2 * linux/arch/m32r/kernel/time.c
4 * Copyright (c) 2001, 2002 Hiroyuki Kondo, Hirokazu Takata,
6 * Taken from i386 version.
7 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
8 * Copyright (C) 1996, 1997, 1998 Ralf Baechle
10 * This file contains the time handling details for PC-style clocks as
11 * found in some MIPS systems.
13 * Some code taken from sh version.
14 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
15 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
20 #include <linux/config.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/param.h>
27 #include <linux/string.h>
29 #include <linux/interrupt.h>
30 #include <linux/profile.h>
35 #include <asm/hw_irq.h>
38 extern void send_IPI_allbutself(int, int);
39 extern void smp_local_timer_interrupt(struct pt_regs *);
42 u64 jiffies_64 = INITIAL_JIFFIES;
44 EXPORT_SYMBOL(jiffies_64);
46 extern unsigned long wall_jiffies;
47 #define TICK_SIZE (tick_nsec / 1000)
50 * Change this if you have some constant time drift
53 /* This is for machines which generate the exact clock. */
54 #define USECS_PER_JIFFY (1000000/HZ)
56 static unsigned long latch;
58 static unsigned long do_gettimeoffset(void)
60 unsigned long elapsed_time = 0; /* [us] */
62 #if defined(CONFIG_CHIP_M32102) || defined(CONFIG_CHIP_XNUX2) \
63 || defined(CONFIG_CHIP_VDEC2) || defined(CONFIG_CHIP_M32700) \
64 || defined(CONFIG_CHIP_OPSP)
69 /* timer count may underflow right here */
70 count = inl(M32R_MFT2CUT_PORTL);
72 if (inl(M32R_ICU_CR18_PORTL) & 0x00000100) /* underflow check */
75 count = (latch - count) * TICK_SIZE;
76 elapsed_time = (count + latch / 2) / latch;
77 /* NOTE: LATCH is equal to the "interval" value (= reload count). */
79 #else /* CONFIG_SMP */
81 static unsigned long p_jiffies = -1;
82 static unsigned long p_count = 0;
84 /* timer count may underflow right here */
85 count = inl(M32R_MFT2CUT_PORTL);
87 if (jiffies == p_jiffies && count > p_count)
93 count = (latch - count) * TICK_SIZE;
94 elapsed_time = (count + latch / 2) / latch;
95 /* NOTE: LATCH is equal to the "interval" value (= reload count). */
96 #endif /* CONFIG_SMP */
97 #elif defined(CONFIG_CHIP_M32310)
98 #warning do_gettimeoffse not implemented
100 #error no chip configuration
107 * This version of gettimeofday has near microsecond resolution.
109 void do_gettimeofday(struct timeval *tv)
112 unsigned long usec, sec;
113 unsigned long max_ntp_tick = tick_usec - tickadj;
118 seq = read_seqbegin(&xtime_lock);
120 usec = do_gettimeoffset();
121 lost = jiffies - wall_jiffies;
124 * If time_adjust is negative then NTP is slowing the clock
125 * so make sure not to go into next possible interval.
126 * Better to lose some accuracy than have time go backwards..
128 if (unlikely(time_adjust < 0)) {
129 usec = min(usec, max_ntp_tick);
131 usec += lost * max_ntp_tick;
132 } else if (unlikely(lost))
133 usec += lost * tick_usec;
136 usec += (xtime.tv_nsec / 1000);
137 } while (read_seqretry(&xtime_lock, seq));
139 while (usec >= 1000000) {
148 EXPORT_SYMBOL(do_gettimeofday);
150 int do_settimeofday(struct timespec *tv)
152 time_t wtm_sec, sec = tv->tv_sec;
153 long wtm_nsec, nsec = tv->tv_nsec;
155 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
158 write_seqlock_irq(&xtime_lock);
160 * This is revolting. We need to set "xtime" correctly. However, the
161 * value in this location is the value at the most recent update of
162 * wall time. Discover what correction gettimeofday() would have
163 * made, and then undo it!
