2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
60 #include <net/protocol.h>
63 #include <net/checksum.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
81 * skb_over_panic - private function
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%#lx end:%#lx dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data,
93 (unsigned long)skb->tail, (unsigned long)skb->end,
94 skb->dev ? skb->dev->name : "<NULL>");
99 * skb_under_panic - private function
104 * Out of line support code for skb_push(). Not user callable.
107 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
109 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
110 "data:%p tail:%#lx end:%#lx dev:%s\n",
111 here, skb->len, sz, skb->head, skb->data,
112 (unsigned long)skb->tail, (unsigned long)skb->end,
113 skb->dev ? skb->dev->name : "<NULL>");
117 void skb_truesize_bug(struct sk_buff *skb)
119 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
120 "len=%u, sizeof(sk_buff)=%Zd\n",
121 skb->truesize, skb->len, sizeof(struct sk_buff));
123 EXPORT_SYMBOL(skb_truesize_bug);
125 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
126 * 'private' fields and also do memory statistics to find all the
132 * __alloc_skb - allocate a network buffer
133 * @size: size to allocate
134 * @gfp_mask: allocation mask
135 * @fclone: allocate from fclone cache instead of head cache
136 * and allocate a cloned (child) skb
137 * @node: numa node to allocate memory on
139 * Allocate a new &sk_buff. The returned buffer has no headroom and a
140 * tail room of size bytes. The object has a reference count of one.
141 * The return is the buffer. On a failure the return is %NULL.
143 * Buffers may only be allocated from interrupts using a @gfp_mask of
146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
147 int fclone, int node)
149 struct kmem_cache *cache;
150 struct skb_shared_info *shinfo;
154 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
157 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
161 size = SKB_DATA_ALIGN(size);
162 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
168 * See comment in sk_buff definition, just before the 'tail' member
170 memset(skb, 0, offsetof(struct sk_buff, tail));
171 skb->truesize = size + sizeof(struct sk_buff);
172 atomic_set(&skb->users, 1);
175 skb_reset_tail_pointer(skb);
176 skb->end = skb->tail + size;
177 /* make sure we initialize shinfo sequentially */
178 shinfo = skb_shinfo(skb);
179 atomic_set(&shinfo->dataref, 1);
180 shinfo->nr_frags = 0;
181 shinfo->gso_size = 0;
182 shinfo->gso_segs = 0;
183 shinfo->gso_type = 0;
184 shinfo->ip6_frag_id = 0;
185 shinfo->frag_list = NULL;
188 struct sk_buff *child = skb + 1;
189 atomic_t *fclone_ref = (atomic_t *) (child + 1);
191 skb->fclone = SKB_FCLONE_ORIG;
192 atomic_set(fclone_ref, 1);
194 child->fclone = SKB_FCLONE_UNAVAILABLE;
199 kmem_cache_free(cache, skb);
205 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
206 * @dev: network device to receive on
207 * @length: length to allocate
208 * @gfp_mask: get_free_pages mask, passed to alloc_skb
210 * Allocate a new &sk_buff and assign it a usage count of one. The
211 * buffer has unspecified headroom built in. Users should allocate
212 * the headroom they think they need without accounting for the
213 * built in space. The built in space is used for optimisations.
215 * %NULL is returned if there is no free memory.
217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
218 unsigned int length, gfp_t gfp_mask)
220 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
223 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
225 skb_reserve(skb, NET_SKB_PAD);
231 static void skb_drop_list(struct sk_buff **listp)
233 struct sk_buff *list = *listp;
238 struct sk_buff *this = list;
244 static inline void skb_drop_fraglist(struct sk_buff *skb)
246 skb_drop_list(&skb_shinfo(skb)->frag_list);
249 static void skb_clone_fraglist(struct sk_buff *skb)
251 struct sk_buff *list;
253 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
257 static void skb_release_data(struct sk_buff *skb)
260 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
261 &skb_shinfo(skb)->dataref)) {
262 if (skb_shinfo(skb)->nr_frags) {
264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
265 put_page(skb_shinfo(skb)->frags[i].page);
268 if (skb_shinfo(skb)->frag_list)
269 skb_drop_fraglist(skb);
276 * Free an skbuff by memory without cleaning the state.
278 void kfree_skbmem(struct sk_buff *skb)
280 struct sk_buff *other;
281 atomic_t *fclone_ref;
283 skb_release_data(skb);
284 switch (skb->fclone) {
285 case SKB_FCLONE_UNAVAILABLE:
286 kmem_cache_free(skbuff_head_cache, skb);
289 case SKB_FCLONE_ORIG:
290 fclone_ref = (atomic_t *) (skb + 2);
291 if (atomic_dec_and_test(fclone_ref))
292 kmem_cache_free(skbuff_fclone_cache, skb);
295 case SKB_FCLONE_CLONE:
296 fclone_ref = (atomic_t *) (skb + 1);
299 /* The clone portion is available for
300 * fast-cloning again.
302 skb->fclone = SKB_FCLONE_UNAVAILABLE;
304 if (atomic_dec_and_test(fclone_ref))
305 kmem_cache_free(skbuff_fclone_cache, other);
311 * __kfree_skb - private function
314 * Free an sk_buff. Release anything attached to the buffer.
315 * Clean the state. This is an internal helper function. Users should
316 * always call kfree_skb
319 void __kfree_skb(struct sk_buff *skb)
321 dst_release(skb->dst);
323 secpath_put(skb->sp);
325 if (skb->destructor) {
327 skb->destructor(skb);
329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
330 nf_conntrack_put(skb->nfct);
331 nf_conntrack_put_reasm(skb->nfct_reasm);
333 #ifdef CONFIG_BRIDGE_NETFILTER
334 nf_bridge_put(skb->nf_bridge);
336 /* XXX: IS this still necessary? - JHS */
337 #ifdef CONFIG_NET_SCHED
339 #ifdef CONFIG_NET_CLS_ACT
348 * kfree_skb - free an sk_buff
349 * @skb: buffer to free
351 * Drop a reference to the buffer and free it if the usage count has
354 void kfree_skb(struct sk_buff *skb)
358 if (likely(atomic_read(&skb->users) == 1))
360 else if (likely(!atomic_dec_and_test(&skb->users)))
366 * skb_clone - duplicate an sk_buff
367 * @skb: buffer to clone
368 * @gfp_mask: allocation priority
370 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
371 * copies share the same packet data but not structure. The new
372 * buffer has a reference count of 1. If the allocation fails the
373 * function returns %NULL otherwise the new buffer is returned.
