Merge master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6] / drivers / net / wireless / wavelan.c
1 /*
2  *      WaveLAN ISA driver
3  *
4  *              Jean II - HPLB '96
5  *
6  * Reorganisation and extension of the driver.
7  * Original copyright follows (also see the end of this file).
8  * See wavelan.p.h for details.
9  *
10  *
11  *
12  * AT&T GIS (nee NCR) WaveLAN card:
13  *      An Ethernet-like radio transceiver
14  *      controlled by an Intel 82586 coprocessor.
15  */
16
17 #include "wavelan.p.h"          /* Private header */
18
19 /************************* MISC SUBROUTINES **************************/
20 /*
21  * Subroutines which won't fit in one of the following category
22  * (WaveLAN modem or i82586)
23  */
24
25 /*------------------------------------------------------------------*/
26 /*
27  * Translate irq number to PSA irq parameter
28  */
29 static u8 wv_irq_to_psa(int irq)
30 {
31         if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
32                 return 0;
33
34         return irqvals[irq];
35 }
36
37 /*------------------------------------------------------------------*/
38 /*
39  * Translate PSA irq parameter to irq number 
40  */
41 static int __init wv_psa_to_irq(u8 irqval)
42 {
43         int irq;
44
45         for (irq = 0; irq < ARRAY_SIZE(irqvals); irq++)
46                 if (irqvals[irq] == irqval)
47                         return irq;
48
49         return -1;
50 }
51
52 #ifdef STRUCT_CHECK
53 /*------------------------------------------------------------------*/
54 /*
55  * Sanity routine to verify the sizes of the various WaveLAN interface
56  * structures.
57  */
58 static char *wv_struct_check(void)
59 {
60 #define SC(t,s,n)       if (sizeof(t) != s) return(n);
61
62         SC(psa_t, PSA_SIZE, "psa_t");
63         SC(mmw_t, MMW_SIZE, "mmw_t");
64         SC(mmr_t, MMR_SIZE, "mmr_t");
65         SC(ha_t, HA_SIZE, "ha_t");
66
67 #undef  SC
68
69         return ((char *) NULL);
70 }                               /* wv_struct_check */
71 #endif                          /* STRUCT_CHECK */
72
73 /********************* HOST ADAPTER SUBROUTINES *********************/
74 /*
75  * Useful subroutines to manage the WaveLAN ISA interface
76  *
77  * One major difference with the PCMCIA hardware (except the port mapping)
78  * is that we have to keep the state of the Host Control Register
79  * because of the interrupt enable & bus size flags.
80  */
81
82 /*------------------------------------------------------------------*/
83 /*
84  * Read from card's Host Adaptor Status Register.
85  */
86 static inline u16 hasr_read(unsigned long ioaddr)
87 {
88         return (inw(HASR(ioaddr)));
89 }                               /* hasr_read */
90
91 /*------------------------------------------------------------------*/
92 /*
93  * Write to card's Host Adapter Command Register.
94  */
95 static inline void hacr_write(unsigned long ioaddr, u16 hacr)
96 {
97         outw(hacr, HACR(ioaddr));
98 }                               /* hacr_write */
99
100 /*------------------------------------------------------------------*/
101 /*
102  * Write to card's Host Adapter Command Register. Include a delay for
103  * those times when it is needed.
104  */
105 static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
106 {
107         hacr_write(ioaddr, hacr);
108         /* delay might only be needed sometimes */
109         mdelay(1);
110 }                               /* hacr_write_slow */
111
112 /*------------------------------------------------------------------*/
113 /*
114  * Set the channel attention bit.
115  */
116 static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
117 {
118         hacr_write(ioaddr, hacr | HACR_CA);
119 }                               /* set_chan_attn */
120
121 /*------------------------------------------------------------------*/
122 /*
123  * Reset, and then set host adaptor into default mode.
124  */
125 static inline void wv_hacr_reset(unsigned long ioaddr)
126 {
127         hacr_write_slow(ioaddr, HACR_RESET);
128         hacr_write(ioaddr, HACR_DEFAULT);
129 }                               /* wv_hacr_reset */
130
131 /*------------------------------------------------------------------*/
132 /*
133  * Set the I/O transfer over the ISA bus to 8-bit mode
134  */
135 static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
136 {
137         hacr &= ~HACR_16BITS;
138         hacr_write(ioaddr, hacr);
139 }                               /* wv_16_off */
140
141 /*------------------------------------------------------------------*/
142 /*
143  * Set the I/O transfer over the ISA bus to 8-bit mode
144  */
145 static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
146 {
147         hacr |= HACR_16BITS;
148         hacr_write(ioaddr, hacr);
149 }                               /* wv_16_on */
150
151 /*------------------------------------------------------------------*/
152 /*
153  * Disable interrupts on the WaveLAN hardware.
154  * (called by wv_82586_stop())
155  */
156 static inline void wv_ints_off(struct net_device * dev)
157 {
158         net_local *lp = (net_local *) dev->priv;
159         unsigned long ioaddr = dev->base_addr;
160         
161         lp->hacr &= ~HACR_INTRON;
162         hacr_write(ioaddr, lp->hacr);
163 }                               /* wv_ints_off */
164
165 /*------------------------------------------------------------------*/
166 /*
167  * Enable interrupts on the WaveLAN hardware.
168  * (called by wv_hw_reset())
169  */
170 static inline void wv_ints_on(struct net_device * dev)
171 {
172         net_local *lp = (net_local *) dev->priv;
173         unsigned long ioaddr = dev->base_addr;
174
175         lp->hacr |= HACR_INTRON;
176         hacr_write(ioaddr, lp->hacr);
177 }                               /* wv_ints_on */
178
179 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
180 /*
181  * Useful subroutines to manage the modem of the WaveLAN
182  */
183
184 /*------------------------------------------------------------------*/
185 /*
186  * Read the Parameter Storage Area from the WaveLAN card's memory
187  */
188 /*
189  * Read bytes from the PSA.
190  */
191 static void psa_read(unsigned long ioaddr, u16 hacr, int o,     /* offset in PSA */
192                      u8 * b,    /* buffer to fill */
193                      int n)
194 {                               /* size to read */
195         wv_16_off(ioaddr, hacr);
196
197         while (n-- > 0) {
198                 outw(o, PIOR2(ioaddr));
199                 o++;
200                 *b++ = inb(PIOP2(ioaddr));
201         }
202
203         wv_16_on(ioaddr, hacr);
204 }                               /* psa_read */
205
206 /*------------------------------------------------------------------*/
207 /*
208  * Write the Parameter Storage Area to the WaveLAN card's memory.
209  */
210 static void psa_write(unsigned long ioaddr, u16 hacr, int o,    /* Offset in PSA */
211                       u8 * b,   /* Buffer in memory */
212                       int n)
213 {                               /* Length of buffer */
214         int count = 0;
215
216         wv_16_off(ioaddr, hacr);
217
218         while (n-- > 0) {
219                 outw(o, PIOR2(ioaddr));
220                 o++;
221
222                 outb(*b, PIOP2(ioaddr));
223                 b++;
224
225                 /* Wait for the memory to finish its write cycle */
226                 count = 0;
227                 while ((count++ < 100) &&
228                        (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
229         }
230
231         wv_16_on(ioaddr, hacr);
232 }                               /* psa_write */
233
234 #ifdef SET_PSA_CRC
235 /*------------------------------------------------------------------*/
236 /*
237  * Calculate the PSA CRC
238  * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
239  * NOTE: By specifying a length including the CRC position the
240  * returned value should be zero. (i.e. a correct checksum in the PSA)
241  *
242  * The Windows drivers don't use the CRC, but the AP and the PtP tool
243  * depend on it.
244  */
245 static u16 psa_crc(u8 * psa,    /* The PSA */
246                               int size)
247 {                               /* Number of short for CRC */
248         int byte_cnt;           /* Loop on the PSA */
249         u16 crc_bytes = 0;      /* Data in the PSA */
250         int bit_cnt;            /* Loop on the bits of the short */
251
252         for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
253                 crc_bytes ^= psa[byte_cnt];     /* Its an xor */
254
255                 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
256                         if (crc_bytes & 0x0001)
257                                 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
258                         else
259                                 crc_bytes >>= 1;
260                 }
261         }
262
263         return crc_bytes;
264 }                               /* psa_crc */
265 #endif                          /* SET_PSA_CRC */
266
267 /*------------------------------------------------------------------*/
268 /*
269  * update the checksum field in the Wavelan's PSA
270  */
271 static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
272 {
273 #ifdef SET_PSA_CRC
274         psa_t psa;
275         u16 crc;
276
277         /* read the parameter storage area */
278         psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
279
280         /* update the checksum */
281         crc = psa_crc((unsigned char *) &psa,
282                       sizeof(psa) - sizeof(psa.psa_crc[0]) -
283                       sizeof(psa.psa_crc[1])
284                       - sizeof(psa.psa_crc_status));
285
286         psa.psa_crc[0] = crc & 0xFF;
287         psa.psa_crc[1] = (crc & 0xFF00) >> 8;
288
289         /* Write it ! */
290         psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
291                   (unsigned char *) &psa.psa_crc, 2);
292
293 #ifdef DEBUG_IOCTL_INFO
294         printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
295                dev->name, psa.psa_crc[0], psa.psa_crc[1]);
296
297         /* Check again (luxury !) */
298         crc = psa_crc((unsigned char *) &psa,
299                       sizeof(psa) - sizeof(psa.psa_crc_status));
300
301         if (crc != 0)
302                 printk(KERN_WARNING
303                        "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
304                        dev->name);
305 #endif                          /* DEBUG_IOCTL_INFO */
306 #endif                          /* SET_PSA_CRC */
307 }                               /* update_psa_checksum */
308
309 /*------------------------------------------------------------------*/
310 /*
311  * Write 1 byte to the MMC.
312  */
313 static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
314 {
315         int count = 0;
316
317         /* Wait for MMC to go idle */
318         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
319                 udelay(10);
320
321         outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
322 }
323
324 /*------------------------------------------------------------------*/
325 /*
326  * Routine to write bytes to the Modem Management Controller.
327  * We start at the end because it is the way it should be!
328  */
329 static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
330 {
331         o += n;
332         b += n;
333
334         while (n-- > 0)
335                 mmc_out(ioaddr, --o, *(--b));
336 }                               /* mmc_write */
337
338 /*------------------------------------------------------------------*/
339 /*
340  * Read a byte from the MMC.
341  * Optimised version for 1 byte, avoid using memory.
342  */
343 static u8 mmc_in(unsigned long ioaddr, u16 o)
344 {
345         int count = 0;
346
347         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
348                 udelay(10);
349         outw(o << 1, MMCR(ioaddr));
350
351         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
352                 udelay(10);
353         return (u8) (inw(MMCR(ioaddr)) >> 8);
354 }
355
356 /*------------------------------------------------------------------*/
357 /*
358  * Routine to read bytes from the Modem Management Controller.
359  * The implementation is complicated by a lack of address lines,
360  * which prevents decoding of the low-order bit.
361  * (code has just been moved in the above function)
362  * We start at the end because it is the way it should be!
363  */
364 static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
365 {
366         o += n;
367         b += n;
368
369         while (n-- > 0)
370                 *(--b) = mmc_in(ioaddr, --o);
371 }                               /* mmc_read */
372
373 /*------------------------------------------------------------------*/
374 /*
375  * Get the type of encryption available.
376  */
377 static inline int mmc_encr(unsigned long ioaddr)
378 {                               /* I/O port of the card */
379         int temp;
380
381         temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
382         if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
383                 return 0;
384         else
385                 return temp;
386 }
387
388 /*------------------------------------------------------------------*/
389 /*
390  * Wait for the frequency EEPROM to complete a command.
391  * I hope this one will be optimally inlined.
392  */
393 static inline void fee_wait(unsigned long ioaddr,       /* I/O port of the card */
394                             int delay,  /* Base delay to wait for */
395                             int number)
396 {                               /* Number of time to wait */
397         int count = 0;          /* Wait only a limited time */
398
399         while ((count++ < number) &&
400                (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
401                 MMR_FEE_STATUS_BUSY)) udelay(delay);
402 }
403
404 /*------------------------------------------------------------------*/
405 /*
406  * Read bytes from the Frequency EEPROM (frequency select cards).
407  */
408 static void fee_read(unsigned long ioaddr,      /* I/O port of the card */
409                      u16 o,     /* destination offset */
410                      u16 * b,   /* data buffer */
411                      int n)
412 {                               /* number of registers */
413         b += n;                 /* Position at the end of the area */
414
415         /* Write the address */
416         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
417
418         /* Loop on all buffer */
419         while (n-- > 0) {
420                 /* Write the read command */
421                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
422                         MMW_FEE_CTRL_READ);
423
424                 /* Wait until EEPROM is ready (should be quick). */
425                 fee_wait(ioaddr, 10, 100);
426
427                 /* Read the value. */
428                 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
429                         mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
430         }
431 }
432
433
434 /*------------------------------------------------------------------*/
435 /*
436  * Write bytes from the Frequency EEPROM (frequency select cards).
437  * This is a bit complicated, because the frequency EEPROM has to
438  * be unprotected and the write enabled.
439  * Jean II
440  */
441 static void fee_write(unsigned long ioaddr,     /* I/O port of the card */
442                       u16 o,    /* destination offset */
443                       u16 * b,  /* data buffer */
444                       int n)
445 {                               /* number of registers */
446         b += n;                 /* Position at the end of the area. */
447
448 #ifdef EEPROM_IS_PROTECTED      /* disabled */
449 #ifdef DOESNT_SEEM_TO_WORK      /* disabled */
450         /* Ask to read the protected register */
451         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
452
453         fee_wait(ioaddr, 10, 100);
454
455         /* Read the protected register. */
456         printk("Protected 2:  %02X-%02X\n",
457                mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
458                mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
459 #endif                          /* DOESNT_SEEM_TO_WORK */
460
461         /* Enable protected register. */
462         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
463         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
464
465         fee_wait(ioaddr, 10, 100);
466
467         /* Unprotect area. */
468         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
469         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
470 #ifdef DOESNT_SEEM_TO_WORK      /* disabled */
471         /* or use: */
472         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
473 #endif                          /* DOESNT_SEEM_TO_WORK */
474
475         fee_wait(ioaddr, 10, 100);
476 #endif                          /* EEPROM_IS_PROTECTED */
477
478         /* Write enable. */
479         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
480         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
481
482         fee_wait(ioaddr, 10, 100);
483
484         /* Write the EEPROM address. */
485         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
486
487         /* Loop on all buffer */
488         while (n-- > 0) {
489                 /* Write the value. */
490                 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
491                 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
492
493                 /* Write the write command. */
494                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
495                         MMW_FEE_CTRL_WRITE);
496
497                 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
498                 mdelay(10);
499                 fee_wait(ioaddr, 10, 100);
500         }
501
502         /* Write disable. */
503         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
504         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
505
506         fee_wait(ioaddr, 10, 100);
507
508 #ifdef EEPROM_IS_PROTECTED      /* disabled */
509         /* Reprotect EEPROM. */
510         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
511         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
512
513         fee_wait(ioaddr, 10, 100);
514 #endif                          /* EEPROM_IS_PROTECTED */
515 }
516
517 /************************ I82586 SUBROUTINES *************************/
518 /*
519  * Useful subroutines to manage the Ethernet controller
520  */
521
522 /*------------------------------------------------------------------*/
523 /*
524  * Read bytes from the on-board RAM.
525  * Why does inlining this function make it fail?
526  */
527 static /*inline */ void obram_read(unsigned long ioaddr,
528                                    u16 o, u8 * b, int n)
529 {
530         outw(o, PIOR1(ioaddr));
531         insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
532 }
533
534 /*------------------------------------------------------------------*/
535 /*
536  * Write bytes to the on-board RAM.
537  */
538 static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
539 {
540         outw(o, PIOR1(ioaddr));
541         outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
542 }
543
544 /*------------------------------------------------------------------*/
545 /*
546  * Acknowledge the reading of the status issued by the i82586.
547  */
548 static void wv_ack(struct net_device * dev)
549 {
550         net_local *lp = (net_local *) dev->priv;
551         unsigned long ioaddr = dev->base_addr;
552         u16 scb_cs;
553         int i;
554
555         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
556                    (unsigned char *) &scb_cs, sizeof(scb_cs));
557         scb_cs &= SCB_ST_INT;
558
559         if (scb_cs == 0)
560                 return;
561
562         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
563                     (unsigned char *) &scb_cs, sizeof(scb_cs));
564
565         set_chan_attn(ioaddr, lp->hacr);
566
567         for (i = 1000; i > 0; i--) {
568                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
569                            (unsigned char *) &scb_cs, sizeof(scb_cs));
570                 if (scb_cs == 0)
571                         break;
572
573                 udelay(10);
574         }
575         udelay(100);
576
577 #ifdef DEBUG_CONFIG_ERROR
578         if (i <= 0)
579                 printk(KERN_INFO
580                        "%s: wv_ack(): board not accepting command.\n",
581                        dev->name);
582 #endif
583 }
584
585 /*------------------------------------------------------------------*/
586 /*
587  * Set channel attention bit and busy wait until command has
588  * completed, then acknowledge completion of the command.
589  */
590 static int wv_synchronous_cmd(struct net_device * dev, const char *str)
591 {
592         net_local *lp = (net_local *) dev->priv;
593         unsigned long ioaddr = dev->base_addr;
594         u16 scb_cmd;
595         ach_t cb;
596         int i;
597
598         scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
599         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
600                     (unsigned char *) &scb_cmd, sizeof(scb_cmd));
601
602         set_chan_attn(ioaddr, lp->hacr);
603
604         for (i = 1000; i > 0; i--) {
605                 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
606                            sizeof(cb));
607                 if (cb.ac_status & AC_SFLD_C)
608                         break;
609
610                 udelay(10);
611         }
612         udelay(100);
613
614         if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
615 #ifdef DEBUG_CONFIG_ERROR
616                 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
617                        dev->name, str, cb.ac_status);
618 #endif
619 #ifdef DEBUG_I82586_SHOW
620                 wv_scb_show(ioaddr);
621 #endif
622                 return -1;
623         }
624
625         /* Ack the status */
626         wv_ack(dev);
627
628         return 0;
629 }
630
631 /*------------------------------------------------------------------*/
632 /*
633  * Configuration commands completion interrupt.
634  * Check if done, and if OK.
