[SCSI] libsas: add SAS management protocol handler
[linux-2.6] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27
28 #include "sas_internal.h"
29
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37                              u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39
40 #if 0
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, struct bin_attribute *,
43                                char *, loff_t, size_t);
44 static ssize_t smp_portal_write(struct kobject *, struct bin_attribute *,
45                                 char *, loff_t, size_t);
46 #endif
47
48 /* ---------- SMP task management ---------- */
49
50 static void smp_task_timedout(unsigned long _task)
51 {
52         struct sas_task *task = (void *) _task;
53         unsigned long flags;
54
55         spin_lock_irqsave(&task->task_state_lock, flags);
56         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
57                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
58         spin_unlock_irqrestore(&task->task_state_lock, flags);
59
60         complete(&task->completion);
61 }
62
63 static void smp_task_done(struct sas_task *task)
64 {
65         if (!del_timer(&task->timer))
66                 return;
67         complete(&task->completion);
68 }
69
70 /* Give it some long enough timeout. In seconds. */
71 #define SMP_TIMEOUT 10
72
73 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
74                             void *resp, int resp_size)
75 {
76         int res, retry;
77         struct sas_task *task = NULL;
78         struct sas_internal *i =
79                 to_sas_internal(dev->port->ha->core.shost->transportt);
80
81         for (retry = 0; retry < 3; retry++) {
82                 task = sas_alloc_task(GFP_KERNEL);
83                 if (!task)
84                         return -ENOMEM;
85
86                 task->dev = dev;
87                 task->task_proto = dev->tproto;
88                 sg_init_one(&task->smp_task.smp_req, req, req_size);
89                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
90
91                 task->task_done = smp_task_done;
92
93                 task->timer.data = (unsigned long) task;
94                 task->timer.function = smp_task_timedout;
95                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96                 add_timer(&task->timer);
97
98                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
99
100                 if (res) {
101                         del_timer(&task->timer);
102                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
103                         goto ex_err;
104                 }
105
106                 wait_for_completion(&task->completion);
107                 res = -ETASK;
108                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109                         SAS_DPRINTK("smp task timed out or aborted\n");
110                         i->dft->lldd_abort_task(task);
111                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112                                 SAS_DPRINTK("SMP task aborted and not done\n");
113                                 goto ex_err;
114                         }
115                 }
116                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
117                     task->task_status.stat == SAM_GOOD) {
118                         res = 0;
119                         break;
120                 } else {
121                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
122                                     "status 0x%x\n", __FUNCTION__,
123                                     SAS_ADDR(dev->sas_addr),
124                                     task->task_status.resp,
125                                     task->task_status.stat);
126                         sas_free_task(task);
127                         task = NULL;
128                 }
129         }
130 ex_err:
131         BUG_ON(retry == 3 && task != NULL);
132         if (task != NULL) {
133                 sas_free_task(task);
134         }
135         return res;
136 }
137
138 /* ---------- Allocations ---------- */
139
140 static inline void *alloc_smp_req(int size)
141 {
142         u8 *p = kzalloc(size, GFP_KERNEL);
143         if (p)
144                 p[0] = SMP_REQUEST;
145         return p;
146 }
147
148 static inline void *alloc_smp_resp(int size)
149 {
150         return kzalloc(size, GFP_KERNEL);
151 }
152
153 /* ---------- Expander configuration ---------- */
154
155 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
156                            void *disc_resp)
157 {
158         struct expander_device *ex = &dev->ex_dev;
159         struct ex_phy *phy = &ex->ex_phy[phy_id];
160         struct smp_resp *resp = disc_resp;
161         struct discover_resp *dr = &resp->disc;
162         struct sas_rphy *rphy = dev->rphy;
163         int rediscover = (phy->phy != NULL);
164
165         if (!rediscover) {
166                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
167
168                 /* FIXME: error_handling */
169                 BUG_ON(!phy->phy);
170         }
171
172         switch (resp->result) {
173         case SMP_RESP_PHY_VACANT:
174                 phy->phy_state = PHY_VACANT;
175                 return;
176         default:
177                 phy->phy_state = PHY_NOT_PRESENT;
178                 return;
179         case SMP_RESP_FUNC_ACC:
180                 phy->phy_state = PHY_EMPTY; /* do not know yet */
181                 break;
182         }
183
184         phy->phy_id = phy_id;
185         phy->attached_dev_type = dr->attached_dev_type;
186         phy->linkrate = dr->linkrate;
187         phy->attached_sata_host = dr->attached_sata_host;
188         phy->attached_sata_dev  = dr->attached_sata_dev;
189         phy->attached_sata_ps   = dr->attached_sata_ps;
190         phy->attached_iproto = dr->iproto << 1;
191         phy->attached_tproto = dr->tproto << 1;
192         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
193         phy->attached_phy_id = dr->attached_phy_id;
194         phy->phy_change_count = dr->change_count;
195         phy->routing_attr = dr->routing_attr;
196         phy->virtual = dr->virtual;
197         phy->last_da_index = -1;
198
199         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
200         phy->phy->identify.target_port_protocols = phy->attached_tproto;
201         phy->phy->identify.phy_identifier = phy_id;
202         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
203         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
204         phy->phy->minimum_linkrate = dr->pmin_linkrate;
205         phy->phy->maximum_linkrate = dr->pmax_linkrate;
206         phy->phy->negotiated_linkrate = phy->linkrate;
207
208         if (!rediscover)
209                 sas_phy_add(phy->phy);
210
211         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
212                     SAS_ADDR(dev->sas_addr), phy->phy_id,
213                     phy->routing_attr == TABLE_ROUTING ? 'T' :
214                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
215                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
216                     SAS_ADDR(phy->attached_sas_addr));
217
218         return;
219 }
220
221 #define DISCOVER_REQ_SIZE  16
222 #define DISCOVER_RESP_SIZE 56
223
224 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
225                                       u8 *disc_resp, int single)
226 {
227         int i, res;
228
229         disc_req[9] = single;
230         for (i = 1 ; i < 3; i++) {
231                 struct discover_resp *dr;
232
233                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
234                                        disc_resp, DISCOVER_RESP_SIZE);
235                 if (res)
236                         return res;
237                 /* This is detecting a failure to transmit inital
238                  * dev to host FIS as described in section G.5 of
239                  * sas-2 r 04b */
240                 dr = &((struct smp_resp *)disc_resp)->disc;
241                 if (!(dr->attached_dev_type == 0 &&
242                       dr->attached_sata_dev))
243                         break;
244                 /* In order to generate the dev to host FIS, we
245                  * send a link reset to the expander port */
246                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
247                 /* Wait for the reset to trigger the negotiation */
248                 msleep(500);
249         }
250         sas_set_ex_phy(dev, single, disc_resp);
251         return 0;
252 }
253
254 static int sas_ex_phy_discover(struct domain_device *dev, int single)
255 {
256         struct expander_device *ex = &dev->ex_dev;
257         int  res = 0;
258         u8   *disc_req;
259         u8   *disc_resp;
260
261         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
262         if (!disc_req)
263                 return -ENOMEM;
264
265         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
266         if (!disc_resp) {
267                 kfree(disc_req);
268                 return -ENOMEM;
269         }
270
271         disc_req[1] = SMP_DISCOVER;
272
273         if (0 <= single && single < ex->num_phys) {
274                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
275         } else {
276                 int i;
277
278                 for (i = 0; i < ex->num_phys; i++) {
279                         res = sas_ex_phy_discover_helper(dev, disc_req,
280                                                          disc_resp, i);
