worker_thread: don't play with signals
[linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37  * The per-CPU workqueue (if single thread, we always use the first
38  * possible cpu).
39  */
40 struct cpu_workqueue_struct {
41
42         spinlock_t lock;
43
44         struct list_head worklist;
45         wait_queue_head_t more_work;
46         struct work_struct *current_work;
47
48         struct workqueue_struct *wq;
49         struct task_struct *thread;
50         int should_stop;
51
52         int run_depth;          /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60         struct cpu_workqueue_struct *cpu_wq;
61         struct list_head list;
62         const char *name;
63         int singlethread;
64         int freezeable;         /* Freeze threads during suspend */
65 };
66
67 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
68    threads to each one as cpus come/go. */
69 static DEFINE_MUTEX(workqueue_mutex);
70 static LIST_HEAD(workqueues);
71
72 static int singlethread_cpu __read_mostly;
73 static cpumask_t cpu_singlethread_map __read_mostly;
74 /* optimization, we could use cpu_possible_map */
75 static cpumask_t cpu_populated_map __read_mostly;
76
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
79 {
80         return wq->singlethread;
81 }
82
83 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
84 {
85         return is_single_threaded(wq)
86                 ? &cpu_singlethread_map : &cpu_populated_map;
87 }
88
89 static
90 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
91 {
92         if (unlikely(is_single_threaded(wq)))
93                 cpu = singlethread_cpu;
94         return per_cpu_ptr(wq->cpu_wq, cpu);
95 }
96
97 /*
98  * Set the workqueue on which a work item is to be run
99  * - Must *only* be called if the pending flag is set
100  */
101 static inline void set_wq_data(struct work_struct *work,
102                                 struct cpu_workqueue_struct *cwq)
103 {
104         unsigned long new;
105
106         BUG_ON(!work_pending(work));
107
108         new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
109         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
110         atomic_long_set(&work->data, new);
111 }
112
113 static inline
114 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
115 {
116         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
117 }
118
119 static void insert_work(struct cpu_workqueue_struct *cwq,
120                                 struct work_struct *work, int tail)
121 {
122         set_wq_data(work, cwq);
123         if (tail)
124                 list_add_tail(&work->entry, &cwq->worklist);
125         else
126                 list_add(&work->entry, &cwq->worklist);
127         wake_up(&cwq->more_work);
128 }
129
130 /* Preempt must be disabled. */
131 static void __queue_work(struct cpu_workqueue_struct *cwq,
132                          struct work_struct *work)
133 {
134         unsigned long flags;
135
136         spin_lock_irqsave(&cwq->lock, flags);
137         insert_work(cwq, work, 1);
138         spin_unlock_irqrestore(&cwq->lock, flags);
139 }
140
141 /**
142  * queue_work - queue work on a workqueue
143  * @wq: workqueue to use
144  * @work: work to queue
145  *
146  * Returns 0 if @work was already on a queue, non-zero otherwise.
147  *
148  * We queue the work to the CPU it was submitted, but there is no
149  * guarantee that it will be processed by that CPU.
150  */
151 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
152 {
153         int ret = 0;
154
155         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
156                 BUG_ON(!list_empty(&work->entry));
157                 __queue_work(wq_per_cpu(wq, get_cpu()), work);
158                 put_cpu();
159                 ret = 1;
160         }
161         return ret;
162 }
163 EXPORT_SYMBOL_GPL(queue_work);
164
165 void delayed_work_timer_fn(unsigned long __data)
166 {
167         struct delayed_work *dwork = (struct delayed_work *)__data;
168         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
169         struct workqueue_struct *wq = cwq->wq;
170
171         __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
172 }
173
174 /**
175  * queue_delayed_work - queue work on a workqueue after delay
176  * @wq: workqueue to use
177  * @dwork: delayable work to queue
178  * @delay: number of jiffies to wait before queueing
179  *
180  * Returns 0 if @work was already on a queue, non-zero otherwise.
