2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
42 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
67 #include "config_roms.h"
70 #include "highlevel.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 printk(level "%s: " fmt, driver_name, ## args)
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
85 struct fragment_info {
86 struct list_head list;
91 struct partial_datagram {
92 struct list_head list;
98 struct list_head frag_info;
102 struct list_head list; /* partial datagram list per node */
103 unsigned int sz; /* partial datagram list size per node */
104 spinlock_t lock; /* partial datagram lock */
107 struct eth1394_host_info {
108 struct hpsb_host *host;
109 struct net_device *dev;
112 struct eth1394_node_ref {
113 struct unit_directory *ud;
114 struct list_head list;
117 struct eth1394_node_info {
118 u16 maxpayload; /* max payload */
119 u8 sspd; /* max speed */
120 u64 fifo; /* FIFO address */
121 struct pdg_list pdg; /* partial RX datagram lists */
122 int dgl; /* outgoing datagram label */
125 static const char driver_name[] = "eth1394";
127 static struct kmem_cache *packet_task_cache;
129 static struct hpsb_highlevel eth1394_highlevel;
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133 sizeof(struct eth1394_uf_hdr),
134 sizeof(struct eth1394_ff_hdr),
135 sizeof(struct eth1394_sf_hdr),
136 sizeof(struct eth1394_sf_hdr)
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /* S100, S200, S400, S800, S1600, S3200 */
141 512, 1024, 2048, 4096, 4096, 4096
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
149 * The max_partial_datagrams parameter is the maximum number of fragmented
150 * datagrams per node that eth1394 will keep in memory. Providing an upper
151 * bound allows us to limit the amount of memory that partial datagrams
152 * consume in the event that some partial datagrams are never completed.
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157 "Maximum number of partially received fragmented datagrams "
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162 unsigned short type, void *daddr, void *saddr,
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(const struct sk_buff *skb,
166 unsigned char *haddr);
167 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
168 static void ether1394_header_cache_update(struct hh_cache *hh,
169 struct net_device *dev,
170 unsigned char *haddr);
171 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
172 static void ether1394_iso(struct hpsb_iso *iso);
174 static struct ethtool_ops ethtool_ops;
176 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
177 quadlet_t *data, u64 addr, size_t len, u16 flags);
178 static void ether1394_add_host(struct hpsb_host *host);
179 static void ether1394_remove_host(struct hpsb_host *host);
180 static void ether1394_host_reset(struct hpsb_host *host);
182 /* Function for incoming 1394 packets */
183 static struct hpsb_address_ops addr_ops = {
184 .write = ether1394_write,
187 /* Ieee1394 highlevel driver functions */
188 static struct hpsb_highlevel eth1394_highlevel = {
190 .add_host = ether1394_add_host,
191 .remove_host = ether1394_remove_host,
192 .host_reset = ether1394_host_reset,
195 static int ether1394_recv_init(struct eth1394_priv *priv)
197 unsigned int iso_buf_size;
199 /* FIXME: rawiso limits us to PAGE_SIZE */
200 iso_buf_size = min((unsigned int)PAGE_SIZE,
201 2 * (1U << (priv->host->csr.max_rec + 1)));
203 priv->iso = hpsb_iso_recv_init(priv->host,
204 ETHER1394_GASP_BUFFERS * iso_buf_size,
205 ETHER1394_GASP_BUFFERS,
206 priv->broadcast_channel,
207 HPSB_ISO_DMA_PACKET_PER_BUFFER,
209 if (priv->iso == NULL) {
210 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
211 priv->bc_state = ETHER1394_BC_ERROR;
215 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
216 priv->bc_state = ETHER1394_BC_STOPPED;
218 priv->bc_state = ETHER1394_BC_RUNNING;
222 /* This is called after an "ifup" */
223 static int ether1394_open(struct net_device *dev)
225 struct eth1394_priv *priv = netdev_priv(dev);
228 if (priv->bc_state == ETHER1394_BC_ERROR) {
229 ret = ether1394_recv_init(priv);
233 netif_start_queue(dev);
237 /* This is called after an "ifdown" */
238 static int ether1394_stop(struct net_device *dev)
240 /* flush priv->wake */
241 flush_scheduled_work();
243 netif_stop_queue(dev);
247 /* Return statistics to the caller */
248 static struct net_device_stats *ether1394_stats(struct net_device *dev)
250 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
253 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
254 * so that's what we do. Should we increment the stat counters too? */
255 static void ether1394_tx_timeout(struct net_device *dev)
257 struct hpsb_host *host =
258 ((struct eth1394_priv *)netdev_priv(dev))->host;
260 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
261 ether1394_host_reset(host);
264 static inline int ether1394_max_mtu(struct hpsb_host* host)
266 return (1 << (host->csr.max_rec + 1))
267 - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
270 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
277 max_mtu = ether1394_max_mtu(
278 ((struct eth1394_priv *)netdev_priv(dev))->host);
279 if (new_mtu > max_mtu) {
280 ETH1394_PRINT(KERN_INFO, dev->name,
281 "Local node constrains MTU to %d\n", max_mtu);
289 static void purge_partial_datagram(struct list_head *old)
291 struct partial_datagram *pd;
292 struct list_head *lh, *n;
293 struct fragment_info *fi;
295 pd = list_entry(old, struct partial_datagram, list);
297 list_for_each_safe(lh, n, &pd->frag_info) {