281                         if (res)
282                                 goto out_err;
283                 }
284         }
285 out_err:
286         kfree(disc_resp);
287         kfree(disc_req);
288         return res;
289 }
290
291 static int sas_expander_discover(struct domain_device *dev)
292 {
293         struct expander_device *ex = &dev->ex_dev;
294         int res = -ENOMEM;
295
296         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
297         if (!ex->ex_phy)
298                 return -ENOMEM;
299
300         res = sas_ex_phy_discover(dev, -1);
301         if (res)
302                 goto out_err;
303
304         return 0;
305  out_err:
306         kfree(ex->ex_phy);
307         ex->ex_phy = NULL;
308         return res;
309 }
310
311 #define MAX_EXPANDER_PHYS 128
312
313 static void ex_assign_report_general(struct domain_device *dev,
314                                             struct smp_resp *resp)
315 {
316         struct report_general_resp *rg = &resp->rg;
317
318         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
319         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
320         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
321         dev->ex_dev.conf_route_table = rg->conf_route_table;
322         dev->ex_dev.configuring = rg->configuring;
323         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
324 }
325
326 #define RG_REQ_SIZE   8
327 #define RG_RESP_SIZE 32
328
329 static int sas_ex_general(struct domain_device *dev)
330 {
331         u8 *rg_req;
332         struct smp_resp *rg_resp;
333         int res;
334         int i;
335
336         rg_req = alloc_smp_req(RG_REQ_SIZE);
337         if (!rg_req)
338                 return -ENOMEM;
339
340         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
341         if (!rg_resp) {
342                 kfree(rg_req);
343                 return -ENOMEM;
344         }
345
346         rg_req[1] = SMP_REPORT_GENERAL;
347
348         for (i = 0; i < 5; i++) {
349                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
350                                        RG_RESP_SIZE);
351
352                 if (res) {
353                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
354                                     SAS_ADDR(dev->sas_addr), res);
355                         goto out;
356                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
357                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
358                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
359                         res = rg_resp->result;
360                         goto out;
361                 }
362
363                 ex_assign_report_general(dev, rg_resp);
364
365                 if (dev->ex_dev.configuring) {
366                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
367                                     SAS_ADDR(dev->sas_addr));
368                         schedule_timeout_interruptible(5*HZ);
369                 } else
370                         break;
371         }
372 out:
373         kfree(rg_req);
374         kfree(rg_resp);
375         return res;
376 }
377
378 static void ex_assign_manuf_info(struct domain_device *dev, void
379                                         *_mi_resp)
380 {
381         u8 *mi_resp = _mi_resp;
382         struct sas_rphy *rphy = dev->rphy;
383         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
384
385         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
386         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
387         memcpy(edev->product_rev, mi_resp + 36,
388                SAS_EXPANDER_PRODUCT_REV_LEN);
389
390         if (mi_resp[8] & 1) {
391                 memcpy(edev->component_vendor_id, mi_resp + 40,
392                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
393                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
394                 edev->component_revision_id = mi_resp[50];
395         }
396 }
397
398 #define MI_REQ_SIZE   8
399 #define MI_RESP_SIZE 64
400
401 static int sas_ex_manuf_info(struct domain_device *dev)
402 {
403         u8 *mi_req;
404         u8 *mi_resp;
405         int res;
406
407         mi_req = alloc_smp_req(MI_REQ_SIZE);
408         if (!mi_req)
409                 return -ENOMEM;
410
411         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
412         if (!mi_resp) {
413                 kfree(mi_req);
414                 return -ENOMEM;
415         }
416
417         mi_req[1] = SMP_REPORT_MANUF_INFO;
418
419         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
420         if (res) {
421                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
422                             SAS_ADDR(dev->sas_addr), res);
423                 goto out;
424         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
425                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
426                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
427                 goto out;
428         }
429
430         ex_assign_manuf_info(dev, mi_resp);
431 out:
432         kfree(mi_req);
433         kfree(mi_resp);
434         return res;
435 }
436
437 #define PC_REQ_SIZE  44
438 #define PC_RESP_SIZE 8
439
440 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
441                         enum phy_func phy_func,
442                         struct sas_phy_linkrates *rates)
443 {
444         u8 *pc_req;
445         u8 *pc_resp;
446         int res;
447
448         pc_req = alloc_smp_req(PC_REQ_SIZE);
449         if (!pc_req)
450                 return -ENOMEM;
451
452         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
453         if (!pc_resp) {
454                 kfree(pc_req);
455                 return -ENOMEM;
456         }
457
458         pc_req[1] = SMP_PHY_CONTROL;
459         pc_req[9] = phy_id;
460         pc_req[10]= phy_func;
461         if (rates) {
462                 pc_req[32] = rates->minimum_linkrate << 4;
463                 pc_req[33] = rates->maximum_linkrate << 4;
464         }
465
466         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
467
468         kfree(pc_resp);
469         kfree(pc_req);
470         return res;
471 }
472
473 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
474 {
475         struct expander_device *ex = &dev->ex_dev;
476         struct ex_phy *phy = &ex->ex_phy[phy_id];
477
478         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
479         phy->linkrate = SAS_PHY_DISABLED;
480 }
481
482 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
483 {
484         struct expander_device *ex = &dev->ex_dev;
485         int i;
486
487         for (i = 0; i < ex->num_phys; i++) {
488                 struct ex_phy *phy = &ex->ex_phy[i];
489
490                 if (phy->phy_state == PHY_VACANT ||
491                     phy->phy_state == PHY_NOT_PRESENT)
492                         continue;
493
494                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
495                         sas_ex_disable_phy(dev, i);
496         }
497 }
498
499 static int sas_dev_present_in_domain(struct asd_sas_port *port,
500                                             u8 *sas_addr)
501 {
502         struct domain_device *dev;
503
504         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
505                 return 1;
506         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
507                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
508                         return 1;
509         }
510         return 0;
511 }
512
513 #define RPEL_REQ_SIZE   16
514 #define RPEL_RESP_SIZE  32
515 int sas_smp_get_phy_events(struct sas_phy *phy)
516 {
517         int res;
518         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
519         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
520         u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
521         u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
522
523         if (!resp)
524                 return -ENOMEM;
525
526         req[1] = SMP_REPORT_PHY_ERR_LOG;
527         req[9] = phy->number;
528
529         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
530                                     resp, RPEL_RESP_SIZE);
531
532         if (!res)
533                 goto out;
534
535         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
536         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
537         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
538         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
539
540  out:
541         kfree(resp);
542         return res;
543
544 }
545
546 #define RPS_REQ_SIZE  16
547 #define RPS_RESP_SIZE 60
548
549 static int sas_get_report_phy_sata(struct domain_device *dev,
550                                           int phy_id,
551                                           struct smp_resp *rps_resp)
552 {
553         int res;
554         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
555         u8 *resp = (u8 *)rps_resp;
556
557         if (!rps_req)
558                 return -ENOMEM;
559
560         rps_req[1] = SMP_REPORT_PHY_SATA;
561         rps_req[9] = phy_id;
562
563         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
564                                     rps_resp, RPS_RESP_SIZE);
565
566         /* 0x34 is the FIS type for the D2H fis.  There's a potential
567          * standards cockup here.  sas-2 explicitly specifies the FIS
568          * should be encoded so that FIS type is in resp[24].
