6 * Address space accounting code <alan@redhat.com>
9 #include <linux/slab.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/init.h>
17 #include <linux/file.h>
19 #include <linux/personality.h>
20 #include <linux/security.h>
21 #include <linux/hugetlb.h>
22 #include <linux/profile.h>
23 #include <linux/module.h>
24 #include <linux/mount.h>
25 #include <linux/mempolicy.h>
26 #include <linux/rmap.h>
28 #include <asm/uaccess.h>
29 #include <asm/cacheflush.h>
32 static void unmap_region(struct mm_struct *mm,
33 struct vm_area_struct *vma, struct vm_area_struct *prev,
34 unsigned long start, unsigned long end);
37 * WARNING: the debugging will use recursive algorithms so never enable this
38 * unless you know what you are doing.
42 /* description of effects of mapping type and prot in current implementation.
43 * this is due to the limited x86 page protection hardware. The expected
44 * behavior is in parens:
47 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
48 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
49 * w: (no) no w: (no) no w: (yes) yes w: (no) no
50 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
52 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
53 * w: (no) no w: (no) no w: (copy) copy w: (no) no
54 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
57 pgprot_t protection_map[16] = {
58 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
59 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 atomic_t vm_committed_space = ATOMIC_INIT(0);
68 * Check that a process has enough memory to allocate a new virtual
69 * mapping. 0 means there is enough memory for the allocation to
70 * succeed and -ENOMEM implies there is not.
72 * We currently support three overcommit policies, which are set via the
73 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
75 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
76 * Additional code 2002 Jul 20 by Robert Love.
78 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
80 * Note this is a helper function intended to be used by LSMs which
81 * wish to use this logic.
83 int __vm_enough_memory(long pages, int cap_sys_admin)
85 unsigned long free, allowed;
87 vm_acct_memory(pages);
90 * Sometimes we want to use more memory than we have
92 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
95 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
98 free = get_page_cache_size();
99 free += nr_swap_pages;
102 * Any slabs which are created with the
103 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
104 * which are reclaimable, under pressure. The dentry
105 * cache and most inode caches should fall into this
107 free += atomic_read(&slab_reclaim_pages);
110 * Leave the last 3% for root
119 * nr_free_pages() is very expensive on large systems,
120 * only call if we're about to fail.
129 vm_unacct_memory(pages);
133 allowed = (totalram_pages - hugetlb_total_pages())
134 * sysctl_overcommit_ratio / 100;
136 * Leave the last 3% for root
139 allowed -= allowed / 32;
140 allowed += total_swap_pages;
142 /* Don't let a single process grow too big:
143 leave 3% of the size of this process for other processes */
144 allowed -= current->mm->total_vm / 32;
147 * cast `allowed' as a signed long because vm_committed_space
148 * sometimes has a negative value
150 if (atomic_read(&vm_committed_space) < (long)allowed)
153 vm_unacct_memory(pages);
158 EXPORT_SYMBOL(sysctl_overcommit_memory);
159 EXPORT_SYMBOL(sysctl_overcommit_ratio);
160 EXPORT_SYMBOL(sysctl_max_map_count);
161 EXPORT_SYMBOL(vm_committed_space);
162 EXPORT_SYMBOL(__vm_enough_memory);
165 * Requires inode->i_mapping->i_mmap_lock
167 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
168 struct file *file, struct address_space *mapping)
170 if (vma->vm_flags & VM_DENYWRITE)
171 atomic_inc(&file->f_dentry->d_inode->i_writecount);
172 if (vma->vm_flags & VM_SHARED)
173 mapping->i_mmap_writable--;
175 flush_dcache_mmap_lock(mapping);
176 if (unlikely(vma->vm_flags & VM_NONLINEAR))
177 list_del_init(&vma->shared.vm_set.list);
179 vma_prio_tree_remove(vma, &mapping->i_mmap);
180 flush_dcache_mmap_unlock(mapping);
184 * Remove one vm structure and free it.
186 static void remove_vm_struct(struct vm_area_struct *vma)
188 struct file *file = vma->vm_file;
192 struct address_space *mapping = file->f_mapping;
193 spin_lock(&mapping->i_mmap_lock);
194 __remove_shared_vm_struct(vma, file, mapping);
195 spin_unlock(&mapping->i_mmap_lock);
197 if (vma->vm_ops && vma->vm_ops->close)
198 vma->vm_ops->close(vma);
201 anon_vma_unlink(vma);
202 mpol_free(vma_policy(vma));
203 kmem_cache_free(vm_area_cachep, vma);
207 * sys_brk() for the most part doesn't need the global kernel
208 * lock, except when an application is doing something nasty
209 * like trying to un-brk an area that has already been mapped
210 * to a regular file. in this case, the unmapping will need
211 * to invoke file system routines that need the global lock.