298 fi = list_entry(lh, struct fragment_info, list);
307 /******************************************
308 * 1394 bus activity functions
309 ******************************************/
311 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
312 struct unit_directory *ud)
314 struct eth1394_node_ref *node;
316 list_for_each_entry(node, inl, list)
323 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
326 struct eth1394_node_ref *node;
328 list_for_each_entry(node, inl, list)
329 if (node->ud->ne->guid == guid)
335 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
338 struct eth1394_node_ref *node;
340 list_for_each_entry(node, inl, list)
341 if (node->ud->ne->nodeid == nodeid)
347 static int eth1394_new_node(struct eth1394_host_info *hi,
348 struct unit_directory *ud)
350 struct eth1394_priv *priv;
351 struct eth1394_node_ref *new_node;
352 struct eth1394_node_info *node_info;
354 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
358 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
364 spin_lock_init(&node_info->pdg.lock);
365 INIT_LIST_HEAD(&node_info->pdg.list);
366 node_info->pdg.sz = 0;
367 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
369 ud->device.driver_data = node_info;
372 priv = netdev_priv(hi->dev);
373 list_add_tail(&new_node->list, &priv->ip_node_list);
377 static int eth1394_probe(struct device *dev)
379 struct unit_directory *ud;
380 struct eth1394_host_info *hi;
382 ud = container_of(dev, struct unit_directory, device);
383 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
387 return eth1394_new_node(hi, ud);
390 static int eth1394_remove(struct device *dev)
392 struct unit_directory *ud;
393 struct eth1394_host_info *hi;
394 struct eth1394_priv *priv;
395 struct eth1394_node_ref *old_node;
396 struct eth1394_node_info *node_info;
397 struct list_head *lh, *n;
400 ud = container_of(dev, struct unit_directory, device);
401 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
405 priv = netdev_priv(hi->dev);
407 old_node = eth1394_find_node(&priv->ip_node_list, ud);
411 list_del(&old_node->list);
414 node_info = (struct eth1394_node_info*)ud->device.driver_data;
416 spin_lock_irqsave(&node_info->pdg.lock, flags);
417 /* The partial datagram list should be empty, but we'll just
418 * make sure anyway... */
419 list_for_each_safe(lh, n, &node_info->pdg.list)
420 purge_partial_datagram(lh);
421 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
424 ud->device.driver_data = NULL;
428 static int eth1394_update(struct unit_directory *ud)
430 struct eth1394_host_info *hi;
431 struct eth1394_priv *priv;
432 struct eth1394_node_ref *node;
434 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
438 priv = netdev_priv(hi->dev);
439 node = eth1394_find_node(&priv->ip_node_list, ud);
443 return eth1394_new_node(hi, ud);
446 static struct ieee1394_device_id eth1394_id_table[] = {
448 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
449 IEEE1394_MATCH_VERSION),
450 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
451 .version = ETHER1394_GASP_VERSION,
456 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
458 static struct hpsb_protocol_driver eth1394_proto_driver = {
460 .id_table = eth1394_id_table,
461 .update = eth1394_update,
463 .probe = eth1394_probe,
464 .remove = eth1394_remove,
468 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
472 struct eth1394_priv *priv = netdev_priv(dev);
473 struct hpsb_host *host = priv->host;
474 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
475 int max_speed = IEEE1394_SPEED_MAX;
477 spin_lock_irqsave(&priv->lock, flags);
479 memset(priv->ud_list, 0, sizeof(priv->ud_list));
480 priv->bc_maxpayload = 512;
482 /* Determine speed limit */
483 /* FIXME: This is broken for nodes with link speed < PHY speed,
484 * and it is suboptimal for S200B...S800B hardware.
485 * The result of nodemgr's speed probe should be used somehow. */
486 for (i = 0; i < host->node_count; i++) {
487 /* take care of S100B...S400B PHY ports */
488 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
489 max_speed = IEEE1394_SPEED_100;
492 if (max_speed > host->speed[i])
493 max_speed = host->speed[i];
495 priv->bc_sspd = max_speed;
498 /* Use the RFC 2734 default 1500 octets or the maximum payload
500 dev->mtu = min(1500, ether1394_max_mtu(host));
502 /* Set our hardware address while we're at it */
503 memcpy(dev->dev_addr, &guid, sizeof(u64));
504 memset(dev->broadcast, 0xff, sizeof(u64));
507 spin_unlock_irqrestore(&priv->lock, flags);
510 static void ether1394_init_dev(struct net_device *dev)
512 dev->open = ether1394_open;
513 dev->stop = ether1394_stop;
514 dev->hard_start_xmit = ether1394_tx;
515 dev->get_stats = ether1394_stats;
516 dev->tx_timeout = ether1394_tx_timeout;
517 dev->change_mtu = ether1394_change_mtu;
519 dev->hard_header = ether1394_header;
520 dev->rebuild_header = ether1394_rebuild_header;
521 dev->hard_header_cache = ether1394_header_cache;
522 dev->header_cache_update= ether1394_header_cache_update;
523 dev->hard_header_parse = ether1394_header_parse;
525 SET_ETHTOOL_OPS(dev, ðtool_ops);
527 dev->watchdog_timeo = ETHER1394_TIMEOUT;
528 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
529 dev->features = NETIF_F_HIGHDMA;
530 dev->addr_len = ETH1394_ALEN;
531 dev->hard_header_len = ETH1394_HLEN;
532 dev->type = ARPHRD_IEEE1394;
534 /* FIXME: This value was copied from ether_setup(). Is it too much? */
535 dev->tx_queue_len = 1000;
539 * Wake the queue up after commonly encountered transmit failure conditions are
540 * hopefully over. Currently only tlabel exhaustion is accounted for.
