2 * raid6main.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-6 management functions. This code is derived from raid5.c.
8 * Last merge from raid5.c bkcvs version 1.79 (kernel 2.6.1).
10 * Thanks to Penguin Computing for making the RAID-6 development possible
11 * by donating a test server!
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * You should have received a copy of the GNU General Public License
19 * (for example /usr/src/linux/COPYING); if not, write to the Free
20 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/highmem.h>
28 #include <linux/bitops.h>
29 #include <asm/atomic.h>
32 #include <linux/raid/bitmap.h>
38 #define NR_STRIPES 256
39 #define STRIPE_SIZE PAGE_SIZE
40 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
41 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
42 #define IO_THRESHOLD 1
43 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
44 #define HASH_MASK (NR_HASH - 1)
46 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
48 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
49 * order without overlap. There may be several bio's per stripe+device, and
50 * a bio could span several devices.
51 * When walking this list for a particular stripe+device, we must never proceed
52 * beyond a bio that extends past this device, as the next bio might no longer
54 * This macro is used to determine the 'next' bio in the list, given the sector
55 * of the current stripe+device
57 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
59 * The following can be used to debug the driver
61 #define RAID6_DEBUG 0 /* Extremely verbose printk */
62 #define RAID6_PARANOIA 1 /* Check spinlocks */
63 #define RAID6_DUMPSTATE 0 /* Include stripe cache state in /proc/mdstat */
64 #if RAID6_PARANOIA && defined(CONFIG_SMP)
65 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
67 # define CHECK_DEVLOCK()
70 #define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x)))
78 #if !RAID6_USE_EMPTY_ZERO_PAGE
79 /* In .bss so it's zeroed */
80 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
83 static inline int raid6_next_disk(int disk, int raid_disks)
86 return (disk < raid_disks) ? disk : 0;
89 static void print_raid6_conf (raid6_conf_t *conf);
91 static void __release_stripe(raid6_conf_t *conf, struct stripe_head *sh)
93 if (atomic_dec_and_test(&sh->count)) {
94 if (!list_empty(&sh->lru))
96 if (atomic_read(&conf->active_stripes)==0)
98 if (test_bit(STRIPE_HANDLE, &sh->state)) {
99 if (test_bit(STRIPE_DELAYED, &sh->state))
100 list_add_tail(&sh->lru, &conf->delayed_list);
101 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
102 conf->seq_write == sh->bm_seq)
103 list_add_tail(&sh->lru, &conf->bitmap_list);
105 clear_bit(STRIPE_BIT_DELAY, &sh->state);
106 list_add_tail(&sh->lru, &conf->handle_list);
108 md_wakeup_thread(conf->mddev->thread);
110 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
111 atomic_dec(&conf->preread_active_stripes);
112 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
113 md_wakeup_thread(conf->mddev->thread);
115 list_add_tail(&sh->lru, &conf->inactive_list);
116 atomic_dec(&conf->active_stripes);
117 if (!conf->inactive_blocked ||
118 atomic_read(&conf->active_stripes) < (conf->max_nr_stripes*3/4))
119 wake_up(&conf->wait_for_stripe);
123 static void release_stripe(struct stripe_head *sh)
125 raid6_conf_t *conf = sh->raid_conf;
128 spin_lock_irqsave(&conf->device_lock, flags);
129 __release_stripe(conf, sh);
130 spin_unlock_irqrestore(&conf->device_lock, flags);
133 static inline void remove_hash(struct stripe_head *sh)
135 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
137 hlist_del_init(&sh->hash);
140 static inline void insert_hash(raid6_conf_t *conf, struct stripe_head *sh)
142 struct hlist_head *hp = stripe_hash(conf, sh->sector);
144 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
147 hlist_add_head(&sh->hash, hp);
151 /* find an idle stripe, make sure it is unhashed, and return it. */
152 static struct stripe_head *get_free_stripe(raid6_conf_t *conf)
154 struct stripe_head *sh = NULL;
155 struct list_head *first;
158 if (list_empty(&conf->inactive_list))
160 first = conf->inactive_list.next;
161 sh = list_entry(first, struct stripe_head, lru);
162 list_del_init(first);
164 atomic_inc(&conf->active_stripes);
169 static void shrink_buffers(struct stripe_head *sh, int num)
174 for (i=0; i<num ; i++) {
178 sh->dev[i].page = NULL;
183 static int grow_buffers(struct stripe_head *sh, int num)
187 for (i=0; i<num; i++) {
190 if (!(page = alloc_page(GFP_KERNEL))) {
193 sh->dev[i].page = page;
198 static void raid6_build_block (struct stripe_head *sh, int i);
200 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx)
202 raid6_conf_t *conf = sh->raid_conf;
203 int disks = conf->raid_disks, i;
205 if (atomic_read(&sh->count) != 0)
207 if (test_bit(STRIPE_HANDLE, &sh->state))
211 PRINTK("init_stripe called, stripe %llu\n",
212 (unsigned long long)sh->sector);
220 for (i=disks; i--; ) {
221 struct r5dev *dev = &sh->dev[i];
223 if (dev->toread || dev->towrite || dev->written ||
224 test_bit(R5_LOCKED, &dev->flags)) {
225 PRINTK("sector=%llx i=%d %p %p %p %d\n",
226 (unsigned long long)sh->sector, i, dev->toread,
227 dev->towrite, dev->written,
228 test_bit(R5_LOCKED, &dev->flags));
232 raid6_build_block(sh, i);
234 insert_hash(conf, sh);
237 static struct stripe_head *__find_stripe(raid6_conf_t *conf, sector_t sector)
239 struct stripe_head *sh;
240 struct hlist_node *hn;