375 * If this function is called from an interrupt gfp_mask() must be
379 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
384 if (skb->fclone == SKB_FCLONE_ORIG &&
385 n->fclone == SKB_FCLONE_UNAVAILABLE) {
386 atomic_t *fclone_ref = (atomic_t *) (n + 1);
387 n->fclone = SKB_FCLONE_CLONE;
388 atomic_inc(fclone_ref);
390 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
393 n->fclone = SKB_FCLONE_UNAVAILABLE;
396 #define C(x) n->x = skb->x
398 n->next = n->prev = NULL;
409 secpath_get(skb->sp);
411 memcpy(n->cb, skb->cb, sizeof(skb->cb));
418 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
422 skb_copy_queue_mapping(n, skb);
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
428 n->destructor = NULL;
431 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
432 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
435 #ifdef CONFIG_NET_SCHED
437 #ifdef CONFIG_NET_CLS_ACT
438 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
439 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
440 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
444 skb_copy_secmark(n, skb);
446 atomic_set(&n->users, 1);
452 atomic_inc(&(skb_shinfo(skb)->dataref));
458 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
460 #ifndef NET_SKBUFF_DATA_USES_OFFSET
462 * Shift between the two data areas in bytes
464 unsigned long offset = new->data - old->data;
468 skb_copy_queue_mapping(new, old);
469 new->priority = old->priority;
470 new->protocol = old->protocol;
471 new->dst = dst_clone(old->dst);
473 new->sp = secpath_get(old->sp);
475 new->csum_start = old->csum_start;
476 new->csum_offset = old->csum_offset;
477 new->ip_summed = old->ip_summed;
478 new->transport_header = old->transport_header;
479 new->network_header = old->network_header;
480 new->mac_header = old->mac_header;
481 #ifndef NET_SKBUFF_DATA_USES_OFFSET
482 /* {transport,network,mac}_header are relative to skb->head */
483 new->transport_header += offset;
484 new->network_header += offset;
485 new->mac_header += offset;
487 memcpy(new->cb, old->cb, sizeof(old->cb));
488 new->local_df = old->local_df;
489 new->fclone = SKB_FCLONE_UNAVAILABLE;
490 new->pkt_type = old->pkt_type;
491 new->tstamp = old->tstamp;
492 new->destructor = NULL;
493 new->mark = old->mark;
495 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
496 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
497 new->nf_trace = old->nf_trace;
499 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
500 new->ipvs_property = old->ipvs_property;
502 #ifdef CONFIG_NET_SCHED
503 #ifdef CONFIG_NET_CLS_ACT
504 new->tc_verd = old->tc_verd;
506 new->tc_index = old->tc_index;
508 skb_copy_secmark(new, old);
509 atomic_set(&new->users, 1);
510 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
511 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
512 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
516 * skb_copy - create private copy of an sk_buff
517 * @skb: buffer to copy
518 * @gfp_mask: allocation priority
520 * Make a copy of both an &sk_buff and its data. This is used when the
521 * caller wishes to modify the data and needs a private copy of the
522 * data to alter. Returns %NULL on failure or the pointer to the buffer
523 * on success. The returned buffer has a reference count of 1.
525 * As by-product this function converts non-linear &sk_buff to linear
526 * one, so that &sk_buff becomes completely private and caller is allowed
527 * to modify all the data of returned buffer. This means that this
528 * function is not recommended for use in circumstances when only
529 * header is going to be modified. Use pskb_copy() instead.
532 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
534 int headerlen = skb->data - skb->head;
536 * Allocate the copy buffer
539 #ifdef NET_SKBUFF_DATA_USES_OFFSET
540 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
542 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
547 /* Set the data pointer */
548 skb_reserve(n, headerlen);
549 /* Set the tail pointer and length */
550 skb_put(n, skb->len);
552 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
555 copy_skb_header(n, skb);
561 * pskb_copy - create copy of an sk_buff with private head.
562 * @skb: buffer to copy
563 * @gfp_mask: allocation priority
565 * Make a copy of both an &sk_buff and part of its data, located
566 * in header. Fragmented data remain shared. This is used when
567 * the caller wishes to modify only header of &sk_buff and needs
568 * private copy of the header to alter. Returns %NULL on failure
569 * or the pointer to the buffer on success.
570 * The returned buffer has a reference count of 1.
573 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
576 * Allocate the copy buffer
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 n = alloc_skb(skb->end, gfp_mask);
582 n = alloc_skb(skb->end - skb->head, gfp_mask);
587 /* Set the data pointer */
588 skb_reserve(n, skb->data - skb->head);
589 /* Set the tail pointer and length */
590 skb_put(n, skb_headlen(skb));
592 skb_copy_from_linear_data(skb, n->data, n->len);
594 n->truesize += skb->data_len;
595 n->data_len = skb->data_len;
598 if (skb_shinfo(skb)->nr_frags) {
601 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
602 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
603 get_page(skb_shinfo(n)->frags[i].page);
605 skb_shinfo(n)->nr_frags = i;
608 if (skb_shinfo(skb)->frag_list) {
609 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
610 skb_clone_fraglist(n);
613 copy_skb_header(n, skb);
619 * pskb_expand_head - reallocate header of &sk_buff
620 * @skb: buffer to reallocate
621 * @nhead: room to add at head
622 * @ntail: room to add at tail
623 * @gfp_mask: allocation priority
625 * Expands (or creates identical copy, if &nhead and &ntail are zero)
626 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
627 * reference count of 1. Returns zero in the case of success or error,
628 * if expansion failed. In the last case, &sk_buff is not changed.