569          * However, some expanders endian reverse this.  Undo the
570          * reversal here */
571         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
572                 int i;
573
574                 for (i = 0; i < 5; i++) {
575                         int j = 24 + (i*4);
576                         u8 a, b;
577                         a = resp[j + 0];
578                         b = resp[j + 1];
579                         resp[j + 0] = resp[j + 3];
580                         resp[j + 1] = resp[j + 2];
581                         resp[j + 2] = b;
582                         resp[j + 3] = a;
583                 }
584         }
585
586         kfree(rps_req);
587         return res;
588 }
589
590 static void sas_ex_get_linkrate(struct domain_device *parent,
591                                        struct domain_device *child,
592                                        struct ex_phy *parent_phy)
593 {
594         struct expander_device *parent_ex = &parent->ex_dev;
595         struct sas_port *port;
596         int i;
597
598         child->pathways = 0;
599
600         port = parent_phy->port;
601
602         for (i = 0; i < parent_ex->num_phys; i++) {
603                 struct ex_phy *phy = &parent_ex->ex_phy[i];
604
605                 if (phy->phy_state == PHY_VACANT ||
606                     phy->phy_state == PHY_NOT_PRESENT)
607                         continue;
608
609                 if (SAS_ADDR(phy->attached_sas_addr) ==
610                     SAS_ADDR(child->sas_addr)) {
611
612                         child->min_linkrate = min(parent->min_linkrate,
613                                                   phy->linkrate);
614                         child->max_linkrate = max(parent->max_linkrate,
615                                                   phy->linkrate);
616                         child->pathways++;
617                         sas_port_add_phy(port, phy->phy);
618                 }
619         }
620         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
621         child->pathways = min(child->pathways, parent->pathways);
622 }
623
624 static struct domain_device *sas_ex_discover_end_dev(
625         struct domain_device *parent, int phy_id)
626 {
627         struct expander_device *parent_ex = &parent->ex_dev;
628         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
629         struct domain_device *child = NULL;
630         struct sas_rphy *rphy;
631         int res;
632
633         if (phy->attached_sata_host || phy->attached_sata_ps)
634                 return NULL;
635
636         child = kzalloc(sizeof(*child), GFP_KERNEL);
637         if (!child)
638                 return NULL;
639
640         child->parent = parent;
641         child->port   = parent->port;
642         child->iproto = phy->attached_iproto;
643         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
644         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
645         if (!phy->port) {
646                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
647                 if (unlikely(!phy->port))
648                         goto out_err;
649                 if (unlikely(sas_port_add(phy->port) != 0)) {
650                         sas_port_free(phy->port);
651                         goto out_err;
652                 }
653         }
654         sas_ex_get_linkrate(parent, child, phy);
655
656         if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
657                 child->dev_type = SATA_DEV;
658                 if (phy->attached_tproto & SAS_PROTO_STP)
659                         child->tproto = phy->attached_tproto;
660                 if (phy->attached_sata_dev)
661                         child->tproto |= SATA_DEV;
662                 res = sas_get_report_phy_sata(parent, phy_id,
663                                               &child->sata_dev.rps_resp);
664                 if (res) {
665                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
666                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
667                                     phy_id, res);
668                         goto out_free;
669                 }
670                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
671                        sizeof(struct dev_to_host_fis));
672
673                 rphy = sas_end_device_alloc(phy->port);
674                 if (unlikely(!rphy))
675                         goto out_free;
676
677                 sas_init_dev(child);
678
679                 child->rphy = rphy;
680
681                 spin_lock_irq(&parent->port->dev_list_lock);
682                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
683                 spin_unlock_irq(&parent->port->dev_list_lock);
684
685                 res = sas_discover_sata(child);
686                 if (res) {
687                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
688                                     "%016llx:0x%x returned 0x%x\n",
689                                     SAS_ADDR(child->sas_addr),
690                                     SAS_ADDR(parent->sas_addr), phy_id, res);
691                         goto out_list_del;
692                 }
693         } else if (phy->attached_tproto & SAS_PROTO_SSP) {
694                 child->dev_type = SAS_END_DEV;
695                 rphy = sas_end_device_alloc(phy->port);
696                 /* FIXME: error handling */
697                 if (unlikely(!rphy))
698                         goto out_free;
699                 child->tproto = phy->attached_tproto;
700                 sas_init_dev(child);
701
702                 child->rphy = rphy;
703                 sas_fill_in_rphy(child, rphy);
704
705                 spin_lock_irq(&parent->port->dev_list_lock);
706                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
707                 spin_unlock_irq(&parent->port->dev_list_lock);
708
709                 res = sas_discover_end_dev(child);
710                 if (res) {
711                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
712                                     "at %016llx:0x%x returned 0x%x\n",
713                                     SAS_ADDR(child->sas_addr),
714                                     SAS_ADDR(parent->sas_addr), phy_id, res);
715                         goto out_list_del;
716                 }
717         } else {
718                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
719                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
720                             phy_id);
721         }
722
723         list_add_tail(&child->siblings, &parent_ex->children);
724         return child;
725
726  out_list_del:
727         sas_rphy_free(child->rphy);
728         child->rphy = NULL;
729         list_del(&child->dev_list_node);
730  out_free:
731         sas_port_delete(phy->port);
732  out_err:
733         phy->port = NULL;
734         kfree(child);
735         return NULL;
736 }
737
738 /* See if this phy is part of a wide port */
739 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
740 {
741         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
742         int i;
743
744         for (i = 0; i < parent->ex_dev.num_phys; i++) {
745                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
746
747                 if (ephy == phy)
748                         continue;
749
750                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
751                             SAS_ADDR_SIZE) && ephy->port) {
752                         sas_port_add_phy(ephy->port, phy->phy);
753                         phy->phy_state = PHY_DEVICE_DISCOVERED;
754                         return 0;
755                 }
756         }
757
758         return -ENODEV;
759 }
760
761 static struct domain_device *sas_ex_discover_expander(
762         struct domain_device *parent, int phy_id)
763 {
764         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
765         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
766         struct domain_device *child = NULL;
767         struct sas_rphy *rphy;
768         struct sas_expander_device *edev;
769         struct asd_sas_port *port;
770         int res;
771
772         if (phy->routing_attr == DIRECT_ROUTING) {
773                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
774                             "allowed\n",
775                             SAS_ADDR(parent->sas_addr), phy_id,
776                             SAS_ADDR(phy->attached_sas_addr),
777                             phy->attached_phy_id);
778                 return NULL;
779         }
780         child = kzalloc(sizeof(*child), GFP_KERNEL);
781         if (!child)
782                 return NULL;
783
784         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
785         /* FIXME: better error handling */
786         BUG_ON(sas_port_add(phy->port) != 0);
787
788
789         switch (phy->attached_dev_type) {
790         case EDGE_DEV:
