2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
10 #include <linux/config.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
15 #include <linux/bitops.h>
17 #include <asm/bcache.h>
18 #include <asm/bootinfo.h>
19 #include <asm/cache.h>
20 #include <asm/cacheops.h>
22 #include <asm/cpu-features.h>
25 #include <asm/pgtable.h>
26 #include <asm/r4kcache.h>
27 #include <asm/system.h>
28 #include <asm/mmu_context.h>
30 #include <asm/cacheflush.h> /* for run_uncached() */
35 static unsigned long icache_size __read_mostly;
36 static unsigned long dcache_size __read_mostly;
37 static unsigned long scache_size __read_mostly;
40 * Dummy cache handling routines for machines without boardcaches
42 static void no_sc_noop(void) {}
44 static struct bcache_ops no_sc_ops = {
45 .bc_enable = (void *)no_sc_noop,
46 .bc_disable = (void *)no_sc_noop,
47 .bc_wback_inv = (void *)no_sc_noop,
48 .bc_inv = (void *)no_sc_noop
51 struct bcache_ops *bcops = &no_sc_ops;
53 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
54 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
56 #define R4600_HIT_CACHEOP_WAR_IMPL \
58 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
59 *(volatile unsigned long *)CKSEG1; \
60 if (R4600_V1_HIT_CACHEOP_WAR) \
61 __asm__ __volatile__("nop;nop;nop;nop"); \
64 static void (*r4k_blast_dcache_page)(unsigned long addr);
66 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
68 R4600_HIT_CACHEOP_WAR_IMPL;
69 blast_dcache32_page(addr);
72 static inline void r4k_blast_dcache_page_setup(void)
74 unsigned long dc_lsize = cpu_dcache_line_size();
77 r4k_blast_dcache_page = blast_dcache16_page;
78 else if (dc_lsize == 32)
79 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
82 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
84 static inline void r4k_blast_dcache_page_indexed_setup(void)
86 unsigned long dc_lsize = cpu_dcache_line_size();
89 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
90 else if (dc_lsize == 32)
91 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
94 static void (* r4k_blast_dcache)(void);
96 static inline void r4k_blast_dcache_setup(void)
98 unsigned long dc_lsize = cpu_dcache_line_size();
101 r4k_blast_dcache = blast_dcache16;
102 else if (dc_lsize == 32)
103 r4k_blast_dcache = blast_dcache32;
106 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
107 #define JUMP_TO_ALIGN(order) \
108 __asm__ __volatile__( \
110 ".align\t" #order "\n\t" \
113 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
114 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
116 static inline void blast_r4600_v1_icache32(void)
120 local_irq_save(flags);
122 local_irq_restore(flags);
125 static inline void tx49_blast_icache32(void)
127 unsigned long start = INDEX_BASE;
128 unsigned long end = start + current_cpu_data.icache.waysize;
129 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
130 unsigned long ws_end = current_cpu_data.icache.ways <<
131 current_cpu_data.icache.waybit;
132 unsigned long ws, addr;
134 CACHE32_UNROLL32_ALIGN2;
135 /* I'm in even chunk. blast odd chunks */
136 for (ws = 0; ws < ws_end; ws += ws_inc)
137 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
138 cache32_unroll32(addr|ws,Index_Invalidate_I);
139 CACHE32_UNROLL32_ALIGN;
140 /* I'm in odd chunk. blast even chunks */
141 for (ws = 0; ws < ws_end; ws += ws_inc)
142 for (addr = start; addr < end; addr += 0x400 * 2)
143 cache32_unroll32(addr|ws,Index_Invalidate_I);
146 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
150 local_irq_save(flags);
151 blast_icache32_page_indexed(page);
152 local_irq_restore(flags);
155 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
157 unsigned long start = page;
158 unsigned long end = start + PAGE_SIZE;
159 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
160 unsigned long ws_end = current_cpu_data.icache.ways <<
