Merge master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/timer.h>
41
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_dbg.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47
48 #include "fw-transaction.h"
49 #include "fw-topology.h"
50 #include "fw-device.h"
51
52 /*
53  * So far only bridges from Oxford Semiconductor are known to support
54  * concurrent logins. Depending on firmware, four or two concurrent logins
55  * are possible on OXFW911 and newer Oxsemi bridges.
56  *
57  * Concurrent logins are useful together with cluster filesystems.
58  */
59 static int sbp2_param_exclusive_login = 1;
60 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
61 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
62                  "(default = Y, use N for concurrent initiators)");
63
64 /* I don't know why the SCSI stack doesn't define something like this... */
65 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
66
67 static const char sbp2_driver_name[] = "sbp2";
68
69 struct sbp2_device {
70         struct kref kref;
71         struct fw_unit *unit;
72         struct fw_address_handler address_handler;
73         struct list_head orb_list;
74         u64 management_agent_address;
75         u64 command_block_agent_address;
76         u32 workarounds;
77         int login_id;
78
79         /*
80          * We cache these addresses and only update them once we've
81          * logged in or reconnected to the sbp2 device.  That way, any
82          * IO to the device will automatically fail and get retried if
83          * it happens in a window where the device is not ready to
84          * handle it (e.g. after a bus reset but before we reconnect).
85          */
86         int node_id;
87         int address_high;
88         int generation;
89
90         int retries;
91         struct delayed_work work;
92 };
93
94 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
95 #define SBP2_MAX_SECTORS                255     /* Max sectors supported */
96 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
97
98 #define SBP2_ORB_NULL                   0x80000000
99
100 #define SBP2_DIRECTION_TO_MEDIA         0x0
101 #define SBP2_DIRECTION_FROM_MEDIA       0x1
102
103 /* Unit directory keys */
104 #define SBP2_COMMAND_SET_SPECIFIER      0x38
105 #define SBP2_COMMAND_SET                0x39
106 #define SBP2_COMMAND_SET_REVISION       0x3b
107 #define SBP2_FIRMWARE_REVISION          0x3c
108
109 /* Flags for detected oddities and brokeness */
110 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
111 #define SBP2_WORKAROUND_INQUIRY_36      0x2
112 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
113 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
114 #define SBP2_WORKAROUND_OVERRIDE        0x100
115
116 /* Management orb opcodes */
117 #define SBP2_LOGIN_REQUEST              0x0
118 #define SBP2_QUERY_LOGINS_REQUEST       0x1
119 #define SBP2_RECONNECT_REQUEST          0x3
120 #define SBP2_SET_PASSWORD_REQUEST       0x4
121 #define SBP2_LOGOUT_REQUEST             0x7
122 #define SBP2_ABORT_TASK_REQUEST         0xb
123 #define SBP2_ABORT_TASK_SET             0xc
124 #define SBP2_LOGICAL_UNIT_RESET         0xe
125 #define SBP2_TARGET_RESET_REQUEST       0xf
126
127 /* Offsets for command block agent registers */
128 #define SBP2_AGENT_STATE                0x00
129 #define SBP2_AGENT_RESET                0x04
130 #define SBP2_ORB_POINTER                0x08
131 #define SBP2_DOORBELL                   0x10
132 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
133
134 /* Status write response codes */
135 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
136 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
137 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
138 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
139
140 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
141 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
142 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
143 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
144 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
145 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
146 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
147 #define STATUS_GET_DATA(v)              ((v).data)
148
149 struct sbp2_status {
150         u32 status;
151         u32 orb_low;
152         u8 data[24];
153 };
154
155 struct sbp2_pointer {
156         u32 high;
157         u32 low;
158 };
159
160 struct sbp2_orb {
161         struct fw_transaction t;
162         struct kref kref;
163         dma_addr_t request_bus;
164         int rcode;
165         struct sbp2_pointer pointer;
166         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
167         struct list_head link;
168 };
169
170 #define MANAGEMENT_ORB_LUN(v)                   ((v))
171 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
172 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
173 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
174 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
175 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
176
177 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
178 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
179
180 struct sbp2_management_orb {
181         struct sbp2_orb base;
182         struct {
183                 struct sbp2_pointer password;
184                 struct sbp2_pointer response;
185                 u32 misc;
186                 u32 length;
187                 struct sbp2_pointer status_fifo;
188         } request;
189         __be32 response[4];
190         dma_addr_t response_bus;
191         struct completion done;
192         struct sbp2_status status;
193 };
194
195 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
196 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
197
198 struct sbp2_login_response {
199         u32 misc;
200         struct sbp2_pointer command_block_agent;
201         u32 reconnect_hold;
202 };
203 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
204 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
205 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
206 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
207 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
208 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
209 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
210 #define COMMAND_ORB_NOTIFY              ((1) << 31)
211
212 struct sbp2_command_orb {
213         struct sbp2_orb base;
214         struct {
215                 struct sbp2_pointer next;
216                 struct sbp2_pointer data_descriptor;
217                 u32 misc;
218                 u8 command_block[12];
219         } request;
220         struct scsi_cmnd *cmd;
221         scsi_done_fn_t done;
222         struct fw_unit *unit;
223
224         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
225         dma_addr_t page_table_bus;
226 };
227
228 /*
229  * List of devices with known bugs.