630 * All the pointers pointing into skb header may change and must be
631 * reloaded after call to this function.
634 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
639 #ifdef NET_SKBUFF_DATA_USES_OFFSET
640 int size = nhead + skb->end + ntail;
642 int size = nhead + (skb->end - skb->head) + ntail;
649 size = SKB_DATA_ALIGN(size);
651 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
655 /* Copy only real data... and, alas, header. This should be
656 * optimized for the cases when header is void. */
657 #ifdef NET_SKBUFF_DATA_USES_OFFSET
658 memcpy(data + nhead, skb->head, skb->tail);
660 memcpy(data + nhead, skb->head, skb->tail - skb->head);
662 memcpy(data + size, skb_end_pointer(skb),
663 sizeof(struct skb_shared_info));
665 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
666 get_page(skb_shinfo(skb)->frags[i].page);
668 if (skb_shinfo(skb)->frag_list)
669 skb_clone_fraglist(skb);
671 skb_release_data(skb);
673 off = (data + nhead) - skb->head;
677 #ifdef NET_SKBUFF_DATA_USES_OFFSET
681 skb->end = skb->head + size;
683 /* {transport,network,mac}_header and tail are relative to skb->head */
685 skb->transport_header += off;
686 skb->network_header += off;
687 skb->mac_header += off;
688 skb->csum_start += off;
692 atomic_set(&skb_shinfo(skb)->dataref, 1);
699 /* Make private copy of skb with writable head and some headroom */
701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
703 struct sk_buff *skb2;
704 int delta = headroom - skb_headroom(skb);
707 skb2 = pskb_copy(skb, GFP_ATOMIC);
709 skb2 = skb_clone(skb, GFP_ATOMIC);
710 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
721 * skb_copy_expand - copy and expand sk_buff
722 * @skb: buffer to copy
723 * @newheadroom: new free bytes at head
724 * @newtailroom: new free bytes at tail
725 * @gfp_mask: allocation priority
727 * Make a copy of both an &sk_buff and its data and while doing so
728 * allocate additional space.
730 * This is used when the caller wishes to modify the data and needs a
731 * private copy of the data to alter as well as more space for new fields.
732 * Returns %NULL on failure or the pointer to the buffer
733 * on success. The returned buffer has a reference count of 1.
735 * You must pass %GFP_ATOMIC as the allocation priority if this function
736 * is called from an interrupt.
738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
739 int newheadroom, int newtailroom,
743 * Allocate the copy buffer
745 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
747 int oldheadroom = skb_headroom(skb);
748 int head_copy_len, head_copy_off;
754 skb_reserve(n, newheadroom);
756 /* Set the tail pointer and length */
757 skb_put(n, skb->len);
759 head_copy_len = oldheadroom;
761 if (newheadroom <= head_copy_len)
762 head_copy_len = newheadroom;
764 head_copy_off = newheadroom - head_copy_len;
766 /* Copy the linear header and data. */
767 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
768 skb->len + head_copy_len))
771 copy_skb_header(n, skb);
773 off = newheadroom - oldheadroom;
774 n->csum_start += off;
775 #ifdef NET_SKBUFF_DATA_USES_OFFSET
776 n->transport_header += off;
777 n->network_header += off;
778 n->mac_header += off;
785 * skb_pad - zero pad the tail of an skb
786 * @skb: buffer to pad
789 * Ensure that a buffer is followed by a padding area that is zero
790 * filled. Used by network drivers which may DMA or transfer data
791 * beyond the buffer end onto the wire.
793 * May return error in out of memory cases. The skb is freed on error.
796 int skb_pad(struct sk_buff *skb, int pad)
801 /* If the skbuff is non linear tailroom is always zero.. */
802 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
803 memset(skb->data+skb->len, 0, pad);
807 ntail = skb->data_len + pad - (skb->end - skb->tail);
808 if (likely(skb_cloned(skb) || ntail > 0)) {
809 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
814 /* FIXME: The use of this function with non-linear skb's really needs
817 err = skb_linearize(skb);
821 memset(skb->data + skb->len, 0, pad);
829 /* Trims skb to length len. It can change skb pointers.
832 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
834 struct sk_buff **fragp;
835 struct sk_buff *frag;
836 int offset = skb_headlen(skb);
837 int nfrags = skb_shinfo(skb)->nr_frags;
841 if (skb_cloned(skb) &&
842 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
849 for (; i < nfrags; i++) {
850 int end = offset + skb_shinfo(skb)->frags[i].size;
857 skb_shinfo(skb)->frags[i++].size = len - offset;
860 skb_shinfo(skb)->nr_frags = i;
862 for (; i < nfrags; i++)
863 put_page(skb_shinfo(skb)->frags[i].page);
865 if (skb_shinfo(skb)->frag_list)
866 skb_drop_fraglist(skb);
870 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
871 fragp = &frag->next) {
872 int end = offset + frag->len;
874 if (skb_shared(frag)) {
875 struct sk_buff *nfrag;
877 nfrag = skb_clone(frag, GFP_ATOMIC);
878 if (unlikely(!nfrag))
881 nfrag->next = frag->next;
893 unlikely((err = pskb_trim(frag, len - offset))))
897 skb_drop_list(&frag->next);
902 if (len > skb_headlen(skb)) {
903 skb->data_len -= skb->len - len;
908 skb_set_tail_pointer(skb, len);
915 * __pskb_pull_tail - advance tail of skb header
916 * @skb: buffer to reallocate
917 * @delta: number of bytes to advance tail
919 * The function makes a sense only on a fragmented &sk_buff,
920 * it expands header moving its tail forward and copying necessary
921 * data from fragmented part.