213 asmlinkage unsigned long sys_brk(unsigned long brk)
215 unsigned long rlim, retval;
216 unsigned long newbrk, oldbrk;
217 struct mm_struct *mm = current->mm;
219 down_write(&mm->mmap_sem);
221 if (brk < mm->end_code)
223 newbrk = PAGE_ALIGN(brk);
224 oldbrk = PAGE_ALIGN(mm->brk);
225 if (oldbrk == newbrk)
228 /* Always allow shrinking brk. */
229 if (brk <= mm->brk) {
230 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
235 /* Check against rlimit.. */
236 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
237 if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
240 /* Check against existing mmap mappings. */
241 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
244 /* Ok, looks good - let it rip. */
245 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
251 up_write(&mm->mmap_sem);
256 static int browse_rb(struct rb_root *root)
259 struct rb_node *nd, *pn = NULL;
260 unsigned long prev = 0, pend = 0;
262 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
263 struct vm_area_struct *vma;
264 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
265 if (vma->vm_start < prev)
266 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
267 if (vma->vm_start < pend)
268 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
269 if (vma->vm_start > vma->vm_end)
270 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
275 for (nd = pn; nd; nd = rb_prev(nd)) {
279 printk("backwards %d, forwards %d\n", j, i), i = 0;
283 void validate_mm(struct mm_struct *mm)
287 struct vm_area_struct *tmp = mm->mmap;
292 if (i != mm->map_count)
293 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
294 i = browse_rb(&mm->mm_rb);
295 if (i != mm->map_count)
296 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
301 #define validate_mm(mm) do { } while (0)
304 static struct vm_area_struct *
305 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
306 struct vm_area_struct **pprev, struct rb_node ***rb_link,
307 struct rb_node ** rb_parent)
309 struct vm_area_struct * vma;
310 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
312 __rb_link = &mm->mm_rb.rb_node;
313 rb_prev = __rb_parent = NULL;
317 struct vm_area_struct *vma_tmp;
319 __rb_parent = *__rb_link;
320 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
322 if (vma_tmp->vm_end > addr) {
324 if (vma_tmp->vm_start <= addr)
326 __rb_link = &__rb_parent->rb_left;
328 rb_prev = __rb_parent;
329 __rb_link = &__rb_parent->rb_right;
335 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
336 *rb_link = __rb_link;
337 *rb_parent = __rb_parent;
342 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
343 struct vm_area_struct *prev, struct rb_node *rb_parent)
346 vma->vm_next = prev->vm_next;
351 vma->vm_next = rb_entry(rb_parent,
352 struct vm_area_struct, vm_rb);
358 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
359 struct rb_node **rb_link, struct rb_node *rb_parent)
361 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
362 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
365 static inline void __vma_link_file(struct vm_area_struct *vma)
371 struct address_space *mapping = file->f_mapping;
373 if (vma->vm_flags & VM_DENYWRITE)
374 atomic_dec(&file->f_dentry->d_inode->i_writecount);
375 if (vma->vm_flags & VM_SHARED)
376 mapping->i_mmap_writable++;
378 flush_dcache_mmap_lock(mapping);
379 if (unlikely(vma->vm_flags & VM_NONLINEAR))
380 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
382 vma_prio_tree_insert(vma, &mapping->i_mmap);
383 flush_dcache_mmap_unlock(mapping);
388 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
389 struct vm_area_struct *prev, struct rb_node **rb_link,
390 struct rb_node *rb_parent)
392 __vma_link_list(mm, vma, prev, rb_parent);
393 __vma_link_rb(mm, vma, rb_link, rb_parent);
394 __anon_vma_link(vma);
397 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
398 struct vm_area_struct *prev, struct rb_node **rb_link,
399 struct rb_node *rb_parent)
401 struct address_space *mapping = NULL;
404 mapping = vma->vm_file->f_mapping;
407 spin_lock(&mapping->i_mmap_lock);
408 vma->vm_truncate_count = mapping->truncate_count;
412 __vma_link(mm, vma, prev, rb_link, rb_parent);
413 __vma_link_file(vma);
415 anon_vma_unlock(vma);
417 spin_unlock(&mapping->i_mmap_lock);
424 * Helper for vma_adjust in the split_vma insert case:
425 * insert vm structure into list and rbtree and anon_vma,
426 * but it has already been inserted into prio_tree earlier.
429 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
431 struct vm_area_struct * __vma, * prev;
432 struct rb_node ** rb_link, * rb_parent;
434 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
435 if (__vma && __vma->vm_start < vma->vm_end)
437 __vma_link(mm, vma, prev, rb_link, rb_parent);
442 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
443 struct vm_area_struct *prev)
445 prev->vm_next = vma->vm_next;
446 rb_erase(&vma->vm_rb, &mm->mm_rb);
447 if (mm->mmap_cache == vma)
448 mm->mmap_cache = prev;
452 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
453 * is already present in an i_mmap tree without adjusting the tree.
454 * The following helper function should be used when such adjustments
455 * are necessary. The "insert" vma (if any) is to be inserted
456 * before we drop the necessary locks.
458 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
459 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
461 struct mm_struct *mm = vma->vm_mm;
462 struct vm_area_struct *next = vma->vm_next;
463 struct vm_area_struct *importer = NULL;
464 struct address_space *mapping = NULL;
465 struct prio_tree_root *root = NULL;
466 struct file *file = vma->vm_file;
467 struct anon_vma *anon_vma = NULL;
468 long adjust_next = 0;
471 if (next && !insert) {
472 if (end >= next->vm_end) {
474 * vma expands, overlapping all the next, and
475 * perhaps the one after too (mprotect case 6).
477 again: remove_next = 1 + (end > next->vm_end);
479 anon_vma = next->anon_vma;
481 } else if (end > next->vm_start) {
483 * vma expands, overlapping part of the next:
484 * mprotect case 5 shifting the boundary up.
486 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
487 anon_vma = next->anon_vma;
489 } else if (end < vma->vm_end) {
491 * vma shrinks, and !insert tells it's not
492 * split_vma inserting another: so it must be
493 * mprotect case 4 shifting the boundary down.
495 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
496 anon_vma = next->anon_vma;
502 mapping = file->f_mapping;
503 if (!(vma->vm_flags & VM_NONLINEAR))
504 root = &mapping->i_mmap;
505 spin_lock(&mapping->i_mmap_lock);
507 vma->vm_truncate_count != next->vm_truncate_count) {
509 * unmap_mapping_range might be in progress:
510 * ensure that the expanding vma is rescanned.
512 importer->vm_truncate_count = 0;
515 insert->vm_truncate_count = vma->vm_truncate_count;
517 * Put into prio_tree now, so instantiated pages
518 * are visible to arm/parisc __flush_dcache_page
519 * throughout; but we cannot insert into address
520 * space until vma start or end is updated.
522 __vma_link_file(insert);
527 * When changing only vma->vm_end, we don't really need
528 * anon_vma lock: but is that case worth optimizing out?
531 anon_vma = vma->anon_vma;
533 spin_lock(&anon_vma->lock);
535 * Easily overlooked: when mprotect shifts the boundary,
536 * make sure the expanding vma has anon_vma set if the
537 * shrinking vma had, to cover any anon pages imported.