791                 rphy = sas_expander_alloc(phy->port,
792                                           SAS_EDGE_EXPANDER_DEVICE);
793                 break;
794         case FANOUT_DEV:
795                 rphy = sas_expander_alloc(phy->port,
796                                           SAS_FANOUT_EXPANDER_DEVICE);
797                 break;
798         default:
799                 rphy = NULL;    /* shut gcc up */
800                 BUG();
801         }
802         port = parent->port;
803         child->rphy = rphy;
804         edev = rphy_to_expander_device(rphy);
805         child->dev_type = phy->attached_dev_type;
806         child->parent = parent;
807         child->port = port;
808         child->iproto = phy->attached_iproto;
809         child->tproto = phy->attached_tproto;
810         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
811         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
812         sas_ex_get_linkrate(parent, child, phy);
813         edev->level = parent_ex->level + 1;
814         parent->port->disc.max_level = max(parent->port->disc.max_level,
815                                            edev->level);
816         sas_init_dev(child);
817         sas_fill_in_rphy(child, rphy);
818         sas_rphy_add(rphy);
819
820         spin_lock_irq(&parent->port->dev_list_lock);
821         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
822         spin_unlock_irq(&parent->port->dev_list_lock);
823
824         res = sas_discover_expander(child);
825         if (res) {
826                 kfree(child);
827                 return NULL;
828         }
829         list_add_tail(&child->siblings, &parent->ex_dev.children);
830         return child;
831 }
832
833 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
834 {
835         struct expander_device *ex = &dev->ex_dev;
836         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
837         struct domain_device *child = NULL;
838         int res = 0;
839
840         /* Phy state */
841         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
842                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
843                         res = sas_ex_phy_discover(dev, phy_id);
844                 if (res)
845                         return res;
846         }
847
848         /* Parent and domain coherency */
849         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
850                              SAS_ADDR(dev->port->sas_addr))) {
851                 sas_add_parent_port(dev, phy_id);
852                 return 0;
853         }
854         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
855                             SAS_ADDR(dev->parent->sas_addr))) {
856                 sas_add_parent_port(dev, phy_id);
857                 if (ex_phy->routing_attr == TABLE_ROUTING)
858                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
859                 return 0;
860         }
861
862         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
863                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
864
865         if (ex_phy->attached_dev_type == NO_DEVICE) {
866                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
867                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
868                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
869                 }
870                 return 0;
871         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
872                 return 0;
873
874         if (ex_phy->attached_dev_type != SAS_END_DEV &&
875             ex_phy->attached_dev_type != FANOUT_DEV &&
876             ex_phy->attached_dev_type != EDGE_DEV) {
877                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
878                             "phy 0x%x\n", ex_phy->attached_dev_type,
879                             SAS_ADDR(dev->sas_addr),
880                             phy_id);
881                 return 0;
882         }
883
884         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
885         if (res) {
886                 SAS_DPRINTK("configure routing for dev %016llx "
887                             "reported 0x%x. Forgotten\n",
888                             SAS_ADDR(ex_phy->attached_sas_addr), res);
889                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
890                 return res;
891         }
892
893         res = sas_ex_join_wide_port(dev, phy_id);
894         if (!res) {
895                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
896                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
897                 return res;
898         }
899
900         switch (ex_phy->attached_dev_type) {
901         case SAS_END_DEV:
902                 child = sas_ex_discover_end_dev(dev, phy_id);
903                 break;
904         case FANOUT_DEV:
905                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
906                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
907                                     "attached to ex %016llx phy 0x%x\n",
908                                     SAS_ADDR(ex_phy->attached_sas_addr),
909                                     ex_phy->attached_phy_id,
910                                     SAS_ADDR(dev->sas_addr),
911                                     phy_id);
912                         sas_ex_disable_phy(dev, phy_id);
913                         break;
914                 } else
915                         memcpy(dev->port->disc.fanout_sas_addr,
916                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
917                 /* fallthrough */
918         case EDGE_DEV:
919                 child = sas_ex_discover_expander(dev, phy_id);
920                 break;
921         default:
922                 break;
923         }
924
925         if (child) {
926                 int i;
927
928                 for (i = 0; i < ex->num_phys; i++) {
929                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
930                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
931                                 continue;
932
933                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
934                             SAS_ADDR(child->sas_addr))
935                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
936                 }
937         }
938
939         return res;
940 }
941
942 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
943 {
944         struct expander_device *ex = &dev->ex_dev;
945         int i;
946
947         for (i = 0; i < ex->num_phys; i++) {
948                 struct ex_phy *phy = &ex->ex_phy[i];
949
950                 if (phy->phy_state == PHY_VACANT ||
951                     phy->phy_state == PHY_NOT_PRESENT)
952                         continue;
953
954                 if ((phy->attached_dev_type == EDGE_DEV ||
955                      phy->attached_dev_type == FANOUT_DEV) &&
956                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
957
958                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
959
960                         return 1;
961                 }
962         }
963         return 0;
964 }
965
966 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
967 {
968         struct expander_device *ex = &dev->ex_dev;
969         struct domain_device *child;
970         u8 sub_addr[8] = {0, };
971
972         list_for_each_entry(child, &ex->children, siblings) {
973                 if (child->dev_type != EDGE_DEV &&
974                     child->dev_type != FANOUT_DEV)
975                         continue;
976                 if (sub_addr[0] == 0) {
977                         sas_find_sub_addr(child, sub_addr);
978                         continue;
979                 } else {
980                         u8 s2[8];
981
982                         if (sas_find_sub_addr(child, s2) &&
983                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
984
985                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
986                                             "diverges from subtractive "
987                                             "boundary %016llx\n",
988                                             SAS_ADDR(dev->sas_addr),
989                                             SAS_ADDR(child->sas_addr),
990                                             SAS_ADDR(s2),
991                                             SAS_ADDR(sub_addr));
992
993                                 sas_ex_disable_port(child, s2);
994                         }
995                 }
996         }
997         return 0;
998 }
999 /**
1000  * sas_ex_discover_devices -- discover devices attached to this expander
1001  * dev: pointer to the expander domain device
1002  * single: if you want to do a single phy, else set to -1;
1003  *
1004  * Configure this expander for use with its devices and register the
1005  * devices of this expander.