923 * &sk_buff MUST have reference count of 1.
925 * Returns %NULL (and &sk_buff does not change) if pull failed
926 * or value of new tail of skb in the case of success.
928 * All the pointers pointing into skb header may change and must be
929 * reloaded after call to this function.
932 /* Moves tail of skb head forward, copying data from fragmented part,
933 * when it is necessary.
934 * 1. It may fail due to malloc failure.
935 * 2. It may change skb pointers.
937 * It is pretty complicated. Luckily, it is called only in exceptional cases.
939 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
941 /* If skb has not enough free space at tail, get new one
942 * plus 128 bytes for future expansions. If we have enough
943 * room at tail, reallocate without expansion only if skb is cloned.
945 int i, k, eat = (skb->tail + delta) - skb->end;
947 if (eat > 0 || skb_cloned(skb)) {
948 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
953 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
956 /* Optimization: no fragments, no reasons to preestimate
957 * size of pulled pages. Superb.
959 if (!skb_shinfo(skb)->frag_list)
962 /* Estimate size of pulled pages. */
964 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
965 if (skb_shinfo(skb)->frags[i].size >= eat)
967 eat -= skb_shinfo(skb)->frags[i].size;
970 /* If we need update frag list, we are in troubles.
971 * Certainly, it possible to add an offset to skb data,
972 * but taking into account that pulling is expected to
973 * be very rare operation, it is worth to fight against
974 * further bloating skb head and crucify ourselves here instead.
975 * Pure masohism, indeed. 8)8)
978 struct sk_buff *list = skb_shinfo(skb)->frag_list;
979 struct sk_buff *clone = NULL;
980 struct sk_buff *insp = NULL;
985 if (list->len <= eat) {
986 /* Eaten as whole. */
991 /* Eaten partially. */
993 if (skb_shared(list)) {
994 /* Sucks! We need to fork list. :-( */
995 clone = skb_clone(list, GFP_ATOMIC);
1001 /* This may be pulled without
1005 if (!pskb_pull(list, eat)) {
1014 /* Free pulled out fragments. */
1015 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1016 skb_shinfo(skb)->frag_list = list->next;
1019 /* And insert new clone at head. */
1022 skb_shinfo(skb)->frag_list = clone;
1025 /* Success! Now we may commit changes to skb data. */
1030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1031 if (skb_shinfo(skb)->frags[i].size <= eat) {
1032 put_page(skb_shinfo(skb)->frags[i].page);
1033 eat -= skb_shinfo(skb)->frags[i].size;
1035 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1037 skb_shinfo(skb)->frags[k].page_offset += eat;
1038 skb_shinfo(skb)->frags[k].size -= eat;
1044 skb_shinfo(skb)->nr_frags = k;
1047 skb->data_len -= delta;
1049 return skb_tail_pointer(skb);
1052 /* Copy some data bits from skb to kernel buffer. */
1054 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1057 int start = skb_headlen(skb);
1059 if (offset > (int)skb->len - len)
1063 if ((copy = start - offset) > 0) {
1066 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1067 if ((len -= copy) == 0)
1073 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1076 BUG_TRAP(start <= offset + len);
1078 end = start + skb_shinfo(skb)->frags[i].size;
1079 if ((copy = end - offset) > 0) {
1085 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1087 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1088 offset - start, copy);
1089 kunmap_skb_frag(vaddr);
1091 if ((len -= copy) == 0)
1099 if (skb_shinfo(skb)->frag_list) {
1100 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1102 for (; list; list = list->next) {
1105 BUG_TRAP(start <= offset + len);
1107 end = start + list->len;
1108 if ((copy = end - offset) > 0) {
1111 if (skb_copy_bits(list, offset - start,
1114 if ((len -= copy) == 0)
1130 * skb_store_bits - store bits from kernel buffer to skb
1131 * @skb: destination buffer
1132 * @offset: offset in destination
1133 * @from: source buffer
1134 * @len: number of bytes to copy
1136 * Copy the specified number of bytes from the source buffer to the
1137 * destination skb. This function handles all the messy bits of
1138 * traversing fragment lists and such.
1141 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1144 int start = skb_headlen(skb);
1146 if (offset > (int)skb->len - len)
1149 if ((copy = start - offset) > 0) {
1152 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1153 if ((len -= copy) == 0)
1159 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1160 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1163 BUG_TRAP(start <= offset + len);
1165 end = start + frag->size;
1166 if ((copy = end - offset) > 0) {
1172 vaddr = kmap_skb_frag(frag);
1173 memcpy(vaddr + frag->page_offset + offset - start,
1175 kunmap_skb_frag(vaddr);
1177 if ((len -= copy) == 0)
1185 if (skb_shinfo(skb)->frag_list) {
1186 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1188 for (; list; list = list->next) {
1191 BUG_TRAP(start <= offset + len);
1193 end = start + list->len;
1194 if ((copy = end - offset) > 0) {
1197 if (skb_store_bits(list, offset - start,
1200 if ((len -= copy) == 0)
1215 EXPORT_SYMBOL(skb_store_bits);
1217 /* Checksum skb data. */
1219 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1220 int len, __wsum csum)
1222 int start = skb_headlen(skb);
1223 int i, copy = start - offset;
1226 /* Checksum header. */
1230 csum = csum_partial(skb->data + offset, copy, csum);
1231 if ((len -= copy) == 0)
1237 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1240 BUG_TRAP(start <= offset + len);
1242 end = start + skb_shinfo(skb)->frags[i].size;
1243 if ((copy = end - offset) > 0) {
1246 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1250 vaddr = kmap_skb_frag(frag);
1251 csum2 = csum_partial(vaddr + frag->page_offset +
1252 offset - start, copy, 0);
1253 kunmap_skb_frag(vaddr);
1254 csum = csum_block_add(csum, csum2, pos);