542 static void ether1394_wake_queue(struct work_struct *work)
544 struct eth1394_priv *priv;
545 struct hpsb_packet *packet;
547 priv = container_of(work, struct eth1394_priv, wake);
548 packet = hpsb_alloc_packet(0);
550 /* This is really bad, but unjam the queue anyway. */
554 packet->host = priv->host;
555 packet->node_id = priv->wake_node;
557 * A transaction label is all we really want. If we get one, it almost
558 * always means we can get a lot more because the ieee1394 core recycled
559 * a whole batch of tlabels, at last.
561 if (hpsb_get_tlabel(packet) == 0)
562 hpsb_free_tlabel(packet);
564 hpsb_free_packet(packet);
566 netif_wake_queue(priv->wake_dev);
570 * This function is called every time a card is found. It is generally called
571 * when the module is installed. This is where we add all of our ethernet
572 * devices. One for each host.
574 static void ether1394_add_host(struct hpsb_host *host)
576 struct eth1394_host_info *hi = NULL;
577 struct net_device *dev = NULL;
578 struct eth1394_priv *priv;
581 if (hpsb_config_rom_ip1394_add(host) != 0) {
582 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
586 fifo_addr = hpsb_allocate_and_register_addrspace(
587 ð1394_highlevel, host, &addr_ops,
588 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
589 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
590 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
591 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
592 hpsb_config_rom_ip1394_remove(host);
596 dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
598 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
602 SET_NETDEV_DEV(dev, &host->device);
604 priv = netdev_priv(dev);
605 INIT_LIST_HEAD(&priv->ip_node_list);
606 spin_lock_init(&priv->lock);
608 priv->local_fifo = fifo_addr;
609 INIT_WORK(&priv->wake, ether1394_wake_queue);
610 priv->wake_dev = dev;
612 hi = hpsb_create_hostinfo(ð1394_highlevel, host, sizeof(*hi));
614 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
618 ether1394_reset_priv(dev, 1);
620 if (register_netdev(dev)) {
621 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
625 ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
631 /* Ignore validity in hopes that it will be set in the future. It'll
632 * be checked when the eth device is opened. */
633 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
635 ether1394_recv_init(priv);
641 hpsb_destroy_hostinfo(ð1394_highlevel, host);
642 hpsb_unregister_addrspace(ð1394_highlevel, host, fifo_addr);
643 hpsb_config_rom_ip1394_remove(host);
646 /* Remove a card from our list */
647 static void ether1394_remove_host(struct hpsb_host *host)
649 struct eth1394_host_info *hi;
650 struct eth1394_priv *priv;
652 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
655 priv = netdev_priv(hi->dev);
656 hpsb_unregister_addrspace(ð1394_highlevel, host, priv->local_fifo);
657 hpsb_config_rom_ip1394_remove(host);
659 hpsb_iso_shutdown(priv->iso);
660 unregister_netdev(hi->dev);
661 free_netdev(hi->dev);
664 /* A bus reset happened */
665 static void ether1394_host_reset(struct hpsb_host *host)
667 struct eth1394_host_info *hi;
668 struct eth1394_priv *priv;
669 struct net_device *dev;
670 struct list_head *lh, *n;
671 struct eth1394_node_ref *node;
672 struct eth1394_node_info *node_info;
675 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
677 /* This can happen for hosts that we don't use */
682 priv = netdev_priv(dev);
684 /* Reset our private host data, but not our MTU */
685 netif_stop_queue(dev);
686 ether1394_reset_priv(dev, 0);
688 list_for_each_entry(node, &priv->ip_node_list, list) {
689 node_info = node->ud->device.driver_data;
691 spin_lock_irqsave(&node_info->pdg.lock, flags);
693 list_for_each_safe(lh, n, &node_info->pdg.list)
694 purge_partial_datagram(lh);
696 INIT_LIST_HEAD(&(node_info->pdg.list));
697 node_info->pdg.sz = 0;
699 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
702 netif_wake_queue(dev);
705 /******************************************
706 * HW Header net device functions
707 ******************************************/
708 /* These functions have been adapted from net/ethernet/eth.c */
710 /* Create a fake MAC header for an arbitrary protocol layer.