161 current_cpu_data.icache.waybit;
162 unsigned long ws, addr;
164 CACHE32_UNROLL32_ALIGN2;
165 /* I'm in even chunk. blast odd chunks */
166 for (ws = 0; ws < ws_end; ws += ws_inc)
167 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
168 cache32_unroll32(addr|ws,Index_Invalidate_I);
169 CACHE32_UNROLL32_ALIGN;
170 /* I'm in odd chunk. blast even chunks */
171 for (ws = 0; ws < ws_end; ws += ws_inc)
172 for (addr = start; addr < end; addr += 0x400 * 2)
173 cache32_unroll32(addr|ws,Index_Invalidate_I);
176 static void (* r4k_blast_icache_page)(unsigned long addr);
178 static inline void r4k_blast_icache_page_setup(void)
180 unsigned long ic_lsize = cpu_icache_line_size();
183 r4k_blast_icache_page = blast_icache16_page;
184 else if (ic_lsize == 32)
185 r4k_blast_icache_page = blast_icache32_page;
186 else if (ic_lsize == 64)
187 r4k_blast_icache_page = blast_icache64_page;
191 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
193 static inline void r4k_blast_icache_page_indexed_setup(void)
195 unsigned long ic_lsize = cpu_icache_line_size();
198 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
199 else if (ic_lsize == 32) {
200 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
201 r4k_blast_icache_page_indexed =
202 blast_icache32_r4600_v1_page_indexed;
203 else if (TX49XX_ICACHE_INDEX_INV_WAR)
204 r4k_blast_icache_page_indexed =
205 tx49_blast_icache32_page_indexed;
207 r4k_blast_icache_page_indexed =
208 blast_icache32_page_indexed;
209 } else if (ic_lsize == 64)
210 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
213 static void (* r4k_blast_icache)(void);
215 static inline void r4k_blast_icache_setup(void)
217 unsigned long ic_lsize = cpu_icache_line_size();
220 r4k_blast_icache = blast_icache16;
221 else if (ic_lsize == 32) {
222 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
223 r4k_blast_icache = blast_r4600_v1_icache32;
224 else if (TX49XX_ICACHE_INDEX_INV_WAR)
225 r4k_blast_icache = tx49_blast_icache32;
227 r4k_blast_icache = blast_icache32;
228 } else if (ic_lsize == 64)
229 r4k_blast_icache = blast_icache64;
232 static void (* r4k_blast_scache_page)(unsigned long addr);
234 static inline void r4k_blast_scache_page_setup(void)
236 unsigned long sc_lsize = cpu_scache_line_size();
238 if (scache_size == 0)
239 r4k_blast_scache_page = (void *)no_sc_noop;
240 else if (sc_lsize == 16)
241 r4k_blast_scache_page = blast_scache16_page;
242 else if (sc_lsize == 32)
243 r4k_blast_scache_page = blast_scache32_page;
244 else if (sc_lsize == 64)
245 r4k_blast_scache_page = blast_scache64_page;
246 else if (sc_lsize == 128)
247 r4k_blast_scache_page = blast_scache128_page;
250 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
252 static inline void r4k_blast_scache_page_indexed_setup(void)
254 unsigned long sc_lsize = cpu_scache_line_size();
256 if (scache_size == 0)
257 r4k_blast_scache_page_indexed = (void *)no_sc_noop;
258 else if (sc_lsize == 16)
259 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
260 else if (sc_lsize == 32)
261 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
262 else if (sc_lsize == 64)
263 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
264 else if (sc_lsize == 128)
265 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
268 static void (* r4k_blast_scache)(void);
270 static inline void r4k_blast_scache_setup(void)
272 unsigned long sc_lsize = cpu_scache_line_size();
274 if (scache_size == 0)
275 r4k_blast_scache = (void *)no_sc_noop;
276 else if (sc_lsize == 16)
277 r4k_blast_scache = blast_scache16;
278 else if (sc_lsize == 32)
279 r4k_blast_scache = blast_scache32;
280 else if (sc_lsize == 64)
281 r4k_blast_scache = blast_scache64;
282 else if (sc_lsize == 128)
283 r4k_blast_scache = blast_scache128;
287 * This is former mm's flush_cache_all() which really should be
288 * flush_cache_vunmap these days ...
