2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
38 #include <linux/config.h>
39 #include <linux/sched.h>
41 #include <linux/bio.h>
42 #include <linux/kernel.h>
44 #include <linux/mman.h>
45 #include <linux/ioctl.h>
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/interrupt.h>
49 #include <linux/smp_lock.h>
50 #include <linux/timer.h>
51 #include <linux/pci.h>
52 #include <linux/slab.h>
53 #include <linux/dma-mapping.h>
55 #include <linux/fcntl.h> /* O_ACCMODE */
56 #include <linux/hdreg.h> /* HDIO_GETGEO */
58 #include <linux/umem.h>
60 #include <asm/uaccess.h>
64 #define MM_RAHEAD 2 /* two sectors */
65 #define MM_BLKSIZE 1024 /* 1k blocks */
66 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
67 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
73 #define DRIVER_VERSION "v2.3"
74 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
75 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
78 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
81 #define DEBUG_LED_ON_TRANSFER 0x01
82 #define DEBUG_BATTERY_POLLING 0x02
84 module_param(debug, int, 0644);
85 MODULE_PARM_DESC(debug, "Debug bitmask");
87 static int pci_read_cmd = 0x0C; /* Read Multiple */
88 module_param(pci_read_cmd, int, 0);
89 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
91 static int pci_write_cmd = 0x0F; /* Write and Invalidate */
92 module_param(pci_write_cmd, int, 0);
93 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
99 #include <linux/blkdev.h>
100 #include <linux/blkpg.h>
108 unsigned long csr_base;
109 unsigned char __iomem *csr_remap;
110 unsigned long csr_len;
111 #ifdef CONFIG_MM_MAP_MEMORY
112 unsigned long mem_base;
113 unsigned char __iomem *mem_remap;
114 unsigned long mem_len;
117 unsigned int win_size; /* PCI window size */
118 unsigned int mm_size; /* size in kbytes */
120 unsigned int init_size; /* initial segment, in sectors,
124 struct bio *bio, *currentbio, **biotail;
126 request_queue_t *queue;
130 struct mm_dma_desc *desc;
132 struct bio *bio, **biotail;
134 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
138 struct tasklet_struct tasklet;
139 unsigned int dma_status;
144 unsigned long last_change;
153 static struct cardinfo cards[MM_MAXCARDS];
154 static struct block_device_operations mm_fops;
155 static struct timer_list battery_timer;
157 static int num_cards = 0;
159 static struct gendisk *mm_gendisk[MM_MAXCARDS];
161 static void check_batteries(struct cardinfo *card);
164 -----------------------------------------------------------------------------------
166 -----------------------------------------------------------------------------------
168 static int get_userbit(struct cardinfo *card, int bit)
172 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
176 -----------------------------------------------------------------------------------
178 -----------------------------------------------------------------------------------
180 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
184 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
189 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
194 -----------------------------------------------------------------------------------
196 -----------------------------------------------------------------------------------
199 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
201 static void set_led(struct cardinfo *card, int shift, unsigned char state)
205 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
206 if (state == LED_FLIP)
209 led &= ~(0x03 << shift);
210 led |= (state << shift);
212 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
218 -----------------------------------------------------------------------------------
220 -----------------------------------------------------------------------------------
222 static void dump_regs(struct cardinfo *card)
228 for (i = 0; i < 8; i++) {
229 printk(KERN_DEBUG "%p ", p);
231 for (i1 = 0; i1 < 16; i1++)
232 printk("%02x ", *p++);
239 -----------------------------------------------------------------------------------
241 -----------------------------------------------------------------------------------
243 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
245 printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
246 if (dmastat & DMASCR_ANY_ERR)
248 if (dmastat & DMASCR_MBE_ERR)
250 if (dmastat & DMASCR_PARITY_ERR_REP)
251 printk("PARITY_ERR_REP ");
252 if (dmastat & DMASCR_PARITY_ERR_DET)
253 printk("PARITY_ERR_DET ");
254 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
255 printk("SYSTEM_ERR_SIG ");
256 if (dmastat & DMASCR_TARGET_ABT)
257 printk("TARGET_ABT ");
258 if (dmastat & DMASCR_MASTER_ABT)
259 printk("MASTER_ABT ");
260 if (dmastat & DMASCR_CHAIN_COMPLETE)
261 printk("CHAIN_COMPLETE ");
262 if (dmastat & DMASCR_DMA_COMPLETE)
263 printk("DMA_COMPLETE ");
268 * Theory of request handling
270 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
271 * We have two pages of mm_dma_desc, holding about 64 descriptors
272 * each. These are allocated at init time.
