2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
59 #define NFSDBG_FACILITY NFSDBG_VFS
61 static kmem_cache_t *nfs_direct_cachep;
64 * This represents a set of asynchronous requests that we're waiting on
66 struct nfs_direct_req {
67 struct kref kref; /* release manager */
70 struct nfs_open_context *ctx; /* file open context info */
71 struct kiocb * iocb; /* controlling i/o request */
72 struct inode * inode; /* target file of i/o */
74 /* completion state */
75 atomic_t io_count; /* i/os we're waiting for */
76 spinlock_t lock; /* protect completion state */
77 ssize_t count, /* bytes actually processed */
78 error; /* any reported error */
79 struct completion completion; /* wait for i/o completion */
82 struct list_head rewrite_list; /* saved nfs_write_data structs */
83 struct nfs_write_data * commit_data; /* special write_data for commits */
85 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
86 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
87 struct nfs_writeverf verf; /* unstable write verifier */
90 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
91 static const struct rpc_call_ops nfs_write_direct_ops;
93 static inline void get_dreq(struct nfs_direct_req *dreq)
95 atomic_inc(&dreq->io_count);
98 static inline int put_dreq(struct nfs_direct_req *dreq)
100 return atomic_dec_and_test(&dreq->io_count);
104 * nfs_direct_IO - NFS address space operation for direct I/O
105 * @rw: direction (read or write)
106 * @iocb: target I/O control block
107 * @iov: array of vectors that define I/O buffer
108 * @pos: offset in file to begin the operation
109 * @nr_segs: size of iovec array
111 * The presence of this routine in the address space ops vector means
112 * the NFS client supports direct I/O. However, we shunt off direct
113 * read and write requests before the VFS gets them, so this method
114 * should never be called.
116 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
118 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
119 iocb->ki_filp->f_dentry->d_name.name,
120 (long long) pos, nr_segs);
125 static void nfs_direct_dirty_pages(struct page **pages, int npages)
128 for (i = 0; i < npages; i++) {
129 struct page *page = pages[i];
130 if (!PageCompound(page))
131 set_page_dirty_lock(page);
135 static void nfs_direct_release_pages(struct page **pages, int npages)
138 for (i = 0; i < npages; i++)
139 page_cache_release(pages[i]);
142 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
144 struct nfs_direct_req *dreq;
146 dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
150 kref_init(&dreq->kref);
151 kref_get(&dreq->kref);
152 init_completion(&dreq->completion);
153 INIT_LIST_HEAD(&dreq->rewrite_list);
156 spin_lock_init(&dreq->lock);
157 atomic_set(&dreq->io_count, 0);
165 static void nfs_direct_req_release(struct kref *kref)
167 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
169 if (dreq->ctx != NULL)
170 put_nfs_open_context(dreq->ctx);
171 kmem_cache_free(nfs_direct_cachep, dreq);
175 * Collects and returns the final error value/byte-count.
177 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
179 ssize_t result = -EIOCBQUEUED;
181 /* Async requests don't wait here */
185 result = wait_for_completion_interruptible(&dreq->completion);
188 result = dreq->error;
190 result = dreq->count;
193 kref_put(&dreq->kref, nfs_direct_req_release);
194 return (ssize_t) result;
198 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
199 * the iocb is still valid here if this is a synchronous request.
201 static void nfs_direct_complete(struct nfs_direct_req *dreq)
204 long res = (long) dreq->error;
206 res = (long) dreq->count;
207 aio_complete(dreq->iocb, res, 0);
209 complete_all(&dreq->completion);
211 kref_put(&dreq->kref, nfs_direct_req_release);
215 * We must hold a reference to all the pages in this direct read request
216 * until the RPCs complete. This could be long *after* we are woken up in
217 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
219 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
221 struct nfs_read_data *data = calldata;
222 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
224 if (nfs_readpage_result(task, data) != 0)
227 nfs_direct_dirty_pages(data->pagevec, data->npages);
228 nfs_direct_release_pages(data->pagevec, data->npages);
230 spin_lock(&dreq->lock);
232 if (likely(task->tk_status >= 0))
233 dreq->count += data->res.count;
235 dreq->error = task->tk_status;
237 spin_unlock(&dreq->lock);
240 nfs_direct_complete(dreq);
243 static const struct rpc_call_ops nfs_read_direct_ops = {
244 .rpc_call_done = nfs_direct_read_result,
245 .rpc_release = nfs_readdata_release,
249 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
250 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
251 * bail and stop sending more reads. Read length accounting is
252 * handled automatically by nfs_direct_read_result(). Otherwise, if
253 * no requests have been sent, just return an error.