711 * saddr=NULL means use device source address
712 * daddr=NULL means leave destination address (eg unresolved arp). */
713 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
714 unsigned short type, void *daddr, void *saddr,
717 struct eth1394hdr *eth =
718 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
720 eth->h_proto = htons(type);
722 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
723 memset(eth->h_dest, 0, dev->addr_len);
724 return dev->hard_header_len;
728 memcpy(eth->h_dest, daddr, dev->addr_len);
729 return dev->hard_header_len;
732 return -dev->hard_header_len;
735 /* Rebuild the faked MAC header. This is called after an ARP
736 * (or in future other address resolution) has completed on this
737 * sk_buff. We now let ARP fill in the other fields.
739 * This routine CANNOT use cached dst->neigh!
740 * Really, it is used only when dst->neigh is wrong.
742 static int ether1394_rebuild_header(struct sk_buff *skb)
744 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
746 if (eth->h_proto == htons(ETH_P_IP))
747 return arp_find((unsigned char *)ð->h_dest, skb);
749 ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
750 "unable to resolve type %04x addresses\n",
751 ntohs(eth->h_proto));
755 static int ether1394_header_parse(const struct sk_buff *skb,
756 unsigned char *haddr)
758 memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
762 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
764 unsigned short type = hh->hh_type;
765 struct net_device *dev = neigh->dev;
766 struct eth1394hdr *eth =
767 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
769 if (type == htons(ETH_P_802_3))
773 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
775 hh->hh_len = ETH1394_HLEN;
779 /* Called by Address Resolution module to notify changes in address. */
780 static void ether1394_header_cache_update(struct hh_cache *hh,
781 struct net_device *dev,
782 unsigned char * haddr)
784 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
787 /******************************************
788 * Datagram reception code
789 ******************************************/
791 /* Copied from net/ethernet/eth.c */
792 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
794 struct eth1394hdr *eth;
797 skb_reset_mac_header(skb);
798 skb_pull(skb, ETH1394_HLEN);
799 eth = eth1394_hdr(skb);
801 if (*eth->h_dest & 1) {
802 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
803 skb->pkt_type = PACKET_BROADCAST;
806 skb->pkt_type = PACKET_MULTICAST;
809 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
810 skb->pkt_type = PACKET_OTHERHOST;
813 if (ntohs(eth->h_proto) >= 1536)
818 if (*(unsigned short *)rawp == 0xFFFF)
819 return htons(ETH_P_802_3);
821 return htons(ETH_P_802_2);
824 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
825 * We also perform ARP translation here, if need be. */
826 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
827 nodeid_t srcid, nodeid_t destid,
830 struct eth1394_priv *priv = netdev_priv(dev);
832 unsigned short ret = 0;
834 /* Setup our hw addresses. We use these to build the ethernet header. */
835 if (destid == (LOCAL_BUS | ALL_NODES))
836 dest_hw = ~0ULL; /* broadcast */
838 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
839 priv->host->csr.guid_lo);
841 /* If this is an ARP packet, convert it. First, we want to make
842 * use of some of the fields, since they tell us a little bit
843 * about the sending machine. */
844 if (ether_type == htons(ETH_P_ARP)) {
845 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
846 struct arphdr *arp = (struct arphdr *)skb->data;
847 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
848 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
849 ntohl(arp1394->fifo_lo);
850 u8 max_rec = min(priv->host->csr.max_rec,
851 (u8)(arp1394->max_rec));
852 int sspd = arp1394->sspd;
854 struct eth1394_node_ref *node;
855 struct eth1394_node_info *node_info;
858 /* Sanity check. MacOSX seems to be sending us 131 in this
859 * field (atleast on my Panther G5). Not sure why. */
860 if (sspd > 5 || sspd < 0)
863 maxpayload = min(eth1394_speedto_maxpayload[sspd],
864 (u16)(1 << (max_rec + 1)));
866 guid = get_unaligned(&arp1394->s_uniq_id);
867 node = eth1394_find_node_guid(&priv->ip_node_list,
873 (struct eth1394_node_info *)node->ud->device.driver_data;
875 /* Update our speed/payload/fifo_offset table */
876 node_info->maxpayload = maxpayload;
877 node_info->sspd = sspd;
878 node_info->fifo = fifo_addr;
880 /* Now that we're done with the 1394 specific stuff, we'll
881 * need to alter some of the data. Believe it or not, all
882 * that needs to be done is sender_IP_address needs to be
883 * moved, the destination hardware address get stuffed
884 * in and the hardware address length set to 8.