290 static inline void local_r4k_flush_cache_all(void * args)
296 static void r4k_flush_cache_all(void)
298 if (!cpu_has_dc_aliases)
301 on_each_cpu(local_r4k_flush_cache_all, NULL, 1, 1);
304 static inline void local_r4k___flush_cache_all(void * args)
309 switch (current_cpu_data.cputype) {
320 static void r4k___flush_cache_all(void)
322 on_each_cpu(local_r4k___flush_cache_all, NULL, 1, 1);
325 static inline void local_r4k_flush_cache_range(void * args)
327 struct vm_area_struct *vma = args;
330 if (!(cpu_context(smp_processor_id(), vma->vm_mm)))
333 exec = vma->vm_flags & VM_EXEC;
334 if (cpu_has_dc_aliases || exec)
340 static void r4k_flush_cache_range(struct vm_area_struct *vma,
341 unsigned long start, unsigned long end)
343 on_each_cpu(local_r4k_flush_cache_range, vma, 1, 1);
346 static inline void local_r4k_flush_cache_mm(void * args)
348 struct mm_struct *mm = args;
350 if (!cpu_context(smp_processor_id(), mm))
357 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
358 * only flush the primary caches but R10000 and R12000 behave sane ...
360 if (current_cpu_data.cputype == CPU_R4000SC ||
361 current_cpu_data.cputype == CPU_R4000MC ||
362 current_cpu_data.cputype == CPU_R4400SC ||
363 current_cpu_data.cputype == CPU_R4400MC)
367 static void r4k_flush_cache_mm(struct mm_struct *mm)
369 if (!cpu_has_dc_aliases)
372 on_each_cpu(local_r4k_flush_cache_mm, mm, 1, 1);
375 struct flush_cache_page_args {
376 struct vm_area_struct *vma;
380 static inline void local_r4k_flush_cache_page(void *args)
382 struct flush_cache_page_args *fcp_args = args;
383 struct vm_area_struct *vma = fcp_args->vma;
384 unsigned long addr = fcp_args->addr;
385 int exec = vma->vm_flags & VM_EXEC;
386 struct mm_struct *mm = vma->vm_mm;
393 * If ownes no valid ASID yet, cannot possibly have gotten
394 * this page into the cache.
396 if (cpu_context(smp_processor_id(), mm) == 0)
400 pgdp = pgd_offset(mm, addr);
401 pudp = pud_offset(pgdp, addr);
402 pmdp = pmd_offset(pudp, addr);
403 ptep = pte_offset(pmdp, addr);
406 * If the page isn't marked valid, the page cannot possibly be
409 if (!(pte_val(*ptep) & _PAGE_PRESENT))
413 * Doing flushes for another ASID than the current one is
414 * too difficult since stupid R4k caches do a TLB translation
415 * for every cache flush operation. So we do indexed flushes
416 * in that case, which doesn't overly flush the cache too much.
418 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) {
419 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
420 r4k_blast_dcache_page(addr);
421 if (exec && !cpu_icache_snoops_remote_store)
422 r4k_blast_scache_page(addr);
425 r4k_blast_icache_page(addr);
431 * Do indexed flush, too much work to get the (possible) TLB refills
434 addr = INDEX_BASE + (addr & (dcache_size - 1));
435 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
436 r4k_blast_dcache_page_indexed(addr);
437 if (exec && !cpu_icache_snoops_remote_store)
438 r4k_blast_scache_page_indexed(addr);
441 if (cpu_has_vtag_icache) {
442 int cpu = smp_processor_id();
444 if (cpu_context(cpu, mm) != 0)
445 drop_mmu_context(mm, cpu);
447 r4k_blast_icache_page_indexed(addr);
451 static void r4k_flush_cache_page(struct vm_area_struct *vma,
452 unsigned long addr, unsigned long pfn)
454 struct flush_cache_page_args args;
459 on_each_cpu(local_r4k_flush_cache_page, &args, 1, 1);
462 static inline void local_r4k_flush_data_cache_page(void * addr)
464 r4k_blast_dcache_page((unsigned long) addr);
467 static void r4k_flush_data_cache_page(unsigned long addr)
469 on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr, 1, 1);
472 struct flush_icache_range_args {
477 static inline void local_r4k_flush_icache_range(void *args)