230  *
231  * The firmware_revision field, masked with 0xffff00, is the best
232  * indicator for the type of bridge chip of a device.  It yields a few
233  * false positives but this did not break correctly behaving devices
234  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
235  * from the config rom can never match that.
236  */
237 static const struct {
238         u32 firmware_revision;
239         u32 model;
240         unsigned workarounds;
241 } sbp2_workarounds_table[] = {
242         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
243                 .firmware_revision      = 0x002800,
244                 .model                  = 0x001010,
245                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
246                                           SBP2_WORKAROUND_MODE_SENSE_8,
247         },
248         /* Initio bridges, actually only needed for some older ones */ {
249                 .firmware_revision      = 0x000200,
250                 .model                  = ~0,
251                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
252         },
253         /* Symbios bridge */ {
254                 .firmware_revision      = 0xa0b800,
255                 .model                  = ~0,
256                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
257         },
258
259         /*
260          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
261          * these iPods do not feature the read_capacity bug according
262          * to one report.  Read_capacity behaviour as well as model_id
263          * could change due to Apple-supplied firmware updates though.
264          */
265
266         /* iPod 4th generation. */ {
267                 .firmware_revision      = 0x0a2700,
268                 .model                  = 0x000021,
269                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
270         },
271         /* iPod mini */ {
272                 .firmware_revision      = 0x0a2700,
273                 .model                  = 0x000023,
274                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
275         },
276         /* iPod Photo */ {
277                 .firmware_revision      = 0x0a2700,
278                 .model                  = 0x00007e,
279                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
280         }
281 };
282
283 static void
284 free_orb(struct kref *kref)
285 {
286         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
287
288         kfree(orb);
289 }
290
291 static void
292 sbp2_status_write(struct fw_card *card, struct fw_request *request,
293                   int tcode, int destination, int source,
294                   int generation, int speed,
295                   unsigned long long offset,
296                   void *payload, size_t length, void *callback_data)
297 {
298         struct sbp2_device *sd = callback_data;
299         struct sbp2_orb *orb;
300         struct sbp2_status status;
301         size_t header_size;
302         unsigned long flags;
303
304         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
305             length == 0 || length > sizeof(status)) {
306                 fw_send_response(card, request, RCODE_TYPE_ERROR);
307                 return;
308         }
309
310         header_size = min(length, 2 * sizeof(u32));
311         fw_memcpy_from_be32(&status, payload, header_size);
312         if (length > header_size)
313                 memcpy(status.data, payload + 8, length - header_size);
314         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
315                 fw_notify("non-orb related status write, not handled\n");
316                 fw_send_response(card, request, RCODE_COMPLETE);
317                 return;
318         }
319
320         /* Lookup the orb corresponding to this status write. */
321         spin_lock_irqsave(&card->lock, flags);
322         list_for_each_entry(orb, &sd->orb_list, link) {
323                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
324                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
325                         orb->rcode = RCODE_COMPLETE;
326                         list_del(&orb->link);
327                         break;
328                 }
329         }
330         spin_unlock_irqrestore(&card->lock, flags);
331
332         if (&orb->link != &sd->orb_list)
333                 orb->callback(orb, &status);
334         else
335                 fw_error("status write for unknown orb\n");
336
337         kref_put(&orb->kref, free_orb);
338
339         fw_send_response(card, request, RCODE_COMPLETE);
340 }
341
342 static void
343 complete_transaction(struct fw_card *card, int rcode,
344                      void *payload, size_t length, void *data)
345 {
346         struct sbp2_orb *orb = data;
347         unsigned long flags;
348
349         /*
350          * This is a little tricky.  We can get the status write for
351          * the orb before we get this callback.  The status write
352          * handler above will assume the orb pointer transaction was
353          * successful and set the rcode to RCODE_COMPLETE for the orb.
354          * So this callback only sets the rcode if it hasn't already
355          * been set and only does the cleanup if the transaction
356          * failed and we didn't already get a status write.