635  */
636 static int
637 wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
638 {
639         unsigned short mcs_addr;
640         unsigned short status;
641         int ret;
642
643 #ifdef DEBUG_INTERRUPT_TRACE
644         printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
645 #endif
646
647         mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
648             + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
649
650         /* Read the status of the last command (set mc list). */
651         obram_read(ioaddr, acoff(mcs_addr, ac_status),
652                    (unsigned char *) &status, sizeof(status));
653
654         /* If not completed -> exit */
655         if ((status & AC_SFLD_C) == 0)
656                 ret = 0;        /* Not ready to be scrapped */
657         else {
658 #ifdef DEBUG_CONFIG_ERROR
659                 unsigned short cfg_addr;
660                 unsigned short ias_addr;
661
662                 /* Check mc_config command */
663                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
664                         printk(KERN_INFO
665                                "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
666                                dev->name, status);
667
668                 /* check ia-config command */
669                 ias_addr = mcs_addr - sizeof(ac_ias_t);
670                 obram_read(ioaddr, acoff(ias_addr, ac_status),
671                            (unsigned char *) &status, sizeof(status));
672                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
673                         printk(KERN_INFO
674                                "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
675                                dev->name, status);
676
677                 /* Check config command. */
678                 cfg_addr = ias_addr - sizeof(ac_cfg_t);
679                 obram_read(ioaddr, acoff(cfg_addr, ac_status),
680                            (unsigned char *) &status, sizeof(status));
681                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
682                         printk(KERN_INFO
683                                "%s: wv_config_complete(): configure failed; status = 0x%x\n",
684                                dev->name, status);
685 #endif  /* DEBUG_CONFIG_ERROR */
686
687                 ret = 1;        /* Ready to be scrapped */
688         }
689
690 #ifdef DEBUG_INTERRUPT_TRACE
691         printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
692                ret);
693 #endif
694         return ret;
695 }
696
697 /*------------------------------------------------------------------*/
698 /*
699  * Command completion interrupt.
700  * Reclaim as many freed tx buffers as we can.
701  * (called in wavelan_interrupt()).
702  * Note : the spinlock is already grabbed for us.
703  */
704 static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
705 {
706         int nreaped = 0;
707
708 #ifdef DEBUG_INTERRUPT_TRACE
709         printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
710 #endif
711
712         /* Loop on all the transmit buffers */
713         while (lp->tx_first_in_use != I82586NULL) {
714                 unsigned short tx_status;
715
716                 /* Read the first transmit buffer */
717                 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
718                            (unsigned char *) &tx_status,
719                            sizeof(tx_status));
720
721                 /* If not completed -> exit */
722                 if ((tx_status & AC_SFLD_C) == 0)
723                         break;
724
725                 /* Hack for reconfiguration */
726                 if (tx_status == 0xFFFF)
727                         if (!wv_config_complete(dev, ioaddr, lp))
728                                 break;  /* Not completed */
729
730                 /* We now remove this buffer */
731                 nreaped++;
732                 --lp->tx_n_in_use;
733
734 /*
735 if (lp->tx_n_in_use > 0)
736         printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
737 */
738
739                 /* Was it the last one? */
740                 if (lp->tx_n_in_use <= 0)
741                         lp->tx_first_in_use = I82586NULL;
742                 else {
743                         /* Next one in the chain */
744                         lp->tx_first_in_use += TXBLOCKZ;
745                         if (lp->tx_first_in_use >=
746                             OFFSET_CU +
747                             NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
748                                     NTXBLOCKS * TXBLOCKZ;
749                 }
750
751                 /* Hack for reconfiguration */
752                 if (tx_status == 0xFFFF)
753                         continue;
754
755                 /* Now, check status of the finished command */
756                 if (tx_status & AC_SFLD_OK) {
757                         int ncollisions;
758
759                         lp->stats.tx_packets++;
760                         ncollisions = tx_status & AC_SFLD_MAXCOL;
761                         lp->stats.collisions += ncollisions;
762 #ifdef DEBUG_TX_INFO
763                         if (ncollisions > 0)
764                                 printk(KERN_DEBUG
765                                        "%s: wv_complete(): tx completed after %d collisions.\n",
766                                        dev->name, ncollisions);
767 #endif
768                 } else {
769                         lp->stats.tx_errors++;
770                         if (tx_status & AC_SFLD_S10) {
771                                 lp->stats.tx_carrier_errors++;
772 #ifdef DEBUG_TX_FAIL
773                                 printk(KERN_DEBUG
774                                        "%s: wv_complete(): tx error: no CS.\n",
775                                        dev->name);
776 #endif
777                         }
778                         if (tx_status & AC_SFLD_S9) {
779                                 lp->stats.tx_carrier_errors++;
780 #ifdef DEBUG_TX_FAIL
781                                 printk(KERN_DEBUG
782                                        "%s: wv_complete(): tx error: lost CTS.\n",
783                                        dev->name);
784 #endif
785                         }
786                         if (tx_status & AC_SFLD_S8) {
787                                 lp->stats.tx_fifo_errors++;
788 #ifdef DEBUG_TX_FAIL
789                                 printk(KERN_DEBUG
790                                        "%s: wv_complete(): tx error: slow DMA.\n",
791                                        dev->name);
792 #endif
793                         }
794                         if (tx_status & AC_SFLD_S6) {
795                                 lp->stats.tx_heartbeat_errors++;
796 #ifdef DEBUG_TX_FAIL
797                                 printk(KERN_DEBUG
798                                        "%s: wv_complete(): tx error: heart beat.\n",
799                                        dev->name);
800 #endif
801                         }
802                         if (tx_status & AC_SFLD_S5) {
803                                 lp->stats.tx_aborted_errors++;
804 #ifdef DEBUG_TX_FAIL
805                                 printk(KERN_DEBUG
806                                        "%s: wv_complete(): tx error: too many collisions.\n",
807                                        dev->name);
808 #endif
809                         }
810                 }
811
812 #ifdef DEBUG_TX_INFO
813                 printk(KERN_DEBUG
814                        "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
815                        dev->name, tx_status);
816 #endif
817         }
818
819 #ifdef DEBUG_INTERRUPT_INFO
820         if (nreaped > 1)
821                 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
822                        dev->name, nreaped);
823 #endif
824
825         /*
826          * Inform upper layers.
827          */
828         if (lp->tx_n_in_use < NTXBLOCKS - 1) {
829                 netif_wake_queue(dev);
830         }
831 #ifdef DEBUG_INTERRUPT_TRACE
832         printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
833 #endif
834         return nreaped;
835 }
836
837 /*------------------------------------------------------------------*/
838 /*
839  * Reconfigure the i82586, or at least ask for it.
840  * Because wv_82586_config uses a transmission buffer, we must do it
841  * when we are sure that there is one left, so we do it now
842  * or in wavelan_packet_xmit() (I can't find any better place,
843  * wavelan_interrupt is not an option), so you may experience
844  * delays sometimes.
845  */
846 static void wv_82586_reconfig(struct net_device * dev)
847 {
848         net_local *lp = (net_local *) dev->priv;
849         unsigned long flags;
850
851         /* Arm the flag, will be cleard in wv_82586_config() */
852         lp->reconfig_82586 = 1;
853
854         /* Check if we can do it now ! */
855         if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
856                 spin_lock_irqsave(&lp->spinlock, flags);
857                 /* May fail */
858                 wv_82586_config(dev);
859                 spin_unlock_irqrestore(&lp->spinlock, flags);
860         }
861         else {
862 #ifdef DEBUG_CONFIG_INFO
863                 printk(KERN_DEBUG
864                        "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
865                                dev->name, dev->state);
866 #endif
867         }
868 }
869
870 /********************* DEBUG & INFO SUBROUTINES *********************/
871 /*
872  * This routine is used in the code to show information for debugging.
873  * Most of the time, it dumps the contents of hardware structures.
874  */
875
876 #ifdef DEBUG_PSA_SHOW
877 /*------------------------------------------------------------------*/
878 /*
879  * Print the formatted contents of the Parameter Storage Area.
880  */
881 static void wv_psa_show(psa_t * p)
882 {
883         DECLARE_MAC_BUF(mac);
884
885         printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
886         printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
887                p->psa_io_base_addr_1,
888                p->psa_io_base_addr_2,
889                p->psa_io_base_addr_3, p->psa_io_base_addr_4);
890         printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
891                p->psa_rem_boot_addr_1,
892                p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
893         printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
894         printk("psa_int_req_no: %d\n", p->psa_int_req_no);
895 #ifdef DEBUG_SHOW_UNUSED
896         printk(KERN_DEBUG "psa_unused0[]: %s\n",
897                print_mac(mac, p->psa_unused0));
898 #endif                          /* DEBUG_SHOW_UNUSED */
899         printk(KERN_DEBUG "psa_univ_mac_addr[]: %s\n",
900                print_mac(mac, p->psa_univ_mac_addr));
901         printk(KERN_DEBUG "psa_local_mac_addr[]: %s\n",
902                print_mac(mac, p->psa_local_mac_addr));
903         printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
904                p->psa_univ_local_sel);
905         printk("psa_comp_number: %d, ", p->psa_comp_number);
906         printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
907         printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
908                p->psa_feature_select);
909         printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
910         printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
911         printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
912         printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
913                p->psa_nwid[1]);
914         printk("psa_nwid_select: %d\n", p->psa_nwid_select);
915         printk(KERN_DEBUG "psa_encryption_select: %d, ",
916                p->psa_encryption_select);
917         printk
918             ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
919              p->psa_encryption_key[0], p->psa_encryption_key[1],
920              p->psa_encryption_key[2], p->psa_encryption_key[3],
921              p->psa_encryption_key[4], p->psa_encryption_key[5],
922              p->psa_encryption_key[6], p->psa_encryption_key[7]);
923         printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
924         printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
925                p->psa_call_code[0]);
926         printk
927             ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
928              p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
929              p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
930              p->psa_call_code[6], p->psa_call_code[7]);
931 #ifdef DEBUG_SHOW_UNUSED
932         printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
933                p->psa_reserved[0],
934                p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
935 #endif                          /* DEBUG_SHOW_UNUSED */
936         printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
937         printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
938         printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
939 }                               /* wv_psa_show */
940 #endif                          /* DEBUG_PSA_SHOW */
941
942 #ifdef DEBUG_MMC_SHOW
943 /*------------------------------------------------------------------*/
944 /*
945  * Print the formatted status of the Modem Management Controller.
946  * This function needs to be completed.
947  */
948 static void wv_mmc_show(struct net_device * dev)
949 {
950         unsigned long ioaddr = dev->base_addr;
951         net_local *lp = (net_local *) dev->priv;
952         mmr_t m;
953
954         /* Basic check */
955         if (hasr_read(ioaddr) & HASR_NO_CLK) {
956                 printk(KERN_WARNING
957                        "%s: wv_mmc_show: modem not connected\n",
958                        dev->name);
959                 return;
960         }
961
962         /* Read the mmc */
963         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
964         mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
965         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
966
967         /* Don't forget to update statistics */
968         lp->wstats.discard.nwid +=
969             (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
970
971         printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
972 #ifdef DEBUG_SHOW_UNUSED
973         printk(KERN_DEBUG
974                "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
975                m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
976                m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
977                m.mmr_unused0[6], m.mmr_unused0[7]);
978 #endif                          /* DEBUG_SHOW_UNUSED */
979         printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
980                m.mmr_des_avail, m.mmr_des_status);
981 #ifdef DEBUG_SHOW_UNUSED
982         printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
983                m.mmr_unused1[0],
984                m.mmr_unused1[1],
985                m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
986 #endif                          /* DEBUG_SHOW_UNUSED */
987         printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
988                m.mmr_dce_status,
989                (m.
990                 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
991                "energy detected," : "",
992                (m.
993                 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
994                "loop test indicated," : "",
995                (m.
996                 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
997                "transmitter on," : "",
998                (m.
999                 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
1000                "jabber timer expired," : "");
1001         printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
1002 #ifdef DEBUG_SHOW_UNUSED
1003         printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
1004                m.mmr_unused2[0], m.mmr_unused2[1]);
1005 #endif                          /* DEBUG_SHOW_UNUSED */
1006         printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
1007                (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
1008                (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
1009         printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
1010                m.mmr_thr_pre_set & MMR_THR_PRE_SET,
1011                (m.
1012                 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
1013                "below");
1014         printk(KERN_DEBUG "signal_lvl: %d [%s], ",
1015                m.mmr_signal_lvl & MMR_SIGNAL_LVL,
1016                (m.
1017                 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
1018                "no new msg");
1019         printk("silence_lvl: %d [%s], ",
1020                m.mmr_silence_lvl & MMR_SILENCE_LVL,
1021                (m.
1022                 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
1023                "no new update");
1024         printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
1025                (m.
1026                 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1027                "Antenna 0");
1028 #ifdef DEBUG_SHOW_UNUSED
1029         printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1030 #endif                          /* DEBUG_SHOW_UNUSED */
1031 }                               /* wv_mmc_show */
1032 #endif                          /* DEBUG_MMC_SHOW */
1033
1034 #ifdef DEBUG_I82586_SHOW
1035 /*------------------------------------------------------------------*/
1036 /*
1037  * Print the last block of the i82586 memory.
1038  */
1039 static void wv_scb_show(unsigned long ioaddr)
1040 {
1041         scb_t scb;
1042
1043         obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1044                    sizeof(scb));
1045
1046         printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1047
1048         printk(KERN_DEBUG "status: ");
1049         printk("stat 0x%x[%s%s%s%s] ",
1050                (scb.
1051                 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1052                               SCB_ST_RNR)) >> 12,
1053                (scb.
1054                 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1055                "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1056                (scb.
1057                 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1058                (scb.
1059                 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1060                "");
1061         printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1062                ((scb.scb_status & SCB_ST_CUS) ==
1063                 SCB_ST_CUS_IDLE) ? "idle" : "",
1064                ((scb.scb_status & SCB_ST_CUS) ==
1065                 SCB_ST_CUS_SUSP) ? "suspended" : "",
1066                ((scb.scb_status & SCB_ST_CUS) ==
1067                 SCB_ST_CUS_ACTV) ? "active" : "");
1068         printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1069                ((scb.scb_status & SCB_ST_RUS) ==
1070                 SCB_ST_RUS_IDLE) ? "idle" : "",
1071                ((scb.scb_status & SCB_ST_RUS) ==
1072                 SCB_ST_RUS_SUSP) ? "suspended" : "",
1073                ((scb.scb_status & SCB_ST_RUS) ==
1074                 SCB_ST_RUS_NRES) ? "no resources" : "",
1075                ((scb.scb_status & SCB_ST_RUS) ==
1076                 SCB_ST_RUS_RDY) ? "ready" : "");
1077
1078         printk(KERN_DEBUG "command: ");
1079         printk("ack 0x%x[%s%s%s%s] ",
1080                (scb.
1081                 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1082                                SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1083                (scb.
1084                 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1085                (scb.
1086                 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1087                (scb.
1088                 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1089                (scb.
1090                 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1091         printk("cuc 0x%x[%s%s%s%s%s] ",
1092                (scb.scb_command & SCB_CMD_CUC) >> 8,
1093                ((scb.scb_command & SCB_CMD_CUC) ==
1094                 SCB_CMD_CUC_NOP) ? "nop" : "",
1095                ((scb.scb_command & SCB_CMD_CUC) ==
1096                 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1097                ((scb.scb_command & SCB_CMD_CUC) ==
1098                 SCB_CMD_CUC_RES) ? "resume execution" : "",
1099                ((scb.scb_command & SCB_CMD_CUC) ==
1100                 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1101                ((scb.scb_command & SCB_CMD_CUC) ==
1102                 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1103         printk("ruc 0x%x[%s%s%s%s%s]\n",
1104                (scb.scb_command & SCB_CMD_RUC) >> 4,
1105                ((scb.scb_command & SCB_CMD_RUC) ==
1106                 SCB_CMD_RUC_NOP) ? "nop" : "",
1107                ((scb.scb_command & SCB_CMD_RUC) ==
1108                 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1109                ((scb.scb_command & SCB_CMD_RUC) ==
1110                 SCB_CMD_RUC_RES) ? "resume reception" : "",
1111                ((scb.scb_command & SCB_CMD_RUC) ==
1112                 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1113                ((scb.scb_command & SCB_CMD_RUC) ==
1114                 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1115
1116         printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1117         printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1118
1119         printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1120         printk("alnerrs %d ", scb.scb_alnerrs);
1121         printk("rscerrs %d ", scb.scb_rscerrs);
1122         printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1123 }
1124
1125 /*------------------------------------------------------------------*/
1126 /*
1127  * Print the formatted status of the i82586's receive unit.
1128  */
1129 static void wv_ru_show(struct net_device * dev)
1130 {
1131         /* net_local *lp = (net_local *) dev->priv; */
1132
1133         printk(KERN_DEBUG
1134                "##### WaveLAN i82586 receiver unit status: #####\n");
1135         printk(KERN_DEBUG "ru:");
1136         /*
1137          * Not implemented yet
1138          */
1139         printk("\n");
1140 }                               /* wv_ru_show */
1141
1142 /*------------------------------------------------------------------*/
1143 /*
1144  * Display info about one control block of the i82586 memory.
1145  */
1146 static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
1147 {
1148         unsigned long ioaddr;
1149         ac_tx_t actx;
1150
1151         ioaddr = dev->base_addr;
1152
1153         printk("%d: 0x%x:", i, p);
1154
1155         obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1156         printk(" status=0x%x,", actx.tx_h.ac_status);
1157         printk(" command=0x%x,", actx.tx_h.ac_command);
1158
1159         /*
1160            {
1161            tbd_t      tbd;
1162
1163            obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1164            printk(" tbd_status=0x%x,", tbd.tbd_status);
1165            }
1166          */
1167
1168         printk("|");
1169 }
1170
1171 /*------------------------------------------------------------------*/
1172 /*
1173  * Print status of the command unit of the i82586.
1174  */
1175 static void wv_cu_show(struct net_device * dev)
1176 {
1177         net_local *lp = (net_local *) dev->priv;
1178         unsigned int i;
1179         u16 p;
1180
1181         printk(KERN_DEBUG
1182                "##### WaveLAN i82586 command unit status: #####\n");
1183
1184         printk(KERN_DEBUG);
1185         for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1186                 wv_cu_show_one(dev, lp, i, p);
1187
1188                 p += TXBLOCKZ;
1189                 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1190                         p -= NTXBLOCKS * TXBLOCKZ;
1191         }
1192         printk("\n");
1193 }
1194 #endif                          /* DEBUG_I82586_SHOW */
1195
1196 #ifdef DEBUG_DEVICE_SHOW
1197 /*------------------------------------------------------------------*/
1198 /*
1199  * Print the formatted status of the WaveLAN PCMCIA device driver.