273 * One page is "Ready" and is either full, or can have request added.
274 * The other page might be "Active", which DMA is happening on it.
276 * Whenever IO on the active page completes, the Ready page is activated
277 * and the ex-Active page is clean out and made Ready.
278 * Otherwise the Ready page is only activated when it becomes full, or
279 * when mm_unplug_device is called via the unplug_io_fn.
281 * If a request arrives while both pages a full, it is queued, and b_rdev is
282 * overloaded to record whether it was a read or a write.
284 * The interrupt handler only polls the device to clear the interrupt.
285 * The processing of the result is done in a tasklet.
288 static void mm_start_io(struct cardinfo *card)
290 /* we have the lock, we know there is
291 * no IO active, and we know that card->Active
294 struct mm_dma_desc *desc;
295 struct mm_page *page;
298 /* make the last descriptor end the chain */
299 page = &card->mm_pages[card->Active];
300 pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
301 desc = &page->desc[page->cnt-1];
303 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
304 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
305 desc->sem_control_bits = desc->control_bits;
308 if (debug & DEBUG_LED_ON_TRANSFER)
309 set_led(card, LED_REMOVE, LED_ON);
311 desc = &page->desc[page->headcnt];
312 writel(0, card->csr_remap + DMA_PCI_ADDR);
313 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
315 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
316 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
318 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
319 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
321 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
322 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
324 offset = ((char*)desc) - ((char*)page->desc);
325 writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
326 card->csr_remap + DMA_DESCRIPTOR_ADDR);
327 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
328 * and on some ports will do nothing ! */
329 writel(cpu_to_le32(((u64)page->page_dma)>>32),
330 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
333 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
334 card->csr_remap + DMA_STATUS_CTRL);
337 static int add_bio(struct cardinfo *card);
339 static void activate(struct cardinfo *card)
341 /* if No page is Active, and Ready is
342 * not empty, then switch Ready page
343 * to active and start IO.
344 * Then add any bh's that are available to Ready
348 while (add_bio(card))
351 if (card->Active == -1 &&
352 card->mm_pages[card->Ready].cnt > 0) {
353 card->Active = card->Ready;
354 card->Ready = 1-card->Ready;
358 } while (card->Active == -1 && add_bio(card));
361 static inline void reset_page(struct mm_page *page)
366 page->biotail = & page->bio;
369 static void mm_unplug_device(request_queue_t *q)
371 struct cardinfo *card = q->queuedata;
374 spin_lock_irqsave(&card->lock, flags);
375 if (blk_remove_plug(q))
377 spin_unlock_irqrestore(&card->lock, flags);
381 * If there is room on Ready page, take
382 * one bh off list and add it.
383 * return 1 if there was room, else 0.
385 static int add_bio(struct cardinfo *card)
388 struct mm_dma_desc *desc;
389 dma_addr_t dma_handle;
395 bio = card->currentbio;
396 if (!bio && card->bio) {
397 card->currentbio = card->bio;
398 card->bio = card->bio->bi_next;
399 if (card->bio == NULL)
400 card->biotail = &card->bio;
401 card->currentbio->bi_next = NULL;
408 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
411 len = bio_iovec(bio)->bv_len;
412 dma_handle = pci_map_page(card->dev,
417 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
419 p = &card->mm_pages[card->Ready];
420 desc = &p->desc[p->cnt];
422 if ((p->biotail) != &bio->bi_next) {
424 p->biotail = &(bio->bi_next);
428 desc->data_dma_handle = dma_handle;
430 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
431 desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
432 desc->transfer_size = cpu_to_le32(len);
433 offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
434 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
435 desc->zero1 = desc->zero2 = 0;
436 offset = ( ((char*)(desc+1)) - ((char*)p->desc));
437 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
438 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
439 DMASCR_PARITY_INT_EN|
444 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
445 desc->sem_control_bits = desc->control_bits;
447 bio->bi_sector += (len>>9);
450 if (bio->bi_idx >= bio->bi_vcnt)
451 card->currentbio = NULL;
456 static void process_page(unsigned long data)
458 /* check if any of the requests in the page are DMA_COMPLETE,
459 * and deal with them appropriately.