165 nsec -= do_gettimeoffset() * NSEC_PER_USEC;
166 nsec -= (jiffies - wall_jiffies) * TICK_NSEC;
168 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
169 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
171 set_normalized_timespec(&xtime, sec, nsec);
172 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
174 time_adjust = 0; /* stop active adjtime() */
175 time_status |= STA_UNSYNC;
176 time_maxerror = NTP_PHASE_LIMIT;
177 time_esterror = NTP_PHASE_LIMIT;
178 write_sequnlock_irq(&xtime_lock);
184 EXPORT_SYMBOL(do_settimeofday);
187 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
188 * called 500 ms after the second nowtime has started, because when
189 * nowtime is written into the registers of the CMOS clock, it will
190 * jump to the next second precisely 500 ms later. Check the Motorola
191 * MC146818A or Dallas DS12887 data sheet for details.
193 * BUG: This routine does not handle hour overflow properly; it just
194 * sets the minutes. Usually you won't notice until after reboot!
196 static inline int set_rtc_mmss(unsigned long nowtime)
201 /* last time the cmos clock got updated */
202 static long last_rtc_update = 0;
205 * timer_interrupt() needs to keep up the real-time clock,
206 * as well as call the "do_timer()" routine every clocktick
208 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
211 profile_tick(CPU_PROFILING, regs);
216 update_process_times(user_mode(regs));
219 * If we have an externally synchronized Linux clock, then update
220 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
221 * called as close as possible to 500 ms before the new second starts.
223 write_seqlock(&xtime_lock);
224 if ((time_status & STA_UNSYNC) == 0
225 && xtime.tv_sec > last_rtc_update + 660
226 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned)TICK_SIZE) / 2
227 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned)TICK_SIZE) / 2)
229 if (set_rtc_mmss(xtime.tv_sec) == 0)
230 last_rtc_update = xtime.tv_sec;
231 else /* do it again in 60 s */
232 last_rtc_update = xtime.tv_sec - 600;
234 write_sequnlock(&xtime_lock);
235 /* As we return to user mode fire off the other CPU schedulers..
236 this is basically because we don't yet share IRQ's around.
237 This message is rigged to be safe on the 386 - basically it's
238 a hack, so don't look closely for now.. */
241 smp_local_timer_interrupt(regs);
248 struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE,
249 "MFT2", NULL, NULL };
251 void __init time_init(void)
253 unsigned int epoch, year, mon, day, hour, min, sec;
255 sec = min = hour = day = mon = year = 0;
262 /* Attempt to guess the epoch. This is the same heuristic as in rtc.c
263 so no stupid things will happen to timekeeping. Who knows, maybe
264 Ultrix also uses 1952 as epoch ... */
265 if (year > 10 && year < 44)
271 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
272 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
273 set_normalized_timespec(&wall_to_monotonic,
274 -xtime.tv_sec, -xtime.tv_nsec);
276 #if defined(CONFIG_CHIP_M32102) || defined(CONFIG_CHIP_XNUX2) \
277 || defined(CONFIG_CHIP_VDEC2) || defined(CONFIG_CHIP_M32700) \
278 || defined(CONFIG_CHIP_OPSP)
280 /* M32102 MFT setup */
281 setup_irq(M32R_IRQ_MFT2, &irq0);
283 unsigned long bus_clock;
284 unsigned short divide;
286 bus_clock = boot_cpu_data.bus_clock;
287 divide = boot_cpu_data.timer_divide;
288 latch = (bus_clock/divide + HZ / 2) / HZ;
290 printk("Timer start : latch = %ld\n", latch);
292 outl((M32R_MFTMOD_CC_MASK | M32R_MFTMOD_TCCR \
293 |M32R_MFTMOD_CSSEL011), M32R_MFT2MOD_PORTL);
294 outl(latch, M32R_MFT2RLD_PORTL);
295 outl(latch, M32R_MFT2CUT_PORTL);
296 outl(0, M32R_MFT2CMPRLD_PORTL);
297 outl((M32R_MFTCR_MFT2MSK|M32R_MFTCR_MFT2EN), M32R_MFTCR_PORTL);
300 #elif defined(CONFIG_CHIP_M32310)
301 #warning time_init not implemented
303 #error no chip configuration
308 * Scheduler clock - returns current time in nanosec units.
310 unsigned long long sched_clock(void)
312 return (unsigned long long)jiffies * (1000000000 / HZ);