1006  */
1007 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1008 {
1009         struct expander_device *ex = &dev->ex_dev;
1010         int i = 0, end = ex->num_phys;
1011         int res = 0;
1012
1013         if (0 <= single && single < end) {
1014                 i = single;
1015                 end = i+1;
1016         }
1017
1018         for ( ; i < end; i++) {
1019                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1020
1021                 if (ex_phy->phy_state == PHY_VACANT ||
1022                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1023                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1024                         continue;
1025
1026                 switch (ex_phy->linkrate) {
1027                 case SAS_PHY_DISABLED:
1028                 case SAS_PHY_RESET_PROBLEM:
1029                 case SAS_SATA_PORT_SELECTOR:
1030                         continue;
1031                 default:
1032                         res = sas_ex_discover_dev(dev, i);
1033                         if (res)
1034                                 break;
1035                         continue;
1036                 }
1037         }
1038
1039         if (!res)
1040                 sas_check_level_subtractive_boundary(dev);
1041
1042         return res;
1043 }
1044
1045 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1046 {
1047         struct expander_device *ex = &dev->ex_dev;
1048         int i;
1049         u8  *sub_sas_addr = NULL;
1050
1051         if (dev->dev_type != EDGE_DEV)
1052                 return 0;
1053
1054         for (i = 0; i < ex->num_phys; i++) {
1055                 struct ex_phy *phy = &ex->ex_phy[i];
1056
1057                 if (phy->phy_state == PHY_VACANT ||
1058                     phy->phy_state == PHY_NOT_PRESENT)
1059                         continue;
1060
1061                 if ((phy->attached_dev_type == FANOUT_DEV ||
1062                      phy->attached_dev_type == EDGE_DEV) &&
1063                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1064
1065                         if (!sub_sas_addr)
1066                                 sub_sas_addr = &phy->attached_sas_addr[0];
1067                         else if (SAS_ADDR(sub_sas_addr) !=
1068                                  SAS_ADDR(phy->attached_sas_addr)) {
1069
1070                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1071                                             "diverges(%016llx) on subtractive "
1072                                             "boundary(%016llx). Disabled\n",
1073                                             SAS_ADDR(dev->sas_addr), i,
1074                                             SAS_ADDR(phy->attached_sas_addr),
1075                                             SAS_ADDR(sub_sas_addr));
1076                                 sas_ex_disable_phy(dev, i);
1077                         }
1078                 }
1079         }
1080         return 0;
1081 }
1082
1083 static void sas_print_parent_topology_bug(struct domain_device *child,
1084                                                  struct ex_phy *parent_phy,
1085                                                  struct ex_phy *child_phy)
1086 {
1087         static const char ra_char[] = {
1088                 [DIRECT_ROUTING] = 'D',
1089                 [SUBTRACTIVE_ROUTING] = 'S',
1090                 [TABLE_ROUTING] = 'T',
1091         };
1092         static const char *ex_type[] = {
1093                 [EDGE_DEV] = "edge",
1094                 [FANOUT_DEV] = "fanout",
1095         };
1096         struct domain_device *parent = child->parent;
1097
1098         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1099                    "has %c:%c routing link!\n",
1100
1101                    ex_type[parent->dev_type],
1102                    SAS_ADDR(parent->sas_addr),
1103                    parent_phy->phy_id,
1104
1105                    ex_type[child->dev_type],
1106                    SAS_ADDR(child->sas_addr),
1107                    child_phy->phy_id,
1108
1109                    ra_char[parent_phy->routing_attr],
1110                    ra_char[child_phy->routing_attr]);
1111 }
1112
1113 static int sas_check_eeds(struct domain_device *child,
1114                                  struct ex_phy *parent_phy,
1115                                  struct ex_phy *child_phy)
1116 {
1117         int res = 0;
1118         struct domain_device *parent = child->parent;
1119
1120         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1121                 res = -ENODEV;
1122                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1123                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1124                             SAS_ADDR(parent->sas_addr),
1125                             parent_phy->phy_id,
1126                             SAS_ADDR(child->sas_addr),
1127                             child_phy->phy_id,
1128                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1129         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1130                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1131                        SAS_ADDR_SIZE);
1132                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1133                        SAS_ADDR_SIZE);
1134         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1135                     SAS_ADDR(parent->sas_addr)) ||
1136                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1137                     SAS_ADDR(child->sas_addr)))
1138                    &&
1139                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1140                      SAS_ADDR(parent->sas_addr)) ||
1141                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1142                      SAS_ADDR(child->sas_addr))))
1143                 ;
1144         else {
1145                 res = -ENODEV;
1146                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1147                             "phy 0x%x link forms a third EEDS!\n",
1148                             SAS_ADDR(parent->sas_addr),
1149                             parent_phy->phy_id,
1150                             SAS_ADDR(child->sas_addr),
1151                             child_phy->phy_id);
1152         }
1153
1154         return res;
1155 }
1156
1157 /* Here we spill over 80 columns.  It is intentional.
1158  */
1159 static int sas_check_parent_topology(struct domain_device *child)
1160 {
1161         struct expander_device *child_ex = &child->ex_dev;
1162         struct expander_device *parent_ex;
1163         int i;
1164         int res = 0;
1165
1166         if (!child->parent)
1167                 return 0;
1168
1169         if (child->parent->dev_type != EDGE_DEV &&
1170             child->parent->dev_type != FANOUT_DEV)
1171                 return 0;
1172
1173         parent_ex = &child->parent->ex_dev;
1174
1175         for (i = 0; i < parent_ex->num_phys; i++) {
1176                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1177                 struct ex_phy *child_phy;
1178
1179                 if (parent_phy->phy_state == PHY_VACANT ||
1180                     parent_phy->phy_state == PHY_NOT_PRESENT)
1181                         continue;
1182
1183                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1184                         continue;
1185
1186                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1187
1188                 switch (child->parent->dev_type) {
1189                 case EDGE_DEV:
1190                         if (child->dev_type == FANOUT_DEV) {
1191                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1192                                     child_phy->routing_attr != TABLE_ROUTING) {
1193                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1194                                         res = -ENODEV;
1195                                 }
1196                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1197                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1198                                         res = sas_check_eeds(child, parent_phy, child_phy);
1199                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1200                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1201                                         res = -ENODEV;
1202                                 }
1203                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1204                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1205                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1206                                 res = -ENODEV;
1207                         }
1208                         break;
1209                 case FANOUT_DEV:
1210                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1211                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1212                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1213                                 res = -ENODEV;
1214                         }
1215                         break;
1216                 default:
1217                         break;
1218                 }
1219         }
1220
1221         return res;
1222 }
1223
1224 #define RRI_REQ_SIZE  16
1225 #define RRI_RESP_SIZE 44
1226
1227 static int sas_configure_present(struct domain_device *dev, int phy_id,