539 if (importer && !importer->anon_vma) {
540 importer->anon_vma = anon_vma;
541 __anon_vma_link(importer);
546 flush_dcache_mmap_lock(mapping);
547 vma_prio_tree_remove(vma, root);
549 vma_prio_tree_remove(next, root);
552 vma->vm_start = start;
554 vma->vm_pgoff = pgoff;
556 next->vm_start += adjust_next << PAGE_SHIFT;
557 next->vm_pgoff += adjust_next;
562 vma_prio_tree_insert(next, root);
563 vma_prio_tree_insert(vma, root);
564 flush_dcache_mmap_unlock(mapping);
569 * vma_merge has merged next into vma, and needs
570 * us to remove next before dropping the locks.
572 __vma_unlink(mm, next, vma);
574 __remove_shared_vm_struct(next, file, mapping);
576 __anon_vma_merge(vma, next);
579 * split_vma has split insert from vma, and needs
580 * us to insert it before dropping the locks
581 * (it may either follow vma or precede it).
583 __insert_vm_struct(mm, insert);
587 spin_unlock(&anon_vma->lock);
589 spin_unlock(&mapping->i_mmap_lock);
595 mpol_free(vma_policy(next));
596 kmem_cache_free(vm_area_cachep, next);
598 * In mprotect's case 6 (see comments on vma_merge),
599 * we must remove another next too. It would clutter
600 * up the code too much to do both in one go.
602 if (remove_next == 2) {
612 * If the vma has a ->close operation then the driver probably needs to release
613 * per-vma resources, so we don't attempt to merge those.
615 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED)
617 static inline int is_mergeable_vma(struct vm_area_struct *vma,
618 struct file *file, unsigned long vm_flags)
620 if (vma->vm_flags != vm_flags)
622 if (vma->vm_file != file)
624 if (vma->vm_ops && vma->vm_ops->close)
629 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
630 struct anon_vma *anon_vma2)
632 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
636 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
637 * in front of (at a lower virtual address and file offset than) the vma.
639 * We cannot merge two vmas if they have differently assigned (non-NULL)
640 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
642 * We don't check here for the merged mmap wrapping around the end of pagecache
643 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
644 * wrap, nor mmaps which cover the final page at index -1UL.
647 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
648 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
650 if (is_mergeable_vma(vma, file, vm_flags) &&
651 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
652 if (vma->vm_pgoff == vm_pgoff)
659 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
660 * beyond (at a higher virtual address and file offset than) the vma.
662 * We cannot merge two vmas if they have differently assigned (non-NULL)
663 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
666 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
667 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
669 if (is_mergeable_vma(vma, file, vm_flags) &&
670 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
672 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
673 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
680 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
681 * whether that can be merged with its predecessor or its successor.
682 * Or both (it neatly fills a hole).
684 * In most cases - when called for mmap, brk or mremap - [addr,end) is
685 * certain not to be mapped by the time vma_merge is called; but when
686 * called for mprotect, it is certain to be already mapped (either at
687 * an offset within prev, or at the start of next), and the flags of
688 * this area are about to be changed to vm_flags - and the no-change
689 * case has already been eliminated.
691 * The following mprotect cases have to be considered, where AAAA is
692 * the area passed down from mprotect_fixup, never extending beyond one
693 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
695 * AAAA AAAA AAAA AAAA
696 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
697 * cannot merge might become might become might become
698 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
699 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
700 * mremap move: PPPPNNNNNNNN 8
702 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
703 * might become case 1 below case 2 below case 3 below
705 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
706 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
708 struct vm_area_struct *vma_merge(struct mm_struct *mm,
709 struct vm_area_struct *prev, unsigned long addr,
710 unsigned long end, unsigned long vm_flags,
711 struct anon_vma *anon_vma, struct file *file,
712 pgoff_t pgoff, struct mempolicy *policy)
714 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
715 struct vm_area_struct *area, *next;
718 * We later require that vma->vm_flags == vm_flags,
719 * so this tests vma->vm_flags & VM_SPECIAL, too.
721 if (vm_flags & VM_SPECIAL)
725 next = prev->vm_next;
729 if (next && next->vm_end == end) /* cases 6, 7, 8 */
730 next = next->vm_next;
733 * Can it merge with the predecessor?
735 if (prev && prev->vm_end == addr &&
736 mpol_equal(vma_policy(prev), policy) &&
737 can_vma_merge_after(prev, vm_flags,
738 anon_vma, file, pgoff)) {
740 * OK, it can. Can we now merge in the successor as well?
742 if (next && end == next->vm_start &&
743 mpol_equal(policy, vma_policy(next)) &&
744 can_vma_merge_before(next, vm_flags,
745 anon_vma, file, pgoff+pglen) &&
746 is_mergeable_anon_vma(prev->anon_vma,
749 vma_adjust(prev, prev->vm_start,
750 next->vm_end, prev->vm_pgoff, NULL);
751 } else /* cases 2, 5, 7 */
752 vma_adjust(prev, prev->vm_start,
753 end, prev->vm_pgoff, NULL);
758 * Can this new request be merged in front of next?
760 if (next && end == next->vm_start &&
761 mpol_equal(policy, vma_policy(next)) &&
762 can_vma_merge_before(next, vm_flags,
763 anon_vma, file, pgoff+pglen)) {
764 if (prev && addr < prev->vm_end) /* case 4 */
765 vma_adjust(prev, prev->vm_start,
766 addr, prev->vm_pgoff, NULL);
767 else /* cases 3, 8 */
768 vma_adjust(area, addr, next->vm_end,
769 next->vm_pgoff - pglen, NULL);
777 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
778 * neighbouring vmas for a suitable anon_vma, before it goes off
779 * to allocate a new anon_vma. It checks because a repetitive
780 * sequence of mprotects and faults may otherwise lead to distinct
781 * anon_vmas being allocated, preventing vma merge in subsequent
784 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
786 struct vm_area_struct *near;
787 unsigned long vm_flags;
794 * Since only mprotect tries to remerge vmas, match flags
795 * which might be mprotected into each other later on.
796 * Neither mlock nor madvise tries to remerge at present,
797 * so leave their flags as obstructing a merge.