1263 if (skb_shinfo(skb)->frag_list) {
1264 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1266 for (; list; list = list->next) {
1269 BUG_TRAP(start <= offset + len);
1271 end = start + list->len;
1272 if ((copy = end - offset) > 0) {
1276 csum2 = skb_checksum(list, offset - start,
1278 csum = csum_block_add(csum, csum2, pos);
1279 if ((len -= copy) == 0)
1292 /* Both of above in one bottle. */
1294 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1295 u8 *to, int len, __wsum csum)
1297 int start = skb_headlen(skb);
1298 int i, copy = start - offset;
1305 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1307 if ((len -= copy) == 0)
1314 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1317 BUG_TRAP(start <= offset + len);
1319 end = start + skb_shinfo(skb)->frags[i].size;
1320 if ((copy = end - offset) > 0) {
1323 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1327 vaddr = kmap_skb_frag(frag);
1328 csum2 = csum_partial_copy_nocheck(vaddr +
1332 kunmap_skb_frag(vaddr);
1333 csum = csum_block_add(csum, csum2, pos);
1343 if (skb_shinfo(skb)->frag_list) {
1344 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1346 for (; list; list = list->next) {
1350 BUG_TRAP(start <= offset + len);
1352 end = start + list->len;
1353 if ((copy = end - offset) > 0) {
1356 csum2 = skb_copy_and_csum_bits(list,
1359 csum = csum_block_add(csum, csum2, pos);
1360 if ((len -= copy) == 0)
1373 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1378 if (skb->ip_summed == CHECKSUM_PARTIAL)
1379 csstart = skb->csum_start - skb_headroom(skb);
1381 csstart = skb_headlen(skb);
1383 BUG_ON(csstart > skb_headlen(skb));
1385 skb_copy_from_linear_data(skb, to, csstart);
1388 if (csstart != skb->len)
1389 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1390 skb->len - csstart, 0);
1392 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1393 long csstuff = csstart + skb->csum_offset;
1395 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1400 * skb_dequeue - remove from the head of the queue
1401 * @list: list to dequeue from
1403 * Remove the head of the list. The list lock is taken so the function
1404 * may be used safely with other locking list functions. The head item is
1405 * returned or %NULL if the list is empty.
1408 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1410 unsigned long flags;
1411 struct sk_buff *result;
1413 spin_lock_irqsave(&list->lock, flags);
1414 result = __skb_dequeue(list);
1415 spin_unlock_irqrestore(&list->lock, flags);
1420 * skb_dequeue_tail - remove from the tail of the queue
1421 * @list: list to dequeue from
1423 * Remove the tail of the list. The list lock is taken so the function
1424 * may be used safely with other locking list functions. The tail item is
1425 * returned or %NULL if the list is empty.
1427 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1429 unsigned long flags;
1430 struct sk_buff *result;
1432 spin_lock_irqsave(&list->lock, flags);
1433 result = __skb_dequeue_tail(list);
1434 spin_unlock_irqrestore(&list->lock, flags);
1439 * skb_queue_purge - empty a list
1440 * @list: list to empty
1442 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1443 * the list and one reference dropped. This function takes the list
1444 * lock and is atomic with respect to other list locking functions.
1446 void skb_queue_purge(struct sk_buff_head *list)
1448 struct sk_buff *skb;
1449 while ((skb = skb_dequeue(list)) != NULL)
1454 * skb_queue_head - queue a buffer at the list head
1455 * @list: list to use
1456 * @newsk: buffer to queue
1458 * Queue a buffer at the start of the list. This function takes the
1459 * list lock and can be used safely with other locking &sk_buff functions
1462 * A buffer cannot be placed on two lists at the same time.
1464 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1466 unsigned long flags;
1468 spin_lock_irqsave(&list->lock, flags);
1469 __skb_queue_head(list, newsk);
1470 spin_unlock_irqrestore(&list->lock, flags);
1474 * skb_queue_tail - queue a buffer at the list tail
1475 * @list: list to use
1476 * @newsk: buffer to queue
1478 * Queue a buffer at the tail of the list. This function takes the
1479 * list lock and can be used safely with other locking &sk_buff functions
1482 * A buffer cannot be placed on two lists at the same time.
1484 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1486 unsigned long flags;
1488 spin_lock_irqsave(&list->lock, flags);
1489 __skb_queue_tail(list, newsk);
1490 spin_unlock_irqrestore(&list->lock, flags);
1494 * skb_unlink - remove a buffer from a list
1495 * @skb: buffer to remove
1496 * @list: list to use
1498 * Remove a packet from a list. The list locks are taken and this
1499 * function is atomic with respect to other list locked calls
1501 * You must know what list the SKB is on.
1503 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1505 unsigned long flags;
1507 spin_lock_irqsave(&list->lock, flags);
1508 __skb_unlink(skb, list);
1509 spin_unlock_irqrestore(&list->lock, flags);
1513 * skb_append - append a buffer
1514 * @old: buffer to insert after
1515 * @newsk: buffer to insert
1516 * @list: list to use
1518 * Place a packet after a given packet in a list. The list locks are taken
1519 * and this function is atomic with respect to other list locked calls.
1520 * A buffer cannot be placed on two lists at the same time.
1522 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1524 unsigned long flags;
1526 spin_lock_irqsave(&list->lock, flags);
1527 __skb_append(old, newsk, list);
1528 spin_unlock_irqrestore(&list->lock, flags);
1533 * skb_insert - insert a buffer
1534 * @old: buffer to insert before
1535 * @newsk: buffer to insert
1536 * @list: list to use
1538 * Place a packet before a given packet in a list. The list locks are
1539 * taken and this function is atomic with respect to other list locked
1542 * A buffer cannot be placed on two lists at the same time.