255 static ssize_t nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos)
257 struct nfs_open_context *ctx = dreq->ctx;
258 struct inode *inode = ctx->dentry->d_inode;
259 size_t rsize = NFS_SERVER(inode)->rsize;
267 struct nfs_read_data *data;
270 pgbase = user_addr & ~PAGE_MASK;
271 bytes = min(rsize,count);
274 data = nfs_readdata_alloc(pgbase + bytes);
278 down_read(¤t->mm->mmap_sem);
279 result = get_user_pages(current, current->mm, user_addr,
280 data->npages, 1, 0, data->pagevec, NULL);
281 up_read(¤t->mm->mmap_sem);
282 if (unlikely(result < data->npages)) {
284 nfs_direct_release_pages(data->pagevec, result);
285 nfs_readdata_release(data);
291 data->req = (struct nfs_page *) dreq;
293 data->cred = ctx->cred;
294 data->args.fh = NFS_FH(inode);
295 data->args.context = ctx;
296 data->args.offset = pos;
297 data->args.pgbase = pgbase;
298 data->args.pages = data->pagevec;
299 data->args.count = bytes;
300 data->res.fattr = &data->fattr;
302 data->res.count = bytes;
304 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
305 &nfs_read_direct_ops, data);
306 NFS_PROTO(inode)->read_setup(data);
308 data->task.tk_cookie = (unsigned long) inode;
311 rpc_execute(&data->task);
314 dfprintk(VFS, "NFS: %5u initiated direct read call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
317 (long long)NFS_FILEID(inode),
319 (unsigned long long)data->args.offset);
324 /* FIXME: Remove this unnecessary math from final patch */
326 pgbase &= ~PAGE_MASK;
327 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
330 } while (count != 0);
333 nfs_direct_complete(dreq);
337 return result < 0 ? (ssize_t) result : -EFAULT;
340 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos)
344 struct inode *inode = iocb->ki_filp->f_mapping->host;
345 struct rpc_clnt *clnt = NFS_CLIENT(inode);
346 struct nfs_direct_req *dreq;
348 dreq = nfs_direct_req_alloc();
353 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
354 if (!is_sync_kiocb(iocb))
357 nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
358 rpc_clnt_sigmask(clnt, &oldset);
359 result = nfs_direct_read_schedule(dreq, user_addr, count, pos);
361 result = nfs_direct_wait(dreq);
362 rpc_clnt_sigunmask(clnt, &oldset);
367 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
369 while (!list_empty(&dreq->rewrite_list)) {
370 struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
371 list_del(&data->pages);
372 nfs_direct_release_pages(data->pagevec, data->npages);
373 nfs_writedata_release(data);
377 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
378 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
380 struct inode *inode = dreq->inode;
382 struct nfs_write_data *data;
387 list_for_each(p, &dreq->rewrite_list) {
388 data = list_entry(p, struct nfs_write_data, pages);
395 nfs_fattr_init(&data->fattr);
396 data->res.count = data->args.count;
397 memset(&data->verf, 0, sizeof(data->verf));
400 * Reuse data->task; data->args should not have changed
401 * since the original request was sent.
403 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
404 &nfs_write_direct_ops, data);
405 NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
407 data->task.tk_priority = RPC_PRIORITY_NORMAL;
408 data->task.tk_cookie = (unsigned long) inode;
411 * We're called via an RPC callback, so BKL is already held.
