 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2466                                    src_offset, ins_sizes[i]);
2467
2468                 if (inode_only == LOG_INODE_EXISTS &&
2469                     ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2470                         inode_item = btrfs_item_ptr(dst_path->nodes[0],
2471                                                     dst_path->slots[0],
2472                                                     struct btrfs_inode_item);
2473                         btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2474
2475                         /* set the generation to zero so the recover code
2476                          * can tell the difference between an logging
2477                          * just to say 'this inode exists' and a logging
2478                          * to say 'update this inode with these values'
2479                          */
2480                         btrfs_set_inode_generation(dst_path->nodes[0],
2481                                                    inode_item, 0);
2482                 }
2483                 /* take a reference on file data extents so that truncates
2484                  * or deletes of this inode don't have to relog the inode
2485                  * again
2486                  */
2487                 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2488                         int found_type;
2489                         extent = btrfs_item_ptr(src, start_slot + i,
2490                                                 struct btrfs_file_extent_item);
2491
2492                         found_type = btrfs_file_extent_type(src, extent);
2493                         if (found_type == BTRFS_FILE_EXTENT_REG ||
2494                             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2495                                 u64 ds = btrfs_file_extent_disk_bytenr(src,
2496                                                                    extent);
2497                                 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2498                                                                       extent);
2499                                 u64 cs = btrfs_file_extent_offset(src, extent);
2500                                 u64 cl = btrfs_file_extent_num_bytes(src,
2501                                                                      extent);;
2502                                 if (btrfs_file_extent_compression(src,
2503                                                                   extent)) {
2504                                         cs = 0;
2505                                         cl = dl;
2506                                 }
2507                                 /* ds == 0 is a hole */
2508                                 if (ds != 0) {
2509                                         ret = btrfs_inc_extent_ref(trans, log,
2510                                                    ds, dl,
2511                                                    dst_path->nodes[0]->start,
2512                                                    BTRFS_TREE_LOG_OBJECTID,
2513                                                    trans->transid,
2514                                                    ins_keys[i].objectid);
2515                                         BUG_ON(ret);
2516                                         ret = btrfs_lookup_csums_range(
2517                                                    log->fs_info->csum_root,
2518                                                    ds + cs, ds + cs + cl - 1,
2519                                                    &ordered_sums);
2520                                         BUG_ON(ret);
2521                                 }
2522                         }
2523                 }
2524                 dst_path->slots[0]++;
2525         }
2526
2527         btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2528         btrfs_release_path(log, dst_path);
2529         kfree(ins_data);
2530
2531         /*
2532          * we have to do this after the loop above to avoid changing the
2533          * log tree while trying to change the log tree.
2534          */
2535         while (!list_empty(&ordered_sums)) {
2536                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2537                                                    struct btrfs_ordered_sum,
2538                                                    list);
2539                 ret = btrfs_csum_file_blocks(trans, log, sums);
2540                 BUG_ON(ret);
2541                 list_del(&sums->list);
2542                 kfree(sums);
2543         }
2544         return 0;
2545 }
2546
2547 /* log a single inode in the tree log.
2548  * At least one parent directory for this inode must exist in the tree
2549  * or be logged already.
2550  *
2551  * Any items from this inode changed by the current transaction are copied
2552  * to the log tree.  An extra reference is taken on any extents in this
2553  * file, allowing us to avoid a whole pile of corner cases around logging
2554  * blocks that have been removed from the tree.
2555  *
2556  * See LOG_INODE_ALL and related defines for a description of what inode_only
2557  * does.
2558  *
2559  * This handles both files and directories.
2560  */
2561 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2562                              struct btrfs_root *root, struct inode *inode,
2563                              int inode_only)
2564 {
2565         struct btrfs_path *path;
2566         struct btrfs_path *dst_path;
2567         struct btrfs_key min_key;
2568         struct btrfs_key max_key;
2569         struct btrfs_root *log = root->log_root;
2570         struct extent_buffer *src = NULL;
2571         u32 size;
2572         int ret;
2573         int nritems;
2574         int ins_start_slot = 0;
2575         int ins_nr;
2576
2577         log = root->log_root;
2578
2579         path = btrfs_alloc_path();
2580         dst_path = btrfs_alloc_path();
2581
2582         min_key.objectid = inode->i_ino;
2583         min_key.type = BTRFS_INODE_ITEM_KEY;
2584         min_key.offset = 0;
2585
2586         max_key.objectid = inode->i_ino;
2587         if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2588                 max_key.type = BTRFS_XATTR_ITEM_KEY;
2589         else
2590                 max_key.type = (u8)-1;
2591         max_key.offset = (u64)-1;
2592
2593         /*
2594          * if this inode has already been logged and we're in inode_only
2595          * mode, we don't want to delete the things that have already
2596          * been written to the log.