243 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
244 hlist_for_each_entry (sh, hn, stripe_hash(conf, sector), hash)
245 if (sh->sector == sector)
247 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
251 static void unplug_slaves(mddev_t *mddev);
253 static struct stripe_head *get_active_stripe(raid6_conf_t *conf, sector_t sector,
254 int pd_idx, int noblock)
256 struct stripe_head *sh;
258 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
260 spin_lock_irq(&conf->device_lock);
263 wait_event_lock_irq(conf->wait_for_stripe,
265 conf->device_lock, /* nothing */);
266 sh = __find_stripe(conf, sector);
268 if (!conf->inactive_blocked)
269 sh = get_free_stripe(conf);
270 if (noblock && sh == NULL)
273 conf->inactive_blocked = 1;
274 wait_event_lock_irq(conf->wait_for_stripe,
275 !list_empty(&conf->inactive_list) &&
276 (atomic_read(&conf->active_stripes)
277 < (conf->max_nr_stripes *3/4)
278 || !conf->inactive_blocked),
280 unplug_slaves(conf->mddev);
282 conf->inactive_blocked = 0;
284 init_stripe(sh, sector, pd_idx);
286 if (atomic_read(&sh->count)) {
287 if (!list_empty(&sh->lru))
290 if (!test_bit(STRIPE_HANDLE, &sh->state))
291 atomic_inc(&conf->active_stripes);
292 if (list_empty(&sh->lru))
294 list_del_init(&sh->lru);
297 } while (sh == NULL);
300 atomic_inc(&sh->count);
302 spin_unlock_irq(&conf->device_lock);
306 static int grow_one_stripe(raid6_conf_t *conf)
308 struct stripe_head *sh;
309 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
312 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
313 sh->raid_conf = conf;
314 spin_lock_init(&sh->lock);
316 if (grow_buffers(sh, conf->raid_disks)) {
317 shrink_buffers(sh, conf->raid_disks);
318 kmem_cache_free(conf->slab_cache, sh);
321 /* we just created an active stripe so... */
322 atomic_set(&sh->count, 1);
323 atomic_inc(&conf->active_stripes);
324 INIT_LIST_HEAD(&sh->lru);
329 static int grow_stripes(raid6_conf_t *conf, int num)
332 int devs = conf->raid_disks;
334 sprintf(conf->cache_name, "raid6/%s", mdname(conf->mddev));
336 sc = kmem_cache_create(conf->cache_name,
337 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
341 conf->slab_cache = sc;
343 if (!grow_one_stripe(conf))
348 static int drop_one_stripe(raid6_conf_t *conf)
350 struct stripe_head *sh;
351 spin_lock_irq(&conf->device_lock);
352 sh = get_free_stripe(conf);
353 spin_unlock_irq(&conf->device_lock);
356 if (atomic_read(&sh->count))
358 shrink_buffers(sh, conf->raid_disks);
359 kmem_cache_free(conf->slab_cache, sh);
360 atomic_dec(&conf->active_stripes);
364 static void shrink_stripes(raid6_conf_t *conf)
366 while (drop_one_stripe(conf))
369 if (conf->slab_cache)
370 kmem_cache_destroy(conf->slab_cache);
371 conf->slab_cache = NULL;
374 static int raid6_end_read_request(struct bio * bi, unsigned int bytes_done,
377 struct stripe_head *sh = bi->bi_private;
378 raid6_conf_t *conf = sh->raid_conf;
379 int disks = conf->raid_disks, i;
380 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
385 for (i=0 ; i<disks; i++)
386 if (bi == &sh->dev[i].req)
389 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
390 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
401 spin_lock_irqsave(&conf->device_lock, flags);
402 /* we can return a buffer if we bypassed the cache or
403 * if the top buffer is not in highmem. If there are
404 * multiple buffers, leave the extra work to
407 buffer = sh->bh_read[i];
409 (!PageHighMem(buffer->b_page)
410 || buffer->b_page == bh->b_page )
412 sh->bh_read[i] = buffer->b_reqnext;
413 buffer->b_reqnext = NULL;
416 spin_unlock_irqrestore(&conf->device_lock, flags);
417 if (sh->bh_page[i]==bh->b_page)
418 set_buffer_uptodate(bh);
420 if (buffer->b_page != bh->b_page)
421 memcpy(buffer->b_data, bh->b_data, bh->b_size);
422 buffer->b_end_io(buffer, 1);
425 set_bit(R5_UPTODATE, &sh->dev[i].flags);
427 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
428 printk(KERN_INFO "raid6: read error corrected!!\n");
429 clear_bit(R5_ReadError, &sh->dev[i].flags);
430 clear_bit(R5_ReWrite, &sh->dev[i].flags);
432 if (atomic_read(&conf->disks[i].rdev->read_errors))
433 atomic_set(&conf->disks[i].rdev->read_errors, 0);
436 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
437 atomic_inc(&conf->disks[i].rdev->read_errors);
438 if (conf->mddev->degraded)
439 printk(KERN_WARNING "raid6: read error not correctable.\n");
440 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
442 printk(KERN_WARNING "raid6: read error NOT corrected!!\n");
443 else if (atomic_read(&conf->disks[i].rdev->read_errors)
444 > conf->max_nr_stripes)
446 "raid6: Too many read errors, failing device.\n");
450 set_bit(R5_ReadError, &sh->dev[i].flags);
452 clear_bit(R5_ReadError, &sh->dev[i].flags);
453 clear_bit(R5_ReWrite, &sh->dev[i].flags);
454 md_error(conf->mddev, conf->disks[i].rdev);
457 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
459 /* must restore b_page before unlocking buffer... */
460 if (sh->bh_page[i] != bh->b_page) {
461 bh->b_page = sh->bh_page[i];
462 bh->b_data = page_address(bh->b_page);
463 clear_buffer_uptodate(bh);
466 clear_bit(R5_LOCKED, &sh->dev[i].flags);
467 set_bit(STRIPE_HANDLE, &sh->state);
472 static int raid6_end_write_request (struct bio *bi, unsigned int bytes_done,
475 struct stripe_head *sh = bi->bi_private;
476 raid6_conf_t *conf = sh->raid_conf;
477 int disks = conf->raid_disks, i;
479 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