1200  */
1201 static void wv_dev_show(struct net_device * dev)
1202 {
1203         printk(KERN_DEBUG "dev:");
1204         printk(" state=%lX,", dev->state);
1205         printk(" trans_start=%ld,", dev->trans_start);
1206         printk(" flags=0x%x,", dev->flags);
1207         printk("\n");
1208 }                               /* wv_dev_show */
1209
1210 /*------------------------------------------------------------------*/
1211 /*
1212  * Print the formatted status of the WaveLAN PCMCIA device driver's
1213  * private information.
1214  */
1215 static void wv_local_show(struct net_device * dev)
1216 {
1217         net_local *lp;
1218
1219         lp = (net_local *) dev->priv;
1220
1221         printk(KERN_DEBUG "local:");
1222         printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1223         printk(" hacr=0x%x,", lp->hacr);
1224         printk(" rx_head=0x%x,", lp->rx_head);
1225         printk(" rx_last=0x%x,", lp->rx_last);
1226         printk(" tx_first_free=0x%x,", lp->tx_first_free);
1227         printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1228         printk("\n");
1229 }                               /* wv_local_show */
1230 #endif                          /* DEBUG_DEVICE_SHOW */
1231
1232 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1233 /*------------------------------------------------------------------*/
1234 /*
1235  * Dump packet header (and content if necessary) on the screen
1236  */
1237 static inline void wv_packet_info(u8 * p,       /* Packet to dump */
1238                                   int length,   /* Length of the packet */
1239                                   char *msg1,   /* Name of the device */
1240                                   char *msg2)
1241 {                               /* Name of the function */
1242         int i;
1243         int maxi;
1244         DECLARE_MAC_BUF(mac);
1245
1246         printk(KERN_DEBUG
1247                "%s: %s(): dest %s, length %d\n",
1248                msg1, msg2, print_mac(mac, p), length);
1249         printk(KERN_DEBUG
1250                "%s: %s(): src %s, type 0x%02X%02X\n",
1251                msg1, msg2, print_mac(mac, &p[6]), p[12], p[13]);
1252
1253 #ifdef DEBUG_PACKET_DUMP
1254
1255         printk(KERN_DEBUG "data=\"");
1256
1257         if ((maxi = length) > DEBUG_PACKET_DUMP)
1258                 maxi = DEBUG_PACKET_DUMP;
1259         for (i = 14; i < maxi; i++)
1260                 if (p[i] >= ' ' && p[i] <= '~')
1261                         printk(" %c", p[i]);
1262                 else
1263                         printk("%02X", p[i]);
1264         if (maxi < length)
1265                 printk("..");
1266         printk("\"\n");
1267         printk(KERN_DEBUG "\n");
1268 #endif                          /* DEBUG_PACKET_DUMP */
1269 }
1270 #endif                          /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1271
1272 /*------------------------------------------------------------------*/
1273 /*
1274  * This is the information which is displayed by the driver at startup.
1275  * There are lots of flags for configuring it to your liking.
1276  */
1277 static void wv_init_info(struct net_device * dev)
1278 {
1279         short ioaddr = dev->base_addr;
1280         net_local *lp = (net_local *) dev->priv;
1281         psa_t psa;
1282 #ifdef DEBUG_BASIC_SHOW
1283         DECLARE_MAC_BUF(mac);
1284 #endif
1285
1286         /* Read the parameter storage area */
1287         psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1288
1289 #ifdef DEBUG_PSA_SHOW
1290         wv_psa_show(&psa);
1291 #endif
1292 #ifdef DEBUG_MMC_SHOW
1293         wv_mmc_show(dev);
1294 #endif
1295 #ifdef DEBUG_I82586_SHOW
1296         wv_cu_show(dev);
1297 #endif
1298
1299 #ifdef DEBUG_BASIC_SHOW
1300         /* Now, let's go for the basic stuff. */
1301         printk(KERN_NOTICE "%s: WaveLAN at %#x, %s, IRQ %d",
1302                dev->name, ioaddr, print_mac(mac, dev->dev_addr), dev->irq);
1303
1304         /* Print current network ID. */
1305         if (psa.psa_nwid_select)
1306                 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1307                        psa.psa_nwid[1]);
1308         else
1309                 printk(", nwid off");
1310
1311         /* If 2.00 card */
1312         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1313               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1314                 unsigned short freq;
1315
1316                 /* Ask the EEPROM to read the frequency from the first area. */
1317                 fee_read(ioaddr, 0x00, &freq, 1);
1318
1319                 /* Print frequency */
1320                 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1321
1322                 /* Hack! */
1323                 if (freq & 0x20)
1324                         printk(".5");
1325         } else {
1326                 printk(", PC");
1327                 switch (psa.psa_comp_number) {
1328                 case PSA_COMP_PC_AT_915:
1329                 case PSA_COMP_PC_AT_2400:
1330                         printk("-AT");
1331                         break;
1332                 case PSA_COMP_PC_MC_915:
1333                 case PSA_COMP_PC_MC_2400:
1334                         printk("-MC");
1335                         break;
1336                 case PSA_COMP_PCMCIA_915:
1337                         printk("MCIA");
1338                         break;
1339                 default:
1340                         printk("?");
1341                 }
1342                 printk(", ");
1343                 switch (psa.psa_subband) {
1344                 case PSA_SUBBAND_915:
1345                         printk("915");
1346                         break;
1347                 case PSA_SUBBAND_2425:
1348                         printk("2425");
1349                         break;
1350                 case PSA_SUBBAND_2460:
1351                         printk("2460");
1352                         break;
1353                 case PSA_SUBBAND_2484:
1354                         printk("2484");
1355                         break;
1356                 case PSA_SUBBAND_2430_5:
1357                         printk("2430.5");
1358                         break;
1359                 default:
1360                         printk("?");
1361                 }
1362         }
1363
1364         printk(" MHz\n");
1365 #endif                          /* DEBUG_BASIC_SHOW */
1366
1367 #ifdef DEBUG_VERSION_SHOW
1368         /* Print version information */
1369         printk(KERN_NOTICE "%s", version);
1370 #endif
1371 }                               /* wv_init_info */
1372
1373 /********************* IOCTL, STATS & RECONFIG *********************/
1374 /*
1375  * We found here routines that are called by Linux on different
1376  * occasions after the configuration and not for transmitting data
1377  * These may be called when the user use ifconfig, /proc/net/dev
1378  * or wireless extensions
1379  */
1380
1381 /*------------------------------------------------------------------*/
1382 /*
1383  * Get the current Ethernet statistics. This may be called with the
1384  * card open or closed.
1385  * Used when the user read /proc/net/dev
1386  */
1387 static en_stats *wavelan_get_stats(struct net_device * dev)
1388 {
1389 #ifdef DEBUG_IOCTL_TRACE
1390         printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1391 #endif
1392
1393         return (&((net_local *) dev->priv)->stats);
1394 }
1395
1396 /*------------------------------------------------------------------*/
1397 /*
1398  * Set or clear the multicast filter for this adaptor.
1399  * num_addrs == -1      Promiscuous mode, receive all packets
1400  * num_addrs == 0       Normal mode, clear multicast list
1401  * num_addrs > 0        Multicast mode, receive normal and MC packets,
1402  *                      and do best-effort filtering.
1403  */
1404 static void wavelan_set_multicast_list(struct net_device * dev)
1405 {
1406         net_local *lp = (net_local *) dev->priv;
1407
1408 #ifdef DEBUG_IOCTL_TRACE
1409         printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1410                dev->name);
1411 #endif
1412
1413 #ifdef DEBUG_IOCTL_INFO
1414         printk(KERN_DEBUG
1415                "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1416                dev->name, dev->flags, dev->mc_count);
1417 #endif
1418
1419         /* Are we asking for promiscuous mode,
1420          * or all multicast addresses (we don't have that!)
1421          * or too many multicast addresses for the hardware filter? */
1422         if ((dev->flags & IFF_PROMISC) ||
1423             (dev->flags & IFF_ALLMULTI) ||
1424             (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1425                 /*
1426                  * Enable promiscuous mode: receive all packets.
1427                  */
1428                 if (!lp->promiscuous) {
1429                         lp->promiscuous = 1;
1430                         lp->mc_count = 0;
1431
1432                         wv_82586_reconfig(dev);
1433
1434                         /* Tell the kernel that we are doing a really bad job. */
1435                         dev->flags |= IFF_PROMISC;
1436                 }
1437         } else
1438                 /* Are there multicast addresses to send? */
1439         if (dev->mc_list != (struct dev_mc_list *) NULL) {
1440                 /*
1441                  * Disable promiscuous mode, but receive all packets
1442                  * in multicast list
1443                  */
1444 #ifdef MULTICAST_AVOID
1445                 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1446 #endif
1447                 {
1448                         lp->promiscuous = 0;
1449                         lp->mc_count = dev->mc_count;
1450
1451                         wv_82586_reconfig(dev);
1452                 }
1453         } else {
1454                 /*
1455                  * Switch to normal mode: disable promiscuous mode and 
1456                  * clear the multicast list.
1457                  */
1458                 if (lp->promiscuous || lp->mc_count == 0) {
1459                         lp->promiscuous = 0;
1460                         lp->mc_count = 0;
1461
1462                         wv_82586_reconfig(dev);
1463                 }
1464         }
1465 #ifdef DEBUG_IOCTL_TRACE
1466         printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1467                dev->name);
1468 #endif
1469 }
1470
1471 /*------------------------------------------------------------------*/
1472 /*
1473  * This function doesn't exist.
1474  * (Note : it was a nice way to test the reconfigure stuff...)
1475  */
1476 #ifdef SET_MAC_ADDRESS
1477 static int wavelan_set_mac_address(struct net_device * dev, void *addr)
1478 {
1479         struct sockaddr *mac = addr;
1480
1481         /* Copy the address. */
1482         memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1483
1484         /* Reconfigure the beast. */
1485         wv_82586_reconfig(dev);
1486
1487         return 0;
1488 }
1489 #endif                          /* SET_MAC_ADDRESS */
1490
1491
1492 /*------------------------------------------------------------------*/
1493 /*
1494  * Frequency setting (for hardware capable of it)
1495  * It's a bit complicated and you don't really want to look into it.
1496  * (called in wavelan_ioctl)
1497  */
1498 static int wv_set_frequency(unsigned long ioaddr,       /* I/O port of the card */
1499                                    iw_freq * frequency)
1500 {
1501         const int BAND_NUM = 10;        /* Number of bands */
1502         long freq = 0L;         /* offset to 2.4 GHz in .5 MHz */
1503 #ifdef DEBUG_IOCTL_INFO
1504         int i;
1505 #endif
1506
1507         /* Setting by frequency */
1508         /* Theoretically, you may set any frequency between
1509          * the two limits with a 0.5 MHz precision. In practice,
1510          * I don't want you to have trouble with local regulations.
1511          */
1512         if ((frequency->e == 1) &&
1513             (frequency->m >= (int) 2.412e8)
1514             && (frequency->m <= (int) 2.487e8)) {
1515                 freq = ((frequency->m / 10000) - 24000L) / 5;
1516         }
1517
1518         /* Setting by channel (same as wfreqsel) */
1519         /* Warning: each channel is 22 MHz wide, so some of the channels
1520          * will interfere. */
1521         if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1522                 /* Get frequency offset. */
1523                 freq = channel_bands[frequency->m] >> 1;
1524         }
1525
1526         /* Verify that the frequency is allowed. */
1527         if (freq != 0L) {
1528                 u16 table[10];  /* Authorized frequency table */
1529
1530                 /* Read the frequency table. */
1531                 fee_read(ioaddr, 0x71, table, 10);
1532
1533 #ifdef DEBUG_IOCTL_INFO
1534                 printk(KERN_DEBUG "Frequency table: ");
1535                 for (i = 0; i < 10; i++) {
1536                         printk(" %04X", table[i]);
1537                 }
1538                 printk("\n");
1539 #endif
1540
1541                 /* Look in the table to see whether the frequency is allowed. */
1542                 if (!(table[9 - ((freq - 24) / 16)] &
1543                       (1 << ((freq - 24) % 16)))) return -EINVAL;       /* not allowed */
1544         } else
1545                 return -EINVAL;
1546
1547         /* if we get a usable frequency */
1548         if (freq != 0L) {
1549                 unsigned short area[16];
1550                 unsigned short dac[2];
1551                 unsigned short area_verify[16];
1552                 unsigned short dac_verify[2];
1553                 /* Corresponding gain (in the power adjust value table)
1554                  * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1555                  * and WCIN062D.DOC, page 6.2.9. */
1556                 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1557                 int power_band = 0;     /* Selected band */
1558                 unsigned short power_adjust;    /* Correct value */
1559
1560                 /* Search for the gain. */
1561                 power_band = 0;
1562                 while ((freq > power_limit[power_band]) &&
1563                        (power_limit[++power_band] != 0));
1564
1565                 /* Read the first area. */
1566                 fee_read(ioaddr, 0x00, area, 16);
1567
1568                 /* Read the DAC. */
1569                 fee_read(ioaddr, 0x60, dac, 2);
1570
1571                 /* Read the new power adjust value. */
1572                 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1573                          1);
1574                 if (power_band & 0x1)
1575                         power_adjust >>= 8;
1576                 else
1577                         power_adjust &= 0xFF;
1578
1579 #ifdef DEBUG_IOCTL_INFO
1580                 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1581                 for (i = 0; i < 16; i++) {
1582                         printk(" %04X", area[i]);
1583                 }
1584                 printk("\n");
1585
1586                 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1587                        dac[0], dac[1]);
1588 #endif
1589
1590                 /* Frequency offset (for info only) */
1591                 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1592
1593                 /* Receiver Principle main divider coefficient */
1594                 area[3] = (freq >> 1) + 2400L - 352L;
1595                 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1596
1597                 /* Transmitter Main divider coefficient */
1598                 area[13] = (freq >> 1) + 2400L;
1599                 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1600
1601                 /* Other parts of the area are flags, bit streams or unused. */
1602
1603                 /* Set the value in the DAC. */
1604                 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1605                 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1606
1607                 /* Write the first area. */
1608                 fee_write(ioaddr, 0x00, area, 16);
1609
1610                 /* Write the DAC. */
1611                 fee_write(ioaddr, 0x60, dac, 2);
1612
1613                 /* We now should verify here that the writing of the EEPROM went OK. */
1614
1615                 /* Reread the first area. */
1616                 fee_read(ioaddr, 0x00, area_verify, 16);
1617
1618                 /* Reread the DAC. */
1619                 fee_read(ioaddr, 0x60, dac_verify, 2);
1620
1621                 /* Compare. */
1622                 if (memcmp(area, area_verify, 16 * 2) ||
1623                     memcmp(dac, dac_verify, 2 * 2)) {
1624 #ifdef DEBUG_IOCTL_ERROR
1625                         printk(KERN_INFO
1626                                "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1627 #endif
1628                         return -EOPNOTSUPP;
1629                 }
1630
1631                 /* We must download the frequency parameters to the
1632                  * synthesizers (from the EEPROM - area 1)
1633                  * Note: as the EEPROM is automatically decremented, we set the end
1634                  * if the area... */
1635                 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1636                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1637                         MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1638
1639                 /* Wait until the download is finished. */
1640                 fee_wait(ioaddr, 100, 100);
1641
1642                 /* We must now download the power adjust value (gain) to
1643                  * the synthesizers (from the EEPROM - area 7 - DAC). */
1644                 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1645                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1646                         MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1647
1648                 /* Wait for the download to finish. */
1649                 fee_wait(ioaddr, 100, 100);
1650
1651 #ifdef DEBUG_IOCTL_INFO
1652                 /* Verification of what we have done */
1653
1654                 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1655                 for (i = 0; i < 16; i++) {
1656                         printk(" %04X", area_verify[i]);
1657                 }
1658                 printk("\n");
1659
1660                 printk(KERN_DEBUG "WaveLAN EEPROM DAC:  %04X %04X\n",
1661                        dac_verify[0], dac_verify[1]);
1662 #endif
1663
1664                 return 0;
1665         } else
1666                 return -EINVAL; /* Bah, never get there... */
1667 }
1668
1669 /*------------------------------------------------------------------*/
1670 /*
1671  * Give the list of available frequencies.
1672  */
1673 static int wv_frequency_list(unsigned long ioaddr,      /* I/O port of the card */
1674                                     iw_freq * list,     /* List of frequencies to fill */
1675                                     int max)
1676 {                               /* Maximum number of frequencies */
1677         u16 table[10];  /* Authorized frequency table */
1678         long freq = 0L;         /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1679         int i;                  /* index in the table */
1680         int c = 0;              /* Channel number */
1681
1682         /* Read the frequency table. */
1683         fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1684
1685         /* Check all frequencies. */
1686         i = 0;
1687         for (freq = 0; freq < 150; freq++)
1688                 /* Look in the table if the frequency is allowed */
1689                 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1690                         /* Compute approximate channel number */
1691                         while ((c < ARRAY_SIZE(channel_bands)) &&
1692                                 (((channel_bands[c] >> 1) - 24) < freq)) 
1693                                 c++;
1694                         list[i].i = c;  /* Set the list index */
1695
1696                         /* put in the list */
1697                         list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1698                         list[i++].e = 1;
1699
1700                         /* Check number. */
1701                         if (i >= max)
1702                                 return (i);
1703                 }
1704
1705         return (i);
1706 }
1707
1708 #ifdef IW_WIRELESS_SPY
1709 /*------------------------------------------------------------------*/
1710 /*
1711  * Gather wireless spy statistics:  for each packet, compare the source
1712  * address with our list, and if they match, get the statistics.
1713  * Sorry, but this function really needs the wireless extensions.
1714  */
1715 static inline void wl_spy_gather(struct net_device * dev,
1716                                  u8 *   mac,    /* MAC address */
1717                                  u8 *   stats)  /* Statistics to gather */
1718 {
1719         struct iw_quality wstats;
1720
1721         wstats.qual = stats[2] & MMR_SGNL_QUAL;
1722         wstats.level = stats[0] & MMR_SIGNAL_LVL;
1723         wstats.noise = stats[1] & MMR_SILENCE_LVL;
1724         wstats.updated = 0x7;
1725
1726         /* Update spy records */
1727         wireless_spy_update(dev, mac, &wstats);
1728 }
1729 #endif /* IW_WIRELESS_SPY */
1730
1731 #ifdef HISTOGRAM
1732 /*------------------------------------------------------------------*/
1733 /*
1734  * This function calculates a histogram of the signal level.