413 rpc_execute(&data->task);
415 dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
418 (long long)NFS_FILEID(inode),
420 (unsigned long long)data->args.offset);
424 nfs_direct_write_complete(dreq, inode);
427 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
429 struct nfs_write_data *data = calldata;
430 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
432 /* Call the NFS version-specific code */
433 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
435 if (unlikely(task->tk_status < 0)) {
436 dreq->error = task->tk_status;
437 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
439 if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
440 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
441 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
444 dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
445 nfs_direct_write_complete(dreq, data->inode);
448 static const struct rpc_call_ops nfs_commit_direct_ops = {
449 .rpc_call_done = nfs_direct_commit_result,
450 .rpc_release = nfs_commit_release,
453 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
455 struct nfs_write_data *data = dreq->commit_data;
457 data->inode = dreq->inode;
458 data->cred = dreq->ctx->cred;
460 data->args.fh = NFS_FH(data->inode);
461 data->args.offset = 0;
462 data->args.count = 0;
464 data->res.fattr = &data->fattr;
465 data->res.verf = &data->verf;
467 rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
468 &nfs_commit_direct_ops, data);
469 NFS_PROTO(data->inode)->commit_setup(data, 0);
471 data->task.tk_priority = RPC_PRIORITY_NORMAL;
472 data->task.tk_cookie = (unsigned long)data->inode;
473 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
474 dreq->commit_data = NULL;
476 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
479 rpc_execute(&data->task);
483 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
485 int flags = dreq->flags;
489 case NFS_ODIRECT_DO_COMMIT:
490 nfs_direct_commit_schedule(dreq);
492 case NFS_ODIRECT_RESCHED_WRITES:
493 nfs_direct_write_reschedule(dreq);
496 nfs_end_data_update(inode);
497 if (dreq->commit_data != NULL)
498 nfs_commit_free(dreq->commit_data);
499 nfs_direct_free_writedata(dreq);
500 nfs_direct_complete(dreq);
504 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
506 dreq->commit_data = nfs_commit_alloc();
507 if (dreq->commit_data != NULL)
508 dreq->commit_data->req = (struct nfs_page *) dreq;
511 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
513 dreq->commit_data = NULL;
516 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
518 nfs_end_data_update(inode);
519 nfs_direct_free_writedata(dreq);
520 nfs_direct_complete(dreq);
524 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
526 struct nfs_write_data *data = calldata;
527 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
528 int status = task->tk_status;
530 if (nfs_writeback_done(task, data) != 0)
533 spin_lock(&dreq->lock);
535 if (likely(status >= 0))
536 dreq->count += data->res.count;
538 dreq->error = task->tk_status;
540 if (data->res.verf->committed != NFS_FILE_SYNC) {
541 switch (dreq->flags) {
543 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
544 dreq->flags = NFS_ODIRECT_DO_COMMIT;
546 case NFS_ODIRECT_DO_COMMIT:
547 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
548 dprintk("NFS: %5u write verify failed\n", task->tk_pid);
549 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
554 spin_unlock(&dreq->lock);
558 * NB: Return the value of the first error return code. Subsequent
559 * errors after the first one are ignored.
561 static void nfs_direct_write_release(void *calldata)
563 struct nfs_write_data *data = calldata;
564 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
567 nfs_direct_write_complete(dreq, data->inode);
570 static const struct rpc_call_ops nfs_write_direct_ops = {
571 .rpc_call_done = nfs_direct_write_result,
572 .rpc_release = nfs_direct_write_release,
576 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
577 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
578 * bail and stop sending more writes. Write length accounting is
579 * handled automatically by nfs_direct_write_result(). Otherwise, if
580 * no requests have been sent, just return an error.
582 static ssize_t nfs_direct_write_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos, int sync)
584 struct nfs_open_context *ctx = dreq->ctx;
585 struct inode *inode = ctx->dentry->d_inode;
586 size_t wsize = NFS_SERVER(inode)->wsize;
594 struct nfs_write_data *data;
597 pgbase = user_addr & ~PAGE_MASK;
598 bytes = min(wsize,count);
601 data = nfs_writedata_alloc(pgbase + bytes);
605 down_read(¤t->mm->mmap_sem);
606 result = get_user_pages(current, current->mm, user_addr,
607 data->npages, 0, 0, data->pagevec, NULL);
608 up_read(¤t->mm->mmap_sem);
609 if (unlikely(result < data->npages)) {
611 nfs_direct_release_pages(data->pagevec, result);
612 nfs_writedata_release(data);
618 list_move_tail(&data->pages, &dreq->rewrite_list);
620 data->req = (struct nfs_page *) dreq;
622 data->cred = ctx->cred;
623 data->args.fh = NFS_FH(inode);
624 data->args.context = ctx;
625 data->args.offset = pos;
626 data->args.pgbase = pgbase;
627 data->args.pages = data->pagevec;
628 data->args.count = bytes;
629 data->res.fattr = &data->fattr;
630 data->res.count = bytes;
631 data->res.verf = &data->verf;
633 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
