5 * Brad Boyer (flar@allandria.com)
6 * (C) 2003 Ardis Technologies <roman@ardistech.com>
8 * Handle basic btree node operations
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
16 void hfs_bnode_read(struct hfs_bnode *node, void *buf,
21 off += node->page_offset;
24 memcpy(buf, kmap(page) + off, len);
28 u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
32 hfs_bnode_read(node, &data, off, 2);
33 return be16_to_cpu(data);
36 u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
40 hfs_bnode_read(node, &data, off, 1);
44 void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
46 struct hfs_btree *tree;
50 if (node->type == HFS_NODE_LEAF ||
51 tree->attributes & HFS_TREE_VARIDXKEYS)
52 key_len = hfs_bnode_read_u8(node, off) + 1;
54 key_len = tree->max_key_len + 1;
56 hfs_bnode_read(node, key, off, key_len);
59 void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
63 off += node->page_offset;
66 memcpy(kmap(page) + off, buf, len);
71 void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
73 __be16 v = cpu_to_be16(data);
75 hfs_bnode_write(node, &v, off, 2);
78 void hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data)
81 hfs_bnode_write(node, &data, off, 1);
84 void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
88 off += node->page_offset;
91 memset(kmap(page) + off, 0, len);
96 void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
97 struct hfs_bnode *src_node, int src, int len)
99 struct hfs_btree *tree;
100 struct page *src_page, *dst_page;
102 dprint(DBG_BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
105 tree = src_node->tree;
106 src += src_node->page_offset;
107 dst += dst_node->page_offset;
108 src_page = src_node->page[0];
109 dst_page = dst_node->page[0];
111 memcpy(kmap(dst_page) + dst, kmap(src_page) + src, len);
114 set_page_dirty(dst_page);
117 void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
122 dprint(DBG_BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
125 src += node->page_offset;
126 dst += node->page_offset;
127 page = node->page[0];
129 memmove(ptr + dst, ptr + src, len);
131 set_page_dirty(page);
134 void hfs_bnode_dump(struct hfs_bnode *node)
136 struct hfs_bnode_desc desc;
140 dprint(DBG_BNODE_MOD, "bnode: %d\n", node->this);
141 hfs_bnode_read(node, &desc, 0, sizeof(desc));
142 dprint(DBG_BNODE_MOD, "%d, %d, %d, %d, %d\n",
143 be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
144 desc.type, desc.height, be16_to_cpu(desc.num_recs));
146 off = node->tree->node_size - 2;
147 for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
148 key_off = hfs_bnode_read_u16(node, off);
149 dprint(DBG_BNODE_MOD, " %d", key_off);
150 if (i && node->type == HFS_NODE_INDEX) {
153 if (node->tree->attributes & HFS_TREE_VARIDXKEYS)
154 tmp = (hfs_bnode_read_u8(node, key_off) | 1) + 1;
156 tmp = node->tree->max_key_len + 1;
157 dprint(DBG_BNODE_MOD, " (%d,%d", tmp, hfs_bnode_read_u8(node, key_off));
158 hfs_bnode_read(node, &cnid, key_off + tmp, 4);
159 dprint(DBG_BNODE_MOD, ",%d)", be32_to_cpu(cnid));
160 } else if (i && node->type == HFS_NODE_LEAF) {
163 tmp = hfs_bnode_read_u8(node, key_off);
164 dprint(DBG_BNODE_MOD, " (%d)", tmp);
167 dprint(DBG_BNODE_MOD, "\n");
170 void hfs_bnode_unlink(struct hfs_bnode *node)
172 struct hfs_btree *tree;
173 struct hfs_bnode *tmp;
178 tmp = hfs_bnode_find(tree, node->prev);
181 tmp->next = node->next;
182 cnid = cpu_to_be32(tmp->next);
183 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
185 } else if (node->type == HFS_NODE_LEAF)
186 tree->leaf_head = node->next;
189 tmp = hfs_bnode_find(tree, node->next);
192 tmp->prev = node->prev;
193 cnid = cpu_to_be32(tmp->prev);
194 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4);
196 } else if (node->type == HFS_NODE_LEAF)
197 tree->leaf_tail = node->prev;
200 if (!node->prev && !node->next) {
201 printk(KERN_DEBUG "hfs_btree_del_level\n");
207 set_bit(HFS_BNODE_DELETED, &node->flags);
210 static inline int hfs_bnode_hash(u32 num)
212 num = (num >> 16) + num;
214 return num & (NODE_HASH_SIZE - 1);
217 struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
219 struct hfs_bnode *node;
221 if (cnid >= tree->node_count) {
222 printk(KERN_ERR "hfs: request for non-existent node %d in B*Tree\n", cnid);
226 for (node = tree->node_hash[hfs_bnode_hash(cnid)];
227 node; node = node->next_hash) {
228 if (node->this == cnid) {
235 static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
237 struct super_block *sb;
238 struct hfs_bnode *node, *node2;
239 struct address_space *mapping;
241 int size, block, i, hash;
244 if (cnid >= tree->node_count) {
245 printk(KERN_ERR "hfs: request for non-existent node %d in B*Tree\n", cnid);
249 sb = tree->inode->i_sb;
250 size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
251 sizeof(struct page *);
252 node = kmalloc(size, GFP_KERNEL);
255 memset(node, 0, size);