1735  * As the noise is quite constant, it's like doing it on the SNR.
1736  * We have defined a set of interval (lp->his_range), and each time
1737  * the level goes in that interval, we increment the count (lp->his_sum).
1738  * With this histogram you may detect if one WaveLAN is really weak,
1739  * or you may also calculate the mean and standard deviation of the level.
1740  */
1741 static inline void wl_his_gather(struct net_device * dev, u8 * stats)
1742 {                               /* Statistics to gather */
1743         net_local *lp = (net_local *) dev->priv;
1744         u8 level = stats[0] & MMR_SIGNAL_LVL;
1745         int i;
1746
1747         /* Find the correct interval. */
1748         i = 0;
1749         while ((i < (lp->his_number - 1))
1750                && (level >= lp->his_range[i++]));
1751
1752         /* Increment interval counter. */
1753         (lp->his_sum[i])++;
1754 }
1755 #endif /* HISTOGRAM */
1756
1757 /*------------------------------------------------------------------*/
1758 /*
1759  * Wireless Handler : get protocol name
1760  */
1761 static int wavelan_get_name(struct net_device *dev,
1762                             struct iw_request_info *info,
1763                             union iwreq_data *wrqu,
1764                             char *extra)
1765 {
1766         strcpy(wrqu->name, "WaveLAN");
1767         return 0;
1768 }
1769
1770 /*------------------------------------------------------------------*/
1771 /*
1772  * Wireless Handler : set NWID
1773  */
1774 static int wavelan_set_nwid(struct net_device *dev,
1775                             struct iw_request_info *info,
1776                             union iwreq_data *wrqu,
1777                             char *extra)
1778 {
1779         unsigned long ioaddr = dev->base_addr;
1780         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1781         psa_t psa;
1782         mm_t m;
1783         unsigned long flags;
1784         int ret = 0;
1785
1786         /* Disable interrupts and save flags. */
1787         spin_lock_irqsave(&lp->spinlock, flags);
1788         
1789         /* Set NWID in WaveLAN. */
1790         if (!wrqu->nwid.disabled) {
1791                 /* Set NWID in psa */
1792                 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1793                 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1794                 psa.psa_nwid_select = 0x01;
1795                 psa_write(ioaddr, lp->hacr,
1796                           (char *) psa.psa_nwid - (char *) &psa,
1797                           (unsigned char *) psa.psa_nwid, 3);
1798
1799                 /* Set NWID in mmc. */
1800                 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1801                 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1802                 mmc_write(ioaddr,
1803                           (char *) &m.w.mmw_netw_id_l -
1804                           (char *) &m,
1805                           (unsigned char *) &m.w.mmw_netw_id_l, 2);
1806                 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1807         } else {
1808                 /* Disable NWID in the psa. */
1809                 psa.psa_nwid_select = 0x00;
1810                 psa_write(ioaddr, lp->hacr,
1811                           (char *) &psa.psa_nwid_select -
1812                           (char *) &psa,
1813                           (unsigned char *) &psa.psa_nwid_select,
1814                           1);
1815
1816                 /* Disable NWID in the mmc (no filtering). */
1817                 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1818                         MMW_LOOPT_SEL_DIS_NWID);
1819         }
1820         /* update the Wavelan checksum */
1821         update_psa_checksum(dev, ioaddr, lp->hacr);
1822
1823         /* Enable interrupts and restore flags. */
1824         spin_unlock_irqrestore(&lp->spinlock, flags);
1825
1826         return ret;
1827 }
1828
1829 /*------------------------------------------------------------------*/
1830 /*
1831  * Wireless Handler : get NWID 
1832  */
1833 static int wavelan_get_nwid(struct net_device *dev,
1834                             struct iw_request_info *info,
1835                             union iwreq_data *wrqu,
1836                             char *extra)
1837 {
1838         unsigned long ioaddr = dev->base_addr;
1839         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1840         psa_t psa;
1841         unsigned long flags;
1842         int ret = 0;
1843
1844         /* Disable interrupts and save flags. */
1845         spin_lock_irqsave(&lp->spinlock, flags);
1846         
1847         /* Read the NWID. */
1848         psa_read(ioaddr, lp->hacr,
1849                  (char *) psa.psa_nwid - (char *) &psa,
1850                  (unsigned char *) psa.psa_nwid, 3);
1851         wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1852         wrqu->nwid.disabled = !(psa.psa_nwid_select);
1853         wrqu->nwid.fixed = 1;   /* Superfluous */
1854
1855         /* Enable interrupts and restore flags. */
1856         spin_unlock_irqrestore(&lp->spinlock, flags);
1857
1858         return ret;
1859 }
1860
1861 /*------------------------------------------------------------------*/
1862 /*
1863  * Wireless Handler : set frequency
1864  */
1865 static int wavelan_set_freq(struct net_device *dev,
1866                             struct iw_request_info *info,
1867                             union iwreq_data *wrqu,
1868                             char *extra)
1869 {
1870         unsigned long ioaddr = dev->base_addr;
1871         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1872         unsigned long flags;
1873         int ret;
1874
1875         /* Disable interrupts and save flags. */
1876         spin_lock_irqsave(&lp->spinlock, flags);
1877         
1878         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1879         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1880               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1881                 ret = wv_set_frequency(ioaddr, &(wrqu->freq));
1882         else
1883                 ret = -EOPNOTSUPP;
1884
1885         /* Enable interrupts and restore flags. */
1886         spin_unlock_irqrestore(&lp->spinlock, flags);
1887
1888         return ret;
1889 }
1890
1891 /*------------------------------------------------------------------*/
1892 /*
1893  * Wireless Handler : get frequency
1894  */
1895 static int wavelan_get_freq(struct net_device *dev,
1896                             struct iw_request_info *info,
1897                             union iwreq_data *wrqu,
1898                             char *extra)
1899 {
1900         unsigned long ioaddr = dev->base_addr;
1901         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1902         psa_t psa;
1903         unsigned long flags;
1904         int ret = 0;
1905
1906         /* Disable interrupts and save flags. */
1907         spin_lock_irqsave(&lp->spinlock, flags);
1908         
1909         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1910          * Does it work for everybody, especially old cards? */
1911         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1912               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1913                 unsigned short freq;
1914
1915                 /* Ask the EEPROM to read the frequency from the first area. */
1916                 fee_read(ioaddr, 0x00, &freq, 1);
1917                 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1918                 wrqu->freq.e = 1;
1919         } else {
1920                 psa_read(ioaddr, lp->hacr,
1921                          (char *) &psa.psa_subband - (char *) &psa,
1922                          (unsigned char *) &psa.psa_subband, 1);
1923
1924                 if (psa.psa_subband <= 4) {
1925                         wrqu->freq.m = fixed_bands[psa.psa_subband];
1926                         wrqu->freq.e = (psa.psa_subband != 0);
1927                 } else
1928                         ret = -EOPNOTSUPP;
1929         }
1930
1931         /* Enable interrupts and restore flags. */
1932         spin_unlock_irqrestore(&lp->spinlock, flags);
1933
1934         return ret;
1935 }
1936
1937 /*------------------------------------------------------------------*/
1938 /*
1939  * Wireless Handler : set level threshold
1940  */
1941 static int wavelan_set_sens(struct net_device *dev,
1942                             struct iw_request_info *info,
1943                             union iwreq_data *wrqu,
1944                             char *extra)
1945 {
1946         unsigned long ioaddr = dev->base_addr;
1947         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1948         psa_t psa;
1949         unsigned long flags;
1950         int ret = 0;
1951
1952         /* Disable interrupts and save flags. */
1953         spin_lock_irqsave(&lp->spinlock, flags);
1954         
1955         /* Set the level threshold. */
1956         /* We should complain loudly if wrqu->sens.fixed = 0, because we
1957          * can't set auto mode... */
1958         psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1959         psa_write(ioaddr, lp->hacr,
1960                   (char *) &psa.psa_thr_pre_set - (char *) &psa,
1961                   (unsigned char *) &psa.psa_thr_pre_set, 1);
1962         /* update the Wavelan checksum */
1963         update_psa_checksum(dev, ioaddr, lp->hacr);
1964         mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1965                 psa.psa_thr_pre_set);
1966
1967         /* Enable interrupts and restore flags. */
1968         spin_unlock_irqrestore(&lp->spinlock, flags);
1969
1970         return ret;
1971 }
1972
1973 /*------------------------------------------------------------------*/
1974 /*
1975  * Wireless Handler : get level threshold
1976  */
1977 static int wavelan_get_sens(struct net_device *dev,
1978                             struct iw_request_info *info,
1979                             union iwreq_data *wrqu,
1980                             char *extra)
1981 {
1982         unsigned long ioaddr = dev->base_addr;
1983         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1984         psa_t psa;
1985         unsigned long flags;
1986         int ret = 0;
1987
1988         /* Disable interrupts and save flags. */
1989         spin_lock_irqsave(&lp->spinlock, flags);
1990         
1991         /* Read the level threshold. */
1992         psa_read(ioaddr, lp->hacr,
1993                  (char *) &psa.psa_thr_pre_set - (char *) &psa,
1994                  (unsigned char *) &psa.psa_thr_pre_set, 1);
1995         wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
1996         wrqu->sens.fixed = 1;
1997
1998         /* Enable interrupts and restore flags. */
1999         spin_unlock_irqrestore(&lp->spinlock, flags);
2000
2001         return ret;
2002 }
2003
2004 /*------------------------------------------------------------------*/
2005 /*
2006  * Wireless Handler : set encryption key
2007  */
2008 static int wavelan_set_encode(struct net_device *dev,
2009                               struct iw_request_info *info,
2010                               union iwreq_data *wrqu,
2011                               char *extra)
2012 {
2013         unsigned long ioaddr = dev->base_addr;
2014         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2015         unsigned long flags;
2016         psa_t psa;
2017         int ret = 0;
2018
2019         /* Disable interrupts and save flags. */
2020         spin_lock_irqsave(&lp->spinlock, flags);
2021
2022         /* Check if capable of encryption */
2023         if (!mmc_encr(ioaddr)) {
2024                 ret = -EOPNOTSUPP;
2025         }
2026
2027         /* Check the size of the key */
2028         if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
2029                 ret = -EINVAL;
2030         }
2031
2032         if(!ret) {
2033                 /* Basic checking... */
2034                 if (wrqu->encoding.length == 8) {
2035                         /* Copy the key in the driver */
2036                         memcpy(psa.psa_encryption_key, extra,
2037                                wrqu->encoding.length);
2038                         psa.psa_encryption_select = 1;
2039
2040                         psa_write(ioaddr, lp->hacr,
2041                                   (char *) &psa.psa_encryption_select -
2042                                   (char *) &psa,
2043                                   (unsigned char *) &psa.
2044                                   psa_encryption_select, 8 + 1);
2045
2046                         mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
2047                                 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
2048                         mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
2049                                   (unsigned char *) &psa.
2050                                   psa_encryption_key, 8);
2051                 }
2052
2053                 /* disable encryption */
2054                 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2055                         psa.psa_encryption_select = 0;
2056                         psa_write(ioaddr, lp->hacr,
2057                                   (char *) &psa.psa_encryption_select -
2058                                   (char *) &psa,
2059                                   (unsigned char *) &psa.
2060                                   psa_encryption_select, 1);
2061
2062                         mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
2063                 }
2064                 /* update the Wavelan checksum */
2065                 update_psa_checksum(dev, ioaddr, lp->hacr);
2066         }
2067
2068         /* Enable interrupts and restore flags. */
2069         spin_unlock_irqrestore(&lp->spinlock, flags);
2070
2071         return ret;
2072 }
2073
2074 /*------------------------------------------------------------------*/
2075 /*
2076  * Wireless Handler : get encryption key
2077  */
2078 static int wavelan_get_encode(struct net_device *dev,
2079                               struct iw_request_info *info,
2080                               union iwreq_data *wrqu,
2081                               char *extra)
2082 {
2083         unsigned long ioaddr = dev->base_addr;
2084         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2085         psa_t psa;
2086         unsigned long flags;
2087         int ret = 0;
2088
2089         /* Disable interrupts and save flags. */
2090         spin_lock_irqsave(&lp->spinlock, flags);
2091         
2092         /* Check if encryption is available */
2093         if (!mmc_encr(ioaddr)) {
2094                 ret = -EOPNOTSUPP;
2095         } else {
2096                 /* Read the encryption key */
2097                 psa_read(ioaddr, lp->hacr,
2098                          (char *) &psa.psa_encryption_select -
2099                          (char *) &psa,
2100                          (unsigned char *) &psa.
2101                          psa_encryption_select, 1 + 8);
2102
2103                 /* encryption is enabled ? */
2104                 if (psa.psa_encryption_select)
2105                         wrqu->encoding.flags = IW_ENCODE_ENABLED;
2106                 else
2107                         wrqu->encoding.flags = IW_ENCODE_DISABLED;
2108                 wrqu->encoding.flags |= mmc_encr(ioaddr);
2109
2110                 /* Copy the key to the user buffer */
2111                 wrqu->encoding.length = 8;
2112                 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2113         }
2114
2115         /* Enable interrupts and restore flags. */
2116         spin_unlock_irqrestore(&lp->spinlock, flags);
2117
2118         return ret;
2119 }
2120
2121 /*------------------------------------------------------------------*/
2122 /*
2123  * Wireless Handler : get range info
2124  */
2125 static int wavelan_get_range(struct net_device *dev,
2126                              struct iw_request_info *info,
2127                              union iwreq_data *wrqu,
2128                              char *extra)
2129 {
2130         unsigned long ioaddr = dev->base_addr;
2131         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2132         struct iw_range *range = (struct iw_range *) extra;
2133         unsigned long flags;
2134         int ret = 0;
2135
2136         /* Set the length (very important for backward compatibility) */
2137         wrqu->data.length = sizeof(struct iw_range);
2138
2139         /* Set all the info we don't care or don't know about to zero */
2140         memset(range, 0, sizeof(struct iw_range));
2141
2142         /* Set the Wireless Extension versions */
2143         range->we_version_compiled = WIRELESS_EXT;
2144         range->we_version_source = 9;
2145
2146         /* Set information in the range struct.  */
2147         range->throughput = 1.6 * 1000 * 1000;  /* don't argue on this ! */
2148         range->min_nwid = 0x0000;
2149         range->max_nwid = 0xFFFF;
2150
2151         range->sensitivity = 0x3F;
2152         range->max_qual.qual = MMR_SGNL_QUAL;
2153         range->max_qual.level = MMR_SIGNAL_LVL;
2154         range->max_qual.noise = MMR_SILENCE_LVL;
2155         range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2156         /* Need to get better values for those two */
2157         range->avg_qual.level = 30;
2158         range->avg_qual.noise = 8;
2159
2160         range->num_bitrates = 1;
2161         range->bitrate[0] = 2000000;    /* 2 Mb/s */
2162
2163         /* Event capability (kernel + driver) */
2164         range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2165                                 IW_EVENT_CAPA_MASK(0x8B04));
2166         range->event_capa[1] = IW_EVENT_CAPA_K_1;
2167
2168         /* Disable interrupts and save flags. */
2169         spin_lock_irqsave(&lp->spinlock, flags);
2170         
2171         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2172         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2173               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2174                 range->num_channels = 10;
2175                 range->num_frequency = wv_frequency_list(ioaddr, range->freq,
2176                                                         IW_MAX_FREQUENCIES);
2177         } else
2178                 range->num_channels = range->num_frequency = 0;
2179
2180         /* Encryption supported ? */
2181         if (mmc_encr(ioaddr)) {
2182                 range->encoding_size[0] = 8;    /* DES = 64 bits key */
2183                 range->num_encoding_sizes = 1;
2184                 range->max_encoding_tokens = 1; /* Only one key possible */
2185         } else {
2186                 range->num_encoding_sizes = 0;
2187                 range->max_encoding_tokens = 0;
2188         }
2189
2190         /* Enable interrupts and restore flags. */
2191         spin_unlock_irqrestore(&lp->spinlock, flags);
2192
2193         return ret;
2194 }
2195
2196 /*------------------------------------------------------------------*/
2197 /*
2198  * Wireless Private Handler : set quality threshold
2199  */
2200 static int wavelan_set_qthr(struct net_device *dev,
2201                             struct iw_request_info *info,
2202                             union iwreq_data *wrqu,
2203                             char *extra)
2204 {
2205         unsigned long ioaddr = dev->base_addr;
2206         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2207         psa_t psa;
2208         unsigned long flags;
2209
2210         /* Disable interrupts and save flags. */
2211         spin_lock_irqsave(&lp->spinlock, flags);
2212         
2213         psa.psa_quality_thr = *(extra) & 0x0F;
2214         psa_write(ioaddr, lp->hacr,
2215                   (char *) &psa.psa_quality_thr - (char *) &psa,
2216                   (unsigned char *) &psa.psa_quality_thr, 1);
2217         /* update the Wavelan checksum */
2218         update_psa_checksum(dev, ioaddr, lp->hacr);
2219         mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2220                 psa.psa_quality_thr);
2221
2222         /* Enable interrupts and restore flags. */
2223         spin_unlock_irqrestore(&lp->spinlock, flags);
2224
2225         return 0;
2226 }
2227
2228 /*------------------------------------------------------------------*/
2229 /*
2230  * Wireless Private Handler : get quality threshold
2231  */
2232 static int wavelan_get_qthr(struct net_device *dev,
2233                             struct iw_request_info *info,
2234                             union iwreq_data *wrqu,
2235                             char *extra)
2236 {
2237         unsigned long ioaddr = dev->base_addr;
2238         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2239         psa_t psa;
2240         unsigned long flags;
2241
2242         /* Disable interrupts and save flags. */
2243         spin_lock_irqsave(&lp->spinlock, flags);
2244         
2245         psa_read(ioaddr, lp->hacr,
2246                  (char *) &psa.psa_quality_thr - (char *) &psa,
2247                  (unsigned char *) &psa.psa_quality_thr, 1);
2248         *(extra) = psa.psa_quality_thr & 0x0F;
2249
2250         /* Enable interrupts and restore flags. */
2251         spin_unlock_irqrestore(&lp->spinlock, flags);
2252
2253         return 0;
2254 }
2255
2256 #ifdef HISTOGRAM
2257 /*------------------------------------------------------------------*/
2258 /*
2259  * Wireless Private Handler : set histogram
2260  */
2261 static int wavelan_set_histo(struct net_device *dev,
2262                              struct iw_request_info *info,
2263                              union iwreq_data *wrqu,
2264                              char *extra)
2265 {
2266         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2267
2268         /* Check the number of intervals. */
2269         if (wrqu->data.length > 16) {
2270                 return(-E2BIG);
2271         }
2272
2273         /* Disable histo while we copy the addresses.