357          */
358         spin_lock_irqsave(&card->lock, flags);
359
360         if (orb->rcode == -1)
361                 orb->rcode = rcode;
362         if (orb->rcode != RCODE_COMPLETE) {
363                 list_del(&orb->link);
364                 orb->callback(orb, NULL);
365         }
366
367         spin_unlock_irqrestore(&card->lock, flags);
368
369         kref_put(&orb->kref, free_orb);
370 }
371
372 static void
373 sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
374               int node_id, int generation, u64 offset)
375 {
376         struct fw_device *device = fw_device(unit->device.parent);
377         struct sbp2_device *sd = unit->device.driver_data;
378         unsigned long flags;
379
380         orb->pointer.high = 0;
381         orb->pointer.low = orb->request_bus;
382         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
383
384         spin_lock_irqsave(&device->card->lock, flags);
385         list_add_tail(&orb->link, &sd->orb_list);
386         spin_unlock_irqrestore(&device->card->lock, flags);
387
388         /* Take a ref for the orb list and for the transaction callback. */
389         kref_get(&orb->kref);
390         kref_get(&orb->kref);
391
392         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
393                         node_id, generation, device->max_speed, offset,
394                         &orb->pointer, sizeof(orb->pointer),
395                         complete_transaction, orb);
396 }
397
398 static int sbp2_cancel_orbs(struct fw_unit *unit)
399 {
400         struct fw_device *device = fw_device(unit->device.parent);
401         struct sbp2_device *sd = unit->device.driver_data;
402         struct sbp2_orb *orb, *next;
403         struct list_head list;
404         unsigned long flags;
405         int retval = -ENOENT;
406
407         INIT_LIST_HEAD(&list);
408         spin_lock_irqsave(&device->card->lock, flags);
409         list_splice_init(&sd->orb_list, &list);
410         spin_unlock_irqrestore(&device->card->lock, flags);
411
412         list_for_each_entry_safe(orb, next, &list, link) {
413                 retval = 0;
414                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
415                         continue;
416
417                 orb->rcode = RCODE_CANCELLED;
418                 orb->callback(orb, NULL);
419         }
420
421         return retval;
422 }
423
424 static void
425 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
426 {
427         struct sbp2_management_orb *orb =
428                 container_of(base_orb, struct sbp2_management_orb, base);
429
430         if (status)
431                 memcpy(&orb->status, status, sizeof(*status));
432         complete(&orb->done);
433 }
434
435 static int
436 sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
437                          int function, int lun, void *response)
438 {
439         struct fw_device *device = fw_device(unit->device.parent);
440         struct sbp2_device *sd = unit->device.driver_data;
441         struct sbp2_management_orb *orb;
442         int retval = -ENOMEM;
443
444         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
445         if (orb == NULL)
446                 return -ENOMEM;
447
448         kref_init(&orb->base.kref);
449         orb->response_bus =
450                 dma_map_single(device->card->device, &orb->response,
451                                sizeof(orb->response), DMA_FROM_DEVICE);
452         if (dma_mapping_error(orb->response_bus))
453                 goto fail_mapping_response;
454
455         orb->request.response.high    = 0;
456         orb->request.response.low     = orb->response_bus;
457
458         orb->request.misc =
459                 MANAGEMENT_ORB_NOTIFY |
460                 MANAGEMENT_ORB_FUNCTION(function) |
461                 MANAGEMENT_ORB_LUN(lun);
462         orb->request.length =
463                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
464
465         orb->request.status_fifo.high = sd->address_handler.offset >> 32;
466         orb->request.status_fifo.low  = sd->address_handler.offset;
467
468         if (function == SBP2_LOGIN_REQUEST) {
469                 orb->request.misc |=
470                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
471                         MANAGEMENT_ORB_RECONNECT(0);
472         }
473
474         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
475
476         init_completion(&orb->done);
477         orb->base.callback = complete_management_orb;
478
479         orb->base.request_bus =
480                 dma_map_single(device->card->device, &orb->request,
481                                sizeof(orb->request), DMA_TO_DEVICE);
482         if (dma_mapping_error(orb->base.request_bus))
483                 goto fail_mapping_request;
484
485         sbp2_send_orb(&orb->base, unit,
486                       node_id, generation, sd->management_agent_address);
487
488         wait_for_completion_timeout(&orb->done,
489                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
490
491         retval = -EIO;
492         if (sbp2_cancel_orbs(unit) == 0) {
493                 fw_error("orb reply timed out, rcode=0x%02x\n",
494                          orb->base.rcode);
495                 goto out;
496         }
497
498         if (orb->base.rcode != RCODE_COMPLETE) {
499                 fw_error("management write failed, rcode 0x%02x\n",
500                          orb->base.rcode);
501                 goto out;
502         }
503
504         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
505             STATUS_GET_SBP_STATUS(orb->status) != 0) {