1228                                  u8 *sas_addr, int *index, int *present)
1229 {
1230         int i, res = 0;
1231         struct expander_device *ex = &dev->ex_dev;
1232         struct ex_phy *phy = &ex->ex_phy[phy_id];
1233         u8 *rri_req;
1234         u8 *rri_resp;
1235
1236         *present = 0;
1237         *index = 0;
1238
1239         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1240         if (!rri_req)
1241                 return -ENOMEM;
1242
1243         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1244         if (!rri_resp) {
1245                 kfree(rri_req);
1246                 return -ENOMEM;
1247         }
1248
1249         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1250         rri_req[9] = phy_id;
1251
1252         for (i = 0; i < ex->max_route_indexes ; i++) {
1253                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1254                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1255                                        RRI_RESP_SIZE);
1256                 if (res)
1257                         goto out;
1258                 res = rri_resp[2];
1259                 if (res == SMP_RESP_NO_INDEX) {
1260                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1261                                     "phy 0x%x index 0x%x\n",
1262                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1263                         goto out;
1264                 } else if (res != SMP_RESP_FUNC_ACC) {
1265                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1266                                     "result 0x%x\n", __FUNCTION__,
1267                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1268                         goto out;
1269                 }
1270                 if (SAS_ADDR(sas_addr) != 0) {
1271                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1272                                 *index = i;
1273                                 if ((rri_resp[12] & 0x80) == 0x80)
1274                                         *present = 0;
1275                                 else
1276                                         *present = 1;
1277                                 goto out;
1278                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1279                                 *index = i;
1280                                 *present = 0;
1281                                 goto out;
1282                         }
1283                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1284                            phy->last_da_index < i) {
1285                         phy->last_da_index = i;
1286                         *index = i;
1287                         *present = 0;
1288                         goto out;
1289                 }
1290         }
1291         res = -1;
1292 out:
1293         kfree(rri_req);
1294         kfree(rri_resp);
1295         return res;
1296 }
1297
1298 #define CRI_REQ_SIZE  44
1299 #define CRI_RESP_SIZE  8
1300
1301 static int sas_configure_set(struct domain_device *dev, int phy_id,
1302                              u8 *sas_addr, int index, int include)
1303 {
1304         int res;
1305         u8 *cri_req;
1306         u8 *cri_resp;
1307
1308         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1309         if (!cri_req)
1310                 return -ENOMEM;
1311
1312         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1313         if (!cri_resp) {
1314                 kfree(cri_req);
1315                 return -ENOMEM;
1316         }
1317
1318         cri_req[1] = SMP_CONF_ROUTE_INFO;
1319         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1320         cri_req[9] = phy_id;
1321         if (SAS_ADDR(sas_addr) == 0 || !include)
1322                 cri_req[12] |= 0x80;
1323         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1324
1325         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1326                                CRI_RESP_SIZE);
1327         if (res)
1328                 goto out;
1329         res = cri_resp[2];
1330         if (res == SMP_RESP_NO_INDEX) {
1331                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1332                             "index 0x%x\n",
1333                             SAS_ADDR(dev->sas_addr), phy_id, index);
1334         }
1335 out:
1336         kfree(cri_req);
1337         kfree(cri_resp);
1338         return res;
1339 }
1340
1341 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1342                                     u8 *sas_addr, int include)
1343 {
1344         int index;
1345         int present;
1346         int res;
1347
1348         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1349         if (res)
1350                 return res;
1351         if (include ^ present)
1352                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1353
1354         return res;
1355 }
1356
1357 /**
1358  * sas_configure_parent -- configure routing table of parent
1359  * parent: parent expander
1360  * child: child expander
1361  * sas_addr: SAS port identifier of device directly attached to child
1362  */
1363 static int sas_configure_parent(struct domain_device *parent,
1364                                 struct domain_device *child,
1365                                 u8 *sas_addr, int include)
1366 {
1367         struct expander_device *ex_parent = &parent->ex_dev;
1368         int res = 0;
1369         int i;
1370
1371         if (parent->parent) {
1372                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1373                                            include);
1374                 if (res)
1375                         return res;
1376         }
1377
1378         if (ex_parent->conf_route_table == 0) {
1379                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1380                             SAS_ADDR(parent->sas_addr));
1381                 return 0;
1382         }
1383
1384         for (i = 0; i < ex_parent->num_phys; i++) {
1385                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1386
1387                 if ((phy->routing_attr == TABLE_ROUTING) &&
1388                     (SAS_ADDR(phy->attached_sas_addr) ==
1389                      SAS_ADDR(child->sas_addr))) {
1390                         res = sas_configure_phy(parent, i, sas_addr, include);
1391                         if (res)
1392                                 return res;
1393                 }
1394         }
1395
1396         return res;
1397 }
1398
1399 /**
1400  * sas_configure_routing -- configure routing
1401  * dev: expander device
1402  * sas_addr: port identifier of device directly attached to the expander device
1403  */
1404 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1405 {
1406         if (dev->parent)
1407                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1408         return 0;
1409 }
1410
1411 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1412 {
1413         if (dev->parent)
1414                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1415         return 0;
1416 }
1417
1418 #if 0
1419 #define SMP_BIN_ATTR_NAME "smp_portal"
1420
1421 static void sas_ex_smp_hook(struct domain_device *dev)
1422 {
1423         struct expander_device *ex_dev = &dev->ex_dev;
1424         struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1425
1426         memset(bin_attr, 0, sizeof(*bin_attr));
1427
1428         bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1429         bin_attr->attr.mode = 0600;
1430
1431         bin_attr->size = 0;
1432         bin_attr->private = NULL;
1433         bin_attr->read = smp_portal_read;
1434         bin_attr->write= smp_portal_write;
1435         bin_attr->mmap = NULL;
1436
1437         ex_dev->smp_portal_pid = -1;
1438         init_MUTEX(&ex_dev->smp_sema);
1439 }
1440 #endif
1441
1442 /**
1443  * sas_discover_expander -- expander discovery
1444  * @ex: pointer to expander domain device
1445  *
1446  * See comment in sas_discover_sata().
1447  */
1448 static int sas_discover_expander(struct domain_device *dev)
1449 {
1450         int res;
1451
1452         res = sas_notify_lldd_dev_found(dev);
1453         if (res)
1454                 return res;
1455
1456         res = sas_ex_general(dev);
1457         if (res)
1458                 goto out_err;
1459         res = sas_ex_manuf_info(dev);
1460         if (res)
1461                 goto out_err;
1462
1463         res = sas_expander_discover(dev);
1464         if (res) {
1465                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1466                             SAS_ADDR(dev->sas_addr), res);
1467                 goto out_err;
1468         }
1469
1470         sas_check_ex_subtractive_boundary(dev);
1471         res = sas_check_parent_topology(dev);
1472         if (res)
1473                 goto out_err;
1474         return 0;
1475 out_err:
1476         sas_notify_lldd_dev_gone(dev);
1477         return res;
1478 }
1479
1480 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1481 {
1482         int res = 0;
1483         struct domain_device *dev;
1484
1485         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1486                 if (dev->dev_type == EDGE_DEV ||
1487                     dev->dev_type == FANOUT_DEV) {
1488                         struct sas_expander_device *ex =
1489                                 rphy_to_expander_device(dev->rphy);
1490