2274          * As we don't disable interrupts, we need to do this */
2275         lp->his_number = 0;
2276
2277         /* Are there ranges to copy? */
2278         if (wrqu->data.length > 0) {
2279                 /* Copy interval ranges to the driver */
2280                 memcpy(lp->his_range, extra, wrqu->data.length);
2281
2282                 {
2283                   int i;
2284                   printk(KERN_DEBUG "Histo :");
2285                   for(i = 0; i < wrqu->data.length; i++)
2286                     printk(" %d", lp->his_range[i]);
2287                   printk("\n");
2288                 }
2289
2290                 /* Reset result structure. */
2291                 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2292         }
2293
2294         /* Now we can set the number of ranges */
2295         lp->his_number = wrqu->data.length;
2296
2297         return(0);
2298 }
2299
2300 /*------------------------------------------------------------------*/
2301 /*
2302  * Wireless Private Handler : get histogram
2303  */
2304 static int wavelan_get_histo(struct net_device *dev,
2305                              struct iw_request_info *info,
2306                              union iwreq_data *wrqu,
2307                              char *extra)
2308 {
2309         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2310
2311         /* Set the number of intervals. */
2312         wrqu->data.length = lp->his_number;
2313
2314         /* Give back the distribution statistics */
2315         if(lp->his_number > 0)
2316                 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2317
2318         return(0);
2319 }
2320 #endif                  /* HISTOGRAM */
2321
2322 /*------------------------------------------------------------------*/
2323 /*
2324  * Structures to export the Wireless Handlers
2325  */
2326
2327 static const iw_handler         wavelan_handler[] =
2328 {
2329         NULL,                           /* SIOCSIWNAME */
2330         wavelan_get_name,               /* SIOCGIWNAME */
2331         wavelan_set_nwid,               /* SIOCSIWNWID */
2332         wavelan_get_nwid,               /* SIOCGIWNWID */
2333         wavelan_set_freq,               /* SIOCSIWFREQ */
2334         wavelan_get_freq,               /* SIOCGIWFREQ */
2335         NULL,                           /* SIOCSIWMODE */
2336         NULL,                           /* SIOCGIWMODE */
2337         wavelan_set_sens,               /* SIOCSIWSENS */
2338         wavelan_get_sens,               /* SIOCGIWSENS */
2339         NULL,                           /* SIOCSIWRANGE */
2340         wavelan_get_range,              /* SIOCGIWRANGE */
2341         NULL,                           /* SIOCSIWPRIV */
2342         NULL,                           /* SIOCGIWPRIV */
2343         NULL,                           /* SIOCSIWSTATS */
2344         NULL,                           /* SIOCGIWSTATS */
2345         iw_handler_set_spy,             /* SIOCSIWSPY */
2346         iw_handler_get_spy,             /* SIOCGIWSPY */
2347         iw_handler_set_thrspy,          /* SIOCSIWTHRSPY */
2348         iw_handler_get_thrspy,          /* SIOCGIWTHRSPY */
2349         NULL,                           /* SIOCSIWAP */
2350         NULL,                           /* SIOCGIWAP */
2351         NULL,                           /* -- hole -- */
2352         NULL,                           /* SIOCGIWAPLIST */
2353         NULL,                           /* -- hole -- */
2354         NULL,                           /* -- hole -- */
2355         NULL,                           /* SIOCSIWESSID */
2356         NULL,                           /* SIOCGIWESSID */
2357         NULL,                           /* SIOCSIWNICKN */
2358         NULL,                           /* SIOCGIWNICKN */
2359         NULL,                           /* -- hole -- */
2360         NULL,                           /* -- hole -- */
2361         NULL,                           /* SIOCSIWRATE */
2362         NULL,                           /* SIOCGIWRATE */
2363         NULL,                           /* SIOCSIWRTS */
2364         NULL,                           /* SIOCGIWRTS */
2365         NULL,                           /* SIOCSIWFRAG */
2366         NULL,                           /* SIOCGIWFRAG */
2367         NULL,                           /* SIOCSIWTXPOW */
2368         NULL,                           /* SIOCGIWTXPOW */
2369         NULL,                           /* SIOCSIWRETRY */
2370         NULL,                           /* SIOCGIWRETRY */
2371         /* Bummer ! Why those are only at the end ??? */
2372         wavelan_set_encode,             /* SIOCSIWENCODE */
2373         wavelan_get_encode,             /* SIOCGIWENCODE */
2374 };
2375
2376 static const iw_handler         wavelan_private_handler[] =
2377 {
2378         wavelan_set_qthr,               /* SIOCIWFIRSTPRIV */
2379         wavelan_get_qthr,               /* SIOCIWFIRSTPRIV + 1 */
2380 #ifdef HISTOGRAM
2381         wavelan_set_histo,              /* SIOCIWFIRSTPRIV + 2 */
2382         wavelan_get_histo,              /* SIOCIWFIRSTPRIV + 3 */
2383 #endif  /* HISTOGRAM */
2384 };
2385
2386 static const struct iw_priv_args wavelan_private_args[] = {
2387 /*{ cmd,         set_args,                            get_args, name } */
2388   { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2389   { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2390   { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16,                    0, "sethisto" },
2391   { SIOCGIPHISTO, 0,                     IW_PRIV_TYPE_INT | 16, "gethisto" },
2392 };
2393
2394 static const struct iw_handler_def      wavelan_handler_def =
2395 {
2396         .num_standard   = ARRAY_SIZE(wavelan_handler),
2397         .num_private    = ARRAY_SIZE(wavelan_private_handler),
2398         .num_private_args = ARRAY_SIZE(wavelan_private_args),
2399         .standard       = wavelan_handler,
2400         .private        = wavelan_private_handler,
2401         .private_args   = wavelan_private_args,
2402         .get_wireless_stats = wavelan_get_wireless_stats,
2403 };
2404
2405 /*------------------------------------------------------------------*/
2406 /*
2407  * Get wireless statistics.
2408  * Called by /proc/net/wireless
2409  */
2410 static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
2411 {
2412         unsigned long ioaddr = dev->base_addr;
2413         net_local *lp = (net_local *) dev->priv;
2414         mmr_t m;
2415         iw_stats *wstats;
2416         unsigned long flags;
2417
2418 #ifdef DEBUG_IOCTL_TRACE
2419         printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2420                dev->name);
2421 #endif
2422
2423         /* Check */
2424         if (lp == (net_local *) NULL)
2425                 return (iw_stats *) NULL;
2426         
2427         /* Disable interrupts and save flags. */
2428         spin_lock_irqsave(&lp->spinlock, flags);
2429         
2430         wstats = &lp->wstats;
2431
2432         /* Get data from the mmc. */
2433         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2434
2435         mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2436         mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2437                  2);
2438         mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2439                  4);
2440
2441         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2442
2443         /* Copy data to wireless stuff. */
2444         wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2445         wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2446         wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2447         wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2448         wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) 
2449                         | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) 
2450                         | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2451         wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2452         wstats->discard.code = 0L;
2453         wstats->discard.misc = 0L;
2454
2455         /* Enable interrupts and restore flags. */
2456         spin_unlock_irqrestore(&lp->spinlock, flags);
2457
2458 #ifdef DEBUG_IOCTL_TRACE
2459         printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2460                dev->name);
2461 #endif
2462         return &lp->wstats;
2463 }
2464
2465 /************************* PACKET RECEPTION *************************/
2466 /*
2467  * This part deals with receiving the packets.
2468  * The interrupt handler gets an interrupt when a packet has been
2469  * successfully received and calls this part.
2470  */
2471
2472 /*------------------------------------------------------------------*/
2473 /*
2474  * This routine does the actual copying of data (including the Ethernet
2475  * header structure) from the WaveLAN card to an sk_buff chain that
2476  * will be passed up to the network interface layer. NOTE: we
2477  * currently don't handle trailer protocols (neither does the rest of
2478  * the network interface), so if that is needed, it will (at least in
2479  * part) be added here.  The contents of the receive ring buffer are
2480  * copied to a message chain that is then passed to the kernel.
2481  *
2482  * Note: if any errors occur, the packet is "dropped on the floor".
2483  * (called by wv_packet_rcv())
2484  */
2485 static void
2486 wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
2487 {
2488         net_local *lp = (net_local *) dev->priv;
2489         unsigned long ioaddr = dev->base_addr;
2490         struct sk_buff *skb;
2491
2492 #ifdef DEBUG_RX_TRACE
2493         printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2494                dev->name, buf_off, sksize);
2495 #endif
2496
2497         /* Allocate buffer for the data */
2498         if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2499 #ifdef DEBUG_RX_ERROR
2500                 printk(KERN_INFO
2501                        "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2502                        dev->name, sksize);
2503 #endif
2504                 lp->stats.rx_dropped++;
2505                 return;
2506         }
2507
2508         /* Copy the packet to the buffer. */
2509         obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2510         skb->protocol = eth_type_trans(skb, dev);
2511
2512 #ifdef DEBUG_RX_INFO
2513         wv_packet_info(skb_mac_header(skb), sksize, dev->name,
2514                        "wv_packet_read");
2515 #endif                          /* DEBUG_RX_INFO */
2516
2517         /* Statistics-gathering and associated stuff.
2518          * It seem a bit messy with all the define, but it's really
2519          * simple... */
2520         if (
2521 #ifdef IW_WIRELESS_SPY          /* defined in iw_handler.h */
2522                    (lp->spy_data.spy_number > 0) ||
2523 #endif /* IW_WIRELESS_SPY */
2524 #ifdef HISTOGRAM
2525                    (lp->his_number > 0) ||
2526 #endif /* HISTOGRAM */
2527                    0) {
2528                 u8 stats[3];    /* signal level, noise level, signal quality */
2529
2530                 /* Read signal level, silence level and signal quality bytes */
2531                 /* Note: in the PCMCIA hardware, these are part of the frame.
2532                  * It seems that for the ISA hardware, it's nowhere to be
2533                  * found in the frame, so I'm obliged to do this (it has a
2534                  * side effect on /proc/net/wireless).
2535                  * Any ideas?
2536                  */
2537                 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2538                 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2539                 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2540
2541 #ifdef DEBUG_RX_INFO
2542                 printk(KERN_DEBUG
2543                        "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2544                        dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2545                        stats[2] & 0x0F);
2546 #endif
2547
2548                 /* Spying stuff */
2549 #ifdef IW_WIRELESS_SPY
2550                 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
2551                               stats);
2552 #endif /* IW_WIRELESS_SPY */
2553 #ifdef HISTOGRAM
2554                 wl_his_gather(dev, stats);
2555 #endif /* HISTOGRAM */
2556         }
2557
2558         /*
2559          * Hand the packet to the network module.
2560          */
2561         netif_rx(skb);
2562
2563         /* Keep statistics up to date */
2564         dev->last_rx = jiffies;
2565         lp->stats.rx_packets++;
2566         lp->stats.rx_bytes += sksize;
2567
2568 #ifdef DEBUG_RX_TRACE
2569         printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2570 #endif
2571 }
2572
2573 /*------------------------------------------------------------------*/
2574 /*
2575  * Transfer as many packets as we can
2576  * from the device RAM.
2577  * (called in wavelan_interrupt()).
2578  * Note : the spinlock is already grabbed for us.
2579  */
2580 static void wv_receive(struct net_device * dev)
2581 {
2582         unsigned long ioaddr = dev->base_addr;
2583         net_local *lp = (net_local *) dev->priv;
2584         fd_t fd;
2585         rbd_t rbd;
2586         int nreaped = 0;
2587
2588 #ifdef DEBUG_RX_TRACE
2589         printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2590 #endif
2591
2592         /* Loop on each received packet. */
2593         for (;;) {
2594                 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2595                            sizeof(fd));
2596
2597                 /* Note about the status :
2598                  * It start up to be 0 (the value we set). Then, when the RU
2599                  * grab the buffer to prepare for reception, it sets the
2600                  * FD_STATUS_B flag. When the RU has finished receiving the
2601                  * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2602                  * completion and set the other flags to indicate the eventual
2603                  * errors. FD_STATUS_OK indicates that the reception was OK.
2604                  */
2605
2606                 /* If the current frame is not complete, we have reached the end. */
2607                 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2608                         break;  /* This is how we exit the loop. */
2609
2610                 nreaped++;
2611
2612                 /* Check whether frame was correctly received. */
2613                 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2614                         /* Does the frame contain a pointer to the data?  Let's check. */
2615                         if (fd.fd_rbd_offset != I82586NULL) {
2616                                 /* Read the receive buffer descriptor */
2617                                 obram_read(ioaddr, fd.fd_rbd_offset,
2618                                            (unsigned char *) &rbd,
2619                                            sizeof(rbd));
2620
2621 #ifdef DEBUG_RX_ERROR
2622                                 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2623                                     RBD_STATUS_EOF) printk(KERN_INFO
2624                                                            "%s: wv_receive(): missing EOF flag.\n",
2625                                                            dev->name);
2626
2627                                 if ((rbd.rbd_status & RBD_STATUS_F) !=
2628                                     RBD_STATUS_F) printk(KERN_INFO
2629                                                          "%s: wv_receive(): missing F flag.\n",
2630                                                          dev->name);
2631 #endif                          /* DEBUG_RX_ERROR */
2632
2633                                 /* Read the packet and transmit to Linux */
2634                                 wv_packet_read(dev, rbd.rbd_bufl,
2635                                                rbd.
2636                                                rbd_status &
2637                                                RBD_STATUS_ACNT);
2638                         }
2639 #ifdef DEBUG_RX_ERROR
2640                         else    /* if frame has no data */
2641                                 printk(KERN_INFO
2642                                        "%s: wv_receive(): frame has no data.\n",
2643                                        dev->name);
2644 #endif
2645                 } else {        /* If reception was no successful */
2646
2647                         lp->stats.rx_errors++;
2648
2649 #ifdef DEBUG_RX_INFO
2650                         printk(KERN_DEBUG
2651                                "%s: wv_receive(): frame not received successfully (%X).\n",
2652                                dev->name, fd.fd_status);
2653 #endif
2654
2655 #ifdef DEBUG_RX_ERROR
2656                         if ((fd.fd_status & FD_STATUS_S6) != 0)
2657                                 printk(KERN_INFO
2658                                        "%s: wv_receive(): no EOF flag.\n",
2659                                        dev->name);
2660 #endif
2661
2662                         if ((fd.fd_status & FD_STATUS_S7) != 0) {
2663                                 lp->stats.rx_length_errors++;
2664 #ifdef DEBUG_RX_FAIL
2665                                 printk(KERN_DEBUG
2666                                        "%s: wv_receive(): frame too short.\n",
2667                                        dev->name);
2668 #endif
2669                         }
2670
2671                         if ((fd.fd_status & FD_STATUS_S8) != 0) {
2672                                 lp->stats.rx_over_errors++;
2673 #ifdef DEBUG_RX_FAIL
2674                                 printk(KERN_DEBUG
2675                                        "%s: wv_receive(): rx DMA overrun.\n",
2676                                        dev->name);
2677 #endif
2678                         }
2679
2680                         if ((fd.fd_status & FD_STATUS_S9) != 0) {
2681                                 lp->stats.rx_fifo_errors++;
2682 #ifdef DEBUG_RX_FAIL
2683                                 printk(KERN_DEBUG
2684                                        "%s: wv_receive(): ran out of resources.\n",
2685                                        dev->name);
2686 #endif
2687                         }
2688
2689                         if ((fd.fd_status & FD_STATUS_S10) != 0) {
2690                                 lp->stats.rx_frame_errors++;
2691 #ifdef DEBUG_RX_FAIL
2692                                 printk(KERN_DEBUG
2693                                        "%s: wv_receive(): alignment error.\n",
2694                                        dev->name);
2695 #endif
2696                         }
2697
2698                         if ((fd.fd_status & FD_STATUS_S11) != 0) {
2699                                 lp->stats.rx_crc_errors++;
2700 #ifdef DEBUG_RX_FAIL
2701                                 printk(KERN_DEBUG
2702                                        "%s: wv_receive(): CRC error.\n",
2703                                        dev->name);
2704 #endif
2705                         }
2706                 }
2707
2708                 fd.fd_status = 0;
2709                 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2710                             (unsigned char *) &fd.fd_status,
2711                             sizeof(fd.fd_status));
2712
2713                 fd.fd_command = FD_COMMAND_EL;
2714                 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2715                             (unsigned char *) &fd.fd_command,
2716                             sizeof(fd.fd_command));
2717
2718                 fd.fd_command = 0;
2719                 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2720                             (unsigned char *) &fd.fd_command,
2721                             sizeof(fd.fd_command));
2722
2723                 lp->rx_last = lp->rx_head;
2724                 lp->rx_head = fd.fd_link_offset;
2725         }                       /* for(;;) -> loop on all frames */
2726
2727 #ifdef DEBUG_RX_INFO
2728         if (nreaped > 1)
2729                 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2730                        dev->name, nreaped);
2731 #endif
2732 #ifdef DEBUG_RX_TRACE
2733         printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2734 #endif
2735 }
2736
2737 /*********************** PACKET TRANSMISSION ***********************/
2738 /*
2739  * This part deals with sending packets through the WaveLAN.
2740  *
2741  */
2742
2743 /*------------------------------------------------------------------*/
2744 /*
2745  * This routine fills in the appropriate registers and memory
2746  * locations on the WaveLAN card and starts the card off on
2747  * the transmit.
2748  *
2749  * The principle:
2750  * Each block contains a transmit command, a NOP command,
2751  * a transmit block descriptor and a buffer.
2752  * The CU read the transmit block which point to the tbd,
2753  * read the tbd and the content of the buffer.
2754  * When it has finish with it, it goes to the next command
2755  * which in our case is the NOP. The NOP points on itself,
2756  * so the CU stop here.
2757  * When we add the next block, we modify the previous nop
2758  * to make it point on the new tx command.
2759  * Simple, isn't it ?