506                 fw_error("error status: %d:%d\n",
507                          STATUS_GET_RESPONSE(orb->status),
508                          STATUS_GET_SBP_STATUS(orb->status));
509                 goto out;
510         }
511
512         retval = 0;
513  out:
514         dma_unmap_single(device->card->device, orb->base.request_bus,
515                          sizeof(orb->request), DMA_TO_DEVICE);
516  fail_mapping_request:
517         dma_unmap_single(device->card->device, orb->response_bus,
518                          sizeof(orb->response), DMA_FROM_DEVICE);
519  fail_mapping_response:
520         if (response)
521                 fw_memcpy_from_be32(response,
522                                     orb->response, sizeof(orb->response));
523         kref_put(&orb->base.kref, free_orb);
524
525         return retval;
526 }
527
528 static void
529 complete_agent_reset_write(struct fw_card *card, int rcode,
530                            void *payload, size_t length, void *data)
531 {
532         struct fw_transaction *t = data;
533
534         kfree(t);
535 }
536
537 static int sbp2_agent_reset(struct fw_unit *unit)
538 {
539         struct fw_device *device = fw_device(unit->device.parent);
540         struct sbp2_device *sd = unit->device.driver_data;
541         struct fw_transaction *t;
542         static u32 zero;
543
544         t = kzalloc(sizeof(*t), GFP_ATOMIC);
545         if (t == NULL)
546                 return -ENOMEM;
547
548         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
549                         sd->node_id, sd->generation, device->max_speed,
550                         sd->command_block_agent_address + SBP2_AGENT_RESET,
551                         &zero, sizeof(zero), complete_agent_reset_write, t);
552
553         return 0;
554 }
555
556 static void sbp2_reconnect(struct work_struct *work);
557 static struct scsi_host_template scsi_driver_template;
558
559 static void release_sbp2_device(struct kref *kref)
560 {
561         struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
562         struct Scsi_Host *host =
563                 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
564
565         scsi_remove_host(host);
566         sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
567                                  SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
568         fw_core_remove_address_handler(&sd->address_handler);
569         fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
570         put_device(&sd->unit->device);
571         scsi_host_put(host);
572 }
573
574 static void sbp2_login(struct work_struct *work)
575 {
576         struct sbp2_device *sd =
577                 container_of(work, struct sbp2_device, work.work);
578         struct Scsi_Host *host =
579                 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
580         struct fw_unit *unit = sd->unit;
581         struct fw_device *device = fw_device(unit->device.parent);
582         struct sbp2_login_response response;
583         int generation, node_id, local_node_id, lun, retval;
584
585         /* FIXME: Make this work for multi-lun devices. */
586         lun = 0;
587
588         generation    = device->card->generation;
589         node_id       = device->node->node_id;
590         local_node_id = device->card->local_node->node_id;
591
592         if (sbp2_send_management_orb(unit, node_id, generation,
593                                      SBP2_LOGIN_REQUEST, lun, &response) < 0) {
594                 if (sd->retries++ < 5) {
595                         schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
596                 } else {
597                         fw_error("failed to login to %s\n",
598                                  unit->device.bus_id);
599                         kref_put(&sd->kref, release_sbp2_device);
600                 }
601                 return;
602         }
603
604         sd->generation   = generation;
605         sd->node_id      = node_id;
606         sd->address_high = local_node_id << 16;
607
608         /* Get command block agent offset and login id. */
609         sd->command_block_agent_address =
610                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
611                 response.command_block_agent.low;
612         sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
613
614         fw_notify("logged in to sbp2 unit %s (%d retries)\n",
615                   unit->device.bus_id, sd->retries);
616         fw_notify(" - management_agent_address:    0x%012llx\n",
617                   (unsigned long long) sd->management_agent_address);
618         fw_notify(" - command_block_agent_address: 0x%012llx\n",
619                   (unsigned long long) sd->command_block_agent_address);
620         fw_notify(" - status write address:        0x%012llx\n",
621                   (unsigned long long) sd->address_handler.offset);
622
623 #if 0
624         /* FIXME: The linux1394 sbp2 does this last step. */
625         sbp2_set_busy_timeout(scsi_id);
626 #endif
627
628         PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
629         sbp2_agent_reset(unit);
630
631         /* FIXME: Loop over luns here. */
632         lun = 0;
633         retval = scsi_add_device(host, 0, 0, lun);
634         if (retval < 0) {
635                 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
636                                          SBP2_LOGOUT_REQUEST, sd->login_id,
637                                          NULL);
638                 /*
639                  * Set this back to sbp2_login so we fall back and
640                  * retry login on bus reset.