886 * IMPORTANT: The code below overwrites 1394 specific data
887 * needed above so keep the munging of the data for the
888 * higher level IP stack last. */
891 arp_ptr += arp->ar_hln; /* skip over sender unique id */
892 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
893 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
895 if (arp->ar_op == htons(ARPOP_REQUEST))
896 memset(arp_ptr, 0, sizeof(u64));
898 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
901 /* Now add the ethernet header. */
902 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
904 ret = ether1394_type_trans(skb, dev);
909 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
911 struct fragment_info *fi;
912 int end = offset + len;
914 list_for_each_entry(fi, frag_list, list)
915 if (offset < fi->offset + fi->len && end > fi->offset)
921 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
923 struct partial_datagram *pd;
925 list_for_each_entry(pd, pdgl, list)
932 /* Assumes that new fragment does not overlap any existing fragments */
933 static int new_fragment(struct list_head *frag_info, int offset, int len)
935 struct list_head *lh;
936 struct fragment_info *fi, *fi2, *new;
938 list_for_each(lh, frag_info) {
939 fi = list_entry(lh, struct fragment_info, list);
940 if (fi->offset + fi->len == offset) {
941 /* The new fragment can be tacked on to the end */
943 /* Did the new fragment plug a hole? */
944 fi2 = list_entry(lh->next, struct fragment_info, list);
945 if (fi->offset + fi->len == fi2->offset) {
946 /* glue fragments together */
952 } else if (offset + len == fi->offset) {
953 /* The new fragment can be tacked on to the beginning */
956 /* Did the new fragment plug a hole? */
957 fi2 = list_entry(lh->prev, struct fragment_info, list);
958 if (fi2->offset + fi2->len == fi->offset) {
959 /* glue fragments together */
965 } else if (offset > fi->offset + fi->len) {
967 } else if (offset + len < fi->offset) {
973 new = kmalloc(sizeof(*new), GFP_ATOMIC);
977 new->offset = offset;
980 list_add(&new->list, lh);
984 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
985 int dgl, int dg_size, char *frag_buf,
986 int frag_off, int frag_len)
988 struct partial_datagram *new;
990 new = kmalloc(sizeof(*new), GFP_ATOMIC);
994 INIT_LIST_HEAD(&new->frag_info);
996 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1002 new->dg_size = dg_size;
1004 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1006 struct fragment_info *fi = list_entry(new->frag_info.next,
1007 struct fragment_info,
1014 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1015 new->pbuf = skb_put(new->skb, dg_size);
1016 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1018 list_add(&new->list, pdgl);
1022 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1023 char *frag_buf, int frag_off, int frag_len)
1025 struct partial_datagram *pd =
1026 list_entry(lh, struct partial_datagram, list);
1028 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1031 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1033 /* Move list entry to beginnig of list so that oldest partial
1034 * datagrams percolate to the end of the list */
1035 list_move(lh, pdgl);
1039 static int is_datagram_complete(struct list_head *lh, int dg_size)
1041 struct partial_datagram *pd;
1042 struct fragment_info *fi;
1044 pd = list_entry(lh, struct partial_datagram, list);
1045 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1047 return (fi->len == dg_size);
1050 /* Packet reception. We convert the IP1394 encapsulation header to an
1051 * ethernet header, and fill it with some of our other fields. This is
1052 * an incoming packet from the 1394 bus. */
1053 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1056 struct sk_buff *skb;
1057 unsigned long flags;
1058 struct eth1394_priv *priv = netdev_priv(dev);
1059 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1060 u16 ether_type = 0; /* initialized to clear warning */
1062 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1063 struct eth1394_node_info *node_info;
1066 struct eth1394_node_ref *node;
1067 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1068 if (unlikely(!node)) {
1069 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1070 "lookup failure: " NODE_BUS_FMT,
1071 NODE_BUS_ARGS(priv->host, srcid));
1072 priv->stats.rx_dropped++;
1077 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1080 node_info = (struct eth1394_node_info *)ud->device.driver_data;
1082 /* First, did we receive a fragmented or unfragmented datagram? */
1083 hdr->words.word1 = ntohs(hdr->words.word1);
1085 hdr_len = hdr_type_len[hdr->common.lf];
1087 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1088 /* An unfragmented datagram has been received by the ieee1394
1089 * bus. Build an skbuff around it so we can pass it to the
1090 * high level network layer. */
1092 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1093 if (unlikely(!skb)) {
1094 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1095 priv->stats.rx_dropped++;
1098 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1099 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1101 ether_type = hdr->uf.ether_type;