2760  *
2761  * (called in wavelan_packet_xmit())
2762  */
2763 static int wv_packet_write(struct net_device * dev, void *buf, short length)
2764 {
2765         net_local *lp = (net_local *) dev->priv;
2766         unsigned long ioaddr = dev->base_addr;
2767         unsigned short txblock;
2768         unsigned short txpred;
2769         unsigned short tx_addr;
2770         unsigned short nop_addr;
2771         unsigned short tbd_addr;
2772         unsigned short buf_addr;
2773         ac_tx_t tx;
2774         ac_nop_t nop;
2775         tbd_t tbd;
2776         int clen = length;
2777         unsigned long flags;
2778
2779 #ifdef DEBUG_TX_TRACE
2780         printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2781                length);
2782 #endif
2783
2784         spin_lock_irqsave(&lp->spinlock, flags);
2785
2786         /* Check nothing bad has happened */
2787         if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2788 #ifdef DEBUG_TX_ERROR
2789                 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2790                        dev->name);
2791 #endif
2792                 spin_unlock_irqrestore(&lp->spinlock, flags);
2793                 return 1;
2794         }
2795
2796         /* Calculate addresses of next block and previous block. */
2797         txblock = lp->tx_first_free;
2798         txpred = txblock - TXBLOCKZ;
2799         if (txpred < OFFSET_CU)
2800                 txpred += NTXBLOCKS * TXBLOCKZ;
2801         lp->tx_first_free += TXBLOCKZ;
2802         if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2803                 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2804
2805         lp->tx_n_in_use++;
2806
2807         /* Calculate addresses of the different parts of the block. */
2808         tx_addr = txblock;
2809         nop_addr = tx_addr + sizeof(tx);
2810         tbd_addr = nop_addr + sizeof(nop);
2811         buf_addr = tbd_addr + sizeof(tbd);
2812
2813         /*
2814          * Transmit command
2815          */
2816         tx.tx_h.ac_status = 0;
2817         obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2818                     (unsigned char *) &tx.tx_h.ac_status,
2819                     sizeof(tx.tx_h.ac_status));
2820
2821         /*
2822          * NOP command
2823          */
2824         nop.nop_h.ac_status = 0;
2825         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2826                     (unsigned char *) &nop.nop_h.ac_status,
2827                     sizeof(nop.nop_h.ac_status));
2828         nop.nop_h.ac_link = nop_addr;
2829         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2830                     (unsigned char *) &nop.nop_h.ac_link,
2831                     sizeof(nop.nop_h.ac_link));
2832
2833         /*
2834          * Transmit buffer descriptor
2835          */
2836         tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2837         tbd.tbd_next_bd_offset = I82586NULL;
2838         tbd.tbd_bufl = buf_addr;
2839         tbd.tbd_bufh = 0;
2840         obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2841
2842         /*
2843          * Data
2844          */
2845         obram_write(ioaddr, buf_addr, buf, length);
2846
2847         /*
2848          * Overwrite the predecessor NOP link
2849          * so that it points to this txblock.
2850          */
2851         nop_addr = txpred + sizeof(tx);
2852         nop.nop_h.ac_status = 0;
2853         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2854                     (unsigned char *) &nop.nop_h.ac_status,
2855                     sizeof(nop.nop_h.ac_status));
2856         nop.nop_h.ac_link = txblock;
2857         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2858                     (unsigned char *) &nop.nop_h.ac_link,
2859                     sizeof(nop.nop_h.ac_link));
2860
2861         /* Make sure the watchdog will keep quiet for a while */
2862         dev->trans_start = jiffies;
2863
2864         /* Keep stats up to date. */
2865         lp->stats.tx_bytes += length;
2866
2867         if (lp->tx_first_in_use == I82586NULL)
2868                 lp->tx_first_in_use = txblock;
2869
2870         if (lp->tx_n_in_use < NTXBLOCKS - 1)
2871                 netif_wake_queue(dev);
2872
2873         spin_unlock_irqrestore(&lp->spinlock, flags);
2874         
2875 #ifdef DEBUG_TX_INFO
2876         wv_packet_info((u8 *) buf, length, dev->name,
2877                        "wv_packet_write");
2878 #endif                          /* DEBUG_TX_INFO */
2879
2880 #ifdef DEBUG_TX_TRACE
2881         printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2882 #endif
2883
2884         return 0;
2885 }
2886
2887 /*------------------------------------------------------------------*/
2888 /*
2889  * This routine is called when we want to send a packet (NET3 callback)
2890  * In this routine, we check if the harware is ready to accept
2891  * the packet.  We also prevent reentrance.  Then we call the function
2892  * to send the packet.
2893  */
2894 static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
2895 {
2896         net_local *lp = (net_local *) dev->priv;
2897         unsigned long flags;
2898         char data[ETH_ZLEN];
2899
2900 #ifdef DEBUG_TX_TRACE
2901         printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2902                (unsigned) skb);
2903 #endif
2904
2905         /*
2906          * Block a timer-based transmit from overlapping.
2907          * In other words, prevent reentering this routine.
2908          */
2909         netif_stop_queue(dev);
2910
2911         /* If somebody has asked to reconfigure the controller, 
2912          * we can do it now.
2913          */
2914         if (lp->reconfig_82586) {
2915                 spin_lock_irqsave(&lp->spinlock, flags);
2916                 wv_82586_config(dev);
2917                 spin_unlock_irqrestore(&lp->spinlock, flags);
2918                 /* Check that we can continue */
2919                 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2920                         return 1;
2921         }
2922 #ifdef DEBUG_TX_ERROR
2923         if (skb->next)
2924                 printk(KERN_INFO "skb has next\n");
2925 #endif
2926
2927         /* Do we need some padding? */
2928         /* Note : on wireless the propagation time is in the order of 1us,
2929          * and we don't have the Ethernet specific requirement of beeing
2930          * able to detect collisions, therefore in theory we don't really
2931          * need to pad. Jean II */
2932         if (skb->len < ETH_ZLEN) {
2933                 memset(data, 0, ETH_ZLEN);
2934                 skb_copy_from_linear_data(skb, data, skb->len);
2935                 /* Write packet on the card */
2936                 if(wv_packet_write(dev, data, ETH_ZLEN))
2937                         return 1;       /* We failed */
2938         }
2939         else if(wv_packet_write(dev, skb->data, skb->len))
2940                 return 1;       /* We failed */
2941
2942
2943         dev_kfree_skb(skb);
2944
2945 #ifdef DEBUG_TX_TRACE
2946         printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2947 #endif
2948         return 0;
2949 }
2950
2951 /*********************** HARDWARE CONFIGURATION ***********************/
2952 /*
2953  * This part does the real job of starting and configuring the hardware.
2954  */
2955
2956 /*--------------------------------------------------------------------*/
2957 /*
2958  * Routine to initialize the Modem Management Controller.
2959  * (called by wv_hw_reset())
2960  */
2961 static int wv_mmc_init(struct net_device * dev)
2962 {
2963         unsigned long ioaddr = dev->base_addr;
2964         net_local *lp = (net_local *) dev->priv;
2965         psa_t psa;
2966         mmw_t m;
2967         int configured;
2968
2969 #ifdef DEBUG_CONFIG_TRACE
2970         printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2971 #endif
2972
2973         /* Read the parameter storage area. */
2974         psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2975
2976 #ifdef USE_PSA_CONFIG
2977         configured = psa.psa_conf_status & 1;
2978 #else
2979         configured = 0;
2980 #endif
2981
2982         /* Is the PSA is not configured */
2983         if (!configured) {
2984                 /* User will be able to configure NWID later (with iwconfig). */
2985                 psa.psa_nwid[0] = 0;
2986                 psa.psa_nwid[1] = 0;
2987
2988                 /* no NWID checking since NWID is not set */
2989                 psa.psa_nwid_select = 0;
2990
2991                 /* Disable encryption */
2992                 psa.psa_encryption_select = 0;
2993
2994                 /* Set to standard values:
2995                  * 0x04 for AT,
2996                  * 0x01 for MCA,
2997                  * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
2998                  */
2999                 if (psa.psa_comp_number & 1)
3000                         psa.psa_thr_pre_set = 0x01;
3001                 else
3002                         psa.psa_thr_pre_set = 0x04;
3003                 psa.psa_quality_thr = 0x03;
3004
3005                 /* It is configured */
3006                 psa.psa_conf_status |= 1;
3007
3008 #ifdef USE_PSA_CONFIG
3009                 /* Write the psa. */
3010                 psa_write(ioaddr, lp->hacr,
3011                           (char *) psa.psa_nwid - (char *) &psa,
3012                           (unsigned char *) psa.psa_nwid, 4);
3013                 psa_write(ioaddr, lp->hacr,
3014                           (char *) &psa.psa_thr_pre_set - (char *) &psa,
3015                           (unsigned char *) &psa.psa_thr_pre_set, 1);
3016                 psa_write(ioaddr, lp->hacr,
3017                           (char *) &psa.psa_quality_thr - (char *) &psa,
3018                           (unsigned char *) &psa.psa_quality_thr, 1);
3019                 psa_write(ioaddr, lp->hacr,
3020                           (char *) &psa.psa_conf_status - (char *) &psa,
3021                           (unsigned char *) &psa.psa_conf_status, 1);
3022                 /* update the Wavelan checksum */
3023                 update_psa_checksum(dev, ioaddr, lp->hacr);
3024 #endif
3025         }
3026
3027         /* Zero the mmc structure. */
3028         memset(&m, 0x00, sizeof(m));
3029
3030         /* Copy PSA info to the mmc. */
3031         m.mmw_netw_id_l = psa.psa_nwid[1];
3032         m.mmw_netw_id_h = psa.psa_nwid[0];
3033
3034         if (psa.psa_nwid_select & 1)
3035                 m.mmw_loopt_sel = 0x00;
3036         else
3037                 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
3038
3039         memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
3040                sizeof(m.mmw_encr_key));
3041
3042         if (psa.psa_encryption_select)
3043                 m.mmw_encr_enable =
3044                     MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
3045         else
3046                 m.mmw_encr_enable = 0;
3047
3048         m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
3049         m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
3050
3051         /*
3052          * Set default modem control parameters.
3053          * See NCR document 407-0024326 Rev. A.
3054          */
3055         m.mmw_jabber_enable = 0x01;
3056         m.mmw_freeze = 0;
3057         m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3058         m.mmw_ifs = 0x20;
3059         m.mmw_mod_delay = 0x04;
3060         m.mmw_jam_time = 0x38;
3061
3062         m.mmw_des_io_invert = 0;
3063         m.mmw_decay_prm = 0;
3064         m.mmw_decay_updat_prm = 0;
3065
3066         /* Write all info to MMC. */
3067         mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
3068
3069         /* The following code starts the modem of the 2.00 frequency
3070          * selectable cards at power on.  It's not strictly needed for the
3071          * following boots.
3072          * The original patch was by Joe Finney for the PCMCIA driver, but
3073          * I've cleaned it up a bit and added documentation.
3074          * Thanks to Loeke Brederveld from Lucent for the info.
3075          */
3076
3077         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3078          * Does it work for everybody, especially old cards? */
3079         /* Note: WFREQSEL verifies that it is able to read a sensible
3080          * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
3081          * is 0xA (Xilinx version) or 0xB (Ariadne version).
3082          * My test is more crude but does work. */
3083         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3084               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3085                 /* We must download the frequency parameters to the
3086                  * synthesizers (from the EEPROM - area 1)
3087                  * Note: as the EEPROM is automatically decremented, we set the end
3088                  * if the area... */
3089                 m.mmw_fee_addr = 0x0F;
3090                 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3091                 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3092                           (unsigned char *) &m.mmw_fee_ctrl, 2);
3093
3094                 /* Wait until the download is finished. */
3095                 fee_wait(ioaddr, 100, 100);
3096
3097 #ifdef DEBUG_CONFIG_INFO
3098                 /* The frequency was in the last word downloaded. */
3099                 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3100                          (unsigned char *) &m.mmw_fee_data_l, 2);
3101
3102                 /* Print some info for the user. */
3103                 printk(KERN_DEBUG
3104                        "%s: WaveLAN 2.00 recognised (frequency select).  Current frequency = %ld\n",
3105                        dev->name,
3106                        ((m.
3107                          mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3108                        5 / 2 + 24000L);
3109 #endif
3110
3111                 /* We must now download the power adjust value (gain) to
3112                  * the synthesizers (from the EEPROM - area 7 - DAC). */
3113                 m.mmw_fee_addr = 0x61;
3114                 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3115                 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3116                           (unsigned char *) &m.mmw_fee_ctrl, 2);
3117
3118                 /* Wait until the download is finished. */
3119         }
3120         /* if 2.00 card */
3121 #ifdef DEBUG_CONFIG_TRACE
3122         printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3123 #endif
3124         return 0;
3125 }
3126
3127 /*------------------------------------------------------------------*/
3128 /*
3129  * Construct the fd and rbd structures.
3130  * Start the receive unit.
3131  * (called by wv_hw_reset())
3132  */
3133 static int wv_ru_start(struct net_device * dev)
3134 {
3135         net_local *lp = (net_local *) dev->priv;
3136         unsigned long ioaddr = dev->base_addr;
3137         u16 scb_cs;
3138         fd_t fd;
3139         rbd_t rbd;
3140         u16 rx;
3141         u16 rx_next;
3142         int i;
3143
3144 #ifdef DEBUG_CONFIG_TRACE
3145         printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3146 #endif
3147
3148         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3149                    (unsigned char *) &scb_cs, sizeof(scb_cs));
3150         if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3151                 return 0;
3152
3153         lp->rx_head = OFFSET_RU;
3154
3155         for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3156                 rx_next =
3157                     (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3158
3159                 fd.fd_status = 0;
3160                 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3161                 fd.fd_link_offset = rx_next;
3162                 fd.fd_rbd_offset = rx + sizeof(fd);
3163                 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3164
3165                 rbd.rbd_status = 0;
3166                 rbd.rbd_next_rbd_offset = I82586NULL;
3167                 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3168                 rbd.rbd_bufh = 0;
3169                 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3170                 obram_write(ioaddr, rx + sizeof(fd),
3171                             (unsigned char *) &rbd, sizeof(rbd));
3172
3173                 lp->rx_last = rx;
3174         }
3175
3176         obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3177                     (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3178
3179         scb_cs = SCB_CMD_RUC_GO;
3180         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3181                     (unsigned char *) &scb_cs, sizeof(scb_cs));
3182
3183         set_chan_attn(ioaddr, lp->hacr);
3184
3185         for (i = 1000; i > 0; i--) {
3186                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3187                            (unsigned char *) &scb_cs, sizeof(scb_cs));
3188                 if (scb_cs == 0)
3189                         break;
3190
3191                 udelay(10);
3192         }
3193
3194         if (i <= 0) {
3195 #ifdef DEBUG_CONFIG_ERROR
3196                 printk(KERN_INFO
3197                        "%s: wavelan_ru_start(): board not accepting command.\n",
3198                        dev->name);
3199 #endif
3200                 return -1;
3201         }
3202 #ifdef DEBUG_CONFIG_TRACE
3203         printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3204 #endif
3205         return 0;
3206 }
3207
3208 /*------------------------------------------------------------------*/
3209 /*
3210  * Initialise the transmit blocks.
3211  * Start the command unit executing the NOP
3212  * self-loop of the first transmit block.
3213  *
3214  * Here we create the list of send buffers used to transmit packets
3215  * between the PC and the command unit. For each buffer, we create a
3216  * buffer descriptor (pointing on the buffer), a transmit command
3217  * (pointing to the buffer descriptor) and a NOP command.
3218  * The transmit command is linked to the NOP, and the NOP to itself.
3219  * When we will have finished executing the transmit command, we will
3220  * then loop on the NOP. By releasing the NOP link to a new command,
3221  * we may send another buffer.
3222  *
3223  * (called by wv_hw_reset())
3224  */
3225 static int wv_cu_start(struct net_device * dev)
3226 {
3227         net_local *lp = (net_local *) dev->priv;
3228         unsigned long ioaddr = dev->base_addr;
3229         int i;
3230         u16 txblock;
3231         u16 first_nop;
3232         u16 scb_cs;
3233
3234 #ifdef DEBUG_CONFIG_TRACE
3235         printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3236 #endif
3237
3238         lp->tx_first_free = OFFSET_CU;
3239         lp->tx_first_in_use = I82586NULL;
3240
3241         for (i = 0, txblock = OFFSET_CU;
3242              i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3243                 ac_tx_t tx;
3244                 ac_nop_t nop;
3245                 tbd_t tbd;
3246                 unsigned short tx_addr;
3247                 unsigned short nop_addr;
3248                 unsigned short tbd_addr;
3249                 unsigned short buf_addr;
3250
3251                 tx_addr = txblock;
3252                 nop_addr = tx_addr + sizeof(tx);
3253                 tbd_addr = nop_addr + sizeof(nop);
3254                 buf_addr = tbd_addr + sizeof(tbd);
3255
3256                 tx.tx_h.ac_status = 0;
3257                 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3258                 tx.tx_h.ac_link = nop_addr;
3259                 tx.tx_tbd_offset = tbd_addr;
3260                 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3261                             sizeof(tx));
3262
3263                 nop.nop_h.ac_status = 0;
3264                 nop.nop_h.ac_command = acmd_nop;
3265                 nop.nop_h.ac_link = nop_addr;
3266                 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3267                             sizeof(nop));
3268
3269                 tbd.tbd_status = TBD_STATUS_EOF;
3270                 tbd.tbd_next_bd_offset = I82586NULL;
3271                 tbd.tbd_bufl = buf_addr;
3272                 tbd.tbd_bufh = 0;
3273                 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3274                             sizeof(tbd));
3275         }
3276
3277         first_nop =
3278             OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3279         obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3280                     (unsigned char *) &first_nop, sizeof(first_nop));
3281
3282         scb_cs = SCB_CMD_CUC_GO;
3283         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3284                     (unsigned char *) &scb_cs, sizeof(scb_cs));
3285
3286         set_chan_attn(ioaddr, lp->hacr);
3287
3288         for (i = 1000; i > 0; i--) {
3289                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3290                            (unsigned char *) &scb_cs, sizeof(scb_cs));
3291                 if (scb_cs == 0)
3292                         break;
3293
3294                 udelay(10);
3295         }
3296
3297         if (i <= 0) {
3298 #ifdef DEBUG_CONFIG_ERROR
3299                 printk(KERN_INFO
3300                        "%s: wavelan_cu_start(): board not accepting command.\n",
3301                        dev->name);
3302 #endif
3303                 return -1;
3304         }
3305
3306         lp->tx_n_in_use = 0;
3307         netif_start_queue(dev);
3308 #ifdef DEBUG_CONFIG_TRACE
3309         printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3310 #endif
3311         return 0;
3312 }
3313
3314 /*------------------------------------------------------------------*/
3315 /*
3316  * This routine does a standard configuration of the WaveLAN 
3317  * controller (i82586).