484 for (i=0 ; i<disks; i++)
485 if (bi == &sh->dev[i].req)
488 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
489 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
496 spin_lock_irqsave(&conf->device_lock, flags);
498 md_error(conf->mddev, conf->disks[i].rdev);
500 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
502 clear_bit(R5_LOCKED, &sh->dev[i].flags);
503 set_bit(STRIPE_HANDLE, &sh->state);
504 __release_stripe(conf, sh);
505 spin_unlock_irqrestore(&conf->device_lock, flags);
510 static sector_t compute_blocknr(struct stripe_head *sh, int i);
512 static void raid6_build_block (struct stripe_head *sh, int i)
514 struct r5dev *dev = &sh->dev[i];
515 int pd_idx = sh->pd_idx;
516 int qd_idx = raid6_next_disk(pd_idx, sh->raid_conf->raid_disks);
519 dev->req.bi_io_vec = &dev->vec;
521 dev->req.bi_max_vecs++;
522 dev->vec.bv_page = dev->page;
523 dev->vec.bv_len = STRIPE_SIZE;
524 dev->vec.bv_offset = 0;
526 dev->req.bi_sector = sh->sector;
527 dev->req.bi_private = sh;
530 if (i != pd_idx && i != qd_idx)
531 dev->sector = compute_blocknr(sh, i);
534 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
536 char b[BDEVNAME_SIZE];
537 raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
538 PRINTK("raid6: error called\n");
540 if (!test_bit(Faulty, &rdev->flags)) {
542 if (test_bit(In_sync, &rdev->flags)) {
543 conf->working_disks--;
545 conf->failed_disks++;
546 clear_bit(In_sync, &rdev->flags);
548 * if recovery was running, make sure it aborts.
550 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
552 set_bit(Faulty, &rdev->flags);
554 "raid6: Disk failure on %s, disabling device."
555 " Operation continuing on %d devices\n",
556 bdevname(rdev->bdev,b), conf->working_disks);
561 * Input: a 'big' sector number,
562 * Output: index of the data and parity disk, and the sector # in them.
564 static sector_t raid6_compute_sector(sector_t r_sector, unsigned int raid_disks,
565 unsigned int data_disks, unsigned int * dd_idx,
566 unsigned int * pd_idx, raid6_conf_t *conf)
569 unsigned long chunk_number;
570 unsigned int chunk_offset;
572 int sectors_per_chunk = conf->chunk_size >> 9;
574 /* First compute the information on this sector */
577 * Compute the chunk number and the sector offset inside the chunk
579 chunk_offset = sector_div(r_sector, sectors_per_chunk);
580 chunk_number = r_sector;
581 if ( r_sector != chunk_number ) {
582 printk(KERN_CRIT "raid6: ERROR: r_sector = %llu, chunk_number = %lu\n",
583 (unsigned long long)r_sector, (unsigned long)chunk_number);
588 * Compute the stripe number
590 stripe = chunk_number / data_disks;
593 * Compute the data disk and parity disk indexes inside the stripe
595 *dd_idx = chunk_number % data_disks;
598 * Select the parity disk based on the user selected algorithm.
602 switch (conf->algorithm) {
603 case ALGORITHM_LEFT_ASYMMETRIC:
604 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
605 if (*pd_idx == raid_disks-1)
606 (*dd_idx)++; /* Q D D D P */
607 else if (*dd_idx >= *pd_idx)
608 (*dd_idx) += 2; /* D D P Q D */
610 case ALGORITHM_RIGHT_ASYMMETRIC:
611 *pd_idx = stripe % raid_disks;
612 if (*pd_idx == raid_disks-1)
613 (*dd_idx)++; /* Q D D D P */
614 else if (*dd_idx >= *pd_idx)
615 (*dd_idx) += 2; /* D D P Q D */
617 case ALGORITHM_LEFT_SYMMETRIC:
618 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
619 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
621 case ALGORITHM_RIGHT_SYMMETRIC:
622 *pd_idx = stripe % raid_disks;
623 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
626 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
630 PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n",
631 chunk_number, *pd_idx, *dd_idx);
634 * Finally, compute the new sector number
636 new_sector = (sector_t) stripe * sectors_per_chunk + chunk_offset;
641 static sector_t compute_blocknr(struct stripe_head *sh, int i)
643 raid6_conf_t *conf = sh->raid_conf;
644 int raid_disks = conf->raid_disks, data_disks = raid_disks - 2;
645 sector_t new_sector = sh->sector, check;
646 int sectors_per_chunk = conf->chunk_size >> 9;
649 int chunk_number, dummy1, dummy2, dd_idx = i;
653 chunk_offset = sector_div(new_sector, sectors_per_chunk);
655 if ( new_sector != stripe ) {
656 printk(KERN_CRIT "raid6: ERROR: new_sector = %llu, stripe = %lu\n",
657 (unsigned long long)new_sector, (unsigned long)stripe);
661 switch (conf->algorithm) {
662 case ALGORITHM_LEFT_ASYMMETRIC:
663 case ALGORITHM_RIGHT_ASYMMETRIC:
664 if (sh->pd_idx == raid_disks-1)
666 else if (i > sh->pd_idx)
667 i -= 2; /* D D P Q D */
669 case ALGORITHM_LEFT_SYMMETRIC:
670 case ALGORITHM_RIGHT_SYMMETRIC:
671 if (sh->pd_idx == raid_disks-1)
677 i -= (sh->pd_idx + 2);
681 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
685 PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh->pd_idx, i0, i);
687 chunk_number = stripe * data_disks + i;
688 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
690 check = raid6_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
691 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
692 printk(KERN_CRIT "raid6: compute_blocknr: map not correct\n");
701 * Copy data between a page in the stripe cache, and one or more bion
702 * The page could align with the middle of the bio, or there could be
703 * several bion, each with several bio_vecs, which cover part of the page
704 * Multiple bion are linked together on bi_next. There may be extras
705 * at the end of this list. We ignore them.