799 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
800 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
802 if (near->anon_vma && vma->vm_end == near->vm_start &&
803 mpol_equal(vma_policy(vma), vma_policy(near)) &&
804 can_vma_merge_before(near, vm_flags,
805 NULL, vma->vm_file, vma->vm_pgoff +
806 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
807 return near->anon_vma;
810 * It is potentially slow to have to call find_vma_prev here.
811 * But it's only on the first write fault on the vma, not
812 * every time, and we could devise a way to avoid it later
813 * (e.g. stash info in next's anon_vma_node when assigning
814 * an anon_vma, or when trying vma_merge). Another time.
816 if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
821 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
822 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
824 if (near->anon_vma && near->vm_end == vma->vm_start &&
825 mpol_equal(vma_policy(near), vma_policy(vma)) &&
826 can_vma_merge_after(near, vm_flags,
827 NULL, vma->vm_file, vma->vm_pgoff))
828 return near->anon_vma;
831 * There's no absolute need to look only at touching neighbours:
832 * we could search further afield for "compatible" anon_vmas.
833 * But it would probably just be a waste of time searching,
834 * or lead to too many vmas hanging off the same anon_vma.
835 * We're trying to allow mprotect remerging later on,
836 * not trying to minimize memory used for anon_vmas.
841 #ifdef CONFIG_PROC_FS
842 void __vm_stat_account(struct mm_struct *mm, unsigned long flags,
843 struct file *file, long pages)
845 const unsigned long stack_flags
846 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
848 #ifdef CONFIG_HUGETLB
849 if (flags & VM_HUGETLB) {
850 if (!(flags & VM_DONTCOPY))
851 mm->shared_vm += pages;
854 #endif /* CONFIG_HUGETLB */
857 mm->shared_vm += pages;
858 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
859 mm->exec_vm += pages;
860 } else if (flags & stack_flags)
861 mm->stack_vm += pages;
862 if (flags & (VM_RESERVED|VM_IO))
863 mm->reserved_vm += pages;
865 #endif /* CONFIG_PROC_FS */
868 * The caller must hold down_write(current->mm->mmap_sem).
871 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
872 unsigned long len, unsigned long prot,
873 unsigned long flags, unsigned long pgoff)
875 struct mm_struct * mm = current->mm;
876 struct vm_area_struct * vma, * prev;
878 unsigned int vm_flags;
879 int correct_wcount = 0;
881 struct rb_node ** rb_link, * rb_parent;
883 unsigned long charged = 0, reqprot = prot;
886 if (is_file_hugepages(file))
889 if (!file->f_op || !file->f_op->mmap)
892 if ((prot & PROT_EXEC) &&
893 (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
897 * Does the application expect PROT_READ to imply PROT_EXEC?
899 * (the exception is when the underlying filesystem is noexec
900 * mounted, in which case we dont add PROT_EXEC.)
902 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
903 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
909 /* Careful about overflows.. */
910 len = PAGE_ALIGN(len);
911 if (!len || len > TASK_SIZE)
914 /* offset overflow? */
915 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
918 /* Too many mappings? */
919 if (mm->map_count > sysctl_max_map_count)
922 /* Obtain the address to map to. we verify (or select) it and ensure
923 * that it represents a valid section of the address space.
925 addr = get_unmapped_area(file, addr, len, pgoff, flags);
926 if (addr & ~PAGE_MASK)
929 /* Do simple checking here so the lower-level routines won't have
930 * to. we assume access permissions have been handled by the open
931 * of the memory object, so we don't do any here.
933 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
934 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
936 if (flags & MAP_LOCKED) {
939 vm_flags |= VM_LOCKED;
941 /* mlock MCL_FUTURE? */
942 if (vm_flags & VM_LOCKED) {
943 unsigned long locked, lock_limit;
944 locked = len >> PAGE_SHIFT;
945 locked += mm->locked_vm;
946 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
947 lock_limit >>= PAGE_SHIFT;
948 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
952 inode = file ? file->f_dentry->d_inode : NULL;
955 switch (flags & MAP_TYPE) {
957 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
961 * Make sure we don't allow writing to an append-only
964 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
968 * Make sure there are no mandatory locks on the file.
970 if (locks_verify_locked(inode))
973 vm_flags |= VM_SHARED | VM_MAYSHARE;
974 if (!(file->f_mode & FMODE_WRITE))
975 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
979 if (!(file->f_mode & FMODE_READ))
987 switch (flags & MAP_TYPE) {
989 vm_flags |= VM_SHARED | VM_MAYSHARE;
993 * Set pgoff according to addr for anon_vma.
995 pgoff = addr >> PAGE_SHIFT;
1002 error = security_file_mmap(file, reqprot, prot, flags);
1006 /* Clear old maps */
1009 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1010 if (vma && vma->vm_start < addr + len) {
1011 if (do_munmap(mm, addr, len))
1016 /* Check against address space limit. */
1017 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1020 if (accountable && (!(flags & MAP_NORESERVE) ||
1021 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1022 if (vm_flags & VM_SHARED) {
1023 /* Check memory availability in shmem_file_setup? */
1024 vm_flags |= VM_ACCOUNT;
1025 } else if (vm_flags & VM_WRITE) {
1027 * Private writable mapping: check memory availability
1029 charged = len >> PAGE_SHIFT;
1030 if (security_vm_enough_memory(charged))
1032 vm_flags |= VM_ACCOUNT;
1037 * Can we just expand an old private anonymous mapping?
1038 * The VM_SHARED test is necessary because shmem_zero_setup
1039 * will create the file object for a shared anonymous map below.
1041 if (!file && !(vm_flags & VM_SHARED) &&
1042 vma_merge(mm, prev, addr, addr + len, vm_flags,
1043 NULL, NULL, pgoff, NULL))
1047 * Determine the object being mapped and call the appropriate
1048 * specific mapper. the address has already been validated, but
1049 * not unmapped, but the maps are removed from the list.