3318  *
3319  * It initialises the scp, iscp and scb structure
3320  * The first two are just pointers to the next.
3321  * The last one is used for basic configuration and for basic
3322  * communication (interrupt status).
3323  *
3324  * (called by wv_hw_reset())
3325  */
3326 static int wv_82586_start(struct net_device * dev)
3327 {
3328         net_local *lp = (net_local *) dev->priv;
3329         unsigned long ioaddr = dev->base_addr;
3330         scp_t scp;              /* system configuration pointer */
3331         iscp_t iscp;            /* intermediate scp */
3332         scb_t scb;              /* system control block */
3333         ach_t cb;               /* Action command header */
3334         u8 zeroes[512];
3335         int i;
3336
3337 #ifdef DEBUG_CONFIG_TRACE
3338         printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3339 #endif
3340
3341         /*
3342          * Clear the onboard RAM.
3343          */
3344         memset(&zeroes[0], 0x00, sizeof(zeroes));
3345         for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3346                 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3347
3348         /*
3349          * Construct the command unit structures:
3350          * scp, iscp, scb, cb.
3351          */
3352         memset(&scp, 0x00, sizeof(scp));
3353         scp.scp_sysbus = SCP_SY_16BBUS;
3354         scp.scp_iscpl = OFFSET_ISCP;
3355         obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3356                     sizeof(scp));
3357
3358         memset(&iscp, 0x00, sizeof(iscp));
3359         iscp.iscp_busy = 1;
3360         iscp.iscp_offset = OFFSET_SCB;
3361         obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3362                     sizeof(iscp));
3363
3364         /* Our first command is to reset the i82586. */
3365         memset(&scb, 0x00, sizeof(scb));
3366         scb.scb_command = SCB_CMD_RESET;
3367         scb.scb_cbl_offset = OFFSET_CU;
3368         scb.scb_rfa_offset = OFFSET_RU;
3369         obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3370                     sizeof(scb));
3371
3372         set_chan_attn(ioaddr, lp->hacr);
3373
3374         /* Wait for command to finish. */
3375         for (i = 1000; i > 0; i--) {
3376                 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3377                            sizeof(iscp));
3378
3379                 if (iscp.iscp_busy == (unsigned short) 0)
3380                         break;
3381
3382                 udelay(10);
3383         }
3384
3385         if (i <= 0) {
3386 #ifdef DEBUG_CONFIG_ERROR
3387                 printk(KERN_INFO
3388                        "%s: wv_82586_start(): iscp_busy timeout.\n",
3389                        dev->name);
3390 #endif
3391                 return -1;
3392         }
3393
3394         /* Check command completion. */
3395         for (i = 15; i > 0; i--) {
3396                 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3397                            sizeof(scb));
3398
3399                 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3400                         break;
3401
3402                 udelay(10);
3403         }
3404
3405         if (i <= 0) {
3406 #ifdef DEBUG_CONFIG_ERROR
3407                 printk(KERN_INFO
3408                        "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3409                        dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3410 #endif
3411                 return -1;
3412         }
3413
3414         wv_ack(dev);
3415
3416         /* Set the action command header. */
3417         memset(&cb, 0x00, sizeof(cb));
3418         cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3419         cb.ac_link = OFFSET_CU;
3420         obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3421
3422         if (wv_synchronous_cmd(dev, "diag()") == -1)
3423                 return -1;
3424
3425         obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3426         if (cb.ac_status & AC_SFLD_FAIL) {
3427 #ifdef DEBUG_CONFIG_ERROR
3428                 printk(KERN_INFO
3429                        "%s: wv_82586_start(): i82586 Self Test failed.\n",
3430                        dev->name);
3431 #endif
3432                 return -1;
3433         }
3434 #ifdef DEBUG_I82586_SHOW
3435         wv_scb_show(ioaddr);
3436 #endif
3437
3438 #ifdef DEBUG_CONFIG_TRACE
3439         printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3440 #endif
3441         return 0;
3442 }
3443
3444 /*------------------------------------------------------------------*/
3445 /*
3446  * This routine does a standard configuration of the WaveLAN
3447  * controller (i82586).
3448  *
3449  * This routine is a violent hack. We use the first free transmit block
3450  * to make our configuration. In the buffer area, we create the three
3451  * configuration commands (linked). We make the previous NOP point to
3452  * the beginning of the buffer instead of the tx command. After, we go
3453  * as usual to the NOP command.
3454  * Note that only the last command (mc_set) will generate an interrupt.
3455  *
3456  * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3457  */
3458 static void wv_82586_config(struct net_device * dev)
3459 {
3460         net_local *lp = (net_local *) dev->priv;
3461         unsigned long ioaddr = dev->base_addr;
3462         unsigned short txblock;
3463         unsigned short txpred;
3464         unsigned short tx_addr;
3465         unsigned short nop_addr;
3466         unsigned short tbd_addr;
3467         unsigned short cfg_addr;
3468         unsigned short ias_addr;
3469         unsigned short mcs_addr;
3470         ac_tx_t tx;
3471         ac_nop_t nop;
3472         ac_cfg_t cfg;           /* Configure action */
3473         ac_ias_t ias;           /* IA-setup action */
3474         ac_mcs_t mcs;           /* Multicast setup */
3475         struct dev_mc_list *dmi;
3476
3477 #ifdef DEBUG_CONFIG_TRACE
3478         printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3479 #endif
3480
3481         /* Check nothing bad has happened */
3482         if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3483 #ifdef DEBUG_CONFIG_ERROR
3484                 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3485                        dev->name);
3486 #endif
3487                 return;
3488         }
3489
3490         /* Calculate addresses of next block and previous block. */
3491         txblock = lp->tx_first_free;
3492         txpred = txblock - TXBLOCKZ;
3493         if (txpred < OFFSET_CU)
3494                 txpred += NTXBLOCKS * TXBLOCKZ;
3495         lp->tx_first_free += TXBLOCKZ;
3496         if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3497                 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3498
3499         lp->tx_n_in_use++;
3500
3501         /* Calculate addresses of the different parts of the block. */
3502         tx_addr = txblock;
3503         nop_addr = tx_addr + sizeof(tx);
3504         tbd_addr = nop_addr + sizeof(nop);
3505         cfg_addr = tbd_addr + sizeof(tbd_t);    /* beginning of the buffer */
3506         ias_addr = cfg_addr + sizeof(cfg);
3507         mcs_addr = ias_addr + sizeof(ias);
3508
3509         /*
3510          * Transmit command
3511          */
3512         tx.tx_h.ac_status = 0xFFFF;     /* Fake completion value */
3513         obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3514                     (unsigned char *) &tx.tx_h.ac_status,
3515                     sizeof(tx.tx_h.ac_status));
3516
3517         /*
3518          * NOP command
3519          */
3520         nop.nop_h.ac_status = 0;
3521         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3522                     (unsigned char *) &nop.nop_h.ac_status,
3523                     sizeof(nop.nop_h.ac_status));
3524         nop.nop_h.ac_link = nop_addr;
3525         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3526                     (unsigned char *) &nop.nop_h.ac_link,
3527                     sizeof(nop.nop_h.ac_link));
3528
3529         /* Create a configure action. */
3530         memset(&cfg, 0x00, sizeof(cfg));
3531
3532         /*
3533          * For Linux we invert AC_CFG_ALOC() so as to conform
3534          * to the way that net packets reach us from above.
3535          * (See also ac_tx_t.)
3536          *
3537          * Updated from Wavelan Manual WCIN085B
3538          */
3539         cfg.cfg_byte_cnt =
3540             AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3541         cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3542         cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3543         cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3544             AC_CFG_ILPBCK(0) |
3545             AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3546             AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3547         cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3548             AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3549         cfg.cfg_ifs = 0x20;
3550         cfg.cfg_slotl = 0x0C;
3551         cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3552         cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3553             AC_CFG_BTSTF(0) |
3554             AC_CFG_CRC16(0) |
3555             AC_CFG_NCRC(0) |
3556             AC_CFG_TNCRS(1) |
3557             AC_CFG_MANCH(0) |
3558             AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3559         cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3560             AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3561 /*
3562   cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3563 */
3564         cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3565
3566         cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3567         cfg.cfg_h.ac_link = ias_addr;
3568         obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3569
3570         /* Set up the MAC address */
3571         memset(&ias, 0x00, sizeof(ias));
3572         ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3573         ias.ias_h.ac_link = mcs_addr;
3574         memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3575                sizeof(ias.ias_addr));
3576         obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3577
3578         /* Initialize adapter's Ethernet multicast addresses */
3579         memset(&mcs, 0x00, sizeof(mcs));
3580         mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3581         mcs.mcs_h.ac_link = nop_addr;
3582         mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3583         obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3584
3585         /* Any address to set? */
3586         if (lp->mc_count) {
3587                 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3588                         outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3589                               WAVELAN_ADDR_SIZE >> 1);
3590
3591 #ifdef DEBUG_CONFIG_INFO
3592  {
3593                 DECLARE_MAC_BUF(mac);
3594                 printk(KERN_DEBUG
3595                        "%s: wv_82586_config(): set %d multicast addresses:\n",
3596                        dev->name, lp->mc_count);
3597                 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3598                         printk(KERN_DEBUG " %s\n",
3599                                print_mac(mac, dmi->dmi_addr));
3600  }
3601 #endif
3602         }
3603
3604         /*
3605          * Overwrite the predecessor NOP link
3606          * so that it points to the configure action.
3607          */
3608         nop_addr = txpred + sizeof(tx);
3609         nop.nop_h.ac_status = 0;
3610         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3611                     (unsigned char *) &nop.nop_h.ac_status,
3612                     sizeof(nop.nop_h.ac_status));
3613         nop.nop_h.ac_link = cfg_addr;
3614         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3615                     (unsigned char *) &nop.nop_h.ac_link,
3616                     sizeof(nop.nop_h.ac_link));
3617
3618         /* Job done, clear the flag */
3619         lp->reconfig_82586 = 0;
3620
3621         if (lp->tx_first_in_use == I82586NULL)
3622                 lp->tx_first_in_use = txblock;
3623
3624         if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3625                 netif_stop_queue(dev);
3626
3627 #ifdef DEBUG_CONFIG_TRACE
3628         printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3629 #endif
3630 }
3631
3632 /*------------------------------------------------------------------*/
3633 /*
3634  * This routine, called by wavelan_close(), gracefully stops the 
3635  * WaveLAN controller (i82586).
3636  * (called by wavelan_close())
3637  */
3638 static void wv_82586_stop(struct net_device * dev)
3639 {
3640         net_local *lp = (net_local *) dev->priv;
3641         unsigned long ioaddr = dev->base_addr;
3642         u16 scb_cmd;
3643
3644 #ifdef DEBUG_CONFIG_TRACE
3645         printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3646 #endif
3647
3648         /* Suspend both command unit and receive unit. */
3649         scb_cmd =
3650             (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3651                                                SCB_CMD_RUC_SUS);
3652         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3653                     (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3654         set_chan_attn(ioaddr, lp->hacr);
3655
3656         /* No more interrupts */
3657         wv_ints_off(dev);
3658
3659 #ifdef DEBUG_CONFIG_TRACE
3660         printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3661 #endif
3662 }
3663
3664 /*------------------------------------------------------------------*/
3665 /*
3666  * Totally reset the WaveLAN and restart it.
3667  * Performs the following actions:
3668  *      1. A power reset (reset DMA)
3669  *      2. Initialize the radio modem (using wv_mmc_init)
3670  *      3. Reset & Configure LAN controller (using wv_82586_start)
3671  *      4. Start the LAN controller's command unit
3672  *      5. Start the LAN controller's receive unit
3673  * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3674  */
3675 static int wv_hw_reset(struct net_device * dev)
3676 {
3677         net_local *lp = (net_local *) dev->priv;
3678         unsigned long ioaddr = dev->base_addr;
3679
3680 #ifdef DEBUG_CONFIG_TRACE
3681         printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3682                (unsigned int) dev);
3683 #endif
3684
3685         /* Increase the number of resets done. */
3686         lp->nresets++;
3687
3688         wv_hacr_reset(ioaddr);
3689         lp->hacr = HACR_DEFAULT;
3690
3691         if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3692                 return -1;
3693
3694         /* Enable the card to send interrupts. */
3695         wv_ints_on(dev);
3696
3697         /* Start card functions */
3698         if (wv_cu_start(dev) < 0)
3699                 return -1;
3700
3701         /* Setup the controller and parameters */
3702         wv_82586_config(dev);
3703
3704         /* Finish configuration with the receive unit */
3705         if (wv_ru_start(dev) < 0)
3706                 return -1;
3707
3708 #ifdef DEBUG_CONFIG_TRACE
3709         printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3710 #endif
3711         return 0;
3712 }
3713
3714 /*------------------------------------------------------------------*/
3715 /*
3716  * Check if there is a WaveLAN at the specific base address.
3717  * As a side effect, this reads the MAC address.
3718  * (called in wavelan_probe() and init_module())
3719  */
3720 static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3721 {
3722         int i;                  /* Loop counter */
3723
3724         /* Check if the base address if available. */
3725         if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
3726                 return -EBUSY;          /* ioaddr already used */
3727
3728         /* Reset host interface */
3729         wv_hacr_reset(ioaddr);
3730
3731         /* Read the MAC address from the parameter storage area. */
3732         psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3733                  mac, 6);
3734
3735         release_region(ioaddr, sizeof(ha_t));
3736
3737         /*
3738          * Check the first three octets of the address for the manufacturer's code.
3739          * Note: if this can't find your WaveLAN card, you've got a
3740          * non-NCR/AT&T/Lucent ISA card.  See wavelan.p.h for detail on
3741          * how to configure your card.
3742          */
3743         for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
3744                 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3745                     (mac[1] == MAC_ADDRESSES[i][1]) &&
3746                     (mac[2] == MAC_ADDRESSES[i][2]))
3747                         return 0;
3748
3749 #ifdef DEBUG_CONFIG_INFO
3750         printk(KERN_WARNING
3751                "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3752                ioaddr, mac[0], mac[1], mac[2]);
3753 #endif
3754         return -ENODEV;
3755 }
3756
3757 /************************ INTERRUPT HANDLING ************************/
3758
3759 /*
3760  * This function is the interrupt handler for the WaveLAN card. This
3761  * routine will be called whenever: 
3762  */
3763 static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
3764 {
3765         struct net_device *dev;
3766         unsigned long ioaddr;
3767         net_local *lp;
3768         u16 hasr;
3769         u16 status;
3770         u16 ack_cmd;
3771
3772         dev = dev_id;
3773
3774 #ifdef DEBUG_INTERRUPT_TRACE
3775         printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3776 #endif
3777
3778         lp = (net_local *) dev->priv;
3779         ioaddr = dev->base_addr;
3780
3781 #ifdef DEBUG_INTERRUPT_INFO
3782         /* Check state of our spinlock */
3783         if(spin_is_locked(&lp->spinlock))
3784                 printk(KERN_DEBUG
3785                        "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3786                        dev->name);
3787 #endif
3788
3789         /* Prevent reentrancy. We need to do that because we may have
3790          * multiple interrupt handler running concurrently.
3791          * It is safe because interrupts are disabled before acquiring
3792          * the spinlock. */
3793         spin_lock(&lp->spinlock);
3794
3795         /* We always had spurious interrupts at startup, but lately I
3796          * saw them comming *between* the request_irq() and the
3797          * spin_lock_irqsave() in wavelan_open(), so the spinlock
3798          * protection is no enough.
3799          * So, we also check lp->hacr that will tell us is we enabled
3800          * irqs or not (see wv_ints_on()).
3801          * We can't use netif_running(dev) because we depend on the
3802          * proper processing of the irq generated during the config. */
3803
3804         /* Which interrupt it is ? */
3805         hasr = hasr_read(ioaddr);
3806
3807 #ifdef DEBUG_INTERRUPT_INFO
3808         printk(KERN_INFO
3809                "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
3810                dev->name, hasr, lp->hacr);
3811 #endif
3812
3813         /* Check modem interrupt */
3814         if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
3815                 u8 dce_status;
3816
3817                 /*
3818                  * Interrupt from the modem management controller.
3819                  * This will clear it -- ignored for now.
3820                  */
3821                 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3822                          sizeof(dce_status));
3823
3824 #ifdef DEBUG_INTERRUPT_ERROR
3825                 printk(KERN_INFO
3826                        "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3827                        dev->name, dce_status);
3828 #endif
3829         }
3830
3831         /* Check if not controller interrupt */
3832         if (((hasr & HASR_82586_INTR) == 0) ||
3833             ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
3834 #ifdef DEBUG_INTERRUPT_ERROR
3835                 printk(KERN_INFO
3836                        "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
3837                        dev->name, hasr);
3838 #endif
3839                 spin_unlock (&lp->spinlock);
3840                 return IRQ_NONE;
3841         }
3842
3843         /* Read interrupt data. */
3844         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3845                    (unsigned char *) &status, sizeof(status));
3846
3847         /*
3848          * Acknowledge the interrupt(s).
3849          */
3850         ack_cmd = status & SCB_ST_INT;
3851         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3852                     (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3853         set_chan_attn(ioaddr, lp->hacr);
3854
3855 #ifdef DEBUG_INTERRUPT_INFO
3856         printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3857                dev->name, status);
3858 #endif
3859
3860         /* Command completed. */
3861         if ((status & SCB_ST_CX) == SCB_ST_CX) {
3862 #ifdef DEBUG_INTERRUPT_INFO
3863                 printk(KERN_DEBUG
3864                        "%s: wavelan_interrupt(): command completed.\n",
3865                        dev->name);
3866 #endif
3867                 wv_complete(dev, ioaddr, lp);
3868         }
3869
3870         /* Frame received. */
3871         if ((status & SCB_ST_FR) == SCB_ST_FR) {
3872 #ifdef DEBUG_INTERRUPT_INFO
3873                 printk(KERN_DEBUG
3874                        "%s: wavelan_interrupt(): received packet.\n",
3875                        dev->name);
3876 #endif
3877                 wv_receive(dev);
3878         }
3879
3880         /* Check the state of the command unit. */
3881         if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3882             (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3883              (netif_running(dev)))) {
3884 #ifdef DEBUG_INTERRUPT_ERROR
3885                 printk(KERN_INFO
3886                        "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3887                        dev->name);
3888 #endif
3889                 wv_hw_reset(dev);
3890         }
3891
3892         /* Check the state of the command unit. */
3893         if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3894             (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3895              (netif_running(dev)))) {
3896 #ifdef DEBUG_INTERRUPT_ERROR
3897                 printk(KERN_INFO
3898                        "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3899                        dev->name);
3900 #endif
3901                 wv_hw_reset(dev);
3902         }
3903
3904         /* Release spinlock */
3905         spin_unlock (&lp->spinlock);
3906
3907 #ifdef DEBUG_INTERRUPT_TRACE
3908         printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3909 #endif
3910         return IRQ_HANDLED;
3911 }
3912
3913 /*------------------------------------------------------------------*/
3914 /*
3915  * Watchdog: when we start a transmission, a timer is set for us in the
3916  * kernel.  If the transmission completes, this timer is disabled. If
3917  * the timer expires, we are called and we try to unlock the hardware.