2597          *
2598          * But, if the inode has been through an inode_only log,
2599          * the logged_trans field is not set.  This allows us to catch
2600          * any new names for this inode in the backrefs by logging it
2601          * again
2602          */
2603         if (inode_only == LOG_INODE_EXISTS &&
2604             BTRFS_I(inode)->logged_trans == trans->transid) {
2605                 btrfs_free_path(path);
2606                 btrfs_free_path(dst_path);
2607                 goto out;
2608         }
2609         mutex_lock(&BTRFS_I(inode)->log_mutex);
2610
2611         /*
2612          * a brute force approach to making sure we get the most uptodate
2613          * copies of everything.
2614          */
2615         if (S_ISDIR(inode->i_mode)) {
2616                 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2617
2618                 if (inode_only == LOG_INODE_EXISTS)
2619                         max_key_type = BTRFS_XATTR_ITEM_KEY;
2620                 ret = drop_objectid_items(trans, log, path,
2621                                           inode->i_ino, max_key_type);
2622         } else {
2623                 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2624         }
2625         BUG_ON(ret);
2626         path->keep_locks = 1;
2627
2628         while (1) {
2629                 ins_nr = 0;
2630                 ret = btrfs_search_forward(root, &min_key, &max_key,
2631                                            path, 0, trans->transid);
2632                 if (ret != 0)
2633                         break;
2634 again:
2635                 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2636                 if (min_key.objectid != inode->i_ino)
2637                         break;
2638                 if (min_key.type > max_key.type)
2639                         break;
2640
2641                 src = path->nodes[0];
2642                 size = btrfs_item_size_nr(src, path->slots[0]);
2643                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2644                         ins_nr++;
2645                         goto next_slot;
2646                 } else if (!ins_nr) {
2647                         ins_start_slot = path->slots[0];
2648                         ins_nr = 1;
2649                         goto next_slot;
2650                 }
2651
2652                 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2653                                  ins_nr, inode_only);
2654                 BUG_ON(ret);
2655                 ins_nr = 1;
2656                 ins_start_slot = path->slots[0];
2657 next_slot:
2658
2659                 nritems = btrfs_header_nritems(path->nodes[0]);
2660                 path->slots[0]++;
2661                 if (path->slots[0] < nritems) {
2662                         btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2663                                               path->slots[0]);
2664                         goto again;
2665                 }
2666                 if (ins_nr) {
2667                         ret = copy_items(trans, log, dst_path, src,
2668                                          ins_start_slot,
2669                                          ins_nr, inode_only);
2670                         BUG_ON(ret);
2671                         ins_nr = 0;
2672                 }
2673                 btrfs_release_path(root, path);
2674
2675                 if (min_key.offset < (u64)-1)
2676                         min_key.offset++;
2677                 else if (min_key.type < (u8)-1)
2678                         min_key.type++;
2679                 else if (min_key.objectid < (u64)-1)
2680                         min_key.objectid++;
2681                 else
2682                         break;
2683         }
2684         if (ins_nr) {
2685                 ret = copy_items(trans, log, dst_path, src,
2686                                  ins_start_slot,
2687                                  ins_nr, inode_only);
2688                 BUG_ON(ret);
2689                 ins_nr = 0;
2690         }
2691         WARN_ON(ins_nr);
2692         if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2693                 btrfs_release_path(root, path);
2694                 btrfs_release_path(log, dst_path);
2695                 BTRFS_I(inode)->log_dirty_trans = 0;
2696                 ret = log_directory_changes(trans, root, inode, path, dst_path);
2697                 BUG_ON(ret);
2698         }
2699         BTRFS_I(inode)->logged_trans = trans->transid;
2700         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2701
2702         btrfs_free_path(path);
2703         btrfs_free_path(dst_path);
2704 out:
2705         return 0;
2706 }
2707
2708 int btrfs_log_inode(struct btrfs_trans_handle *trans,
2709                     struct btrfs_root *root, struct inode *inode,
2710                     int inode_only)
2711 {
2712         int ret;
2713
2714         start_log_trans(trans, root);
2715         ret = __btrfs_log_inode(trans, root, inode, inode_only);
2716         end_log_trans(root);
2717         return ret;
2718 }
2719
2720 /*
2721  * helper function around btrfs_log_inode to make sure newly created
2722  * parent directories also end up in the log.  A minimal inode and backref
2723  * only logging is done of any parent directories that are older than
2724  * the last committed transaction
2725  */
2726 int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2727                     struct btrfs_root *root, struct dentry *dentry)
2728 {
2729         int inode_only = LOG_INODE_ALL;
2730         struct super_block *sb;
2731         int ret;
2732
2733         start_log_trans(trans, root);
2734         sb = dentry->d_inode->i_sb;
2735         while (1) {
2736                 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2737                                         inode_only);
2738                 BUG_ON(ret);
2739                 inode_only = LOG_INODE_EXISTS;
2740
2741                 dentry = dentry->d_parent;
2742                 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2743                         break;
2744
2745                 if (BTRFS_I(dentry->d_inode)->generation <=
2746                     root->fs_info->last_trans_committed)
2747                         break;
2748         }
2749         end_log_trans(root);
2750         return 0;
2751 }
2752
2753 /*
2754  * it is not safe to log dentry if the chunk root has added new
2755  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2756  * If this returns 1, you must commit the transaction to safely get your
2757  * data on disk.