1051 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1056 memset(vma, 0, sizeof(*vma));
1059 vma->vm_start = addr;
1060 vma->vm_end = addr + len;
1061 vma->vm_flags = vm_flags;
1062 vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1063 vma->vm_pgoff = pgoff;
1067 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1069 if (vm_flags & VM_DENYWRITE) {
1070 error = deny_write_access(file);
1075 vma->vm_file = file;
1077 error = file->f_op->mmap(file, vma);
1079 goto unmap_and_free_vma;
1080 } else if (vm_flags & VM_SHARED) {
1081 error = shmem_zero_setup(vma);
1086 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1087 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1088 * that memory reservation must be checked; but that reservation
1089 * belongs to shared memory object, not to vma: so now clear it.
1091 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1092 vma->vm_flags &= ~VM_ACCOUNT;
1094 /* Can addr have changed??
1096 * Answer: Yes, several device drivers can do it in their
1097 * f_op->mmap method. -DaveM
1099 addr = vma->vm_start;
1100 pgoff = vma->vm_pgoff;
1101 vm_flags = vma->vm_flags;
1103 if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1104 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1105 file = vma->vm_file;
1106 vma_link(mm, vma, prev, rb_link, rb_parent);
1108 atomic_inc(&inode->i_writecount);
1112 atomic_inc(&inode->i_writecount);
1115 mpol_free(vma_policy(vma));
1116 kmem_cache_free(vm_area_cachep, vma);
1119 mm->total_vm += len >> PAGE_SHIFT;
1120 __vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1121 if (vm_flags & VM_LOCKED) {
1122 mm->locked_vm += len >> PAGE_SHIFT;
1123 make_pages_present(addr, addr + len);
1125 if (flags & MAP_POPULATE) {
1126 up_write(&mm->mmap_sem);
1127 sys_remap_file_pages(addr, len, 0,
1128 pgoff, flags & MAP_NONBLOCK);
1129 down_write(&mm->mmap_sem);
1135 atomic_inc(&inode->i_writecount);
1136 vma->vm_file = NULL;
1139 /* Undo any partial mapping done by a device driver. */
1140 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1143 kmem_cache_free(vm_area_cachep, vma);
1146 vm_unacct_memory(charged);
1150 EXPORT_SYMBOL(do_mmap_pgoff);
1152 /* Get an address range which is currently unmapped.
1153 * For shmat() with addr=0.
1155 * Ugly calling convention alert:
1156 * Return value with the low bits set means error value,
1158 * if (ret & ~PAGE_MASK)
1161 * This function "knows" that -ENOMEM has the bits set.
1163 #ifndef HAVE_ARCH_UNMAPPED_AREA
1165 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1166 unsigned long len, unsigned long pgoff, unsigned long flags)
1168 struct mm_struct *mm = current->mm;
1169 struct vm_area_struct *vma;
1170 unsigned long start_addr;
1172 if (len > TASK_SIZE)
1176 addr = PAGE_ALIGN(addr);
1177 vma = find_vma(mm, addr);
1178 if (TASK_SIZE - len >= addr &&
1179 (!vma || addr + len <= vma->vm_start))
1182 if (len > mm->cached_hole_size) {
1183 start_addr = addr = mm->free_area_cache;
1185 start_addr = addr = TASK_UNMAPPED_BASE;
1186 mm->cached_hole_size = 0;
1190 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1191 /* At this point: (!vma || addr < vma->vm_end). */
1192 if (TASK_SIZE - len < addr) {
1194 * Start a new search - just in case we missed
1197 if (start_addr != TASK_UNMAPPED_BASE) {
1198 addr = TASK_UNMAPPED_BASE;
1200 mm->cached_hole_size = 0;
1205 if (!vma || addr + len <= vma->vm_start) {
1207 * Remember the place where we stopped the search:
1209 mm->free_area_cache = addr + len;
1212 if (addr + mm->cached_hole_size < vma->vm_start)
1213 mm->cached_hole_size = vma->vm_start - addr;
1219 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1222 * Is this a new hole at the lowest possible address?
1224 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1225 mm->free_area_cache = addr;
1226 mm->cached_hole_size = ~0UL;
1231 * This mmap-allocator allocates new areas top-down from below the
1232 * stack's low limit (the base):
1234 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1236 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1237 const unsigned long len, const unsigned long pgoff,
1238 const unsigned long flags)
1240 struct vm_area_struct *vma;
1241 struct mm_struct *mm = current->mm;
1242 unsigned long addr = addr0;
1244 /* requested length too big for entire address space */
1245 if (len > TASK_SIZE)
1248 /* requesting a specific address */
1250 addr = PAGE_ALIGN(addr);
1251 vma = find_vma(mm, addr);
1252 if (TASK_SIZE - len >= addr &&
1253 (!vma || addr + len <= vma->vm_start))
1257 /* check if free_area_cache is useful for us */
1258 if (len <= mm->cached_hole_size) {
1259 mm->cached_hole_size = 0;
1260 mm->free_area_cache = mm->mmap_base;
1263 /* either no address requested or can't fit in requested address hole */
1264 addr = mm->free_area_cache;
1266 /* make sure it can fit in the remaining address space */
1268 vma = find_vma(mm, addr-len);
1269 if (!vma || addr <= vma->vm_start)
1270 /* remember the address as a hint for next time */
1271 return (mm->free_area_cache = addr-len);
1274 if (mm->mmap_base < len)
1277 addr = mm->mmap_base-len;
1281 * Lookup failure means no vma is above this address,
1282 * else if new region fits below vma->vm_start,
1283 * return with success:
1285 vma = find_vma(mm, addr);
1286 if (!vma || addr+len <= vma->vm_start)
1287 /* remember the address as a hint for next time */
1288 return (mm->free_area_cache = addr);
1290 /* remember the largest hole we saw so far */
1291 if (addr + mm->cached_hole_size < vma->vm_start)
1292 mm->cached_hole_size = vma->vm_start - addr;
1294 /* try just below the current vma->vm_start */
1295 addr = vma->vm_start-len;
1296 } while (len < vma->vm_start);
1300 * A failed mmap() very likely causes application failure,
1301 * so fall back to the bottom-up function here. This scenario
1302 * can happen with large stack limits and large mmap()
1305 mm->cached_hole_size = ~0UL;
1306 mm->free_area_cache = TASK_UNMAPPED_BASE;
1307 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1309 * Restore the topdown base:
1311 mm->free_area_cache = mm->mmap_base;
1312 mm->cached_hole_size = ~0UL;
1318 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1321 * Is this a new hole at the highest possible address?