479 struct flush_icache_range_args *fir_args = args;
480 unsigned long start = fir_args->start;
481 unsigned long end = fir_args->end;
483 if (!cpu_has_ic_fills_f_dc) {
484 if (end - start > dcache_size) {
487 R4600_HIT_CACHEOP_WAR_IMPL;
488 protected_blast_dcache_range(start, end);
491 if (!cpu_icache_snoops_remote_store && scache_size) {
492 if (end - start > scache_size)
495 protected_blast_scache_range(start, end);
499 if (end - start > icache_size)
502 protected_blast_icache_range(start, end);
505 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
507 struct flush_icache_range_args args;
512 on_each_cpu(local_r4k_flush_icache_range, &args, 1, 1);
513 instruction_hazard();
517 * Ok, this seriously sucks. We use them to flush a user page but don't
518 * know the virtual address, so we have to blast away the whole icache
519 * which is significantly more expensive than the real thing. Otoh we at
520 * least know the kernel address of the page so we can flush it
524 struct flush_icache_page_args {
525 struct vm_area_struct *vma;
529 static inline void local_r4k_flush_icache_page(void *args)
531 struct flush_icache_page_args *fip_args = args;
532 struct vm_area_struct *vma = fip_args->vma;
533 struct page *page = fip_args->page;
536 * Tricky ... Because we don't know the virtual address we've got the
537 * choice of either invalidating the entire primary and secondary
538 * caches or invalidating the secondary caches also. With the subset
539 * enforcment on R4000SC, R4400SC, R10000 and R12000 invalidating the
540 * secondary cache will result in any entries in the primary caches
541 * also getting invalidated which hopefully is a bit more economical.
543 if (cpu_has_subset_pcaches) {
544 unsigned long addr = (unsigned long) page_address(page);
546 r4k_blast_scache_page(addr);
547 ClearPageDcacheDirty(page);
552 if (!cpu_has_ic_fills_f_dc) {
553 unsigned long addr = (unsigned long) page_address(page);
554 r4k_blast_dcache_page(addr);
555 if (!cpu_icache_snoops_remote_store)
556 r4k_blast_scache_page(addr);
557 ClearPageDcacheDirty(page);
561 * We're not sure of the virtual address(es) involved here, so
562 * we have to flush the entire I-cache.
564 if (cpu_has_vtag_icache) {
565 int cpu = smp_processor_id();
567 if (cpu_context(cpu, vma->vm_mm) != 0)
568 drop_mmu_context(vma->vm_mm, cpu);
573 static void r4k_flush_icache_page(struct vm_area_struct *vma,
576 struct flush_icache_page_args args;
579 * If there's no context yet, or the page isn't executable, no I-cache
582 if (!(vma->vm_flags & VM_EXEC))
588 on_each_cpu(local_r4k_flush_icache_page, &args, 1, 1);
592 #ifdef CONFIG_DMA_NONCOHERENT
594 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
596 /* Catch bad driver code */
599 if (cpu_has_subset_pcaches) {
600 if (size >= scache_size)
603 blast_scache_range(addr, addr + size);
608 * Either no secondary cache or the available caches don't have the
609 * subset property so we have to flush the primary caches
612 if (size >= dcache_size) {
615 R4600_HIT_CACHEOP_WAR_IMPL;
616 blast_dcache_range(addr, addr + size);
619 bc_wback_inv(addr, size);
622 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
624 /* Catch bad driver code */
627 if (cpu_has_subset_pcaches) {
628 if (size >= scache_size)
631 blast_scache_range(addr, addr + size);
635 if (size >= dcache_size) {
638 R4600_HIT_CACHEOP_WAR_IMPL;
639 blast_dcache_range(addr, addr + size);
644 #endif /* CONFIG_DMA_NONCOHERENT */
647 * While we're protected against bad userland addresses we don't care
648 * very much about what happens in that case. Usually a segmentation
649 * fault will dump the process later on anyway ...