460 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
461 * dma must have hit an error on that descriptor, so use dma_status instead
462 * and assume that all following descriptors must be re-tried.
464 struct mm_page *page;
465 struct bio *return_bio=NULL;
466 struct cardinfo *card = (struct cardinfo *)data;
467 unsigned int dma_status = card->dma_status;
469 spin_lock_bh(&card->lock);
470 if (card->Active < 0)
472 page = &card->mm_pages[card->Active];
474 while (page->headcnt < page->cnt) {
475 struct bio *bio = page->bio;
476 struct mm_dma_desc *desc = &page->desc[page->headcnt];
477 int control = le32_to_cpu(desc->sem_control_bits);
481 if (!(control & DMASCR_DMA_COMPLETE)) {
482 control = dma_status;
486 idx = bio->bi_phys_segments;
487 bio->bi_phys_segments++;
488 if (bio->bi_phys_segments >= bio->bi_vcnt)
489 page->bio = bio->bi_next;
491 pci_unmap_page(card->dev, desc->data_dma_handle,
492 bio_iovec_idx(bio,idx)->bv_len,
493 (control& DMASCR_TRANSFER_READ) ?
494 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
495 if (control & DMASCR_HARD_ERROR) {
497 clear_bit(BIO_UPTODATE, &bio->bi_flags);
498 printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
500 le32_to_cpu(desc->local_addr)>>9,
501 le32_to_cpu(desc->transfer_size));
502 dump_dmastat(card, control);
503 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
504 le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
505 card->init_size += le32_to_cpu(desc->transfer_size)>>9;
506 if (card->init_size>>1 >= card->mm_size) {
507 printk(KERN_INFO "MM%d: memory now initialised\n",
509 set_userbit(card, MEMORY_INITIALIZED, 1);
512 if (bio != page->bio) {
513 bio->bi_next = return_bio;
520 if (debug & DEBUG_LED_ON_TRANSFER)
521 set_led(card, LED_REMOVE, LED_OFF);
523 if (card->check_batteries) {
524 card->check_batteries = 0;
525 check_batteries(card);
527 if (page->headcnt >= page->cnt) {
532 /* haven't finished with this one yet */
533 pr_debug("do some more\n");
537 spin_unlock_bh(&card->lock);
540 struct bio *bio = return_bio;
542 return_bio = bio->bi_next;
544 bio_endio(bio, bio->bi_size, 0);
549 -----------------------------------------------------------------------------------
551 -----------------------------------------------------------------------------------
553 static int mm_make_request(request_queue_t *q, struct bio *bio)
555 struct cardinfo *card = q->queuedata;
556 pr_debug("mm_make_request %ld %d\n", bh->b_rsector, bh->b_size);
558 bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
559 spin_lock_irq(&card->lock);
560 *card->biotail = bio;
562 card->biotail = &bio->bi_next;
564 spin_unlock_irq(&card->lock);
570 -----------------------------------------------------------------------------------
572 -----------------------------------------------------------------------------------
574 static irqreturn_t mm_interrupt(int irq, void *__card, struct pt_regs *regs)
576 struct cardinfo *card = (struct cardinfo *) __card;
577 unsigned int dma_status;
578 unsigned short cfg_status;
582 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
584 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
585 /* interrupt wasn't for me ... */
589 /* clear COMPLETION interrupts */
590 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
591 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
592 card->csr_remap+ DMA_STATUS_CTRL);
594 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
595 card->csr_remap+ DMA_STATUS_CTRL + 2);
597 /* log errors and clear interrupt status */
598 if (dma_status & DMASCR_ANY_ERR) {
599 unsigned int data_log1, data_log2;
600 unsigned int addr_log1, addr_log2;
601 unsigned char stat, count, syndrome, check;
603 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
605 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
606 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
607 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
608 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
610 count = readb(card->csr_remap + ERROR_COUNT);
611 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
612 check = readb(card->csr_remap + ERROR_CHECK);
614 dump_dmastat(card, dma_status);
617 printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
618 card->card_number, count);
620 printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
623 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
624 card->card_number, addr_log2, addr_log1, data_log2, data_log1);
625 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
626 card->card_number, check, syndrome);
628 writeb(0, card->csr_remap + ERROR_COUNT);
631 if (dma_status & DMASCR_PARITY_ERR_REP) {
632 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
633 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
634 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
637 if (dma_status & DMASCR_PARITY_ERR_DET) {
638 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
639 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