1491                         if (level == ex->level)
1492                                 res = sas_ex_discover_devices(dev, -1);
1493                         else if (level > 0)
1494                                 res = sas_ex_discover_devices(port->port_dev, -1);
1495
1496                 }
1497         }
1498
1499         return res;
1500 }
1501
1502 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1503 {
1504         int res;
1505         int level;
1506
1507         do {
1508                 level = port->disc.max_level;
1509                 res = sas_ex_level_discovery(port, level);
1510                 mb();
1511         } while (level < port->disc.max_level);
1512
1513         return res;
1514 }
1515
1516 int sas_discover_root_expander(struct domain_device *dev)
1517 {
1518         int res;
1519         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1520
1521         res = sas_rphy_add(dev->rphy);
1522         if (res)
1523                 goto out_err;
1524
1525         ex->level = dev->port->disc.max_level; /* 0 */
1526         res = sas_discover_expander(dev);
1527         if (res)
1528                 goto out_err2;
1529
1530         sas_ex_bfs_disc(dev->port);
1531
1532         return res;
1533
1534 out_err2:
1535         sas_rphy_remove(dev->rphy);
1536 out_err:
1537         return res;
1538 }
1539
1540 /* ---------- Domain revalidation ---------- */
1541
1542 static int sas_get_phy_discover(struct domain_device *dev,
1543                                 int phy_id, struct smp_resp *disc_resp)
1544 {
1545         int res;
1546         u8 *disc_req;
1547
1548         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1549         if (!disc_req)
1550                 return -ENOMEM;
1551
1552         disc_req[1] = SMP_DISCOVER;
1553         disc_req[9] = phy_id;
1554
1555         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1556                                disc_resp, DISCOVER_RESP_SIZE);
1557         if (res)
1558                 goto out;
1559         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1560                 res = disc_resp->result;
1561                 goto out;
1562         }
1563 out:
1564         kfree(disc_req);
1565         return res;
1566 }
1567
1568 static int sas_get_phy_change_count(struct domain_device *dev,
1569                                     int phy_id, int *pcc)
1570 {
1571         int res;
1572         struct smp_resp *disc_resp;
1573
1574         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1575         if (!disc_resp)
1576                 return -ENOMEM;
1577
1578         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1579         if (!res)
1580                 *pcc = disc_resp->disc.change_count;
1581
1582         kfree(disc_resp);
1583         return res;
1584 }
1585
1586 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1587                                          int phy_id, u8 *attached_sas_addr)
1588 {
1589         int res;
1590         struct smp_resp *disc_resp;
1591         struct discover_resp *dr;
1592
1593         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1594         if (!disc_resp)
1595                 return -ENOMEM;
1596         dr = &disc_resp->disc;
1597
1598         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1599         if (!res) {
1600                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1601                 if (dr->attached_dev_type == 0)
1602                         memset(attached_sas_addr, 0, 8);
1603         }
1604         kfree(disc_resp);
1605         return res;
1606 }
1607
1608 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1609                               int from_phy)
1610 {
1611         struct expander_device *ex = &dev->ex_dev;
1612         int res = 0;
1613         int i;
1614
1615         for (i = from_phy; i < ex->num_phys; i++) {
1616                 int phy_change_count = 0;
1617
1618                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1619                 if (res)
1620                         goto out;
1621                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1622                         ex->ex_phy[i].phy_change_count = phy_change_count;
1623                         *phy_id = i;
1624                         return 0;
1625                 }
1626         }
1627 out:
1628         return res;
1629 }
1630
1631 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1632 {
1633         int res;
1634         u8  *rg_req;
1635         struct smp_resp  *rg_resp;
1636
1637         rg_req = alloc_smp_req(RG_REQ_SIZE);
1638         if (!rg_req)
1639                 return -ENOMEM;
1640
1641         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1642         if (!rg_resp) {
1643                 kfree(rg_req);
1644                 return -ENOMEM;
1645         }
1646
1647         rg_req[1] = SMP_REPORT_GENERAL;
1648
1649         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1650                                RG_RESP_SIZE);
1651         if (res)
1652                 goto out;
1653         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1654                 res = rg_resp->result;
1655                 goto out;
1656         }
1657
1658         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1659 out:
1660         kfree(rg_resp);
1661         kfree(rg_req);
1662         return res;
1663 }
1664
1665 static int sas_find_bcast_dev(struct domain_device *dev,
1666                               struct domain_device **src_dev)
1667 {
1668         struct expander_device *ex = &dev->ex_dev;
1669         int ex_change_count = -1;
1670         int res;
1671
1672         res = sas_get_ex_change_count(dev, &ex_change_count);
1673         if (res)
1674                 goto out;
1675         if (ex_change_count != -1 &&
1676             ex_change_count != ex->ex_change_count) {
1677                 *src_dev = dev;
1678                 ex->ex_change_count = ex_change_count;
1679         } else {
1680                 struct domain_device *ch;
1681
1682                 list_for_each_entry(ch, &ex->children, siblings) {
1683                         if (ch->dev_type == EDGE_DEV ||
1684                             ch->dev_type == FANOUT_DEV) {
1685                                 res = sas_find_bcast_dev(ch, src_dev);
1686                                 if (src_dev)
1687                                         return res;
1688                         }
1689                 }
1690         }
1691 out:
1692         return res;
1693 }
1694
1695 static void sas_unregister_ex_tree(struct domain_device *dev)
1696 {
1697         struct expander_device *ex = &dev->ex_dev;
1698         struct domain_device *child, *n;
1699
1700         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1701                 if (child->dev_type == EDGE_DEV ||
1702                     child->dev_type == FANOUT_DEV)
1703                         sas_unregister_ex_tree(child);
1704                 else
1705                         sas_unregister_dev(child);
1706         }
1707         sas_unregister_dev(dev);
1708 }
1709
1710 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1711                                          int phy_id)
1712 {
1713         struct expander_device *ex_dev = &parent->ex_dev;
1714         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1715         struct domain_device *child, *n;
1716
1717         list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1718                 if (SAS_ADDR(child->sas_addr) ==
1719                     SAS_ADDR(phy->attached_sas_addr)) {
1720                         if (child->dev_type == EDGE_DEV ||
1721                             child->dev_type == FANOUT_DEV)
1722                                 sas_unregister_ex_tree(child);
1723                         else
1724                                 sas_unregister_dev(child);
1725                         break;
1726                 }
1727         }
1728         sas_disable_routing(parent, phy->attached_sas_addr);
1729         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1730         sas_port_delete_phy(phy->port, phy->phy);
1731         if (phy->port->num_phys == 0)
1732                 sas_port_delete(phy->port);
1733         phy->port = NULL;
1734 }
1735
1736 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1737                                           const int level)
1738 {
1739         struct expander_device *ex_root = &root->ex_dev;
1740         struct domain_device *child;
1741         int res = 0;
1742
1743         list_for_each_entry(child, &ex_root->children, siblings) {
1744                 if (child->dev_type == EDGE_DEV ||
1745                     child->dev_type == FANOUT_DEV) {
1746                         struct sas_expander_device *ex =
1747                                 rphy_to_expander_device(child->rphy);
1748
1749                         if (level > ex->level)
1750                                 res = sas_discover_bfs_by_root_level(child,
1751                                                                      level);
1752                         else if (level == ex->level)
1753                                 res = sas_ex_discover_devices(child, -1);
1754                 }
1755         }
1756         return res;
1757 }
1758
1759 static int sas_discover_bfs_by_root(struct domain_device *dev)
1760 {
1761         int res;
1762         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1763         int level = ex->level+1;