651 static void local_r4k_flush_cache_sigtramp(void * arg)
653 unsigned long ic_lsize = cpu_icache_line_size();
654 unsigned long dc_lsize = cpu_dcache_line_size();
655 unsigned long sc_lsize = cpu_scache_line_size();
656 unsigned long addr = (unsigned long) arg;
658 R4600_HIT_CACHEOP_WAR_IMPL;
659 protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
660 if (!cpu_icache_snoops_remote_store && scache_size)
661 protected_writeback_scache_line(addr & ~(sc_lsize - 1));
662 protected_flush_icache_line(addr & ~(ic_lsize - 1));
663 if (MIPS4K_ICACHE_REFILL_WAR) {
664 __asm__ __volatile__ (
679 : "i" (Hit_Invalidate_I));
681 if (MIPS_CACHE_SYNC_WAR)
682 __asm__ __volatile__ ("sync");
685 static void r4k_flush_cache_sigtramp(unsigned long addr)
687 on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr, 1, 1);
690 static void r4k_flush_icache_all(void)
692 if (cpu_has_vtag_icache)
696 static inline void rm7k_erratum31(void)
698 const unsigned long ic_lsize = 32;
701 /* RM7000 erratum #31. The icache is screwed at startup. */
705 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
706 __asm__ __volatile__ (
710 "cache\t%1, 0(%0)\n\t"
711 "cache\t%1, 0x1000(%0)\n\t"
712 "cache\t%1, 0x2000(%0)\n\t"
713 "cache\t%1, 0x3000(%0)\n\t"
714 "cache\t%2, 0(%0)\n\t"
715 "cache\t%2, 0x1000(%0)\n\t"
716 "cache\t%2, 0x2000(%0)\n\t"
717 "cache\t%2, 0x3000(%0)\n\t"
718 "cache\t%1, 0(%0)\n\t"
719 "cache\t%1, 0x1000(%0)\n\t"
720 "cache\t%1, 0x2000(%0)\n\t"
721 "cache\t%1, 0x3000(%0)\n\t"
724 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
728 static char *way_string[] __initdata = { NULL, "direct mapped", "2-way",
729 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
732 static void __init probe_pcache(void)
734 struct cpuinfo_mips *c = ¤t_cpu_data;
735 unsigned int config = read_c0_config();
736 unsigned int prid = read_c0_prid();
737 unsigned long config1;
740 switch (c->cputype) {
741 case CPU_R4600: /* QED style two way caches? */
745 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
746 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
748 c->icache.waybit = ffs(icache_size/2) - 1;
750 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
751 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
753 c->dcache.waybit= ffs(dcache_size/2) - 1;
755 c->options |= MIPS_CPU_CACHE_CDEX_P;
760 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
761 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
765 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
766 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
768 c->dcache.waybit = 0;
770 c->options |= MIPS_CPU_CACHE_CDEX_P;
774 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
775 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
779 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
780 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
782 c->dcache.waybit = 0;
784 c->options |= MIPS_CPU_CACHE_CDEX_P;
794 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
795 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
797 c->icache.waybit = 0; /* doesn't matter */
799 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
800 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
802 c->dcache.waybit = 0; /* does not matter */
804 c->options |= MIPS_CPU_CACHE_CDEX_P;
809 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
810 c->icache.linesz = 64;
812 c->icache.waybit = 0;
814 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
815 c->dcache.linesz = 32;
817 c->dcache.waybit = 0;
819 c->options |= MIPS_CPU_PREFETCH;
823 write_c0_config(config & ~CONF_EB);
825 /* Workaround for cache instruction bug of VR4131 */
826 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
827 c->processor_id == 0x0c82U) {
828 config &= ~0x00000030U;
829 config |= 0x00410000U;
830 write_c0_config(config);
832 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
833 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
835 c->icache.waybit = ffs(icache_size/2) - 1;
837 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
838 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
840 c->dcache.waybit = ffs(dcache_size/2) - 1;
842 c->options |= MIPS_CPU_CACHE_CDEX_P;
851 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
852 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
854 c->icache.waybit = 0; /* doesn't matter */
856 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
857 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
859 c->dcache.waybit = 0; /* does not matter */
861 c->options |= MIPS_CPU_CACHE_CDEX_P;
868 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
869 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
871 c->icache.waybit = ffs(icache_size / c->icache.ways) - 1;
873 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
874 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
876 c->dcache.waybit = ffs(dcache_size / c->dcache.ways) - 1;
878 #if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
879 c->options |= MIPS_CPU_CACHE_CDEX_P;
881 c->options |= MIPS_CPU_PREFETCH;
885 if (!(config & MIPS_CONF_M))
886 panic("Don't know how to probe P-caches on this cpu.");
889 * So we seem to be a MIPS32 or MIPS64 CPU
890 * So let's probe the I-cache ...