1103 /* A datagram fragment has been received, now the fun begins. */
1105 struct list_head *pdgl, *lh;
1106 struct partial_datagram *pd;
1108 int fg_len = len - hdr_len;
1112 struct pdg_list *pdg = &(node_info->pdg);
1114 hdr->words.word3 = ntohs(hdr->words.word3);
1115 /* The 4th header word is reserved so no need to do ntohs() */
1117 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1118 ether_type = hdr->ff.ether_type;
1120 dg_size = hdr->ff.dg_size + 1;
1123 hdr->words.word2 = ntohs(hdr->words.word2);
1125 dg_size = hdr->sf.dg_size + 1;
1126 fg_off = hdr->sf.fg_off;
1128 spin_lock_irqsave(&pdg->lock, flags);
1130 pdgl = &(pdg->list);
1131 lh = find_partial_datagram(pdgl, dgl);
1134 while (pdg->sz >= max_partial_datagrams) {
1135 /* remove the oldest */
1136 purge_partial_datagram(pdgl->prev);
1140 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1141 buf + hdr_len, fg_off,
1144 spin_unlock_irqrestore(&pdg->lock, flags);
1148 lh = find_partial_datagram(pdgl, dgl);
1150 struct partial_datagram *pd;
1152 pd = list_entry(lh, struct partial_datagram, list);
1154 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1155 /* Overlapping fragments, obliterate old
1156 * datagram and start new one. */
1157 purge_partial_datagram(lh);
1158 retval = new_partial_datagram(dev, pdgl, dgl,
1164 spin_unlock_irqrestore(&pdg->lock, flags);
1168 retval = update_partial_datagram(pdgl, lh,
1172 /* Couldn't save off fragment anyway
1173 * so might as well obliterate the
1175 purge_partial_datagram(lh);
1177 spin_unlock_irqrestore(&pdg->lock, flags);
1180 } /* fragment overlap */
1181 } /* new datagram or add to existing one */
1183 pd = list_entry(lh, struct partial_datagram, list);
1185 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1186 pd->ether_type = ether_type;
1188 if (is_datagram_complete(lh, dg_size)) {
1189 ether_type = pd->ether_type;
1191 skb = skb_get(pd->skb);
1192 purge_partial_datagram(lh);
1193 spin_unlock_irqrestore(&pdg->lock, flags);
1195 /* Datagram is not complete, we're done for the
1197 spin_unlock_irqrestore(&pdg->lock, flags);
1200 } /* unframgented datagram or fragmented one */
1202 /* Write metadata, and then pass to the receive level */
1204 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1206 /* Parse the encapsulation header. This actually does the job of
1207 * converting to an ethernet frame header, aswell as arp
1208 * conversion if needed. ARP conversion is easier in this
1209 * direction, since we are using ethernet as our backend. */
1210 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1213 spin_lock_irqsave(&priv->lock, flags);
1215 if (!skb->protocol) {
1216 priv->stats.rx_errors++;
1217 priv->stats.rx_dropped++;
1218 dev_kfree_skb_any(skb);
1222 if (netif_rx(skb) == NET_RX_DROP) {
1223 priv->stats.rx_errors++;
1224 priv->stats.rx_dropped++;
1229 priv->stats.rx_packets++;
1230 priv->stats.rx_bytes += skb->len;
1233 if (netif_queue_stopped(dev))
1234 netif_wake_queue(dev);
1235 spin_unlock_irqrestore(&priv->lock, flags);
1237 dev->last_rx = jiffies;
1242 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1243 quadlet_t *data, u64 addr, size_t len, u16 flags)
1245 struct eth1394_host_info *hi;
1247 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
1248 if (unlikely(!hi)) {
1249 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1251 return RCODE_ADDRESS_ERROR;
1254 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1255 return RCODE_ADDRESS_ERROR;
1257 return RCODE_COMPLETE;
1260 static void ether1394_iso(struct hpsb_iso *iso)
1264 struct eth1394_host_info *hi;
1265 struct net_device *dev;
1266 struct eth1394_priv *priv;
1273 hi = hpsb_get_hostinfo(ð1394_highlevel, iso->host);
1274 if (unlikely(!hi)) {
1275 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1282 nready = hpsb_iso_n_ready(iso);
1283 for (i = 0; i < nready; i++) {
1284 struct hpsb_iso_packet_info *info =
1285 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1286 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1288 /* skip over GASP header */
1289 buf = (char *)data + 8;
1290 len = info->len - 8;
1292 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1293 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1294 source_id = be32_to_cpu(data[0]) >> 16;
1296 priv = netdev_priv(dev);
1298 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1299 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1300 /* This packet is not for us */
1303 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1307 hpsb_iso_recv_release_packets(iso, i);
1309 dev->last_rx = jiffies;
1312 /******************************************
1313 * Datagram transmission code
1314 ******************************************/
1316 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1317 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1318 * needs to be munged a bit. The remainder of the arphdr is formatted based
1319 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1322 * Now that the EUI is used for the hardware address all we need to do to make
1323 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1324 * speed, and unicast FIFO address information between the sender_unique_id
1325 * and the IP addresses.