641                  */
642                 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
643         }
644         kref_put(&sd->kref, release_sbp2_device);
645 }
646
647 static int sbp2_probe(struct device *dev)
648 {
649         struct fw_unit *unit = fw_unit(dev);
650         struct fw_device *device = fw_device(unit->device.parent);
651         struct sbp2_device *sd;
652         struct fw_csr_iterator ci;
653         struct Scsi_Host *host;
654         int i, key, value, err;
655         u32 model, firmware_revision;
656
657         err = -ENOMEM;
658         host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
659         if (host == NULL)
660                 goto fail;
661
662         sd = (struct sbp2_device *) host->hostdata;
663         unit->device.driver_data = sd;
664         sd->unit = unit;
665         INIT_LIST_HEAD(&sd->orb_list);
666         kref_init(&sd->kref);
667
668         sd->address_handler.length = 0x100;
669         sd->address_handler.address_callback = sbp2_status_write;
670         sd->address_handler.callback_data = sd;
671
672         err = fw_core_add_address_handler(&sd->address_handler,
673                                           &fw_high_memory_region);
674         if (err < 0)
675                 goto fail_host;
676
677         err = fw_device_enable_phys_dma(device);
678         if (err < 0)
679                 goto fail_address_handler;
680
681         err = scsi_add_host(host, &unit->device);
682         if (err < 0)
683                 goto fail_address_handler;
684
685         /*
686          * Scan unit directory to get management agent address,
687          * firmware revison and model.  Initialize firmware_revision
688          * and model to values that wont match anything in our table.
689          */
690         firmware_revision = 0xff000000;
691         model = 0xff000000;
692         fw_csr_iterator_init(&ci, unit->directory);
693         while (fw_csr_iterator_next(&ci, &key, &value)) {
694                 switch (key) {
695                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
696                         sd->management_agent_address =
697                                 0xfffff0000000ULL + 4 * value;
698                         break;
699                 case SBP2_FIRMWARE_REVISION:
700                         firmware_revision = value;
701                         break;
702                 case CSR_MODEL:
703                         model = value;
704                         break;
705                 }
706         }
707
708         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
709                 if (sbp2_workarounds_table[i].firmware_revision !=
710                     (firmware_revision & 0xffffff00))
711                         continue;
712                 if (sbp2_workarounds_table[i].model != model &&
713                     sbp2_workarounds_table[i].model != ~0)
714                         continue;
715                 sd->workarounds |= sbp2_workarounds_table[i].workarounds;
716                 break;
717         }
718
719         if (sd->workarounds)
720                 fw_notify("Workarounds for node %s: 0x%x "
721                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
722                           unit->device.bus_id,
723                           sd->workarounds, firmware_revision, model);
724
725         get_device(&unit->device);
726
727         /*
728          * We schedule work to do the login so we can easily
729          * reschedule retries. Always get the ref before scheduling
730          * work.
731          */
732         INIT_DELAYED_WORK(&sd->work, sbp2_login);
733         if (schedule_delayed_work(&sd->work, 0))
734                 kref_get(&sd->kref);
735
736         return 0;
737
738  fail_address_handler:
739         fw_core_remove_address_handler(&sd->address_handler);
740  fail_host:
741         scsi_host_put(host);
742  fail:
743         return err;
744 }
745
746 static int sbp2_remove(struct device *dev)
747 {
748         struct fw_unit *unit = fw_unit(dev);
749         struct sbp2_device *sd = unit->device.driver_data;
750
751         kref_put(&sd->kref, release_sbp2_device);
752
753         return 0;
754 }
755
756 static void sbp2_reconnect(struct work_struct *work)
757 {
758         struct sbp2_device *sd =
759                 container_of(work, struct sbp2_device, work.work);
760         struct fw_unit *unit = sd->unit;
761         struct fw_device *device = fw_device(unit->device.parent);
762         int generation, node_id, local_node_id;
763
764         generation    = device->card->generation;
765         node_id       = device->node->node_id;
766         local_node_id = device->card->local_node->node_id;
767
768         if (sbp2_send_management_orb(unit, node_id, generation,
769                                      SBP2_RECONNECT_REQUEST,
770                                      sd->login_id, NULL) < 0) {
771                 if (sd->retries++ >= 5) {
772                         fw_error("failed to reconnect to %s\n",
773                                  unit->device.bus_id);
774                         /* Fall back and try to log in again. */
775                         sd->retries = 0;
776                         PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
777                 }
778                 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
779                 return;
780         }
781
782         sd->generation   = generation;
783         sd->node_id      = node_id;
784         sd->address_high = local_node_id << 16;
785
786         fw_notify("reconnected to unit %s (%d retries)\n",
787                   unit->device.bus_id, sd->retries);
788         sbp2_agent_reset(unit);
789         sbp2_cancel_orbs(unit);
790         kref_put(&sd->kref, release_sbp2_device);