707 static void copy_data(int frombio, struct bio *bio,
711 char *pa = page_address(page);
716 if (bio->bi_sector >= sector)
717 page_offset = (signed)(bio->bi_sector - sector) * 512;
719 page_offset = (signed)(sector - bio->bi_sector) * -512;
720 bio_for_each_segment(bvl, bio, i) {
721 int len = bio_iovec_idx(bio,i)->bv_len;
725 if (page_offset < 0) {
726 b_offset = -page_offset;
727 page_offset += b_offset;
731 if (len > 0 && page_offset + len > STRIPE_SIZE)
732 clen = STRIPE_SIZE - page_offset;
736 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
738 memcpy(pa+page_offset, ba+b_offset, clen);
740 memcpy(ba+b_offset, pa+page_offset, clen);
741 __bio_kunmap_atomic(ba, KM_USER0);
743 if (clen < len) /* hit end of page */
749 #define check_xor() do { \
750 if (count == MAX_XOR_BLOCKS) { \
751 xor_block(count, STRIPE_SIZE, ptr); \
756 /* Compute P and Q syndromes */
757 static void compute_parity(struct stripe_head *sh, int method)
759 raid6_conf_t *conf = sh->raid_conf;
760 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
762 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
765 qd_idx = raid6_next_disk(pd_idx, disks);
766 d0_idx = raid6_next_disk(qd_idx, disks);
768 PRINTK("compute_parity, stripe %llu, method %d\n",
769 (unsigned long long)sh->sector, method);
772 case READ_MODIFY_WRITE:
773 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
774 case RECONSTRUCT_WRITE:
775 for (i= disks; i-- ;)
776 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
777 chosen = sh->dev[i].towrite;
778 sh->dev[i].towrite = NULL;
780 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
781 wake_up(&conf->wait_for_overlap);
783 if (sh->dev[i].written) BUG();
784 sh->dev[i].written = chosen;
788 BUG(); /* Not implemented yet */
791 for (i = disks; i--;)
792 if (sh->dev[i].written) {
793 sector_t sector = sh->dev[i].sector;
794 struct bio *wbi = sh->dev[i].written;
795 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
796 copy_data(1, wbi, sh->dev[i].page, sector);
797 wbi = r5_next_bio(wbi, sector);
800 set_bit(R5_LOCKED, &sh->dev[i].flags);
801 set_bit(R5_UPTODATE, &sh->dev[i].flags);
805 // case RECONSTRUCT_WRITE:
806 // case CHECK_PARITY:
807 // case UPDATE_PARITY:
808 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
809 /* FIX: Is this ordering of drives even remotely optimal? */
813 ptrs[count++] = page_address(sh->dev[i].page);
814 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
815 printk("block %d/%d not uptodate on parity calc\n", i,count);
816 i = raid6_next_disk(i, disks);
817 } while ( i != d0_idx );
821 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
824 case RECONSTRUCT_WRITE:
825 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
826 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
827 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
828 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
831 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
832 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
837 /* Compute one missing block */
838 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
840 raid6_conf_t *conf = sh->raid_conf;
841 int i, count, disks = conf->raid_disks;
842 void *ptr[MAX_XOR_BLOCKS], *p;
843 int pd_idx = sh->pd_idx;
844 int qd_idx = raid6_next_disk(pd_idx, disks);
846 PRINTK("compute_block_1, stripe %llu, idx %d\n",
847 (unsigned long long)sh->sector, dd_idx);
849 if ( dd_idx == qd_idx ) {
850 /* We're actually computing the Q drive */
851 compute_parity(sh, UPDATE_PARITY);
853 ptr[0] = page_address(sh->dev[dd_idx].page);
854 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
856 for (i = disks ; i--; ) {
857 if (i == dd_idx || i == qd_idx)
859 p = page_address(sh->dev[i].page);
860 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
863 printk("compute_block() %d, stripe %llu, %d"
864 " not present\n", dd_idx,
865 (unsigned long long)sh->sector, i);
870 xor_block(count, STRIPE_SIZE, ptr);
871 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
872 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
876 /* Compute two missing blocks */
877 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
879 raid6_conf_t *conf = sh->raid_conf;
880 int i, count, disks = conf->raid_disks;
881 int pd_idx = sh->pd_idx;
882 int qd_idx = raid6_next_disk(pd_idx, disks);
883 int d0_idx = raid6_next_disk(qd_idx, disks);
886 /* faila and failb are disk numbers relative to d0_idx */
887 /* pd_idx become disks-2 and qd_idx become disks-1 */
888 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
889 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
891 BUG_ON(faila == failb);
892 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
894 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
895 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
897 if ( failb == disks-1 ) {
898 /* Q disk is one of the missing disks */
899 if ( faila == disks-2 ) {
900 /* Missing P+Q, just recompute */
901 compute_parity(sh, UPDATE_PARITY);
904 /* We're missing D+Q; recompute D from P */
905 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
906 compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */
911 /* We're missing D+P or D+D; build pointer table */
913 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
919 ptrs[count++] = page_address(sh->dev[i].page);
920 i = raid6_next_disk(i, disks);
921 if (i != dd_idx1 && i != dd_idx2 &&
922 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
923 printk("compute_2 with missing block %d/%d\n", count, i);
924 } while ( i != d0_idx );
926 if ( failb == disks-2 ) {
927 /* We're missing D+P. */
928 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
930 /* We're missing D+D. */
931 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
934 /* Both the above update both missing blocks */
935 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
936 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
942 * Each stripe/dev can have one or more bion attached.