1327 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1328 struct net_device *dev)
1330 struct eth1394_priv *priv = netdev_priv(dev);
1331 struct arphdr *arp = (struct arphdr *)skb->data;
1332 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1333 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1335 arp1394->hw_addr_len = 16;
1336 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1337 arp1394->max_rec = priv->host->csr.max_rec;
1338 arp1394->sspd = priv->host->csr.lnk_spd;
1339 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1340 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1343 /* We need to encapsulate the standard header with our own. We use the
1344 * ethernet header's proto for our own. */
1345 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1347 union eth1394_hdr *hdr,
1348 u16 dg_size, u16 dgl)
1350 unsigned int adj_max_payload =
1351 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1353 /* Does it all fit in one packet? */
1354 if (dg_size <= adj_max_payload) {
1355 hdr->uf.lf = ETH1394_HDR_LF_UF;
1356 hdr->uf.ether_type = proto;
1358 hdr->ff.lf = ETH1394_HDR_LF_FF;
1359 hdr->ff.ether_type = proto;
1360 hdr->ff.dg_size = dg_size - 1;
1362 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1364 return (dg_size + adj_max_payload - 1) / adj_max_payload;
1367 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1368 unsigned int max_payload,
1369 union eth1394_hdr *hdr)
1371 union eth1394_hdr *bufhdr;
1372 int ftype = hdr->common.lf;
1373 int hdrsz = hdr_type_len[ftype];
1374 unsigned int adj_max_payload = max_payload - hdrsz;
1377 case ETH1394_HDR_LF_UF:
1378 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1379 bufhdr->words.word1 = htons(hdr->words.word1);
1380 bufhdr->words.word2 = hdr->words.word2;
1383 case ETH1394_HDR_LF_FF:
1384 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1385 bufhdr->words.word1 = htons(hdr->words.word1);
1386 bufhdr->words.word2 = hdr->words.word2;
1387 bufhdr->words.word3 = htons(hdr->words.word3);
1388 bufhdr->words.word4 = 0;
1390 /* Set frag type here for future interior fragments */
1391 hdr->common.lf = ETH1394_HDR_LF_IF;
1396 hdr->sf.fg_off += adj_max_payload;
1397 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1398 if (max_payload >= skb->len)
1399 hdr->common.lf = ETH1394_HDR_LF_LF;
1400 bufhdr->words.word1 = htons(hdr->words.word1);
1401 bufhdr->words.word2 = htons(hdr->words.word2);
1402 bufhdr->words.word3 = htons(hdr->words.word3);
1403 bufhdr->words.word4 = 0;
1405 return min(max_payload, skb->len);
1408 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1410 struct hpsb_packet *p;
1412 p = hpsb_alloc_packet(0);
1415 p->generation = get_hpsb_generation(host);
1416 p->type = hpsb_async;
1421 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1422 struct hpsb_host *host, nodeid_t node,
1423 u64 addr, void *data, int tx_len)
1427 if (hpsb_get_tlabel(p))
1430 p->tcode = TCODE_WRITEB;
1431 p->header_size = 16;
1432 p->expect_response = 1;
1434 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1435 p->header[1] = host->node_id << 16 | addr >> 32;
1436 p->header[2] = addr & 0xffffffff;
1437 p->header[3] = tx_len << 16;
1438 p->data_size = (tx_len + 3) & ~3;
1444 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1445 struct eth1394_priv *priv,
1446 struct sk_buff *skb, int length)
1449 p->tcode = TCODE_STREAM_DATA;
1451 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1452 TCODE_STREAM_DATA << 4;
1453 p->data_size = length;
1454 p->data = (quadlet_t *)skb->data - 2;
1455 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1456 ETHER1394_GASP_SPECIFIER_ID_HI);
1457 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1458 ETHER1394_GASP_VERSION);
1460 p->speed_code = priv->bc_sspd;
1462 /* prevent hpsb_send_packet() from overriding our speed code */
1463 p->node_id = LOCAL_BUS | ALL_NODES;
1466 static void ether1394_free_packet(struct hpsb_packet *packet)
1468 if (packet->tcode != TCODE_STREAM_DATA)
1469 hpsb_free_tlabel(packet);
1470 hpsb_free_packet(packet);
1473 static void ether1394_complete_cb(void *__ptask);
1475 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1477 struct eth1394_priv *priv = ptask->priv;
1478 struct hpsb_packet *packet = NULL;
1480 packet = ether1394_alloc_common_packet(priv->host);
1484 if (ptask->tx_type == ETH1394_GASP) {
1485 int length = tx_len + 2 * sizeof(quadlet_t);
1487 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1488 } else if (ether1394_prep_write_packet(packet, priv->host,
1490 ptask->addr, ptask->skb->data,
1492 hpsb_free_packet(packet);
1496 ptask->packet = packet;
1497 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1500 if (hpsb_send_packet(packet) < 0) {
1501 ether1394_free_packet(packet);
1508 /* Task function to be run when a datagram transmission is completed */
1509 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1511 struct sk_buff *skb = ptask->skb;
1512 struct eth1394_priv *priv = netdev_priv(skb->dev);
1513 unsigned long flags;
1516 spin_lock_irqsave(&priv->lock, flags);
1518 priv->stats.tx_dropped++;
1519 priv->stats.tx_errors++;
1521 priv->stats.tx_bytes += skb->len;
1522 priv->stats.tx_packets++;
1524 spin_unlock_irqrestore(&priv->lock, flags);
1526 dev_kfree_skb_any(skb);
1527 kmem_cache_free(packet_task_cache, ptask);
1530 /* Callback for when a packet has been sent and the status of that packet is
1532 static void ether1394_complete_cb(void *__ptask)
1534 struct packet_task *ptask = (struct packet_task *)__ptask;
1535 struct hpsb_packet *packet = ptask->packet;
1538 if (packet->tcode != TCODE_STREAM_DATA)
1539 fail = hpsb_packet_success(packet);
1541 ether1394_free_packet(packet);
1543 ptask->outstanding_pkts--;
1544 if (ptask->outstanding_pkts > 0 && !fail) {
1547 /* Add the encapsulation header to the fragment */
1548 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1550 err = ether1394_send_packet(ptask, tx_len);
1553 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1555 ether1394_dg_complete(ptask, 1);
1558 ether1394_dg_complete(ptask, fail);
1562 /* Transmit a packet (called by kernel) */
1563 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1565 struct eth1394hdr hdr_buf;
1566 struct eth1394_priv *priv = netdev_priv(dev);
1568 unsigned long flags;
1570 eth1394_tx_type tx_type;
1571 unsigned int tx_len;
1572 unsigned int max_payload;
1575 struct packet_task *ptask;
1576 struct eth1394_node_ref *node;
1577 struct eth1394_node_info *node_info = NULL;
1579 ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1583 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1584 * it does not set our validity bit. We need to compensate for
1585 * that somewhere else, but not in eth1394. */
1587 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1591 skb = skb_share_check(skb, GFP_ATOMIC);
1595 /* Get rid of the fake eth1394 header, but first make a copy.