791 }
792
793 static void sbp2_update(struct fw_unit *unit)
794 {
795         struct fw_device *device = fw_device(unit->device.parent);
796         struct sbp2_device *sd = unit->device.driver_data;
797
798         sd->retries = 0;
799         fw_device_enable_phys_dma(device);
800         if (schedule_delayed_work(&sd->work, 0))
801                 kref_get(&sd->kref);
802 }
803
804 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
805 #define SBP2_SW_VERSION_ENTRY   0x00010483
806
807 static const struct fw_device_id sbp2_id_table[] = {
808         {
809                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
810                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
811                 .version      = SBP2_SW_VERSION_ENTRY,
812         },
813         { }
814 };
815
816 static struct fw_driver sbp2_driver = {
817         .driver   = {
818                 .owner  = THIS_MODULE,
819                 .name   = sbp2_driver_name,
820                 .bus    = &fw_bus_type,
821                 .probe  = sbp2_probe,
822                 .remove = sbp2_remove,
823         },
824         .update   = sbp2_update,
825         .id_table = sbp2_id_table,
826 };
827
828 static unsigned int
829 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
830 {
831         int sam_status;
832
833         sense_data[0] = 0x70;
834         sense_data[1] = 0x0;
835         sense_data[2] = sbp2_status[1];
836         sense_data[3] = sbp2_status[4];
837         sense_data[4] = sbp2_status[5];
838         sense_data[5] = sbp2_status[6];
839         sense_data[6] = sbp2_status[7];
840         sense_data[7] = 10;
841         sense_data[8] = sbp2_status[8];
842         sense_data[9] = sbp2_status[9];
843         sense_data[10] = sbp2_status[10];
844         sense_data[11] = sbp2_status[11];
845         sense_data[12] = sbp2_status[2];
846         sense_data[13] = sbp2_status[3];
847         sense_data[14] = sbp2_status[12];
848         sense_data[15] = sbp2_status[13];
849
850         sam_status = sbp2_status[0] & 0x3f;
851
852         switch (sam_status) {
853         case SAM_STAT_GOOD:
854         case SAM_STAT_CHECK_CONDITION:
855         case SAM_STAT_CONDITION_MET:
856         case SAM_STAT_BUSY:
857         case SAM_STAT_RESERVATION_CONFLICT:
858         case SAM_STAT_COMMAND_TERMINATED:
859                 return DID_OK << 16 | sam_status;
860
861         default:
862                 return DID_ERROR << 16;
863         }
864 }
865
866 static void
867 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
868 {
869         struct sbp2_command_orb *orb =
870                 container_of(base_orb, struct sbp2_command_orb, base);
871         struct fw_unit *unit = orb->unit;
872         struct fw_device *device = fw_device(unit->device.parent);
873         int result;
874
875         if (status != NULL) {
876                 if (STATUS_GET_DEAD(*status))
877                         sbp2_agent_reset(unit);
878
879                 switch (STATUS_GET_RESPONSE(*status)) {
880                 case SBP2_STATUS_REQUEST_COMPLETE:
881                         result = DID_OK << 16;
882                         break;
883                 case SBP2_STATUS_TRANSPORT_FAILURE:
884                         result = DID_BUS_BUSY << 16;
885                         break;
886                 case SBP2_STATUS_ILLEGAL_REQUEST:
887                 case SBP2_STATUS_VENDOR_DEPENDENT:
888                 default:
889                         result = DID_ERROR << 16;
890                         break;
891                 }
892
893                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
894                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
895                                                            orb->cmd->sense_buffer);
896         } else {
897                 /*
898                  * If the orb completes with status == NULL, something
899                  * went wrong, typically a bus reset happened mid-orb
900                  * or when sending the write (less likely).
901                  */
902                 result = DID_BUS_BUSY << 16;
903         }
904
905         dma_unmap_single(device->card->device, orb->base.request_bus,
906                          sizeof(orb->request), DMA_TO_DEVICE);
907
908         if (scsi_sg_count(orb->cmd) > 0)
909                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
910                              scsi_sg_count(orb->cmd),
911                              orb->cmd->sc_data_direction);
912
913         if (orb->page_table_bus != 0)
914                 dma_unmap_single(device->card->device, orb->page_table_bus,
915                                  sizeof(orb->page_table), DMA_TO_DEVICE);
916
917         orb->cmd->result = result;
918         orb->done(orb->cmd);
919 }
920
921 static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
922 {
923         struct sbp2_device *sd =
924                 (struct sbp2_device *)orb->cmd->device->host->hostdata;
925         struct fw_unit *unit = sd->unit;
926         struct fw_device *device = fw_device(unit->device.parent);
927         struct scatterlist *sg;
928         int sg_len, l, i, j, count;
929         dma_addr_t sg_addr;
930
931         sg = scsi_sglist(orb->cmd);
932         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
933                            orb->cmd->sc_data_direction);
934         if (count == 0)
935                 goto fail;
936
937         /*
938          * Handle the special case where there is only one element in
939          * the scatter list by converting it to an immediate block
940          * request. This is also a workaround for broken devices such
941          * as the second generation iPod which doesn't support page
942          * tables.