943 * toread/towrite point to the first in a chain.
944 * The bi_next chain must be in order.
946 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
949 raid6_conf_t *conf = sh->raid_conf;
952 PRINTK("adding bh b#%llu to stripe s#%llu\n",
953 (unsigned long long)bi->bi_sector,
954 (unsigned long long)sh->sector);
957 spin_lock(&sh->lock);
958 spin_lock_irq(&conf->device_lock);
960 bip = &sh->dev[dd_idx].towrite;
961 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
964 bip = &sh->dev[dd_idx].toread;
965 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
966 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
968 bip = &(*bip)->bi_next;
970 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
973 if (*bip && bi->bi_next && (*bip) != bi->bi_next)
978 bi->bi_phys_segments ++;
979 spin_unlock_irq(&conf->device_lock);
980 spin_unlock(&sh->lock);
982 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
983 (unsigned long long)bi->bi_sector,
984 (unsigned long long)sh->sector, dd_idx);
986 if (conf->mddev->bitmap && firstwrite) {
987 sh->bm_seq = conf->seq_write;
988 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
990 set_bit(STRIPE_BIT_DELAY, &sh->state);
994 /* check if page is covered */
995 sector_t sector = sh->dev[dd_idx].sector;
996 for (bi=sh->dev[dd_idx].towrite;
997 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
998 bi && bi->bi_sector <= sector;
999 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1000 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1001 sector = bi->bi_sector + (bi->bi_size>>9);
1003 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1004 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1009 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1010 spin_unlock_irq(&conf->device_lock);
1011 spin_unlock(&sh->lock);
1016 static int page_is_zero(struct page *p)
1018 char *a = page_address(p);
1019 return ((*(u32*)a) == 0 &&
1020 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1023 * handle_stripe - do things to a stripe.
1025 * We lock the stripe and then examine the state of various bits
1026 * to see what needs to be done.
1028 * return some read request which now have data
1029 * return some write requests which are safely on disc
1030 * schedule a read on some buffers
1031 * schedule a write of some buffers
1032 * return confirmation of parity correctness
1034 * Parity calculations are done inside the stripe lock
1035 * buffers are taken off read_list or write_list, and bh_cache buffers
1036 * get BH_Lock set before the stripe lock is released.
1040 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
1042 raid6_conf_t *conf = sh->raid_conf;
1043 int disks = conf->raid_disks;
1044 struct bio *return_bi= NULL;
1048 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1049 int non_overwrite = 0;
1050 int failed_num[2] = {0, 0};
1051 struct r5dev *dev, *pdev, *qdev;
1052 int pd_idx = sh->pd_idx;
1053 int qd_idx = raid6_next_disk(pd_idx, disks);
1054 int p_failed, q_failed;
1056 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1057 (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1060 spin_lock(&sh->lock);
1061 clear_bit(STRIPE_HANDLE, &sh->state);
1062 clear_bit(STRIPE_DELAYED, &sh->state);
1064 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1065 /* Now to look around and see what can be done */
1068 for (i=disks; i--; ) {
1071 clear_bit(R5_Insync, &dev->flags);
1073 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1074 i, dev->flags, dev->toread, dev->towrite, dev->written);
1075 /* maybe we can reply to a read */
1076 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1077 struct bio *rbi, *rbi2;
1078 PRINTK("Return read for disc %d\n", i);
1079 spin_lock_irq(&conf->device_lock);
1082 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1083 wake_up(&conf->wait_for_overlap);
1084 spin_unlock_irq(&conf->device_lock);
1085 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1086 copy_data(0, rbi, dev->page, dev->sector);
1087 rbi2 = r5_next_bio(rbi, dev->sector);
1088 spin_lock_irq(&conf->device_lock);
1089 if (--rbi->bi_phys_segments == 0) {
1090 rbi->bi_next = return_bi;
1093 spin_unlock_irq(&conf->device_lock);
1098 /* now count some things */
1099 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1100 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1103 if (dev->toread) to_read++;
1106 if (!test_bit(R5_OVERWRITE, &dev->flags))
1109 if (dev->written) written++;
1110 rdev = rcu_dereference(conf->disks[i].rdev);
1111 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1112 /* The ReadError flag will just be confusing now */
1113 clear_bit(R5_ReadError, &dev->flags);
1114 clear_bit(R5_ReWrite, &dev->flags);
1116 if (!rdev || !test_bit(In_sync, &rdev->flags)
1117 || test_bit(R5_ReadError, &dev->flags)) {
1119 failed_num[failed] = i;
1122 set_bit(R5_Insync, &dev->flags);
1125 PRINTK("locked=%d uptodate=%d to_read=%d"
1126 " to_write=%d failed=%d failed_num=%d,%d\n",
1127 locked, uptodate, to_read, to_write, failed,
1128 failed_num[0], failed_num[1]);
1129 /* check if the array has lost >2 devices and, if so, some requests might
1132 if (failed > 2 && to_read+to_write+written) {
1133 for (i=disks; i--; ) {
1136 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1139 rdev = rcu_dereference(conf->disks[i].rdev);
1140 if (rdev && test_bit(In_sync, &rdev->flags))
1141 /* multiple read failures in one stripe */
1142 md_error(conf->mddev, rdev);
1146 spin_lock_irq(&conf->device_lock);
1147 /* fail all writes first */
1148 bi = sh->dev[i].towrite;
1149 sh->dev[i].towrite = NULL;
1150 if (bi) { to_write--; bitmap_end = 1; }
1152 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1153 wake_up(&conf->wait_for_overlap);
1155 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1156 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1157 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1158 if (--bi->bi_phys_segments == 0) {
1159 md_write_end(conf->mddev);
1160 bi->bi_next = return_bi;
1165 /* and fail all 'written' */
1166 bi = sh->dev[i].written;
1167 sh->dev[i].written = NULL;
1168 if (bi) bitmap_end = 1;
1169 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1170 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1171 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1172 if (--bi->bi_phys_segments == 0) {
1173 md_write_end(conf->mddev);
1174 bi->bi_next = return_bi;
1180 /* fail any reads if this device is non-operational */
1181 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1182 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1183 bi = sh->dev[i].toread;
1184 sh->dev[i].toread = NULL;
1185 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1186 wake_up(&conf->wait_for_overlap);