1596 * We might need to rebuild the header on tx failure. */
1597 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1598 skb_pull(skb, ETH1394_HLEN);
1600 proto = hdr_buf.h_proto;
1603 /* Set the transmission type for the packet. ARP packets and IP
1604 * broadcast packets are sent via GASP. */
1605 if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1606 proto == htons(ETH_P_ARP) ||
1607 (proto == htons(ETH_P_IP) &&
1608 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1609 tx_type = ETH1394_GASP;
1610 dest_node = LOCAL_BUS | ALL_NODES;
1611 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1612 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1614 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1617 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1619 node = eth1394_find_node_guid(&priv->ip_node_list,
1625 (struct eth1394_node_info *)node->ud->device.driver_data;
1626 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1629 dest_node = node->ud->ne->nodeid;
1630 max_payload = node_info->maxpayload;
1631 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1633 dgl = node_info->dgl;
1634 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1636 tx_type = ETH1394_WRREQ;
1639 /* If this is an ARP packet, convert it */
1640 if (proto == htons(ETH_P_ARP))
1641 ether1394_arp_to_1394arp(skb, dev);
1643 ptask->hdr.words.word1 = 0;
1644 ptask->hdr.words.word2 = 0;
1645 ptask->hdr.words.word3 = 0;
1646 ptask->hdr.words.word4 = 0;
1649 ptask->tx_type = tx_type;
1651 if (tx_type != ETH1394_GASP) {
1654 spin_lock_irqsave(&priv->lock, flags);
1655 addr = node_info->fifo;
1656 spin_unlock_irqrestore(&priv->lock, flags);
1659 ptask->dest_node = dest_node;
1662 ptask->tx_type = tx_type;
1663 ptask->max_payload = max_payload;
1664 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1665 proto, &ptask->hdr, dg_size, dgl);
1667 /* Add the encapsulation header to the fragment */
1668 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1669 dev->trans_start = jiffies;
1670 if (ether1394_send_packet(ptask, tx_len)) {
1671 if (dest_node == (LOCAL_BUS | ALL_NODES))
1674 /* At this point we want to restore the packet. When we return
1675 * here with NETDEV_TX_BUSY we will get another entrance in this
1676 * routine with the same skb and we need it to look the same.
1677 * So we pull 4 more bytes, then build the header again. */
1679 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1680 hdr_buf.h_dest, NULL, 0);
1682 /* Most failures of ether1394_send_packet are recoverable. */
1683 netif_stop_queue(dev);
1684 priv->wake_node = dest_node;
1685 schedule_work(&priv->wake);
1686 kmem_cache_free(packet_task_cache, ptask);
1687 return NETDEV_TX_BUSY;
1690 return NETDEV_TX_OK;
1693 kmem_cache_free(packet_task_cache, ptask);
1698 spin_lock_irqsave(&priv->lock, flags);
1699 priv->stats.tx_dropped++;
1700 priv->stats.tx_errors++;
1701 spin_unlock_irqrestore(&priv->lock, flags);
1704 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1705 * causes serious problems" here, allegedly. Before that patch,
1706 * -ERRNO was returned which is not appropriate under Linux 2.6.
1707 * Perhaps more needs to be done? Stop the queue in serious
1708 * conditions and restart it elsewhere?
1710 /* return NETDEV_TX_BUSY; */
1711 return NETDEV_TX_OK;
1714 static void ether1394_get_drvinfo(struct net_device *dev,
1715 struct ethtool_drvinfo *info)
1717 strcpy(info->driver, driver_name);
1718 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1721 static struct ethtool_ops ethtool_ops = {
1722 .get_drvinfo = ether1394_get_drvinfo
1725 static int __init ether1394_init_module(void)
1729 packet_task_cache = kmem_cache_create("packet_task",
1730 sizeof(struct packet_task),
1732 if (!packet_task_cache)
1735 hpsb_register_highlevel(ð1394_highlevel);
1736 err = hpsb_register_protocol(ð1394_proto_driver);
1738 hpsb_unregister_highlevel(ð1394_highlevel);
1739 kmem_cache_destroy(packet_task_cache);
1744 static void __exit ether1394_exit_module(void)
1746 hpsb_unregister_protocol(ð1394_proto_driver);
1747 hpsb_unregister_highlevel(ð1394_highlevel);
1748 kmem_cache_destroy(packet_task_cache);
1751 module_init(ether1394_init_module);
1752 module_exit(ether1394_exit_module);