1544 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1546 unsigned long flags;
1548 spin_lock_irqsave(&list->lock, flags);
1549 __skb_insert(newsk, old->prev, old, list);
1550 spin_unlock_irqrestore(&list->lock, flags);
1553 static inline void skb_split_inside_header(struct sk_buff *skb,
1554 struct sk_buff* skb1,
1555 const u32 len, const int pos)
1559 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1561 /* And move data appendix as is. */
1562 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1563 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1565 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1566 skb_shinfo(skb)->nr_frags = 0;
1567 skb1->data_len = skb->data_len;
1568 skb1->len += skb1->data_len;
1571 skb_set_tail_pointer(skb, len);
1574 static inline void skb_split_no_header(struct sk_buff *skb,
1575 struct sk_buff* skb1,
1576 const u32 len, int pos)
1579 const int nfrags = skb_shinfo(skb)->nr_frags;
1581 skb_shinfo(skb)->nr_frags = 0;
1582 skb1->len = skb1->data_len = skb->len - len;
1584 skb->data_len = len - pos;
1586 for (i = 0; i < nfrags; i++) {
1587 int size = skb_shinfo(skb)->frags[i].size;
1589 if (pos + size > len) {
1590 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1594 * We have two variants in this case:
1595 * 1. Move all the frag to the second
1596 * part, if it is possible. F.e.
1597 * this approach is mandatory for TUX,
1598 * where splitting is expensive.
1599 * 2. Split is accurately. We make this.
1601 get_page(skb_shinfo(skb)->frags[i].page);
1602 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1603 skb_shinfo(skb1)->frags[0].size -= len - pos;
1604 skb_shinfo(skb)->frags[i].size = len - pos;
1605 skb_shinfo(skb)->nr_frags++;
1609 skb_shinfo(skb)->nr_frags++;
1612 skb_shinfo(skb1)->nr_frags = k;
1616 * skb_split - Split fragmented skb to two parts at length len.
1617 * @skb: the buffer to split
1618 * @skb1: the buffer to receive the second part
1619 * @len: new length for skb
1621 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1623 int pos = skb_headlen(skb);
1625 if (len < pos) /* Split line is inside header. */
1626 skb_split_inside_header(skb, skb1, len, pos);
1627 else /* Second chunk has no header, nothing to copy. */
1628 skb_split_no_header(skb, skb1, len, pos);
1632 * skb_prepare_seq_read - Prepare a sequential read of skb data
1633 * @skb: the buffer to read
1634 * @from: lower offset of data to be read
1635 * @to: upper offset of data to be read
1636 * @st: state variable
1638 * Initializes the specified state variable. Must be called before
1639 * invoking skb_seq_read() for the first time.
1641 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1642 unsigned int to, struct skb_seq_state *st)
1644 st->lower_offset = from;
1645 st->upper_offset = to;
1646 st->root_skb = st->cur_skb = skb;
1647 st->frag_idx = st->stepped_offset = 0;
1648 st->frag_data = NULL;
1652 * skb_seq_read - Sequentially read skb data
1653 * @consumed: number of bytes consumed by the caller so far
1654 * @data: destination pointer for data to be returned
1655 * @st: state variable
1657 * Reads a block of skb data at &consumed relative to the
1658 * lower offset specified to skb_prepare_seq_read(). Assigns
1659 * the head of the data block to &data and returns the length
1660 * of the block or 0 if the end of the skb data or the upper
1661 * offset has been reached.
1663 * The caller is not required to consume all of the data
1664 * returned, i.e. &consumed is typically set to the number
1665 * of bytes already consumed and the next call to
1666 * skb_seq_read() will return the remaining part of the block.
1668 * Note: The size of each block of data returned can be arbitary,
1669 * this limitation is the cost for zerocopy seqeuental
1670 * reads of potentially non linear data.
1672 * Note: Fragment lists within fragments are not implemented
1673 * at the moment, state->root_skb could be replaced with
1674 * a stack for this purpose.
1676 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1677 struct skb_seq_state *st)
1679 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1682 if (unlikely(abs_offset >= st->upper_offset))
1686 block_limit = skb_headlen(st->cur_skb);
1688 if (abs_offset < block_limit) {
1689 *data = st->cur_skb->data + abs_offset;
1690 return block_limit - abs_offset;
1693 if (st->frag_idx == 0 && !st->frag_data)
1694 st->stepped_offset += skb_headlen(st->cur_skb);
1696 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1697 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1698 block_limit = frag->size + st->stepped_offset;
1700 if (abs_offset < block_limit) {
1702 st->frag_data = kmap_skb_frag(frag);
1704 *data = (u8 *) st->frag_data + frag->page_offset +
1705 (abs_offset - st->stepped_offset);
1707 return block_limit - abs_offset;
1710 if (st->frag_data) {
1711 kunmap_skb_frag(st->frag_data);
1712 st->frag_data = NULL;
1716 st->stepped_offset += frag->size;
1719 if (st->frag_data) {
1720 kunmap_skb_frag(st->frag_data);
1721 st->frag_data = NULL;
1724 if (st->cur_skb->next) {
1725 st->cur_skb = st->cur_skb->next;
1728 } else if (st->root_skb == st->cur_skb &&
1729 skb_shinfo(st->root_skb)->frag_list) {
1730 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1738 * skb_abort_seq_read - Abort a sequential read of skb data
1739 * @st: state variable
1741 * Must be called if skb_seq_read() was not called until it
1744 void skb_abort_seq_read(struct skb_seq_state *st)
1747 kunmap_skb_frag(st->frag_data);
1750 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1752 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1753 struct ts_config *conf,
1754 struct ts_state *state)
1756 return skb_seq_read(offset, text, TS_SKB_CB(state));
1759 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1761 skb_abort_seq_read(TS_SKB_CB(state));
1765 * skb_find_text - Find a text pattern in skb data
1766 * @skb: the buffer to look in
1767 * @from: search offset
1769 * @config: textsearch configuration
1770 * @state: uninitialized textsearch state variable
1772 * Finds a pattern in the skb data according to the specified
1773 * textsearch configuration. Use textsearch_next() to retrieve
1774 * subsequent occurrences of the pattern. Returns the offset
1775 * to the first occurrence or UINT_MAX if no match was found.