1188 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1189 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1190 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1191 if (--bi->bi_phys_segments == 0) {
1192 bi->bi_next = return_bi;
1198 spin_unlock_irq(&conf->device_lock);
1200 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1201 STRIPE_SECTORS, 0, 0);
1204 if (failed > 2 && syncing) {
1205 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1206 clear_bit(STRIPE_SYNCING, &sh->state);
1211 * might be able to return some write requests if the parity blocks
1212 * are safe, or on a failed drive
1214 pdev = &sh->dev[pd_idx];
1215 p_failed = (failed >= 1 && failed_num[0] == pd_idx)
1216 || (failed >= 2 && failed_num[1] == pd_idx);
1217 qdev = &sh->dev[qd_idx];
1218 q_failed = (failed >= 1 && failed_num[0] == qd_idx)
1219 || (failed >= 2 && failed_num[1] == qd_idx);
1222 ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
1223 && !test_bit(R5_LOCKED, &pdev->flags)
1224 && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
1225 ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
1226 && !test_bit(R5_LOCKED, &qdev->flags)
1227 && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
1228 /* any written block on an uptodate or failed drive can be
1229 * returned. Note that if we 'wrote' to a failed drive,
1230 * it will be UPTODATE, but never LOCKED, so we don't need
1231 * to test 'failed' directly.
1233 for (i=disks; i--; )
1234 if (sh->dev[i].written) {
1236 if (!test_bit(R5_LOCKED, &dev->flags) &&
1237 test_bit(R5_UPTODATE, &dev->flags) ) {
1238 /* We can return any write requests */
1240 struct bio *wbi, *wbi2;
1241 PRINTK("Return write for stripe %llu disc %d\n",
1242 (unsigned long long)sh->sector, i);
1243 spin_lock_irq(&conf->device_lock);
1245 dev->written = NULL;
1246 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1247 wbi2 = r5_next_bio(wbi, dev->sector);
1248 if (--wbi->bi_phys_segments == 0) {
1249 md_write_end(conf->mddev);
1250 wbi->bi_next = return_bi;
1255 if (dev->towrite == NULL)
1257 spin_unlock_irq(&conf->device_lock);
1259 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1261 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1266 /* Now we might consider reading some blocks, either to check/generate
1267 * parity, or to satisfy requests
1268 * or to load a block that is being partially written.
1270 if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
1271 for (i=disks; i--;) {
1273 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1275 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1277 (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
1278 (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
1281 /* we would like to get this block, possibly
1282 * by computing it, but we might not be able to
1284 if (uptodate == disks-1) {
1285 PRINTK("Computing stripe %llu block %d\n",
1286 (unsigned long long)sh->sector, i);
1287 compute_block_1(sh, i, 0);
1289 } else if ( uptodate == disks-2 && failed >= 2 ) {
1290 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
1292 for (other=disks; other--;) {
1295 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
1299 PRINTK("Computing stripe %llu blocks %d,%d\n",
1300 (unsigned long long)sh->sector, i, other);
1301 compute_block_2(sh, i, other);
1303 } else if (test_bit(R5_Insync, &dev->flags)) {
1304 set_bit(R5_LOCKED, &dev->flags);
1305 set_bit(R5_Wantread, &dev->flags);
1307 /* if I am just reading this block and we don't have
1308 a failed drive, or any pending writes then sidestep the cache */
1309 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1310 ! syncing && !failed && !to_write) {
1311 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
1312 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
1316 PRINTK("Reading block %d (sync=%d)\n",
1321 set_bit(STRIPE_HANDLE, &sh->state);
1324 /* now to consider writing and what else, if anything should be read */
1326 int rcw=0, must_compute=0;
1327 for (i=disks ; i--;) {
1329 /* Would I have to read this buffer for reconstruct_write */
1330 if (!test_bit(R5_OVERWRITE, &dev->flags)
1331 && i != pd_idx && i != qd_idx
1332 && (!test_bit(R5_LOCKED, &dev->flags)
1334 || sh->bh_page[i] != bh->b_page
1337 !test_bit(R5_UPTODATE, &dev->flags)) {
1338 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1340 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
1345 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
1346 (unsigned long long)sh->sector, rcw, must_compute);
1347 set_bit(STRIPE_HANDLE, &sh->state);
1350 /* want reconstruct write, but need to get some data */
1351 for (i=disks; i--;) {
1353 if (!test_bit(R5_OVERWRITE, &dev->flags)
1354 && !(failed == 0 && (i == pd_idx || i == qd_idx))
1355 && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1356 test_bit(R5_Insync, &dev->flags)) {
1357 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1359 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
1360 (unsigned long long)sh->sector, i);
1361 set_bit(R5_LOCKED, &dev->flags);
1362 set_bit(R5_Wantread, &dev->flags);
1365 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
1366 (unsigned long long)sh->sector, i);
1367 set_bit(STRIPE_DELAYED, &sh->state);
1368 set_bit(STRIPE_HANDLE, &sh->state);
1372 /* now if nothing is locked, and if we have enough data, we can start a write request */
1373 if (locked == 0 && rcw == 0 &&
1374 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1375 if ( must_compute > 0 ) {
1376 /* We have failed blocks and need to compute them */
1379 case 1: compute_block_1(sh, failed_num[0], 0); break;
1380 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
1381 default: BUG(); /* This request should have been failed? */
1385 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
1386 compute_parity(sh, RECONSTRUCT_WRITE);
1387 /* now every locked buffer is ready to be written */
1389 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1390 PRINTK("Writing stripe %llu block %d\n",
1391 (unsigned long long)sh->sector, i);
1393 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1395 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
1396 set_bit(STRIPE_INSYNC, &sh->state);
1398 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1399 atomic_dec(&conf->preread_active_stripes);
1400 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1401 md_wakeup_thread(conf->mddev->thread);
1406 /* maybe we need to check and possibly fix the parity for this stripe
1407 * Any reads will already have been scheduled, so we just see if enough data
1410 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
1411 int update_p = 0, update_q = 0;
1414 set_bit(STRIPE_HANDLE, &sh->state);
1417 BUG_ON(uptodate < disks);
1418 /* Want to check and possibly repair P and Q.