640 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
643 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
644 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
645 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
646 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
649 if (dma_status & DMASCR_TARGET_ABT) {
650 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
651 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
652 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
655 if (dma_status & DMASCR_MASTER_ABT) {
656 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
657 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
658 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
661 /* and process the DMA descriptors */
662 card->dma_status = dma_status;
663 tasklet_schedule(&card->tasklet);
670 -----------------------------------------------------------------------------------
671 -- set_fault_to_battery_status
672 -----------------------------------------------------------------------------------
675 * If both batteries are good, no LED
676 * If either battery has been warned, solid LED
677 * If both batteries are bad, flash the LED quickly
678 * If either battery is bad, flash the LED semi quickly
680 static void set_fault_to_battery_status(struct cardinfo *card)
682 if (card->battery[0].good && card->battery[1].good)
683 set_led(card, LED_FAULT, LED_OFF);
684 else if (card->battery[0].warned || card->battery[1].warned)
685 set_led(card, LED_FAULT, LED_ON);
686 else if (!card->battery[0].good && !card->battery[1].good)
687 set_led(card, LED_FAULT, LED_FLASH_7_0);
689 set_led(card, LED_FAULT, LED_FLASH_3_5);
692 static void init_battery_timer(void);
696 -----------------------------------------------------------------------------------
698 -----------------------------------------------------------------------------------
700 static int check_battery(struct cardinfo *card, int battery, int status)
702 if (status != card->battery[battery].good) {
703 card->battery[battery].good = !card->battery[battery].good;
704 card->battery[battery].last_change = jiffies;
706 if (card->battery[battery].good) {
707 printk(KERN_ERR "MM%d: Battery %d now good\n",
708 card->card_number, battery + 1);
709 card->battery[battery].warned = 0;
711 printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
712 card->card_number, battery + 1);
715 } else if (!card->battery[battery].good &&
716 !card->battery[battery].warned &&
717 time_after_eq(jiffies, card->battery[battery].last_change +
718 (HZ * 60 * 60 * 5))) {
719 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
720 card->card_number, battery + 1);
721 card->battery[battery].warned = 1;
729 -----------------------------------------------------------------------------------
731 -----------------------------------------------------------------------------------
733 static void check_batteries(struct cardinfo *card)
735 /* NOTE: this must *never* be called while the card
736 * is doing (bus-to-card) DMA, or you will need the
739 unsigned char status;
742 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
743 if (debug & DEBUG_BATTERY_POLLING)
744 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
746 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
747 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
749 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
750 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
753 set_fault_to_battery_status(card);
756 static void check_all_batteries(unsigned long ptr)
760 for (i = 0; i < num_cards; i++)
761 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
762 struct cardinfo *card = &cards[i];
763 spin_lock_bh(&card->lock);
764 if (card->Active >= 0)
765 card->check_batteries = 1;
767 check_batteries(card);
768 spin_unlock_bh(&card->lock);
771 init_battery_timer();
774 -----------------------------------------------------------------------------------
775 -- init_battery_timer
776 -----------------------------------------------------------------------------------
778 static void init_battery_timer(void)
780 init_timer(&battery_timer);
781 battery_timer.function = check_all_batteries;
782 battery_timer.expires = jiffies + (HZ * 60);
783 add_timer(&battery_timer);
786 -----------------------------------------------------------------------------------
788 -----------------------------------------------------------------------------------
790 static void del_battery_timer(void)
792 del_timer(&battery_timer);
795 -----------------------------------------------------------------------------------
797 -----------------------------------------------------------------------------------
800 * Note no locks taken out here. In a worst case scenario, we could drop
801 * a chunk of system memory. But that should never happen, since validation
802 * happens at open or mount time, when locks are held.
804 * That's crap, since doing that while some partitions are opened
805 * or mounted will give you really nasty results.