943          */
944         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
945                 orb->request.data_descriptor.high = sd->address_high;
946                 orb->request.data_descriptor.low  = sg_dma_address(sg);
947                 orb->request.misc |=
948                         COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
949                 return 0;
950         }
951
952         /*
953          * Convert the scatterlist to an sbp2 page table.  If any
954          * scatterlist entries are too big for sbp2, we split them as we
955          * go.  Even if we ask the block I/O layer to not give us sg
956          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
957          * during DMA mapping, and Linux currently doesn't prevent this.
958          */
959         for (i = 0, j = 0; i < count; i++) {
960                 sg_len = sg_dma_len(sg + i);
961                 sg_addr = sg_dma_address(sg + i);
962                 while (sg_len) {
963                         /* FIXME: This won't get us out of the pinch. */
964                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
965                                 fw_error("page table overflow\n");
966                                 goto fail_page_table;
967                         }
968                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
969                         orb->page_table[j].low = sg_addr;
970                         orb->page_table[j].high = (l << 16);
971                         sg_addr += l;
972                         sg_len -= l;
973                         j++;
974                 }
975         }
976
977         fw_memcpy_to_be32(orb->page_table, orb->page_table,
978                           sizeof(orb->page_table[0]) * j);
979         orb->page_table_bus =
980                 dma_map_single(device->card->device, orb->page_table,
981                                sizeof(orb->page_table), DMA_TO_DEVICE);
982         if (dma_mapping_error(orb->page_table_bus))
983                 goto fail_page_table;
984
985         /*
986          * The data_descriptor pointer is the one case where we need
987          * to fill in the node ID part of the address.  All other
988          * pointers assume that the data referenced reside on the
989          * initiator (i.e. us), but data_descriptor can refer to data
990          * on other nodes so we need to put our ID in descriptor.high.
991          */
992         orb->request.data_descriptor.high = sd->address_high;
993         orb->request.data_descriptor.low  = orb->page_table_bus;
994         orb->request.misc |=
995                 COMMAND_ORB_PAGE_TABLE_PRESENT |
996                 COMMAND_ORB_DATA_SIZE(j);
997
998         return 0;
999
1000  fail_page_table:
1001         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1002                      orb->cmd->sc_data_direction);
1003  fail:
1004         return -ENOMEM;
1005 }
1006
1007 /* SCSI stack integration */
1008
1009 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1010 {
1011         struct sbp2_device *sd =
1012                 (struct sbp2_device *)cmd->device->host->hostdata;
1013         struct fw_unit *unit = sd->unit;
1014         struct fw_device *device = fw_device(unit->device.parent);
1015         struct sbp2_command_orb *orb;
1016         unsigned max_payload;
1017
1018         /*
1019          * Bidirectional commands are not yet implemented, and unknown
1020          * transfer direction not handled.
1021          */
1022         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1023                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1024                 cmd->result = DID_ERROR << 16;
1025                 done(cmd);
1026                 return 0;
1027         }
1028
1029         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1030         if (orb == NULL) {
1031                 fw_notify("failed to alloc orb\n");
1032                 goto fail_alloc;
1033         }
1034
1035         /* Initialize rcode to something not RCODE_COMPLETE. */
1036         orb->base.rcode = -1;
1037         kref_init(&orb->base.kref);
1038
1039         orb->unit = unit;
1040         orb->done = done;
1041         orb->cmd  = cmd;
1042
1043         orb->request.next.high   = SBP2_ORB_NULL;
1044         orb->request.next.low    = 0x0;
1045         /*
1046          * At speed 100 we can do 512 bytes per packet, at speed 200,
1047          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1048          * specifies the max payload size as 2 ^ (max_payload + 2), so
1049          * if we set this to max_speed + 7, we get the right value.