892 config1 = read_c0_config1();
894 if ((lsize = ((config1 >> 19) & 7)))
895 c->icache.linesz = 2 << lsize;
897 c->icache.linesz = lsize;
898 c->icache.sets = 64 << ((config1 >> 22) & 7);
899 c->icache.ways = 1 + ((config1 >> 16) & 7);
901 icache_size = c->icache.sets *
904 c->icache.waybit = ffs(icache_size/c->icache.ways) - 1;
906 if (config & 0x8) /* VI bit */
907 c->icache.flags |= MIPS_CACHE_VTAG;
910 * Now probe the MIPS32 / MIPS64 data cache.
914 if ((lsize = ((config1 >> 10) & 7)))
915 c->dcache.linesz = 2 << lsize;
917 c->dcache.linesz= lsize;
918 c->dcache.sets = 64 << ((config1 >> 13) & 7);
919 c->dcache.ways = 1 + ((config1 >> 7) & 7);
921 dcache_size = c->dcache.sets *
924 c->dcache.waybit = ffs(dcache_size/c->dcache.ways) - 1;
926 c->options |= MIPS_CPU_PREFETCH;
931 * Processor configuration sanity check for the R4000SC erratum
932 * #5. With page sizes larger than 32kB there is no possibility
933 * to get a VCE exception anymore so we don't care about this
934 * misconfiguration. The case is rather theoretical anyway;
935 * presumably no vendor is shipping his hardware in the "bad"
938 if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
939 !(config & CONF_SC) && c->icache.linesz != 16 &&
941 panic("Improper R4000SC processor configuration detected");
943 /* compute a couple of other cache variables */
944 c->icache.waysize = icache_size / c->icache.ways;
945 c->dcache.waysize = dcache_size / c->dcache.ways;
947 c->icache.sets = icache_size / (c->icache.linesz * c->icache.ways);
948 c->dcache.sets = dcache_size / (c->dcache.linesz * c->dcache.ways);
951 * R10000 and R12000 P-caches are odd in a positive way. They're 32kB
952 * 2-way virtually indexed so normally would suffer from aliases. So
953 * normally they'd suffer from aliases but magic in the hardware deals
954 * with that for us so we don't need to take care ourselves.
956 switch (c->cputype) {
964 if (!(read_c0_config7() & (1 << 16)))
966 if (c->dcache.waysize > PAGE_SIZE)
967 c->dcache.flags |= MIPS_CACHE_ALIASES;
970 switch (c->cputype) {
973 * Some older 20Kc chips doesn't have the 'VI' bit in
974 * the config register.
976 c->icache.flags |= MIPS_CACHE_VTAG;
984 c->icache.flags |= MIPS_CACHE_IC_F_DC;
988 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
990 cpu_has_vtag_icache ? "virtually tagged" : "physically tagged",
991 way_string[c->icache.ways], c->icache.linesz);
993 printk("Primary data cache %ldkB, %s, linesize %d bytes.\n",
994 dcache_size >> 10, way_string[c->dcache.ways], c->dcache.linesz);
998 * If you even _breathe_ on this function, look at the gcc output and make sure
999 * it does not pop things on and off the stack for the cache sizing loop that
1000 * executes in KSEG1 space or else you will crash and burn badly. You have
1003 static int __init probe_scache(void)
1005 extern unsigned long stext;
1006 unsigned long flags, addr, begin, end, pow2;
1007 unsigned int config = read_c0_config();
1008 struct cpuinfo_mips *c = ¤t_cpu_data;
1011 if (config & CONF_SC)
1014 begin = (unsigned long) &stext;
1015 begin &= ~((4 * 1024 * 1024) - 1);
1016 end = begin + (4 * 1024 * 1024);
1019 * This is such a bitch, you'd think they would make it easy to do
1020 * this. Away you daemons of stupidity!