181  */
182 int fastcall queue_delayed_work(struct workqueue_struct *wq,
183                         struct delayed_work *dwork, unsigned long delay)
184 {
185         timer_stats_timer_set_start_info(&dwork->timer);
186         if (delay == 0)
187                 return queue_work(wq, &dwork->work);
188
189         return queue_delayed_work_on(-1, wq, dwork, delay);
190 }
191 EXPORT_SYMBOL_GPL(queue_delayed_work);
192
193 /**
194  * queue_delayed_work_on - queue work on specific CPU after delay
195  * @cpu: CPU number to execute work on
196  * @wq: workqueue to use
197  * @dwork: work to queue
198  * @delay: number of jiffies to wait before queueing
199  *
200  * Returns 0 if @work was already on a queue, non-zero otherwise.
201  */
202 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
203                         struct delayed_work *dwork, unsigned long delay)
204 {
205         int ret = 0;
206         struct timer_list *timer = &dwork->timer;
207         struct work_struct *work = &dwork->work;
208
209         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
210                 BUG_ON(timer_pending(timer));
211                 BUG_ON(!list_empty(&work->entry));
212
213                 /* This stores cwq for the moment, for the timer_fn */
214                 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
215                 timer->expires = jiffies + delay;
216                 timer->data = (unsigned long)dwork;
217                 timer->function = delayed_work_timer_fn;
218
219                 if (unlikely(cpu >= 0))
220                         add_timer_on(timer, cpu);
221                 else
222                         add_timer(timer);
223                 ret = 1;
224         }
225         return ret;
226 }
227 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
228
229 static void run_workqueue(struct cpu_workqueue_struct *cwq)
230 {
231         spin_lock_irq(&cwq->lock);
232         cwq->run_depth++;
233         if (cwq->run_depth > 3) {
234                 /* morton gets to eat his hat */
235                 printk("%s: recursion depth exceeded: %d\n",
236                         __FUNCTION__, cwq->run_depth);
237                 dump_stack();
238         }
239         while (!list_empty(&cwq->worklist)) {
240                 struct work_struct *work = list_entry(cwq->worklist.next,
241                                                 struct work_struct, entry);
242                 work_func_t f = work->func;
243
244                 cwq->current_work = work;
245                 list_del_init(cwq->worklist.next);
246                 spin_unlock_irq(&cwq->lock);
247
248                 BUG_ON(get_wq_data(work) != cwq);
249                 work_clear_pending(work);
250                 f(work);
251
252                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
253                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
254                                         "%s/0x%08x/%d\n",
255                                         current->comm, preempt_count(),
256                                         current->pid);
257                         printk(KERN_ERR "    last function: ");
258                         print_symbol("%s\n", (unsigned long)f);
259                         debug_show_held_locks(current);
260                         dump_stack();
261                 }
262
263                 spin_lock_irq(&cwq->lock);
264                 cwq->current_work = NULL;
265         }
266         cwq->run_depth--;
267         spin_unlock_irq(&cwq->lock);
268 }
269
270 /*
271  * NOTE: the caller must not touch *cwq if this func returns true
272  */
273 static int cwq_should_stop(struct cpu_workqueue_struct *cwq)
274 {
275         int should_stop = cwq->should_stop;
276
277         if (unlikely(should_stop)) {
278                 spin_lock_irq(&cwq->lock);
279                 should_stop = cwq->should_stop && list_empty(&cwq->worklist);
280                 if (should_stop)
281                         cwq->thread = NULL;
282                 spin_unlock_irq(&cwq->lock);
283         }
284
285         return should_stop;
286 }
287
288 static int worker_thread(void *__cwq)
289 {
290         struct cpu_workqueue_struct *cwq = __cwq;
291         DEFINE_WAIT(wait);
292         struct k_sigaction sa;
293
294         if (!cwq->wq->freezeable)
295                 current->flags |= PF_NOFREEZE;
296
297         set_user_nice(current, -5);
298         /*
299          * We inherited MPOL_INTERLEAVE from the booting kernel.