1323 if (addr > mm->free_area_cache)
1324 mm->free_area_cache = addr;
1326 /* dont allow allocations above current base */
1327 if (mm->free_area_cache > mm->mmap_base)
1328 mm->free_area_cache = mm->mmap_base;
1332 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1333 unsigned long pgoff, unsigned long flags)
1337 if (!(flags & MAP_FIXED)) {
1338 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1340 get_area = current->mm->get_unmapped_area;
1341 if (file && file->f_op && file->f_op->get_unmapped_area)
1342 get_area = file->f_op->get_unmapped_area;
1343 addr = get_area(file, addr, len, pgoff, flags);
1344 if (IS_ERR_VALUE(addr))
1348 if (addr > TASK_SIZE - len)
1350 if (addr & ~PAGE_MASK)
1352 if (file && is_file_hugepages(file)) {
1354 * Check if the given range is hugepage aligned, and
1355 * can be made suitable for hugepages.
1357 ret = prepare_hugepage_range(addr, len);
1360 * Ensure that a normal request is not falling in a
1361 * reserved hugepage range. For some archs like IA-64,
1362 * there is a separate region for hugepages.
1364 ret = is_hugepage_only_range(current->mm, addr, len);
1371 EXPORT_SYMBOL(get_unmapped_area);
1373 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1374 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1376 struct vm_area_struct *vma = NULL;
1379 /* Check the cache first. */
1380 /* (Cache hit rate is typically around 35%.) */
1381 vma = mm->mmap_cache;
1382 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1383 struct rb_node * rb_node;
1385 rb_node = mm->mm_rb.rb_node;
1389 struct vm_area_struct * vma_tmp;
1391 vma_tmp = rb_entry(rb_node,
1392 struct vm_area_struct, vm_rb);
1394 if (vma_tmp->vm_end > addr) {
1396 if (vma_tmp->vm_start <= addr)
1398 rb_node = rb_node->rb_left;
1400 rb_node = rb_node->rb_right;
1403 mm->mmap_cache = vma;
1409 EXPORT_SYMBOL(find_vma);
1411 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1412 struct vm_area_struct *
1413 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1414 struct vm_area_struct **pprev)
1416 struct vm_area_struct *vma = NULL, *prev = NULL;
1417 struct rb_node * rb_node;
1421 /* Guard against addr being lower than the first VMA */
1424 /* Go through the RB tree quickly. */
1425 rb_node = mm->mm_rb.rb_node;
1428 struct vm_area_struct *vma_tmp;
1429 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1431 if (addr < vma_tmp->vm_end) {
1432 rb_node = rb_node->rb_left;
1435 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1437 rb_node = rb_node->rb_right;
1443 return prev ? prev->vm_next : vma;
1447 * Verify that the stack growth is acceptable and
1448 * update accounting. This is shared with both the
1449 * grow-up and grow-down cases.
1451 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1453 struct mm_struct *mm = vma->vm_mm;
1454 struct rlimit *rlim = current->signal->rlim;
1456 /* address space limit tests */
1457 if (!may_expand_vm(mm, grow))
1460 /* Stack limit test */
1461 if (size > rlim[RLIMIT_STACK].rlim_cur)
1464 /* mlock limit tests */
1465 if (vma->vm_flags & VM_LOCKED) {
1466 unsigned long locked;
1467 unsigned long limit;
1468 locked = mm->locked_vm + grow;
1469 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1470 if (locked > limit && !capable(CAP_IPC_LOCK))
1475 * Overcommit.. This must be the final test, as it will
1476 * update security statistics.
1478 if (security_vm_enough_memory(grow))
1481 /* Ok, everything looks good - let it rip */
1482 mm->total_vm += grow;
1483 if (vma->vm_flags & VM_LOCKED)
1484 mm->locked_vm += grow;
1485 __vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1489 #ifdef CONFIG_STACK_GROWSUP
1491 * vma is the first one with address > vma->vm_end. Have to extend vma.
1493 int expand_stack(struct vm_area_struct * vma, unsigned long address)
1497 if (!(vma->vm_flags & VM_GROWSUP))
1501 * We must make sure the anon_vma is allocated
1502 * so that the anon_vma locking is not a noop.
1504 if (unlikely(anon_vma_prepare(vma)))
1509 * vma->vm_start/vm_end cannot change under us because the caller
1510 * is required to hold the mmap_sem in read mode. We need the
1511 * anon_vma lock to serialize against concurrent expand_stacks.
1513 address += 4 + PAGE_SIZE - 1;
1514 address &= PAGE_MASK;
1517 /* Somebody else might have raced and expanded it already */
1518 if (address > vma->vm_end) {
1519 unsigned long size, grow;
1521 size = address - vma->vm_start;
1522 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1524 error = acct_stack_growth(vma, size, grow);
1526 vma->vm_end = address;
1528 anon_vma_unlock(vma);
1532 struct vm_area_struct *
1533 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1535 struct vm_area_struct *vma, *prev;
1538 vma = find_vma_prev(mm, addr, &prev);
1539 if (vma && (vma->vm_start <= addr))
1541 if (!prev || expand_stack(prev, addr))
1543 if (prev->vm_flags & VM_LOCKED) {
1544 make_pages_present(addr, prev->vm_end);
1550 * vma is the first one with address < vma->vm_start. Have to extend vma.
1552 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1557 * We must make sure the anon_vma is allocated
1558 * so that the anon_vma locking is not a noop.
1560 if (unlikely(anon_vma_prepare(vma)))
1565 * vma->vm_start/vm_end cannot change under us because the caller
1566 * is required to hold the mmap_sem in read mode. We need the
1567 * anon_vma lock to serialize against concurrent expand_stacks.