1022 local_irq_save(flags);
1024 /* Fill each size-multiple cache line with a valid tag. */
1026 for (addr = begin; addr < end; addr = (begin + pow2)) {
1027 unsigned long *p = (unsigned long *) addr;
1028 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1032 /* Load first line with zero (therefore invalid) tag. */
1035 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1036 cache_op(Index_Store_Tag_I, begin);
1037 cache_op(Index_Store_Tag_D, begin);
1038 cache_op(Index_Store_Tag_SD, begin);
1040 /* Now search for the wrap around point. */
1041 pow2 = (128 * 1024);
1043 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1044 cache_op(Index_Load_Tag_SD, addr);
1045 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1046 if (!read_c0_taglo())
1050 local_irq_restore(flags);
1054 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1056 c->dcache.waybit = 0; /* does not matter */
1061 extern int r5k_sc_init(void);
1062 extern int rm7k_sc_init(void);
1064 static void __init setup_scache(void)
1066 struct cpuinfo_mips *c = ¤t_cpu_data;
1067 unsigned int config = read_c0_config();
1071 * Do the probing thing on R4000SC and R4400SC processors. Other
1072 * processors don't have a S-cache that would be relevant to the
1073 * Linux memory managment.
1075 switch (c->cputype) {
1080 sc_present = run_uncached(probe_scache);
1082 c->options |= MIPS_CPU_CACHE_CDEX_S;
1087 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1088 c->scache.linesz = 64 << ((config >> 13) & 1);
1090 c->scache.waybit= 0;
1096 #ifdef CONFIG_R5000_CPU_SCACHE
1103 #ifdef CONFIG_RM7000_CPU_SCACHE
1115 if ((c->isa_level == MIPS_CPU_ISA_M32R1 ||
1116 c->isa_level == MIPS_CPU_ISA_M64R1) &&
1117 !(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1118 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1120 /* compute a couple of other cache variables */
1121 c->scache.waysize = scache_size / c->scache.ways;
1123 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1125 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1126 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1128 c->options |= MIPS_CPU_SUBSET_CACHES;
1131 static inline void coherency_setup(void)
1133 change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
1136 * c0_status.cu=0 specifies that updates by the sc instruction use
1137 * the coherency mode specified by the TLB; 1 means cachable
1138 * coherent update on write will be used. Not all processors have
1139 * this bit and; some wire it to zero, others like Toshiba had the
1140 * silly idea of putting something else there ...
1142 switch (current_cpu_data.cputype) {
1149 clear_c0_config(CONF_CU);
1154 void __init r4k_cache_init(void)
1156 extern void build_clear_page(void);
1157 extern void build_copy_page(void);
1158 extern char except_vec2_generic;
1159 struct cpuinfo_mips *c = ¤t_cpu_data;
1161 /* Default cache error handler for R4000 and R5000 family */
1162 set_uncached_handler (0x100, &except_vec2_generic, 0x80);
1167 r4k_blast_dcache_page_setup();
1168 r4k_blast_dcache_page_indexed_setup();
1169 r4k_blast_dcache_setup();
1170 r4k_blast_icache_page_setup();
1171 r4k_blast_icache_page_indexed_setup();
1172 r4k_blast_icache_setup();
1173 r4k_blast_scache_page_setup();
1174 r4k_blast_scache_page_indexed_setup();
1175 r4k_blast_scache_setup();
1178 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1179 * This code supports virtually indexed processors and will be
1180 * unnecessarily inefficient on physically indexed processors.
1182 shm_align_mask = max_t( unsigned long,
1183 c->dcache.sets * c->dcache.linesz - 1,
1186 flush_cache_all = r4k_flush_cache_all;
1187 __flush_cache_all = r4k___flush_cache_all;
1188 flush_cache_mm = r4k_flush_cache_mm;
1189 flush_cache_page = r4k_flush_cache_page;
1190 flush_icache_page = r4k_flush_icache_page;
1191 flush_cache_range = r4k_flush_cache_range;
1193 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1194 flush_icache_all = r4k_flush_icache_all;
1195 flush_data_cache_page = r4k_flush_data_cache_page;
1196 flush_icache_range = r4k_flush_icache_range;
1198 #ifdef CONFIG_DMA_NONCOHERENT
1199 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1200 _dma_cache_wback = r4k_dma_cache_wback_inv;
1201 _dma_cache_inv = r4k_dma_cache_inv;
1206 local_r4k___flush_cache_all(NULL);