807 static int mm_revalidate(struct gendisk *disk)
809 struct cardinfo *card = disk->private_data;
810 set_capacity(disk, card->mm_size << 1);
814 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
816 struct cardinfo *card = bdev->bd_disk->private_data;
817 int size = card->mm_size * (1024 / MM_HARDSECT);
820 * get geometry: we have to fake one... trim the size to a
821 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
822 * whatever cylinders.
826 geo->cylinders = size / (geo->heads * geo->sectors);
831 -----------------------------------------------------------------------------------
833 -----------------------------------------------------------------------------------
834 Future support for removable devices
836 static int mm_check_change(struct gendisk *disk)
838 /* struct cardinfo *dev = disk->private_data; */
842 -----------------------------------------------------------------------------------
844 -----------------------------------------------------------------------------------
846 static struct block_device_operations mm_fops = {
847 .owner = THIS_MODULE,
849 .revalidate_disk= mm_revalidate,
850 .media_changed = mm_check_change,
853 -----------------------------------------------------------------------------------
855 -----------------------------------------------------------------------------------
857 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
860 struct cardinfo *card = &cards[num_cards];
861 unsigned char mem_present;
862 unsigned char batt_status;
863 unsigned int saved_bar, data;
866 if (pci_enable_device(dev) < 0)
869 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
873 card->card_number = num_cards;
875 card->csr_base = pci_resource_start(dev, 0);
876 card->csr_len = pci_resource_len(dev, 0);
877 #ifdef CONFIG_MM_MAP_MEMORY
878 card->mem_base = pci_resource_start(dev, 1);
879 card->mem_len = pci_resource_len(dev, 1);
882 printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
883 card->card_number, dev->bus->number, dev->devfn);
885 if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
886 pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
887 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
890 if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
891 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
897 card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
898 if (!card->csr_remap) {
899 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
902 goto failed_remap_csr;
905 printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
906 card->csr_base, card->csr_remap, card->csr_len);
908 #ifdef CONFIG_MM_MAP_MEMORY
909 if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
910 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
916 if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
917 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
920 goto failed_remap_mem;
923 printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
924 card->mem_base, card->mem_remap, card->mem_len);
926 printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
929 switch(card->dev->device) {
931 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
936 card->flags |= UM_FLAG_NO_BYTE_STATUS;
941 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
946 magic_number = 0x100;
950 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
951 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
956 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
958 &card->mm_pages[0].page_dma);
959 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
961 &card->mm_pages[1].page_dma);
962 if (card->mm_pages[0].desc == NULL ||
963 card->mm_pages[1].desc == NULL) {
964 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
967 reset_page(&card->mm_pages[0]);
968 reset_page(&card->mm_pages[1]);
969 card->Ready = 0; /* page 0 is ready */
970 card->Active = -1; /* no page is active */
972 card->biotail = &card->bio;
974 card->queue = blk_alloc_queue(GFP_KERNEL);
978 blk_queue_make_request(card->queue, mm_make_request);
979 card->queue->queuedata = card;
980 card->queue->unplug_fn = mm_unplug_device;
982 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
984 card->check_batteries = 0;
986 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
987 switch (mem_present) {
989 card->mm_size = 1024 * 128;
992 card->mm_size = 1024 * 256;
995 card->mm_size = 1024 * 512;
998 card->mm_size = 1024 * 1024;
1001 card->mm_size = 1024 * 2048;
1008 /* Clear the LED's we control */
1009 set_led(card, LED_REMOVE, LED_OFF);
1010 set_led(card, LED_FAULT, LED_OFF);
1012 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1014 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1015 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1016 card->battery[0].last_change = card->battery[1].last_change = jiffies;
1018 if (card->flags & UM_FLAG_NO_BATT)
1019 printk(KERN_INFO "MM%d: Size %d KB\n",
1020 card->card_number, card->mm_size);
1022 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1023 card->card_number, card->mm_size,
1024 (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1025 card->battery[0].good ? "OK" : "FAILURE",