1569 address &= PAGE_MASK;
1572 /* Somebody else might have raced and expanded it already */
1573 if (address < vma->vm_start) {
1574 unsigned long size, grow;
1576 size = vma->vm_end - address;
1577 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1579 error = acct_stack_growth(vma, size, grow);
1581 vma->vm_start = address;
1582 vma->vm_pgoff -= grow;
1585 anon_vma_unlock(vma);
1589 struct vm_area_struct *
1590 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1592 struct vm_area_struct * vma;
1593 unsigned long start;
1596 vma = find_vma(mm,addr);
1599 if (vma->vm_start <= addr)
1601 if (!(vma->vm_flags & VM_GROWSDOWN))
1603 start = vma->vm_start;
1604 if (expand_stack(vma, addr))
1606 if (vma->vm_flags & VM_LOCKED) {
1607 make_pages_present(addr, start);
1613 /* Normal function to fix up a mapping
1614 * This function is the default for when an area has no specific
1615 * function. This may be used as part of a more specific routine.
1617 * By the time this function is called, the area struct has been
1618 * removed from the process mapping list.
1620 static void unmap_vma(struct mm_struct *mm, struct vm_area_struct *area)
1622 size_t len = area->vm_end - area->vm_start;
1624 area->vm_mm->total_vm -= len >> PAGE_SHIFT;
1625 if (area->vm_flags & VM_LOCKED)
1626 area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
1627 vm_stat_unaccount(area);
1628 remove_vm_struct(area);
1632 * Update the VMA and inode share lists.
1634 * Ok - we have the memory areas we should free on the 'free' list,
1635 * so release them, and do the vma updates.
1637 static void unmap_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1640 struct vm_area_struct *next = vma->vm_next;
1648 * Get rid of page table information in the indicated region.
1650 * Called with the page table lock held.
1652 static void unmap_region(struct mm_struct *mm,
1653 struct vm_area_struct *vma, struct vm_area_struct *prev,
1654 unsigned long start, unsigned long end)
1656 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1657 struct mmu_gather *tlb;
1658 unsigned long nr_accounted = 0;
1661 spin_lock(&mm->page_table_lock);
1662 tlb = tlb_gather_mmu(mm, 0);
1663 unmap_vmas(&tlb, mm, vma, start, end, &nr_accounted, NULL);
1664 vm_unacct_memory(nr_accounted);
1665 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1666 next? next->vm_start: 0);
1667 tlb_finish_mmu(tlb, start, end);
1668 spin_unlock(&mm->page_table_lock);
1672 * Create a list of vma's touched by the unmap, removing them from the mm's
1673 * vma list as we go..
1676 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1677 struct vm_area_struct *prev, unsigned long end)
1679 struct vm_area_struct **insertion_point;
1680 struct vm_area_struct *tail_vma = NULL;
1683 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1685 rb_erase(&vma->vm_rb, &mm->mm_rb);
1689 } while (vma && vma->vm_start < end);
1690 *insertion_point = vma;
1691 tail_vma->vm_next = NULL;
1692 if (mm->unmap_area == arch_unmap_area)
1693 addr = prev ? prev->vm_end : mm->mmap_base;
1695 addr = vma ? vma->vm_start : mm->mmap_base;
1696 mm->unmap_area(mm, addr);
1697 mm->mmap_cache = NULL; /* Kill the cache. */
1701 * Split a vma into two pieces at address 'addr', a new vma is allocated
1702 * either for the first part or the the tail.
1704 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1705 unsigned long addr, int new_below)
1707 struct mempolicy *pol;
1708 struct vm_area_struct *new;
1710 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1713 if (mm->map_count >= sysctl_max_map_count)
1716 new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1720 /* most fields are the same, copy all, and then fixup */
1726 new->vm_start = addr;
1727 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1730 pol = mpol_copy(vma_policy(vma));
1732 kmem_cache_free(vm_area_cachep, new);
1733 return PTR_ERR(pol);
1735 vma_set_policy(new, pol);
1738 get_file(new->vm_file);
1740 if (new->vm_ops && new->vm_ops->open)
1741 new->vm_ops->open(new);
1744 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1745 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1747 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1752 /* Munmap is split into 2 main parts -- this part which finds
1753 * what needs doing, and the areas themselves, which do the
1754 * work. This now handles partial unmappings.
1755 * Jeremy Fitzhardinge <jeremy@goop.org>
1757 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1760 struct vm_area_struct *vma, *prev, *last;
1762 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1765 if ((len = PAGE_ALIGN(len)) == 0)
1768 /* Find the first overlapping VMA */
1769 vma = find_vma_prev(mm, start, &prev);
1772 /* we have start < vma->vm_end */
1774 /* if it doesn't overlap, we have nothing.. */
1776 if (vma->vm_start >= end)
1780 * If we need to split any vma, do it now to save pain later.
1782 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1783 * unmapped vm_area_struct will remain in use: so lower split_vma
1784 * places tmp vma above, and higher split_vma places tmp vma below.
1786 if (start > vma->vm_start) {
1787 int error = split_vma(mm, vma, start, 0);
1793 /* Does it split the last one? */
1794 last = find_vma(mm, end);
1795 if (last && end > last->vm_start) {
1796 int error = split_vma(mm, last, end, 1);
1800 vma = prev? prev->vm_next: mm->mmap;
1803 * Remove the vma's, and unmap the actual pages
1805 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1806 unmap_region(mm, vma, prev, start, end);
1808 /* Fix up all other VM information */
1809 unmap_vma_list(mm, vma);
1814 EXPORT_SYMBOL(do_munmap);
1816 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1819 struct mm_struct *mm = current->mm;
1821 profile_munmap(addr);
1823 down_write(&mm->mmap_sem);
1824 ret = do_munmap(mm, addr, len);
1825 up_write(&mm->mmap_sem);
1829 static inline void verify_mm_writelocked(struct mm_struct *mm)
1831 #ifdef CONFIG_DEBUG_KERNEL
1832 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1834 up_read(&mm->mmap_sem);
1840 * this is really a simplified "do_mmap". it only handles
1841 * anonymous maps. eventually we may be able to do some
1842 * brk-specific accounting here.