300          * Set MPOL_DEFAULT to insure node local allocations.
301          */
302         numa_default_policy();
303
304         /* SIG_IGN makes children autoreap: see do_notify_parent(). */
305         sa.sa.sa_handler = SIG_IGN;
306         sa.sa.sa_flags = 0;
307         siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
308         do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
309
310         for (;;) {
311                 if (cwq->wq->freezeable)
312                         try_to_freeze();
313
314                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
315                 if (!cwq->should_stop && list_empty(&cwq->worklist))
316                         schedule();
317                 finish_wait(&cwq->more_work, &wait);
318
319                 if (cwq_should_stop(cwq))
320                         break;
321
322                 run_workqueue(cwq);
323         }
324
325         return 0;
326 }
327
328 struct wq_barrier {
329         struct work_struct      work;
330         struct completion       done;
331 };
332
333 static void wq_barrier_func(struct work_struct *work)
334 {
335         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
336         complete(&barr->done);
337 }
338
339 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
340                                         struct wq_barrier *barr, int tail)
341 {
342         INIT_WORK(&barr->work, wq_barrier_func);
343         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
344
345         init_completion(&barr->done);
346
347         insert_work(cwq, &barr->work, tail);
348 }
349
350 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
351 {
352         if (cwq->thread == current) {
353                 /*
354                  * Probably keventd trying to flush its own queue. So simply run
355                  * it by hand rather than deadlocking.
356                  */
357                 run_workqueue(cwq);
358         } else {
359                 struct wq_barrier barr;
360                 int active = 0;
361
362                 spin_lock_irq(&cwq->lock);
363                 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
364                         insert_wq_barrier(cwq, &barr, 1);
365                         active = 1;
366                 }
367                 spin_unlock_irq(&cwq->lock);
368
369                 if (active)
370                         wait_for_completion(&barr.done);
371         }
372 }
373
374 /**
375  * flush_workqueue - ensure that any scheduled work has run to completion.
376  * @wq: workqueue to flush
377  *
378  * Forces execution of the workqueue and blocks until its completion.
379  * This is typically used in driver shutdown handlers.
380  *
381  * We sleep until all works which were queued on entry have been handled,
382  * but we are not livelocked by new incoming ones.
383  *
384  * This function used to run the workqueues itself.  Now we just wait for the
385  * helper threads to do it.
386  */
387 void fastcall flush_workqueue(struct workqueue_struct *wq)
388 {
389         const cpumask_t *cpu_map = wq_cpu_map(wq);
390         int cpu;
391
392         might_sleep();
393         for_each_cpu_mask(cpu, *cpu_map)
394                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
395 }
396 EXPORT_SYMBOL_GPL(flush_workqueue);
397
398 static void wait_on_work(struct cpu_workqueue_struct *cwq,
399                                 struct work_struct *work)
400 {
401         struct wq_barrier barr;
402         int running = 0;
403
404         spin_lock_irq(&cwq->lock);
405         if (unlikely(cwq->current_work == work)) {
406                 insert_wq_barrier(cwq, &barr, 0);
407                 running = 1;
408         }
409         spin_unlock_irq(&cwq->lock);
410
411         if (unlikely(running))
412                 wait_for_completion(&barr.done);
413 }
414
415 /**
416  * flush_work - block until a work_struct's callback has terminated
417  * @wq: the workqueue on which the work is queued
418  * @work: the work which is to be flushed
419  *
420  * flush_work() will attempt to cancel the work if it is queued.  If the work's
421  * callback appears to be running, flush_work() will block until it has
422  * completed.
423  *
424  * flush_work() is designed to be used when the caller is tearing down data
425  * structures which the callback function operates upon.  It is expected that,
426  * prior to calling flush_work(), the caller has arranged for the work to not
427  * be requeued.