1026 (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1027 card->battery[1].good ? "OK" : "FAILURE");
1029 set_fault_to_battery_status(card);
1032 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1034 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1035 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1036 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1041 card->win_size = data;
1044 if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
1045 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1048 goto failed_req_irq;
1051 card->irq = dev->irq;
1052 printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1053 card->win_size, card->irq);
1055 spin_lock_init(&card->lock);
1057 pci_set_drvdata(dev, card);
1059 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
1060 pci_write_cmd = 0x07; /* then Memory Write command */
1062 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1063 unsigned short cfg_command;
1064 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1065 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1066 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1068 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1072 if (!get_userbit(card, MEMORY_INITIALIZED)) {
1073 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1074 card->init_size = 0;
1076 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1077 card->init_size = card->mm_size;
1081 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1087 if (card->mm_pages[0].desc)
1088 pci_free_consistent(card->dev, PAGE_SIZE*2,
1089 card->mm_pages[0].desc,
1090 card->mm_pages[0].page_dma);
1091 if (card->mm_pages[1].desc)
1092 pci_free_consistent(card->dev, PAGE_SIZE*2,
1093 card->mm_pages[1].desc,
1094 card->mm_pages[1].page_dma);
1096 #ifdef CONFIG_MM_MAP_MEMORY
1097 iounmap(card->mem_remap);
1099 release_mem_region(card->mem_base, card->mem_len);
1102 iounmap(card->csr_remap);
1104 release_mem_region(card->csr_base, card->csr_len);
1110 -----------------------------------------------------------------------------------
1112 -----------------------------------------------------------------------------------
1114 static void mm_pci_remove(struct pci_dev *dev)
1116 struct cardinfo *card = pci_get_drvdata(dev);
1118 tasklet_kill(&card->tasklet);
1119 iounmap(card->csr_remap);
1120 release_mem_region(card->csr_base, card->csr_len);
1121 #ifdef CONFIG_MM_MAP_MEMORY
1122 iounmap(card->mem_remap);
1123 release_mem_region(card->mem_base, card->mem_len);
1125 free_irq(card->irq, card);
1127 if (card->mm_pages[0].desc)
1128 pci_free_consistent(card->dev, PAGE_SIZE*2,
1129 card->mm_pages[0].desc,
1130 card->mm_pages[0].page_dma);
1131 if (card->mm_pages[1].desc)
1132 pci_free_consistent(card->dev, PAGE_SIZE*2,
1133 card->mm_pages[1].desc,
1134 card->mm_pages[1].page_dma);
1135 blk_cleanup_queue(card->queue);
1138 static const struct pci_device_id mm_pci_ids[] = { {
1139 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1140 .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
1142 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1143 .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
1145 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1146 .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
1154 }, { /* end: all zeroes */ }
1157 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1159 static struct pci_driver mm_pci_driver = {
1161 .id_table = mm_pci_ids,
1162 .probe = mm_pci_probe,
1163 .remove = mm_pci_remove,
1166 -----------------------------------------------------------------------------------
1168 -----------------------------------------------------------------------------------
1171 static int __init mm_init(void)
1176 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1178 retval = pci_register_driver(&mm_pci_driver);
1182 err = major_nr = register_blkdev(0, "umem");
1186 for (i = 0; i < num_cards; i++) {
1187 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1192 for (i = 0; i < num_cards; i++) {
1193 struct gendisk *disk = mm_gendisk[i];
1194 sprintf(disk->disk_name, "umem%c", 'a'+i);
1195 sprintf(disk->devfs_name, "umem/card%d", i);
1196 spin_lock_init(&cards[i].lock);
1197 disk->major = major_nr;
1198 disk->first_minor = i << MM_SHIFT;
1199 disk->fops = &mm_fops;
1200 disk->private_data = &cards[i];
1201 disk->queue = cards[i].queue;
1202 set_capacity(disk, cards[i].mm_size << 1);
1206 init_battery_timer();
1207 printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1208 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1212 unregister_blkdev(major_nr, "umem");
1214 put_disk(mm_gendisk[i]);
1218 -----------------------------------------------------------------------------------
1220 -----------------------------------------------------------------------------------
1222 static void __exit mm_cleanup(void)
1226 del_battery_timer();
1228 for (i=0; i < num_cards ; i++) {
1229 del_gendisk(mm_gendisk[i]);
1230 put_disk(mm_gendisk[i]);
1233 pci_unregister_driver(&mm_pci_driver);
1235 unregister_blkdev(major_nr, "umem");
1238 module_init(mm_init);
1239 module_exit(mm_cleanup);
1241 MODULE_AUTHOR(DRIVER_AUTHOR);
1242 MODULE_DESCRIPTION(DRIVER_DESC);
1243 MODULE_LICENSE("GPL");