1844 unsigned long do_brk(unsigned long addr, unsigned long len)
1846 struct mm_struct * mm = current->mm;
1847 struct vm_area_struct * vma, * prev;
1848 unsigned long flags;
1849 struct rb_node ** rb_link, * rb_parent;
1850 pgoff_t pgoff = addr >> PAGE_SHIFT;
1852 len = PAGE_ALIGN(len);
1856 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1862 if (mm->def_flags & VM_LOCKED) {
1863 unsigned long locked, lock_limit;
1864 locked = len >> PAGE_SHIFT;
1865 locked += mm->locked_vm;
1866 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1867 lock_limit >>= PAGE_SHIFT;
1868 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1873 * mm->mmap_sem is required to protect against another thread
1874 * changing the mappings in case we sleep.
1876 verify_mm_writelocked(mm);
1879 * Clear old maps. this also does some error checking for us
1882 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1883 if (vma && vma->vm_start < addr + len) {
1884 if (do_munmap(mm, addr, len))
1889 /* Check against address space limits *after* clearing old maps... */
1890 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1893 if (mm->map_count > sysctl_max_map_count)
1896 if (security_vm_enough_memory(len >> PAGE_SHIFT))
1899 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1901 /* Can we just expand an old private anonymous mapping? */
1902 if (vma_merge(mm, prev, addr, addr + len, flags,
1903 NULL, NULL, pgoff, NULL))
1907 * create a vma struct for an anonymous mapping
1909 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1911 vm_unacct_memory(len >> PAGE_SHIFT);
1914 memset(vma, 0, sizeof(*vma));
1917 vma->vm_start = addr;
1918 vma->vm_end = addr + len;
1919 vma->vm_pgoff = pgoff;
1920 vma->vm_flags = flags;
1921 vma->vm_page_prot = protection_map[flags & 0x0f];
1922 vma_link(mm, vma, prev, rb_link, rb_parent);
1924 mm->total_vm += len >> PAGE_SHIFT;
1925 if (flags & VM_LOCKED) {
1926 mm->locked_vm += len >> PAGE_SHIFT;
1927 make_pages_present(addr, addr + len);
1932 EXPORT_SYMBOL(do_brk);
1934 /* Release all mmaps. */
1935 void exit_mmap(struct mm_struct *mm)
1937 struct mmu_gather *tlb;
1938 struct vm_area_struct *vma = mm->mmap;
1939 unsigned long nr_accounted = 0;
1944 spin_lock(&mm->page_table_lock);
1947 tlb = tlb_gather_mmu(mm, 1);
1948 /* Use -1 here to ensure all VMAs in the mm are unmapped */
1949 end = unmap_vmas(&tlb, mm, vma, 0, -1, &nr_accounted, NULL);
1950 vm_unacct_memory(nr_accounted);
1951 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1952 tlb_finish_mmu(tlb, 0, end);
1954 mm->mmap = mm->mmap_cache = NULL;
1955 mm->mm_rb = RB_ROOT;
1956 set_mm_counter(mm, rss, 0);
1960 spin_unlock(&mm->page_table_lock);
1963 * Walk the list again, actually closing and freeing it
1964 * without holding any MM locks.
1967 struct vm_area_struct *next = vma->vm_next;
1968 remove_vm_struct(vma);
1972 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1975 /* Insert vm structure into process list sorted by address
1976 * and into the inode's i_mmap tree. If vm_file is non-NULL
1977 * then i_mmap_lock is taken here.
1979 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1981 struct vm_area_struct * __vma, * prev;
1982 struct rb_node ** rb_link, * rb_parent;
1985 * The vm_pgoff of a purely anonymous vma should be irrelevant
1986 * until its first write fault, when page's anon_vma and index
1987 * are set. But now set the vm_pgoff it will almost certainly
1988 * end up with (unless mremap moves it elsewhere before that
1989 * first wfault), so /proc/pid/maps tells a consistent story.
1991 * By setting it to reflect the virtual start address of the
1992 * vma, merges and splits can happen in a seamless way, just
1993 * using the existing file pgoff checks and manipulations.
1994 * Similarly in do_mmap_pgoff and in do_brk.
1996 if (!vma->vm_file) {
1997 BUG_ON(vma->anon_vma);
1998 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2000 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2001 if (__vma && __vma->vm_start < vma->vm_end)
2003 vma_link(mm, vma, prev, rb_link, rb_parent);
2008 * Copy the vma structure to a new location in the same mm,
2009 * prior to moving page table entries, to effect an mremap move.
2011 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2012 unsigned long addr, unsigned long len, pgoff_t pgoff)
2014 struct vm_area_struct *vma = *vmap;
2015 unsigned long vma_start = vma->vm_start;
2016 struct mm_struct *mm = vma->vm_mm;
2017 struct vm_area_struct *new_vma, *prev;
2018 struct rb_node **rb_link, *rb_parent;
2019 struct mempolicy *pol;
2022 * If anonymous vma has not yet been faulted, update new pgoff
2023 * to match new location, to increase its chance of merging.
2025 if (!vma->vm_file && !vma->anon_vma)
2026 pgoff = addr >> PAGE_SHIFT;
2028 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2029 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2030 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2033 * Source vma may have been merged into new_vma
2035 if (vma_start >= new_vma->vm_start &&
2036 vma_start < new_vma->vm_end)
2039 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2042 pol = mpol_copy(vma_policy(vma));
2044 kmem_cache_free(vm_area_cachep, new_vma);
2047 vma_set_policy(new_vma, pol);
2048 new_vma->vm_start = addr;
2049 new_vma->vm_end = addr + len;
2050 new_vma->vm_pgoff = pgoff;
2051 if (new_vma->vm_file)
2052 get_file(new_vma->vm_file);
2053 if (new_vma->vm_ops && new_vma->vm_ops->open)
2054 new_vma->vm_ops->open(new_vma);
2055 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2062 * Return true if the calling process may expand its vm space by the passed
2065 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2067 unsigned long cur = mm->total_vm; /* pages */
2070 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2072 if (cur + npages > lim)