2758  */
2759 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2760                           struct btrfs_root *root, struct dentry *dentry)
2761 {
2762         u64 gen;
2763         gen = root->fs_info->last_trans_new_blockgroup;
2764         if (gen > root->fs_info->last_trans_committed)
2765                 return 1;
2766         else
2767                 return btrfs_log_dentry(trans, root, dentry);
2768 }
2769
2770 /*
2771  * should be called during mount to recover any replay any log trees
2772  * from the FS
2773  */
2774 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2775 {
2776         int ret;
2777         struct btrfs_path *path;
2778         struct btrfs_trans_handle *trans;
2779         struct btrfs_key key;
2780         struct btrfs_key found_key;
2781         struct btrfs_key tmp_key;
2782         struct btrfs_root *log;
2783         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2784         u64 highest_inode;
2785         struct walk_control wc = {
2786                 .process_func = process_one_buffer,
2787                 .stage = 0,
2788         };
2789
2790         fs_info->log_root_recovering = 1;
2791         path = btrfs_alloc_path();
2792         BUG_ON(!path);
2793
2794         trans = btrfs_start_transaction(fs_info->tree_root, 1);
2795
2796         wc.trans = trans;
2797         wc.pin = 1;
2798
2799         walk_log_tree(trans, log_root_tree, &wc);
2800
2801 again:
2802         key.objectid = BTRFS_TREE_LOG_OBJECTID;
2803         key.offset = (u64)-1;
2804         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2805
2806         while (1) {
2807                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2808                 if (ret < 0)
2809                         break;
2810                 if (ret > 0) {
2811                         if (path->slots[0] == 0)
2812                                 break;
2813                         path->slots[0]--;
2814                 }
2815                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2816                                       path->slots[0]);
2817                 btrfs_release_path(log_root_tree, path);
2818                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2819                         break;
2820
2821                 log = btrfs_read_fs_root_no_radix(log_root_tree,
2822                                                   &found_key);
2823                 BUG_ON(!log);
2824
2825
2826                 tmp_key.objectid = found_key.offset;
2827                 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2828                 tmp_key.offset = (u64)-1;
2829
2830                 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2831                 BUG_ON(!wc.replay_dest);
2832
2833                 wc.replay_dest->log_root = log;
2834                 mutex_lock(&fs_info->trans_mutex);
2835                 btrfs_record_root_in_trans(wc.replay_dest);
2836                 mutex_unlock(&fs_info->trans_mutex);
2837                 ret = walk_log_tree(trans, log, &wc);
2838                 BUG_ON(ret);
2839
2840                 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2841                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
2842                                                       path);
2843                         BUG_ON(ret);
2844                 }
2845                 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2846                 if (ret == 0) {
2847                         wc.replay_dest->highest_inode = highest_inode;
2848                         wc.replay_dest->last_inode_alloc = highest_inode;
2849                 }
2850
2851                 key.offset = found_key.offset - 1;
2852                 wc.replay_dest->log_root = NULL;
2853                 free_extent_buffer(log->node);
2854                 kfree(log);
2855
2856                 if (found_key.offset == 0)
2857                         break;
2858         }
2859         btrfs_release_path(log_root_tree, path);
2860
2861         /* step one is to pin it all, step two is to replay just inodes */
2862         if (wc.pin) {
2863                 wc.pin = 0;
2864                 wc.process_func = replay_one_buffer;
2865                 wc.stage = LOG_WALK_REPLAY_INODES;
2866                 goto again;
2867         }
2868         /* step three is to replay everything */
2869         if (wc.stage < LOG_WALK_REPLAY_ALL) {
2870                 wc.stage++;
2871                 goto again;
2872         }
2873
2874         btrfs_free_path(path);
2875
2876         free_extent_buffer(log_root_tree->node);
2877         log_root_tree->log_root = NULL;
2878         fs_info->log_root_recovering = 0;
2879
2880         /* step 4: commit the transaction, which also unpins the blocks */
2881         btrfs_commit_transaction(trans, fs_info->tree_root);
2882
2883         kfree(log_root_tree);
2884         return 0;
2885 }