428  */
429 void flush_work(struct workqueue_struct *wq, struct work_struct *work)
430 {
431         const cpumask_t *cpu_map = wq_cpu_map(wq);
432         struct cpu_workqueue_struct *cwq;
433         int cpu;
434
435         might_sleep();
436
437         cwq = get_wq_data(work);
438         /* Was it ever queued ? */
439         if (!cwq)
440                 return;
441
442         /*
443          * This work can't be re-queued, no need to re-check that
444          * get_wq_data() is still the same when we take cwq->lock.
445          */
446         spin_lock_irq(&cwq->lock);
447         list_del_init(&work->entry);
448         work_clear_pending(work);
449         spin_unlock_irq(&cwq->lock);
450
451         for_each_cpu_mask(cpu, *cpu_map)
452                 wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
453 }
454 EXPORT_SYMBOL_GPL(flush_work);
455
456
457 static struct workqueue_struct *keventd_wq;
458
459 /**
460  * schedule_work - put work task in global workqueue
461  * @work: job to be done
462  *
463  * This puts a job in the kernel-global workqueue.
464  */
465 int fastcall schedule_work(struct work_struct *work)
466 {
467         return queue_work(keventd_wq, work);
468 }
469 EXPORT_SYMBOL(schedule_work);
470
471 /**
472  * schedule_delayed_work - put work task in global workqueue after delay
473  * @dwork: job to be done
474  * @delay: number of jiffies to wait or 0 for immediate execution
475  *
476  * After waiting for a given time this puts a job in the kernel-global
477  * workqueue.
478  */
479 int fastcall schedule_delayed_work(struct delayed_work *dwork,
480                                         unsigned long delay)
481 {
482         timer_stats_timer_set_start_info(&dwork->timer);
483         return queue_delayed_work(keventd_wq, dwork, delay);
484 }
485 EXPORT_SYMBOL(schedule_delayed_work);
486
487 /**
488  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
489  * @cpu: cpu to use
490  * @dwork: job to be done
491  * @delay: number of jiffies to wait
492  *
493  * After waiting for a given time this puts a job in the kernel-global
494  * workqueue on the specified CPU.
495  */
496 int schedule_delayed_work_on(int cpu,
497                         struct delayed_work *dwork, unsigned long delay)
498 {
499         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
500 }
501 EXPORT_SYMBOL(schedule_delayed_work_on);
502
503 /**
504  * schedule_on_each_cpu - call a function on each online CPU from keventd
505  * @func: the function to call
506  *
507  * Returns zero on success.
508  * Returns -ve errno on failure.
509  *
510  * Appears to be racy against CPU hotplug.
511  *
512  * schedule_on_each_cpu() is very slow.
513  */
514 int schedule_on_each_cpu(work_func_t func)
515 {
516         int cpu;
517         struct work_struct *works;
518
519         works = alloc_percpu(struct work_struct);
520         if (!works)
521                 return -ENOMEM;
522
523         preempt_disable();              /* CPU hotplug */
524         for_each_online_cpu(cpu) {
525                 struct work_struct *work = per_cpu_ptr(works, cpu);
526
527                 INIT_WORK(work, func);
528                 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
529                 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
530         }
531         preempt_enable();
532         flush_workqueue(keventd_wq);
533         free_percpu(works);
534         return 0;
535 }
536
537 void flush_scheduled_work(void)
538 {
539         flush_workqueue(keventd_wq);
540 }
541 EXPORT_SYMBOL(flush_scheduled_work);
542
543 void flush_work_keventd(struct work_struct *work)
544 {
545         flush_work(keventd_wq, work);
546 }
547 EXPORT_SYMBOL(flush_work_keventd);
548
549 /**
550  * cancel_rearming_delayed_work - kill off a delayed work whose handler rearms the delayed work.
551  * @dwork: the delayed work struct
552  *
553  * Note that the work callback function may still be running on return from
554  * cancel_delayed_work(). Run flush_workqueue() or flush_work() to wait on it.