258 set_bit(HFS_BNODE_NEW, &node->flags);
259 atomic_set(&node->refcnt, 1);
260 dprint(DBG_BNODE_REFS, "new_node(%d:%d): 1\n",
261 node->tree->cnid, node->this);
262 init_waitqueue_head(&node->lock_wq);
263 spin_lock(&tree->hash_lock);
264 node2 = hfs_bnode_findhash(tree, cnid);
266 hash = hfs_bnode_hash(cnid);
267 node->next_hash = tree->node_hash[hash];
268 tree->node_hash[hash] = node;
269 tree->node_hash_cnt++;
271 spin_unlock(&tree->hash_lock);
273 wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags));
276 spin_unlock(&tree->hash_lock);
278 mapping = tree->inode->i_mapping;
279 off = (loff_t)cnid * tree->node_size;
280 block = off >> PAGE_CACHE_SHIFT;
281 node->page_offset = off & ~PAGE_CACHE_MASK;
282 for (i = 0; i < tree->pages_per_bnode; i++) {
283 page = read_mapping_page(mapping, block++, NULL);
286 if (PageError(page)) {
287 page_cache_release(page);
290 page_cache_release(page);
291 node->page[i] = page;
296 set_bit(HFS_BNODE_ERROR, &node->flags);
300 void hfs_bnode_unhash(struct hfs_bnode *node)
302 struct hfs_bnode **p;
304 dprint(DBG_BNODE_REFS, "remove_node(%d:%d): %d\n",
305 node->tree->cnid, node->this, atomic_read(&node->refcnt));
306 for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
307 *p && *p != node; p = &(*p)->next_hash)
310 *p = node->next_hash;
311 node->tree->node_hash_cnt--;
314 /* Load a particular node out of a tree */
315 struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
317 struct hfs_bnode *node;
318 struct hfs_bnode_desc *desc;
319 int i, rec_off, off, next_off;
320 int entry_size, key_size;
322 spin_lock(&tree->hash_lock);
323 node = hfs_bnode_findhash(tree, num);
326 spin_unlock(&tree->hash_lock);
327 wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags));
328 if (test_bit(HFS_BNODE_ERROR, &node->flags))
332 spin_unlock(&tree->hash_lock);
333 node = __hfs_bnode_create(tree, num);
335 return ERR_PTR(-ENOMEM);
336 if (test_bit(HFS_BNODE_ERROR, &node->flags))
338 if (!test_bit(HFS_BNODE_NEW, &node->flags))
341 desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset);
342 node->prev = be32_to_cpu(desc->prev);
343 node->next = be32_to_cpu(desc->next);
344 node->num_recs = be16_to_cpu(desc->num_recs);
345 node->type = desc->type;
346 node->height = desc->height;
347 kunmap(node->page[0]);
349 switch (node->type) {
350 case HFS_NODE_HEADER:
352 if (node->height != 0)
356 if (node->height != 1)
360 if (node->height <= 1 || node->height > tree->depth)
367 rec_off = tree->node_size - 2;
368 off = hfs_bnode_read_u16(node, rec_off);
369 if (off != sizeof(struct hfs_bnode_desc))
371 for (i = 1; i <= node->num_recs; off = next_off, i++) {
373 next_off = hfs_bnode_read_u16(node, rec_off);
374 if (next_off <= off ||
375 next_off > tree->node_size ||
378 entry_size = next_off - off;
379 if (node->type != HFS_NODE_INDEX &&
380 node->type != HFS_NODE_LEAF)
382 key_size = hfs_bnode_read_u8(node, off) + 1;
383 if (key_size >= entry_size /*|| key_size & 1*/)
386 clear_bit(HFS_BNODE_NEW, &node->flags);
387 wake_up(&node->lock_wq);
391 set_bit(HFS_BNODE_ERROR, &node->flags);
392 clear_bit(HFS_BNODE_NEW, &node->flags);
393 wake_up(&node->lock_wq);
395 return ERR_PTR(-EIO);
398 void hfs_bnode_free(struct hfs_bnode *node)
402 //for (i = 0; i < node->tree->pages_per_bnode; i++)
403 // if (node->page[i])
404 // page_cache_release(node->page[i]);
408 struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
410 struct hfs_bnode *node;
414 spin_lock(&tree->hash_lock);
415 node = hfs_bnode_findhash(tree, num);
416 spin_unlock(&tree->hash_lock);
418 node = __hfs_bnode_create(tree, num);
420 return ERR_PTR(-ENOMEM);
421 if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
423 return ERR_PTR(-EIO);
427 memset(kmap(*pagep) + node->page_offset, 0,
428 min((int)PAGE_CACHE_SIZE, (int)tree->node_size));
429 set_page_dirty(*pagep);
431 for (i = 1; i < tree->pages_per_bnode; i++) {
432 memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE);
433 set_page_dirty(*pagep);
436 clear_bit(HFS_BNODE_NEW, &node->flags);
437 wake_up(&node->lock_wq);
442 void hfs_bnode_get(struct hfs_bnode *node)
445 atomic_inc(&node->refcnt);
446 dprint(DBG_BNODE_REFS, "get_node(%d:%d): %d\n",
447 node->tree->cnid, node->this, atomic_read(&node->refcnt));
451 /* Dispose of resources used by a node */
452 void hfs_bnode_put(struct hfs_bnode *node)
455 struct hfs_btree *tree = node->tree;
458 dprint(DBG_BNODE_REFS, "put_node(%d:%d): %d\n",
459 node->tree->cnid, node->this, atomic_read(&node->refcnt));
460 BUG_ON(!atomic_read(&node->refcnt));
461 if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
463 for (i = 0; i < tree->pages_per_bnode; i++) {
466 mark_page_accessed(node->page[i]);
469 if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
470 hfs_bnode_unhash(node);
471 spin_unlock(&tree->hash_lock);
473 hfs_bnode_free(node);
476 spin_unlock(&tree->hash_lock);