1419 * However there could be one 'failed' device, in which
1420 * case we can only check one of them, possibly using the
1421 * other to generate missing data
1424 /* If !tmp_page, we cannot do the calculations,
1425 * but as we have set STRIPE_HANDLE, we will soon be called
1426 * by stripe_handle with a tmp_page - just wait until then.
1429 if (failed == q_failed) {
1430 /* The only possible failed device holds 'Q', so it makes
1431 * sense to check P (If anything else were failed, we would
1432 * have used P to recreate it).
1434 compute_block_1(sh, pd_idx, 1);
1435 if (!page_is_zero(sh->dev[pd_idx].page)) {
1436 compute_block_1(sh,pd_idx,0);
1440 if (!q_failed && failed < 2) {
1441 /* q is not failed, and we didn't use it to generate
1442 * anything, so it makes sense to check it
1444 memcpy(page_address(tmp_page),
1445 page_address(sh->dev[qd_idx].page),
1447 compute_parity(sh, UPDATE_PARITY);
1448 if (memcmp(page_address(tmp_page),
1449 page_address(sh->dev[qd_idx].page),
1451 clear_bit(STRIPE_INSYNC, &sh->state);
1455 if (update_p || update_q) {
1456 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1457 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1458 /* don't try to repair!! */
1459 update_p = update_q = 0;
1462 /* now write out any block on a failed drive,
1463 * or P or Q if they need it
1467 dev = &sh->dev[failed_num[1]];
1469 set_bit(R5_LOCKED, &dev->flags);
1470 set_bit(R5_Wantwrite, &dev->flags);
1473 dev = &sh->dev[failed_num[0]];
1475 set_bit(R5_LOCKED, &dev->flags);
1476 set_bit(R5_Wantwrite, &dev->flags);
1480 dev = &sh->dev[pd_idx];
1482 set_bit(R5_LOCKED, &dev->flags);
1483 set_bit(R5_Wantwrite, &dev->flags);
1486 dev = &sh->dev[qd_idx];
1488 set_bit(R5_LOCKED, &dev->flags);
1489 set_bit(R5_Wantwrite, &dev->flags);
1491 clear_bit(STRIPE_DEGRADED, &sh->state);
1493 set_bit(STRIPE_INSYNC, &sh->state);
1497 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1498 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1499 clear_bit(STRIPE_SYNCING, &sh->state);
1502 /* If the failed drives are just a ReadError, then we might need
1503 * to progress the repair/check process
1505 if (failed <= 2 && ! conf->mddev->ro)
1506 for (i=0; i<failed;i++) {
1507 dev = &sh->dev[failed_num[i]];
1508 if (test_bit(R5_ReadError, &dev->flags)
1509 && !test_bit(R5_LOCKED, &dev->flags)
1510 && test_bit(R5_UPTODATE, &dev->flags)
1512 if (!test_bit(R5_ReWrite, &dev->flags)) {
1513 set_bit(R5_Wantwrite, &dev->flags);
1514 set_bit(R5_ReWrite, &dev->flags);
1515 set_bit(R5_LOCKED, &dev->flags);
1517 /* let's read it back */
1518 set_bit(R5_Wantread, &dev->flags);
1519 set_bit(R5_LOCKED, &dev->flags);
1523 spin_unlock(&sh->lock);
1525 while ((bi=return_bi)) {
1526 int bytes = bi->bi_size;
1528 return_bi = bi->bi_next;
1531 bi->bi_end_io(bi, bytes, 0);
1533 for (i=disks; i-- ;) {
1537 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1539 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1544 bi = &sh->dev[i].req;
1548 bi->bi_end_io = raid6_end_write_request;
1550 bi->bi_end_io = raid6_end_read_request;
1553 rdev = rcu_dereference(conf->disks[i].rdev);
1554 if (rdev && test_bit(Faulty, &rdev->flags))
1557 atomic_inc(&rdev->nr_pending);
1562 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1564 bi->bi_bdev = rdev->bdev;
1565 PRINTK("for %llu schedule op %ld on disc %d\n",
1566 (unsigned long long)sh->sector, bi->bi_rw, i);
1567 atomic_inc(&sh->count);
1568 bi->bi_sector = sh->sector + rdev->data_offset;
1569 bi->bi_flags = 1 << BIO_UPTODATE;
1571 bi->bi_max_vecs = 1;
1573 bi->bi_io_vec = &sh->dev[i].vec;
1574 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1575 bi->bi_io_vec[0].bv_offset = 0;
1576 bi->bi_size = STRIPE_SIZE;
1579 test_bit(R5_ReWrite, &sh->dev[i].flags))
1580 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1581 generic_make_request(bi);
1584 set_bit(STRIPE_DEGRADED, &sh->state);
1585 PRINTK("skip op %ld on disc %d for sector %llu\n",
1586 bi->bi_rw, i, (unsigned long long)sh->sector);
1587 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1588 set_bit(STRIPE_HANDLE, &sh->state);
1593 static void raid6_activate_delayed(raid6_conf_t *conf)
1595 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
1596 while (!list_empty(&conf->delayed_list)) {
1597 struct list_head *l = conf->delayed_list.next;
1598 struct stripe_head *sh;
1599 sh = list_entry(l, struct stripe_head, lru);
1601 clear_bit(STRIPE_DELAYED, &sh->state);
1602 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1603 atomic_inc(&conf->preread_active_stripes);
1604 list_add_tail(&sh->lru, &conf->handle_list);
1609 static void activate_bit_delay(raid6_conf_t *conf)
1611 /* device_lock is held */
1612 struct list_head head;
1613 list_add(&head, &conf->bitmap_list);