555  */
556 void cancel_rearming_delayed_work(struct delayed_work *dwork)
557 {
558         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
559
560         /* Was it ever queued ? */
561         if (cwq != NULL) {
562                 struct workqueue_struct *wq = cwq->wq;
563
564                 while (!cancel_delayed_work(dwork))
565                         flush_workqueue(wq);
566         }
567 }
568 EXPORT_SYMBOL(cancel_rearming_delayed_work);
569
570 /**
571  * execute_in_process_context - reliably execute the routine with user context
572  * @fn:         the function to execute
573  * @ew:         guaranteed storage for the execute work structure (must
574  *              be available when the work executes)
575  *
576  * Executes the function immediately if process context is available,
577  * otherwise schedules the function for delayed execution.
578  *
579  * Returns:     0 - function was executed
580  *              1 - function was scheduled for execution
581  */
582 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
583 {
584         if (!in_interrupt()) {
585                 fn(&ew->work);
586                 return 0;
587         }
588
589         INIT_WORK(&ew->work, fn);
590         schedule_work(&ew->work);
591
592         return 1;
593 }
594 EXPORT_SYMBOL_GPL(execute_in_process_context);
595
596 int keventd_up(void)
597 {
598         return keventd_wq != NULL;
599 }
600
601 int current_is_keventd(void)
602 {
603         struct cpu_workqueue_struct *cwq;
604         int cpu = smp_processor_id();   /* preempt-safe: keventd is per-cpu */
605         int ret = 0;
606
607         BUG_ON(!keventd_wq);
608
609         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
610         if (current == cwq->thread)
611                 ret = 1;
612
613         return ret;
614
615 }
616
617 static struct cpu_workqueue_struct *
618 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
619 {
620         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
621
622         cwq->wq = wq;
623         spin_lock_init(&cwq->lock);
624         INIT_LIST_HEAD(&cwq->worklist);
625         init_waitqueue_head(&cwq->more_work);
626
627         return cwq;
628 }
629
630 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
631 {
632         struct workqueue_struct *wq = cwq->wq;
633         const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
634         struct task_struct *p;
635
636         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
637         /*
638          * Nobody can add the work_struct to this cwq,
639          *      if (caller is __create_workqueue)
640          *              nobody should see this wq
641          *      else // caller is CPU_UP_PREPARE
642          *              cpu is not on cpu_online_map
643          * so we can abort safely.
644          */
645         if (IS_ERR(p))
646                 return PTR_ERR(p);
647
648         cwq->thread = p;
649         cwq->should_stop = 0;
650
651         return 0;
652 }
653
654 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
655 {
656         struct task_struct *p = cwq->thread;
657
658         if (p != NULL) {
659                 if (cpu >= 0)
660                         kthread_bind(p, cpu);
661                 wake_up_process(p);
662         }
663 }
664
665 struct workqueue_struct *__create_workqueue(const char *name,
666                                             int singlethread, int freezeable)
667 {
668         struct workqueue_struct *wq;
669         struct cpu_workqueue_struct *cwq;
670         int err = 0, cpu;
671
672         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
673         if (!wq)
674                 return NULL;
675
676         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
677         if (!wq->cpu_wq) {
678                 kfree(wq);
679                 return NULL;
680         }
681
682         wq->name = name;
683         wq->singlethread = singlethread;
684         wq->freezeable = freezeable;
685         INIT_LIST_HEAD(&wq->list);
686
687         if (singlethread) {
688                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
689                 err = create_workqueue_thread(cwq, singlethread_cpu);
690                 start_workqueue_thread(cwq, -1);
691         } else {
692                 mutex_lock(&workqueue_mutex);
693                 list_add(&wq->list, &workqueues);
694
695                 for_each_possible_cpu(cpu) {
696                         cwq = init_cpu_workqueue(wq, cpu);
697                         if (err || !cpu_online(cpu))
698                                 continue;
699                         err = create_workqueue_thread(cwq, cpu);
700                         start_workqueue_thread(cwq, cpu);
701                 }
702                 mutex_unlock(&workqueue_mutex);
703         }
704
705         if (err) {
706                 destroy_workqueue(wq);
707                 wq = NULL;
708         }
709         return wq;
710 }
711 EXPORT_SYMBOL_GPL(__create_workqueue);
712
713 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
714 {
715         struct wq_barrier barr;
716         int alive = 0;
717
718         spin_lock_irq(&cwq->lock);
719         if (cwq->thread != NULL) {
720                 insert_wq_barrier(cwq, &barr, 1);
721                 cwq->should_stop = 1;
722                 alive = 1;
723         }
724         spin_unlock_irq(&cwq->lock);
725
726         if (alive) {
727                 wait_for_completion(&barr.done);
728
729                 while (unlikely(cwq->thread != NULL))
730                         cpu_relax();
731                 /*
732                  * Wait until cwq->thread unlocks cwq->lock,
733                  * it won't touch *cwq after that.