1777 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1778 unsigned int to, struct ts_config *config,
1779 struct ts_state *state)
1783 config->get_next_block = skb_ts_get_next_block;
1784 config->finish = skb_ts_finish;
1786 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1788 ret = textsearch_find(config, state);
1789 return (ret <= to - from ? ret : UINT_MAX);
1793 * skb_append_datato_frags: - append the user data to a skb
1794 * @sk: sock structure
1795 * @skb: skb structure to be appened with user data.
1796 * @getfrag: call back function to be used for getting the user data
1797 * @from: pointer to user message iov
1798 * @length: length of the iov message
1800 * Description: This procedure append the user data in the fragment part
1801 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1803 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1804 int (*getfrag)(void *from, char *to, int offset,
1805 int len, int odd, struct sk_buff *skb),
1806 void *from, int length)
1809 skb_frag_t *frag = NULL;
1810 struct page *page = NULL;
1816 /* Return error if we don't have space for new frag */
1817 frg_cnt = skb_shinfo(skb)->nr_frags;
1818 if (frg_cnt >= MAX_SKB_FRAGS)
1821 /* allocate a new page for next frag */
1822 page = alloc_pages(sk->sk_allocation, 0);
1824 /* If alloc_page fails just return failure and caller will
1825 * free previous allocated pages by doing kfree_skb()
1830 /* initialize the next frag */
1831 sk->sk_sndmsg_page = page;
1832 sk->sk_sndmsg_off = 0;
1833 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1834 skb->truesize += PAGE_SIZE;
1835 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1837 /* get the new initialized frag */
1838 frg_cnt = skb_shinfo(skb)->nr_frags;
1839 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1841 /* copy the user data to page */
1842 left = PAGE_SIZE - frag->page_offset;
1843 copy = (length > left)? left : length;
1845 ret = getfrag(from, (page_address(frag->page) +
1846 frag->page_offset + frag->size),
1847 offset, copy, 0, skb);
1851 /* copy was successful so update the size parameters */
1852 sk->sk_sndmsg_off += copy;
1855 skb->data_len += copy;
1859 } while (length > 0);
1865 * skb_pull_rcsum - pull skb and update receive checksum
1866 * @skb: buffer to update
1867 * @start: start of data before pull
1868 * @len: length of data pulled
1870 * This function performs an skb_pull on the packet and updates
1871 * update the CHECKSUM_COMPLETE checksum. It should be used on
1872 * receive path processing instead of skb_pull unless you know
1873 * that the checksum difference is zero (e.g., a valid IP header)
1874 * or you are setting ip_summed to CHECKSUM_NONE.
1876 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1878 BUG_ON(len > skb->len);
1880 BUG_ON(skb->len < skb->data_len);
1881 skb_postpull_rcsum(skb, skb->data, len);
1882 return skb->data += len;
1885 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1888 * skb_segment - Perform protocol segmentation on skb.
1889 * @skb: buffer to segment
1890 * @features: features for the output path (see dev->features)
1892 * This function performs segmentation on the given skb. It returns
1893 * the segment at the given position. It returns NULL if there are
1894 * no more segments to generate, or when an error is encountered.
1896 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1898 struct sk_buff *segs = NULL;
1899 struct sk_buff *tail = NULL;
1900 unsigned int mss = skb_shinfo(skb)->gso_size;
1901 unsigned int doffset = skb->data - skb_mac_header(skb);
1902 unsigned int offset = doffset;
1903 unsigned int headroom;
1905 int sg = features & NETIF_F_SG;
1906 int nfrags = skb_shinfo(skb)->nr_frags;
1911 __skb_push(skb, doffset);
1912 headroom = skb_headroom(skb);
1913 pos = skb_headlen(skb);
1916 struct sk_buff *nskb;
1922 len = skb->len - offset;
1926 hsize = skb_headlen(skb) - offset;
1929 if (hsize > len || !sg)
1932 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1933 if (unlikely(!nskb))
1942 nskb->dev = skb->dev;
1943 skb_copy_queue_mapping(nskb, skb);
1944 nskb->priority = skb->priority;
1945 nskb->protocol = skb->protocol;
1946 nskb->dst = dst_clone(skb->dst);
1947 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1948 nskb->pkt_type = skb->pkt_type;
1949 nskb->mac_len = skb->mac_len;
1951 skb_reserve(nskb, headroom);
1952 skb_reset_mac_header(nskb);
1953 skb_set_network_header(nskb, skb->mac_len);
1954 nskb->transport_header = (nskb->network_header +
1955 skb_network_header_len(skb));
1956 skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
1959 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1965 frag = skb_shinfo(nskb)->frags;
1968 nskb->ip_summed = CHECKSUM_PARTIAL;
1969 nskb->csum = skb->csum;
1970 skb_copy_from_linear_data_offset(skb, offset,
1971 skb_put(nskb, hsize), hsize);
1973 while (pos < offset + len) {
1974 BUG_ON(i >= nfrags);
1976 *frag = skb_shinfo(skb)->frags[i];
1977 get_page(frag->page);
1981 frag->page_offset += offset - pos;
1982 frag->size -= offset - pos;
1987 if (pos + size <= offset + len) {
1991 frag->size -= pos + size - (offset + len);
1998 skb_shinfo(nskb)->nr_frags = k;
1999 nskb->data_len = len - hsize;
2000 nskb->len += nskb->data_len;
2001 nskb->truesize += nskb->data_len;
2002 } while ((offset += len) < skb->len);
2007 while ((skb = segs)) {
2011 return ERR_PTR(err);
2014 EXPORT_SYMBOL_GPL(skb_segment);
2016 void __init skb_init(void)
2018 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2019 sizeof(struct sk_buff),
2021 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2023 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2024 (2*sizeof(struct sk_buff)) +
2027 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2032 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2033 * @skb: Socket buffer containing the buffers to be mapped
2034 * @sg: The scatter-gather list to map into
2035 * @offset: The offset into the buffer's contents to start mapping
2036 * @len: Length of buffer space to be mapped
2038 * Fill the specified scatter-gather list with mappings/pointers into a
2039 * region of the buffer space attached to a socket buffer.