1764
1765         res = sas_ex_discover_devices(dev, -1);
1766         if (res)
1767                 goto out;
1768         do {
1769                 res = sas_discover_bfs_by_root_level(dev, level);
1770                 mb();
1771                 level += 1;
1772         } while (level <= dev->port->disc.max_level);
1773 out:
1774         return res;
1775 }
1776
1777 static int sas_discover_new(struct domain_device *dev, int phy_id)
1778 {
1779         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1780         struct domain_device *child;
1781         int res;
1782
1783         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1784                     SAS_ADDR(dev->sas_addr), phy_id);
1785         res = sas_ex_phy_discover(dev, phy_id);
1786         if (res)
1787                 goto out;
1788         res = sas_ex_discover_devices(dev, phy_id);
1789         if (res)
1790                 goto out;
1791         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1792                 if (SAS_ADDR(child->sas_addr) ==
1793                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1794                         if (child->dev_type == EDGE_DEV ||
1795                             child->dev_type == FANOUT_DEV)
1796                                 res = sas_discover_bfs_by_root(child);
1797                         break;
1798                 }
1799         }
1800 out:
1801         return res;
1802 }
1803
1804 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1805 {
1806         struct expander_device *ex = &dev->ex_dev;
1807         struct ex_phy *phy = &ex->ex_phy[phy_id];
1808         u8 attached_sas_addr[8];
1809         int res;
1810
1811         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1812         switch (res) {
1813         case SMP_RESP_NO_PHY:
1814                 phy->phy_state = PHY_NOT_PRESENT;
1815                 sas_unregister_devs_sas_addr(dev, phy_id);
1816                 goto out; break;
1817         case SMP_RESP_PHY_VACANT:
1818                 phy->phy_state = PHY_VACANT;
1819                 sas_unregister_devs_sas_addr(dev, phy_id);
1820                 goto out; break;
1821         case SMP_RESP_FUNC_ACC:
1822                 break;
1823         }
1824
1825         if (SAS_ADDR(attached_sas_addr) == 0) {
1826                 phy->phy_state = PHY_EMPTY;
1827                 sas_unregister_devs_sas_addr(dev, phy_id);
1828         } else if (SAS_ADDR(attached_sas_addr) ==
1829                    SAS_ADDR(phy->attached_sas_addr)) {
1830                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1831                             SAS_ADDR(dev->sas_addr), phy_id);
1832                 sas_ex_phy_discover(dev, phy_id);
1833         } else
1834                 res = sas_discover_new(dev, phy_id);
1835 out:
1836         return res;
1837 }
1838
1839 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1840 {
1841         struct expander_device *ex = &dev->ex_dev;
1842         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1843         int res = 0;
1844         int i;
1845
1846         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1847                     SAS_ADDR(dev->sas_addr), phy_id);
1848
1849         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1850                 for (i = 0; i < ex->num_phys; i++) {
1851                         struct ex_phy *phy = &ex->ex_phy[i];
1852
1853                         if (i == phy_id)
1854                                 continue;
1855                         if (SAS_ADDR(phy->attached_sas_addr) ==
1856                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1857                                 SAS_DPRINTK("phy%d part of wide port with "
1858                                             "phy%d\n", phy_id, i);
1859                                 goto out;
1860                         }
1861                 }
1862                 res = sas_rediscover_dev(dev, phy_id);
1863         } else
1864                 res = sas_discover_new(dev, phy_id);
1865 out:
1866         return res;
1867 }
1868
1869 /**
1870  * sas_revalidate_domain -- revalidate the domain
1871  * @port: port to the domain of interest
1872  *
1873  * NOTE: this process _must_ quit (return) as soon as any connection
1874  * errors are encountered.  Connection recovery is done elsewhere.
1875  * Discover process only interrogates devices in order to discover the
1876  * domain.
1877  */
1878 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1879 {
1880         int res;
1881         struct domain_device *dev = NULL;
1882
1883         res = sas_find_bcast_dev(port_dev, &dev);
1884         if (res)
1885                 goto out;
1886         if (dev) {
1887                 struct expander_device *ex = &dev->ex_dev;
1888                 int i = 0, phy_id;
1889
1890                 do {
1891                         phy_id = -1;
1892                         res = sas_find_bcast_phy(dev, &phy_id, i);
1893                         if (phy_id == -1)
1894                                 break;
1895                         res = sas_rediscover(dev, phy_id);
1896                         i = phy_id + 1;
1897                 } while (i < ex->num_phys);
1898         }
1899 out:
1900         return res;
1901 }
1902
1903 #if 0
1904 /* ---------- SMP portal ---------- */
1905
1906 static ssize_t smp_portal_write(struct kobject *kobj,
1907                                 struct bin_attribute *bin_attr,
1908                                 char *buf, loff_t offs, size_t size)
1909 {
1910         struct domain_device *dev = to_dom_device(kobj);
1911         struct expander_device *ex = &dev->ex_dev;
1912
1913         if (offs != 0)
1914                 return -EFBIG;
1915         else if (size == 0)
1916                 return 0;
1917
1918         down_interruptible(&ex->smp_sema);
1919         if (ex->smp_req)
1920                 kfree(ex->smp_req);
1921         ex->smp_req = kzalloc(size, GFP_USER);
1922         if (!ex->smp_req) {
1923                 up(&ex->smp_sema);
1924                 return -ENOMEM;
1925         }
1926         memcpy(ex->smp_req, buf, size);
1927         ex->smp_req_size = size;
1928         ex->smp_portal_pid = current->pid;
1929         up(&ex->smp_sema);
1930
1931         return size;
1932 }
1933
1934 static ssize_t smp_portal_read(struct kobject *kobj,
1935                                struct bin_attribute *bin_attr,
1936                                char *buf, loff_t offs, size_t size)
1937 {
1938         struct domain_device *dev = to_dom_device(kobj);
1939         struct expander_device *ex = &dev->ex_dev;
1940         u8 *smp_resp;
1941         int res = -EINVAL;
1942
1943         /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1944          *  it should be 0.
1945          */
1946
1947         down_interruptible(&ex->smp_sema);
1948         if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1949                 goto out;
1950
1951         res = 0;
1952         if (size == 0)
1953                 goto out;
1954
1955         res = -ENOMEM;
1956         smp_resp = alloc_smp_resp(size);
1957         if (!smp_resp)
1958                 goto out;
1959         res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1960                                smp_resp, size);
1961         if (!res) {
1962                 memcpy(buf, smp_resp, size);
1963                 res = size;
1964         }
1965
1966         kfree(smp_resp);
1967 out:
1968         kfree(ex->smp_req);
1969         ex->smp_req = NULL;
1970         ex->smp_req_size = 0;
1971         ex->smp_portal_pid = -1;
1972         up(&ex->smp_sema);
1973         return res;
1974 }
1975 #endif
1976
1977 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1978                     struct request *req)
1979 {
1980         struct domain_device *dev;
1981         int ret, type = rphy->identify.device_type;
1982         struct request *rsp = req->next_rq;
1983
1984         if (!rsp) {
1985                 printk("%s: space for a smp response is missing\n",
1986                        __FUNCTION__);
1987                 return -EINVAL;
1988         }
1989
1990         /* seems aic94xx doesn't support */
1991         if (!rphy) {
1992                 printk("%s: can we send a smp request to a host?\n",
1993                        __FUNCTION__);
1994                 return -EINVAL;
1995         }
1996
1997         if (type != SAS_EDGE_EXPANDER_DEVICE &&
1998             type != SAS_FANOUT_EXPANDER_DEVICE) {
1999                 printk("%s: can we send a smp request to a device?\n",
2000                        __FUNCTION__);
2001                 return -EINVAL;
2002         }
2003
2004         dev = sas_find_dev_by_rphy(rphy);
2005         if (!dev) {
2006                 printk("%s: fail to find a domain_device?\n", __FUNCTION__);
2007                 return -EINVAL;
2008         }
2009
2010         /* do we need to support multiple segments? */
2011         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2012                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2013                        __FUNCTION__, req->bio->bi_vcnt, req->data_len,
2014                        rsp->bio->bi_vcnt, rsp->data_len);
2015                 return -EINVAL;
2016         }
2017
2018         ret = smp_execute_task(dev, bio_data(req->bio), req->data_len,
2019                                bio_data(rsp->bio), rsp->data_len);
2020
2021         return ret;
2022 }