1050          */
1051         max_payload = min(device->max_speed + 7,
1052                           device->card->max_receive - 1);
1053         orb->request.misc =
1054                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1055                 COMMAND_ORB_SPEED(device->max_speed) |
1056                 COMMAND_ORB_NOTIFY;
1057
1058         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1059                 orb->request.misc |=
1060                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1061         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1062                 orb->request.misc |=
1063                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1064
1065         if (scsi_sg_count(cmd) && sbp2_command_orb_map_scatterlist(orb) < 0)
1066                 goto fail_mapping;
1067
1068         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1069
1070         memset(orb->request.command_block,
1071                0, sizeof(orb->request.command_block));
1072         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1073
1074         orb->base.callback = complete_command_orb;
1075         orb->base.request_bus =
1076                 dma_map_single(device->card->device, &orb->request,
1077                                sizeof(orb->request), DMA_TO_DEVICE);
1078         if (dma_mapping_error(orb->base.request_bus))
1079                 goto fail_mapping;
1080
1081         sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
1082                       sd->command_block_agent_address + SBP2_ORB_POINTER);
1083
1084         kref_put(&orb->base.kref, free_orb);
1085         return 0;
1086
1087  fail_mapping:
1088         kref_put(&orb->base.kref, free_orb);
1089  fail_alloc:
1090         return SCSI_MLQUEUE_HOST_BUSY;
1091 }
1092
1093 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1094 {
1095         struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1096
1097         sdev->allow_restart = 1;
1098
1099         if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1100                 sdev->inquiry_len = 36;
1101         return 0;
1102 }
1103
1104 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1105 {
1106         struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1107         struct fw_unit *unit = sd->unit;
1108
1109         sdev->use_10_for_rw = 1;
1110
1111         if (sdev->type == TYPE_ROM)
1112                 sdev->use_10_for_ms = 1;
1113         if (sdev->type == TYPE_DISK &&
1114             sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1115                 sdev->skip_ms_page_8 = 1;
1116         if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
1117                 fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
1118                 sdev->fix_capacity = 1;
1119         }
1120         if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1121                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1122         return 0;
1123 }
1124
1125 /*
1126  * Called by scsi stack when something has really gone wrong.  Usually
1127  * called when a command has timed-out for some reason.
1128  */
1129 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1130 {
1131         struct sbp2_device *sd =
1132                 (struct sbp2_device *)cmd->device->host->hostdata;
1133         struct fw_unit *unit = sd->unit;
1134
1135         fw_notify("sbp2_scsi_abort\n");
1136         sbp2_agent_reset(unit);
1137         sbp2_cancel_orbs(unit);
1138
1139         return SUCCESS;
1140 }
1141
1142 /*
1143  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1144  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1145  *
1146  * This is the concatenation of target port identifier and logical unit
1147  * identifier as per SAM-2...SAM-4 annex A.
1148  */
1149 static ssize_t
1150 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1151                             char *buf)
1152 {
1153         struct scsi_device *sdev = to_scsi_device(dev);
1154         struct sbp2_device *sd;
1155         struct fw_unit *unit;
1156         struct fw_device *device;
1157         u32 directory_id;
1158         struct fw_csr_iterator ci;
1159         int key, value, lun;
1160
1161         if (!sdev)
1162                 return 0;
1163         sd = (struct sbp2_device *)sdev->host->hostdata;
1164         unit = sd->unit;
1165         device = fw_device(unit->device.parent);
1166
1167         /* implicit directory ID */
1168         directory_id = ((unit->directory - device->config_rom) * 4
1169                         + CSR_CONFIG_ROM) & 0xffffff;
1170
1171         /* explicit directory ID, overrides implicit ID if present */
1172         fw_csr_iterator_init(&ci, unit->directory);
1173         while (fw_csr_iterator_next(&ci, &key, &value))
1174                 if (key == CSR_DIRECTORY_ID) {
1175                         directory_id = value;
1176                         break;
1177                 }
1178
1179         /* FIXME: Make this work for multi-lun devices. */
1180         lun = 0;
1181
1182         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1183                         device->config_rom[3], device->config_rom[4],
1184                         directory_id, lun);
1185 }
1186
1187 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1188
1189 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1190         &dev_attr_ieee1394_id,
1191         NULL
1192 };
1193
1194 static struct scsi_host_template scsi_driver_template = {
1195         .module                 = THIS_MODULE,
1196         .name                   = "SBP-2 IEEE-1394",
1197         .proc_name              = sbp2_driver_name,
1198         .queuecommand           = sbp2_scsi_queuecommand,
1199         .slave_alloc            = sbp2_scsi_slave_alloc,
1200         .slave_configure        = sbp2_scsi_slave_configure,
1201         .eh_abort_handler       = sbp2_scsi_abort,
1202         .this_id                = -1,
1203         .sg_tablesize           = SG_ALL,
1204         .use_clustering         = ENABLE_CLUSTERING,
1205         .cmd_per_lun            = 1,
1206         .can_queue              = 1,
1207         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1208 };
1209
1210 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1211 MODULE_DESCRIPTION("SCSI over IEEE1394");
1212 MODULE_LICENSE("GPL");
1213 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1214
1215 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1216 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1217 MODULE_ALIAS("sbp2");
1218 #endif
1219
1220 static int __init sbp2_init(void)
1221 {
1222         return driver_register(&sbp2_driver.driver);
1223 }
1224
1225 static void __exit sbp2_cleanup(void)
1226 {
1227         driver_unregister(&sbp2_driver.driver);
1228 }
1229
1230 module_init(sbp2_init);
1231 module_exit(sbp2_cleanup);