3918  */
3919 static void wavelan_watchdog(struct net_device *        dev)
3920 {
3921         net_local *     lp = (net_local *)dev->priv;
3922         u_long          ioaddr = dev->base_addr;
3923         unsigned long   flags;
3924         unsigned int    nreaped;
3925
3926 #ifdef DEBUG_INTERRUPT_TRACE
3927         printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3928 #endif
3929
3930 #ifdef DEBUG_INTERRUPT_ERROR
3931         printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3932                dev->name);
3933 #endif
3934
3935         /* Check that we came here for something */
3936         if (lp->tx_n_in_use <= 0) {
3937                 return;
3938         }
3939
3940         spin_lock_irqsave(&lp->spinlock, flags);
3941
3942         /* Try to see if some buffers are not free (in case we missed
3943          * an interrupt */
3944         nreaped = wv_complete(dev, ioaddr, lp);
3945
3946 #ifdef DEBUG_INTERRUPT_INFO
3947         printk(KERN_DEBUG
3948                "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3949                dev->name, nreaped, lp->tx_n_in_use);
3950 #endif
3951
3952 #ifdef DEBUG_PSA_SHOW
3953         {
3954                 psa_t psa;
3955                 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3956                 wv_psa_show(&psa);
3957         }
3958 #endif
3959 #ifdef DEBUG_MMC_SHOW
3960         wv_mmc_show(dev);
3961 #endif
3962 #ifdef DEBUG_I82586_SHOW
3963         wv_cu_show(dev);
3964 #endif
3965
3966         /* If no buffer has been freed */
3967         if (nreaped == 0) {
3968 #ifdef DEBUG_INTERRUPT_ERROR
3969                 printk(KERN_INFO
3970                        "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3971                        dev->name);
3972 #endif
3973                 wv_hw_reset(dev);
3974         }
3975
3976         /* At this point, we should have some free Tx buffer ;-) */
3977         if (lp->tx_n_in_use < NTXBLOCKS - 1)
3978                 netif_wake_queue(dev);
3979
3980         spin_unlock_irqrestore(&lp->spinlock, flags);
3981         
3982 #ifdef DEBUG_INTERRUPT_TRACE
3983         printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3984 #endif
3985 }
3986
3987 /********************* CONFIGURATION CALLBACKS *********************/
3988 /*
3989  * Here are the functions called by the Linux networking code (NET3)
3990  * for initialization, configuration and deinstallations of the 
3991  * WaveLAN ISA hardware.
3992  */
3993
3994 /*------------------------------------------------------------------*/
3995 /*
3996  * Configure and start up the WaveLAN PCMCIA adaptor.
3997  * Called by NET3 when it "opens" the device.
3998  */
3999 static int wavelan_open(struct net_device * dev)
4000 {
4001         net_local *     lp = (net_local *)dev->priv;
4002         unsigned long   flags;
4003
4004 #ifdef DEBUG_CALLBACK_TRACE
4005         printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
4006                (unsigned int) dev);
4007 #endif
4008
4009         /* Check irq */
4010         if (dev->irq == 0) {
4011 #ifdef DEBUG_CONFIG_ERROR
4012                 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
4013                        dev->name);
4014 #endif
4015                 return -ENXIO;
4016         }
4017
4018         if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) 
4019         {
4020 #ifdef DEBUG_CONFIG_ERROR
4021                 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
4022                        dev->name);
4023 #endif
4024                 return -EAGAIN;
4025         }
4026
4027         spin_lock_irqsave(&lp->spinlock, flags);
4028         
4029         if (wv_hw_reset(dev) != -1) {
4030                 netif_start_queue(dev);
4031         } else {
4032                 free_irq(dev->irq, dev);
4033 #ifdef DEBUG_CONFIG_ERROR
4034                 printk(KERN_INFO
4035                        "%s: wavelan_open(): impossible to start the card\n",
4036                        dev->name);
4037 #endif
4038                 spin_unlock_irqrestore(&lp->spinlock, flags);
4039                 return -EAGAIN;
4040         }
4041         spin_unlock_irqrestore(&lp->spinlock, flags);
4042         
4043 #ifdef DEBUG_CALLBACK_TRACE
4044         printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
4045 #endif
4046         return 0;
4047 }
4048
4049 /*------------------------------------------------------------------*/
4050 /*
4051  * Shut down the WaveLAN ISA card.
4052  * Called by NET3 when it "closes" the device.
4053  */
4054 static int wavelan_close(struct net_device * dev)
4055 {
4056         net_local *lp = (net_local *) dev->priv;
4057         unsigned long flags;
4058
4059 #ifdef DEBUG_CALLBACK_TRACE
4060         printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4061                (unsigned int) dev);
4062 #endif
4063
4064         netif_stop_queue(dev);
4065
4066         /*
4067          * Flush the Tx and disable Rx.
4068          */
4069         spin_lock_irqsave(&lp->spinlock, flags);
4070         wv_82586_stop(dev);
4071         spin_unlock_irqrestore(&lp->spinlock, flags);
4072
4073         free_irq(dev->irq, dev);
4074
4075 #ifdef DEBUG_CALLBACK_TRACE
4076         printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4077 #endif
4078         return 0;
4079 }
4080
4081 /*------------------------------------------------------------------*/
4082 /*
4083  * Probe an I/O address, and if the WaveLAN is there configure the
4084  * device structure
4085  * (called by wavelan_probe() and via init_module()).
4086  */
4087 static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
4088 {
4089         u8 irq_mask;
4090         int irq;
4091         net_local *lp;
4092         mac_addr mac;
4093         int err;
4094
4095         if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4096                 return -EADDRINUSE;
4097
4098         err = wv_check_ioaddr(ioaddr, mac);
4099         if (err)
4100                 goto out;
4101
4102         memcpy(dev->dev_addr, mac, 6);
4103
4104         dev->base_addr = ioaddr;
4105
4106 #ifdef DEBUG_CALLBACK_TRACE
4107         printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
4108                dev->name, (unsigned int) dev, ioaddr);
4109 #endif
4110
4111         /* Check IRQ argument on command line. */
4112         if (dev->irq != 0) {
4113                 irq_mask = wv_irq_to_psa(dev->irq);
4114
4115                 if (irq_mask == 0) {
4116 #ifdef DEBUG_CONFIG_ERROR
4117                         printk(KERN_WARNING
4118                                "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4119                                dev->name, dev->irq);
4120 #endif
4121                         dev->irq = 0;
4122                 } else {
4123 #ifdef DEBUG_CONFIG_INFO
4124                         printk(KERN_DEBUG
4125                                "%s: wavelan_config(): changing IRQ to %d\n",
4126                                dev->name, dev->irq);
4127 #endif
4128                         psa_write(ioaddr, HACR_DEFAULT,
4129                                   psaoff(0, psa_int_req_no), &irq_mask, 1);
4130                         /* update the Wavelan checksum */
4131                         update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4132                         wv_hacr_reset(ioaddr);
4133                 }
4134         }
4135
4136         psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4137                  &irq_mask, 1);
4138         if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4139 #ifdef DEBUG_CONFIG_ERROR
4140                 printk(KERN_INFO
4141                        "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4142                        dev->name, irq_mask);
4143 #endif
4144                 err = -EAGAIN;
4145                 goto out;
4146         }
4147
4148         dev->irq = irq;
4149
4150         dev->mem_start = 0x0000;
4151         dev->mem_end = 0x0000;
4152         dev->if_port = 0;
4153
4154         /* Initialize device structures */
4155         memset(dev->priv, 0, sizeof(net_local));
4156         lp = (net_local *) dev->priv;
4157
4158         /* Back link to the device structure. */
4159         lp->dev = dev;
4160         /* Add the device at the beginning of the linked list. */
4161         lp->next = wavelan_list;
4162         wavelan_list = lp;
4163
4164         lp->hacr = HACR_DEFAULT;
4165
4166         /* Multicast stuff */
4167         lp->promiscuous = 0;
4168         lp->mc_count = 0;
4169
4170         /* Init spinlock */
4171         spin_lock_init(&lp->spinlock);
4172
4173         dev->open = wavelan_open;
4174         dev->stop = wavelan_close;
4175         dev->hard_start_xmit = wavelan_packet_xmit;
4176         dev->get_stats = wavelan_get_stats;
4177         dev->set_multicast_list = &wavelan_set_multicast_list;
4178         dev->tx_timeout         = &wavelan_watchdog;
4179         dev->watchdog_timeo     = WATCHDOG_JIFFIES;
4180 #ifdef SET_MAC_ADDRESS
4181         dev->set_mac_address = &wavelan_set_mac_address;
4182 #endif                          /* SET_MAC_ADDRESS */
4183
4184         dev->wireless_handlers = &wavelan_handler_def;
4185         lp->wireless_data.spy_data = &lp->spy_data;
4186         dev->wireless_data = &lp->wireless_data;
4187
4188         dev->mtu = WAVELAN_MTU;
4189
4190         /* Display nice information. */
4191         wv_init_info(dev);
4192
4193 #ifdef DEBUG_CALLBACK_TRACE
4194         printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4195 #endif
4196         return 0;
4197 out:
4198         release_region(ioaddr, sizeof(ha_t));
4199         return err;
4200 }
4201
4202 /*------------------------------------------------------------------*/
4203 /*
4204  * Check for a network adaptor of this type.  Return '0' iff one 
4205  * exists.  There seem to be different interpretations of
4206  * the initial value of dev->base_addr.
4207  * We follow the example in drivers/net/ne.c.
4208  * (called in "Space.c")
4209  */
4210 struct net_device * __init wavelan_probe(int unit)
4211 {
4212         struct net_device *dev;
4213         short base_addr;
4214         int def_irq;
4215         int i;
4216         int r = 0;
4217
4218 #ifdef  STRUCT_CHECK
4219         if (wv_struct_check() != (char *) NULL) {
4220                 printk(KERN_WARNING
4221                        "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
4222                        dev->name, wv_struct_check());
4223                 return -ENODEV;
4224         }
4225 #endif                          /* STRUCT_CHECK */
4226
4227         dev = alloc_etherdev(sizeof(net_local));
4228         if (!dev)
4229                 return ERR_PTR(-ENOMEM);
4230
4231         sprintf(dev->name, "eth%d", unit);
4232         netdev_boot_setup_check(dev);
4233         base_addr = dev->base_addr;
4234         def_irq = dev->irq;
4235
4236 #ifdef DEBUG_CALLBACK_TRACE
4237         printk(KERN_DEBUG
4238                "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
4239                dev->name, dev, (unsigned int) dev->base_addr);
4240 #endif
4241
4242         /* Don't probe at all. */
4243         if (base_addr < 0) {
4244 #ifdef DEBUG_CONFIG_ERROR
4245                 printk(KERN_WARNING
4246                        "%s: wavelan_probe(): invalid base address\n",
4247                        dev->name);
4248 #endif
4249                 r = -ENXIO;
4250         } else if (base_addr > 0x100) { /* Check a single specified location. */
4251                 r = wavelan_config(dev, base_addr);
4252 #ifdef DEBUG_CONFIG_INFO
4253                 if (r != 0)
4254                         printk(KERN_DEBUG
4255                                "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4256                                dev->name, base_addr);
4257 #endif
4258
4259 #ifdef DEBUG_CALLBACK_TRACE
4260                 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4261 #endif
4262         } else { /* Scan all possible addresses of the WaveLAN hardware. */
4263                 for (i = 0; i < ARRAY_SIZE(iobase); i++) {
4264                         dev->irq = def_irq;
4265                         if (wavelan_config(dev, iobase[i]) == 0) {
4266 #ifdef DEBUG_CALLBACK_TRACE
4267                                 printk(KERN_DEBUG
4268                                        "%s: <-wavelan_probe()\n",
4269                                        dev->name);
4270 #endif
4271                                 break;
4272                         }
4273                 }
4274                 if (i == ARRAY_SIZE(iobase))
4275                         r = -ENODEV;
4276         }
4277         if (r) 
4278                 goto out;
4279         r = register_netdev(dev);
4280         if (r)
4281                 goto out1;
4282         return dev;
4283 out1:
4284         release_region(dev->base_addr, sizeof(ha_t));
4285         wavelan_list = wavelan_list->next;
4286 out:
4287         free_netdev(dev);
4288         return ERR_PTR(r);
4289 }
4290
4291 /****************************** MODULE ******************************/
4292 /*
4293  * Module entry point: insertion and removal
4294  */
4295
4296 #ifdef  MODULE
4297 /*------------------------------------------------------------------*/
4298 /*
4299  * Insertion of the module
4300  * I'm now quite proud of the multi-device support.
4301  */
4302 int __init init_module(void)
4303 {
4304         int ret = -EIO;         /* Return error if no cards found */
4305         int i;
4306
4307 #ifdef DEBUG_MODULE_TRACE
4308         printk(KERN_DEBUG "-> init_module()\n");
4309 #endif
4310
4311         /* If probing is asked */
4312         if (io[0] == 0) {
4313 #ifdef DEBUG_CONFIG_ERROR
4314                 printk(KERN_WARNING
4315                        "WaveLAN init_module(): doing device probing (bad !)\n");
4316                 printk(KERN_WARNING
4317                        "Specify base addresses while loading module to correct the problem\n");
4318 #endif
4319
4320                 /* Copy the basic set of address to be probed. */
4321                 for (i = 0; i < ARRAY_SIZE(iobase); i++)
4322                         io[i] = iobase[i];
4323         }
4324
4325
4326         /* Loop on all possible base addresses. */
4327         i = -1;
4328         while ((io[++i] != 0) && (i < ARRAY_SIZE(io))) {
4329                 struct net_device *dev = alloc_etherdev(sizeof(net_local));
4330                 if (!dev)
4331                         break;
4332                 if (name[i])
4333                         strcpy(dev->name, name[i]);     /* Copy name */
4334                 dev->base_addr = io[i];
4335                 dev->irq = irq[i];
4336
4337                 /* Check if there is something at this base address. */
4338                 if (wavelan_config(dev, io[i]) == 0) {
4339                         if (register_netdev(dev) != 0) {
4340                                 release_region(dev->base_addr, sizeof(ha_t));
4341                                 wavelan_list = wavelan_list->next;
4342                         } else {
4343                                 ret = 0;
4344                                 continue;
4345                         }
4346                 }
4347                 free_netdev(dev);
4348         }
4349
4350 #ifdef DEBUG_CONFIG_ERROR
4351         if (!wavelan_list)
4352                 printk(KERN_WARNING
4353                        "WaveLAN init_module(): no device found\n");
4354 #endif
4355
4356 #ifdef DEBUG_MODULE_TRACE
4357         printk(KERN_DEBUG "<- init_module()\n");
4358 #endif
4359         return ret;
4360 }
4361
4362 /*------------------------------------------------------------------*/
4363 /*
4364  * Removal of the module
4365  */
4366 void cleanup_module(void)
4367 {
4368 #ifdef DEBUG_MODULE_TRACE
4369         printk(KERN_DEBUG "-> cleanup_module()\n");
4370 #endif
4371
4372         /* Loop on all devices and release them. */
4373         while (wavelan_list) {
4374                 struct net_device *dev = wavelan_list->dev;
4375
4376 #ifdef DEBUG_CONFIG_INFO
4377                 printk(KERN_DEBUG
4378                        "%s: cleanup_module(): removing device at 0x%x\n",
4379                        dev->name, (unsigned int) dev);
4380 #endif
4381                 unregister_netdev(dev);
4382
4383                 release_region(dev->base_addr, sizeof(ha_t));
4384                 wavelan_list = wavelan_list->next;
4385
4386                 free_netdev(dev);
4387         }
4388
4389 #ifdef DEBUG_MODULE_TRACE
4390         printk(KERN_DEBUG "<- cleanup_module()\n");
4391 #endif
4392 }
4393 #endif                          /* MODULE */
4394 MODULE_LICENSE("GPL");
4395
4396 /*
4397  * This software may only be used and distributed
4398  * according to the terms of the GNU General Public License.
4399  *
4400  * This software was developed as a component of the
4401  * Linux operating system.
4402  * It is based on other device drivers and information
4403  * either written or supplied by:
4404  *      Ajay Bakre (bakre@paul.rutgers.edu),
4405  *      Donald Becker (becker@scyld.com),
4406  *      Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4407  *      Anders Klemets (klemets@it.kth.se),
4408  *      Vladimir V. Kolpakov (w@stier.koenig.ru),
4409  *      Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4410  *      Pauline Middelink (middelin@polyware.iaf.nl),
4411  *      Robert Morris (rtm@das.harvard.edu),
4412  *      Jean Tourrilhes (jt@hplb.hpl.hp.com),
4413  *      Girish Welling (welling@paul.rutgers.edu),
4414  *
4415  * Thanks go also to:
4416  *      James Ashton (jaa101@syseng.anu.edu.au),
4417  *      Alan Cox (alan@redhat.com),
4418  *      Allan Creighton (allanc@cs.usyd.edu.au),
4419  *      Matthew Geier (matthew@cs.usyd.edu.au),
4420  *      Remo di Giovanni (remo@cs.usyd.edu.au),
4421  *      Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4422  *      Vipul Gupta (vgupta@cs.binghamton.edu),
4423  *      Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4424  *      Tim Nicholson (tim@cs.usyd.edu.au),
4425  *      Ian Parkin (ian@cs.usyd.edu.au),
4426  *      John Rosenberg (johnr@cs.usyd.edu.au),
4427  *      George Rossi (george@phm.gov.au),
4428  *      Arthur Scott (arthur@cs.usyd.edu.au),
4429  *      Peter Storey,
4430  * for their assistance and advice.
4431  *
4432  * Please send bug reports, updates, comments to:
4433  *
4434  * Bruce Janson                                    Email:  bruce@cs.usyd.edu.au
4435  * Basser Department of Computer Science           Phone:  +61-2-9351-3423
4436  * University of Sydney, N.S.W., 2006, AUSTRALIA   Fax:    +61-2-9351-3838
4437  */