2042 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2044 int start = skb_headlen(skb);
2045 int i, copy = start - offset;
2051 sg[elt].page = virt_to_page(skb->data + offset);
2052 sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE;
2053 sg[elt].length = copy;
2055 if ((len -= copy) == 0)
2060 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2063 BUG_TRAP(start <= offset + len);
2065 end = start + skb_shinfo(skb)->frags[i].size;
2066 if ((copy = end - offset) > 0) {
2067 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2071 sg[elt].page = frag->page;
2072 sg[elt].offset = frag->page_offset+offset-start;
2073 sg[elt].length = copy;
2082 if (skb_shinfo(skb)->frag_list) {
2083 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2085 for (; list; list = list->next) {
2088 BUG_TRAP(start <= offset + len);
2090 end = start + list->len;
2091 if ((copy = end - offset) > 0) {
2094 elt += skb_to_sgvec(list, sg+elt, offset - start, copy);
2095 if ((len -= copy) == 0)
2107 * skb_cow_data - Check that a socket buffer's data buffers are writable
2108 * @skb: The socket buffer to check.
2109 * @tailbits: Amount of trailing space to be added
2110 * @trailer: Returned pointer to the skb where the @tailbits space begins
2112 * Make sure that the data buffers attached to a socket buffer are
2113 * writable. If they are not, private copies are made of the data buffers
2114 * and the socket buffer is set to use these instead.
2116 * If @tailbits is given, make sure that there is space to write @tailbits
2117 * bytes of data beyond current end of socket buffer. @trailer will be
2118 * set to point to the skb in which this space begins.
2120 * The number of scatterlist elements required to completely map the
2121 * COW'd and extended socket buffer will be returned.
2123 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2127 struct sk_buff *skb1, **skb_p;
2129 /* If skb is cloned or its head is paged, reallocate
2130 * head pulling out all the pages (pages are considered not writable
2131 * at the moment even if they are anonymous).
2133 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2134 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2137 /* Easy case. Most of packets will go this way. */
2138 if (!skb_shinfo(skb)->frag_list) {
2139 /* A little of trouble, not enough of space for trailer.
2140 * This should not happen, when stack is tuned to generate
2141 * good frames. OK, on miss we reallocate and reserve even more
2142 * space, 128 bytes is fair. */
2144 if (skb_tailroom(skb) < tailbits &&
2145 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2153 /* Misery. We are in troubles, going to mincer fragments... */
2156 skb_p = &skb_shinfo(skb)->frag_list;
2159 while ((skb1 = *skb_p) != NULL) {
2162 /* The fragment is partially pulled by someone,
2163 * this can happen on input. Copy it and everything
2166 if (skb_shared(skb1))
2169 /* If the skb is the last, worry about trailer. */
2171 if (skb1->next == NULL && tailbits) {
2172 if (skb_shinfo(skb1)->nr_frags ||
2173 skb_shinfo(skb1)->frag_list ||
2174 skb_tailroom(skb1) < tailbits)
2175 ntail = tailbits + 128;
2181 skb_shinfo(skb1)->nr_frags ||
2182 skb_shinfo(skb1)->frag_list) {
2183 struct sk_buff *skb2;
2185 /* Fuck, we are miserable poor guys... */
2187 skb2 = skb_copy(skb1, GFP_ATOMIC);
2189 skb2 = skb_copy_expand(skb1,
2193 if (unlikely(skb2 == NULL))
2197 skb_set_owner_w(skb2, skb1->sk);
2199 /* Looking around. Are we still alive?
2200 * OK, link new skb, drop old one */
2202 skb2->next = skb1->next;
2209 skb_p = &skb1->next;
2215 EXPORT_SYMBOL(___pskb_trim);
2216 EXPORT_SYMBOL(__kfree_skb);
2217 EXPORT_SYMBOL(kfree_skb);
2218 EXPORT_SYMBOL(__pskb_pull_tail);
2219 EXPORT_SYMBOL(__alloc_skb);
2220 EXPORT_SYMBOL(__netdev_alloc_skb);
2221 EXPORT_SYMBOL(pskb_copy);
2222 EXPORT_SYMBOL(pskb_expand_head);
2223 EXPORT_SYMBOL(skb_checksum);
2224 EXPORT_SYMBOL(skb_clone);
2225 EXPORT_SYMBOL(skb_copy);
2226 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2227 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2228 EXPORT_SYMBOL(skb_copy_bits);
2229 EXPORT_SYMBOL(skb_copy_expand);
2230 EXPORT_SYMBOL(skb_over_panic);
2231 EXPORT_SYMBOL(skb_pad);
2232 EXPORT_SYMBOL(skb_realloc_headroom);
2233 EXPORT_SYMBOL(skb_under_panic);
2234 EXPORT_SYMBOL(skb_dequeue);
2235 EXPORT_SYMBOL(skb_dequeue_tail);
2236 EXPORT_SYMBOL(skb_insert);
2237 EXPORT_SYMBOL(skb_queue_purge);
2238 EXPORT_SYMBOL(skb_queue_head);
2239 EXPORT_SYMBOL(skb_queue_tail);
2240 EXPORT_SYMBOL(skb_unlink);
2241 EXPORT_SYMBOL(skb_append);
2242 EXPORT_SYMBOL(skb_split);
2243 EXPORT_SYMBOL(skb_prepare_seq_read);
2244 EXPORT_SYMBOL(skb_seq_read);
2245 EXPORT_SYMBOL(skb_abort_seq_read);
2246 EXPORT_SYMBOL(skb_find_text);
2247 EXPORT_SYMBOL(skb_append_datato_frags);
2249 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2250 EXPORT_SYMBOL_GPL(skb_cow_data);