634 &nfs_write_direct_ops, data);
635 NFS_PROTO(inode)->write_setup(data, sync);
637 data->task.tk_priority = RPC_PRIORITY_NORMAL;
638 data->task.tk_cookie = (unsigned long) inode;
641 rpc_execute(&data->task);
644 dfprintk(VFS, "NFS: %5u initiated direct write call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
647 (long long)NFS_FILEID(inode),
649 (unsigned long long)data->args.offset);
655 /* FIXME: Remove this useless math from the final patch */
657 pgbase &= ~PAGE_MASK;
658 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
661 } while (count != 0);
664 nfs_direct_write_complete(dreq, inode);
668 return result < 0 ? (ssize_t) result : -EFAULT;
671 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos)
675 struct inode *inode = iocb->ki_filp->f_mapping->host;
676 struct rpc_clnt *clnt = NFS_CLIENT(inode);
677 struct nfs_direct_req *dreq;
678 size_t wsize = NFS_SERVER(inode)->wsize;
681 dreq = nfs_direct_req_alloc();
684 nfs_alloc_commit_data(dreq);
686 if (dreq->commit_data == NULL || count < wsize)
690 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
691 if (!is_sync_kiocb(iocb))
694 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
696 nfs_begin_data_update(inode);
698 rpc_clnt_sigmask(clnt, &oldset);
699 result = nfs_direct_write_schedule(dreq, user_addr, count, pos, sync);
701 result = nfs_direct_wait(dreq);
702 rpc_clnt_sigunmask(clnt, &oldset);
708 * nfs_file_direct_read - file direct read operation for NFS files
709 * @iocb: target I/O control block
710 * @buf: user's buffer into which to read data
711 * @count: number of bytes to read
712 * @pos: byte offset in file where reading starts
714 * We use this function for direct reads instead of calling
715 * generic_file_aio_read() in order to avoid gfar's check to see if
716 * the request starts before the end of the file. For that check
717 * to work, we must generate a GETATTR before each direct read, and
718 * even then there is a window between the GETATTR and the subsequent
719 * READ where the file size could change. Our preference is simply
720 * to do all reads the application wants, and the server will take
721 * care of managing the end of file boundary.
723 * This function also eliminates unnecessarily updating the file's
724 * atime locally, as the NFS server sets the file's atime, and this
725 * client must read the updated atime from the server back into its
728 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
730 ssize_t retval = -EINVAL;
731 struct file *file = iocb->ki_filp;
732 struct address_space *mapping = file->f_mapping;
734 dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
735 file->f_dentry->d_parent->d_name.name,
736 file->f_dentry->d_name.name,
737 (unsigned long) count, (long long) pos);
742 if (!access_ok(VERIFY_WRITE, buf, count))
748 retval = nfs_sync_mapping(mapping);
752 retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos);
754 iocb->ki_pos = pos + retval;
761 * nfs_file_direct_write - file direct write operation for NFS files
762 * @iocb: target I/O control block
763 * @buf: user's buffer from which to write data
764 * @count: number of bytes to write
765 * @pos: byte offset in file where writing starts
767 * We use this function for direct writes instead of calling
768 * generic_file_aio_write() in order to avoid taking the inode
769 * semaphore and updating the i_size. The NFS server will set
770 * the new i_size and this client must read the updated size
771 * back into its cache. We let the server do generic write
772 * parameter checking and report problems.
774 * We also avoid an unnecessary invocation of generic_osync_inode(),
775 * as it is fairly meaningless to sync the metadata of an NFS file.
777 * We eliminate local atime updates, see direct read above.
779 * We avoid unnecessary page cache invalidations for normal cached
780 * readers of this file.
782 * Note that O_APPEND is not supported for NFS direct writes, as there
783 * is no atomic O_APPEND write facility in the NFS protocol.
785 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
788 struct file *file = iocb->ki_filp;
789 struct address_space *mapping = file->f_mapping;
791 dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
792 file->f_dentry->d_parent->d_name.name,
793 file->f_dentry->d_name.name,
794 (unsigned long) count, (long long) pos);
796 retval = generic_write_checks(file, &pos, &count, 0);
801 if ((ssize_t) count < 0)
808 if (!access_ok(VERIFY_READ, buf, count))
811 retval = nfs_sync_mapping(mapping);
815 retval = nfs_direct_write(iocb, (unsigned long) buf, count, pos);
818 * XXX: nfs_end_data_update() already ensures this file's
819 * cached data is subsequently invalidated. Do we really
820 * need to call invalidate_inode_pages2() again here?
822 * For aio writes, this invalidation will almost certainly
823 * occur before the writes complete. Kind of racey.
825 if (mapping->nrpages)
826 invalidate_inode_pages2(mapping);
829 iocb->ki_pos = pos + retval;
836 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
839 int __init nfs_init_directcache(void)
841 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
842 sizeof(struct nfs_direct_req),
843 0, (SLAB_RECLAIM_ACCOUNT|
846 if (nfs_direct_cachep == NULL)
853 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
856 void nfs_destroy_directcache(void)
858 kmem_cache_destroy(nfs_direct_cachep);