734                  */
735                 smp_rmb();
736                 spin_unlock_wait(&cwq->lock);
737         }
738 }
739
740 /**
741  * destroy_workqueue - safely terminate a workqueue
742  * @wq: target workqueue
743  *
744  * Safely destroy a workqueue. All work currently pending will be done first.
745  */
746 void destroy_workqueue(struct workqueue_struct *wq)
747 {
748         const cpumask_t *cpu_map = wq_cpu_map(wq);
749         struct cpu_workqueue_struct *cwq;
750         int cpu;
751
752         mutex_lock(&workqueue_mutex);
753         list_del(&wq->list);
754         mutex_unlock(&workqueue_mutex);
755
756         for_each_cpu_mask(cpu, *cpu_map) {
757                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
758                 cleanup_workqueue_thread(cwq, cpu);
759         }
760
761         free_percpu(wq->cpu_wq);
762         kfree(wq);
763 }
764 EXPORT_SYMBOL_GPL(destroy_workqueue);
765
766 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
767                                                 unsigned long action,
768                                                 void *hcpu)
769 {
770         unsigned int cpu = (unsigned long)hcpu;
771         struct cpu_workqueue_struct *cwq;
772         struct workqueue_struct *wq;
773
774         switch (action) {
775         case CPU_LOCK_ACQUIRE:
776                 mutex_lock(&workqueue_mutex);
777                 return NOTIFY_OK;
778
779         case CPU_LOCK_RELEASE:
780                 mutex_unlock(&workqueue_mutex);
781                 return NOTIFY_OK;
782
783         case CPU_UP_PREPARE:
784                 cpu_set(cpu, cpu_populated_map);
785         }
786
787         list_for_each_entry(wq, &workqueues, list) {
788                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
789
790                 switch (action) {
791                 case CPU_UP_PREPARE:
792                         if (!create_workqueue_thread(cwq, cpu))
793                                 break;
794                         printk(KERN_ERR "workqueue for %i failed\n", cpu);
795                         return NOTIFY_BAD;
796
797                 case CPU_ONLINE:
798                         start_workqueue_thread(cwq, cpu);
799                         break;
800
801                 case CPU_UP_CANCELED:
802                         start_workqueue_thread(cwq, -1);
803                 case CPU_DEAD:
804                         cleanup_workqueue_thread(cwq, cpu);
805                         break;
806                 }
807         }
808
809         return NOTIFY_OK;
810 }
811
812 void __init init_workqueues(void)
813 {
814         cpu_populated_map = cpu_online_map;
815         singlethread_cpu = first_cpu(cpu_possible_map);
816         cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
817         hotcpu_notifier(workqueue_cpu_callback, 0);
818         keventd_wq = create_workqueue("events");
819         BUG_ON(!keventd_wq);
820 }