1614 list_del_init(&conf->bitmap_list);
1615 while (!list_empty(&head)) {
1616 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
1617 list_del_init(&sh->lru);
1618 atomic_inc(&sh->count);
1619 __release_stripe(conf, sh);
1623 static void unplug_slaves(mddev_t *mddev)
1625 raid6_conf_t *conf = mddev_to_conf(mddev);
1629 for (i=0; i<mddev->raid_disks; i++) {
1630 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1631 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
1632 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
1634 atomic_inc(&rdev->nr_pending);
1637 if (r_queue->unplug_fn)
1638 r_queue->unplug_fn(r_queue);
1640 rdev_dec_pending(rdev, mddev);
1647 static void raid6_unplug_device(request_queue_t *q)
1649 mddev_t *mddev = q->queuedata;
1650 raid6_conf_t *conf = mddev_to_conf(mddev);
1651 unsigned long flags;
1653 spin_lock_irqsave(&conf->device_lock, flags);
1655 if (blk_remove_plug(q)) {
1657 raid6_activate_delayed(conf);
1659 md_wakeup_thread(mddev->thread);
1661 spin_unlock_irqrestore(&conf->device_lock, flags);
1663 unplug_slaves(mddev);
1666 static int raid6_issue_flush(request_queue_t *q, struct gendisk *disk,
1667 sector_t *error_sector)
1669 mddev_t *mddev = q->queuedata;
1670 raid6_conf_t *conf = mddev_to_conf(mddev);
1674 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
1675 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1676 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1677 struct block_device *bdev = rdev->bdev;
1678 request_queue_t *r_queue = bdev_get_queue(bdev);
1680 if (!r_queue->issue_flush_fn)
1683 atomic_inc(&rdev->nr_pending);
1685 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
1687 rdev_dec_pending(rdev, mddev);
1696 static inline void raid6_plug_device(raid6_conf_t *conf)
1698 spin_lock_irq(&conf->device_lock);
1699 blk_plug_device(conf->mddev->queue);
1700 spin_unlock_irq(&conf->device_lock);
1703 static int make_request (request_queue_t *q, struct bio * bi)
1705 mddev_t *mddev = q->queuedata;
1706 raid6_conf_t *conf = mddev_to_conf(mddev);
1707 const unsigned int raid_disks = conf->raid_disks;
1708 const unsigned int data_disks = raid_disks - 2;
1709 unsigned int dd_idx, pd_idx;
1710 sector_t new_sector;
1711 sector_t logical_sector, last_sector;
1712 struct stripe_head *sh;
1713 const int rw = bio_data_dir(bi);
1715 if (unlikely(bio_barrier(bi))) {
1716 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
1720 md_write_start(mddev, bi);
1722 disk_stat_inc(mddev->gendisk, ios[rw]);
1723 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1725 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
1726 last_sector = bi->bi_sector + (bi->bi_size>>9);
1729 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
1731 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
1734 new_sector = raid6_compute_sector(logical_sector,
1735 raid_disks, data_disks, &dd_idx, &pd_idx, conf);
1737 PRINTK("raid6: make_request, sector %llu logical %llu\n",
1738 (unsigned long long)new_sector,
1739 (unsigned long long)logical_sector);
1742 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1743 sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK));
1745 if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
1746 /* Add failed due to overlap. Flush everything
1749 raid6_unplug_device(mddev->queue);
1754 finish_wait(&conf->wait_for_overlap, &w);
1755 raid6_plug_device(conf);
1756 handle_stripe(sh, NULL);
1759 /* cannot get stripe for read-ahead, just give-up */
1760 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1761 finish_wait(&conf->wait_for_overlap, &w);
1766 spin_lock_irq(&conf->device_lock);
1767 if (--bi->bi_phys_segments == 0) {
1768 int bytes = bi->bi_size;
1771 md_write_end(mddev);
1773 bi->bi_end_io(bi, bytes, 0);
1775 spin_unlock_irq(&conf->device_lock);
1779 /* FIXME go_faster isn't used */
1780 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1782 raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
1783 struct stripe_head *sh;
1784 int sectors_per_chunk = conf->chunk_size >> 9;
1786 unsigned long stripe;
1789 sector_t first_sector;
1790 int raid_disks = conf->raid_disks;
1791 int data_disks = raid_disks - 2;
1792 sector_t max_sector = mddev->size << 1;
1794 int still_degraded = 0;
1797 if (sector_nr >= max_sector) {
1798 /* just being told to finish up .. nothing much to do */
1799 unplug_slaves(mddev);
1801 if (mddev->curr_resync < max_sector) /* aborted */
1802 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1804 else /* completed sync */
1806 bitmap_close_sync(mddev->bitmap);
1810 /* if there are 2 or more failed drives and we are trying
1811 * to resync, then assert that we are finished, because there is
1812 * nothing we can do.
1814 if (mddev->degraded >= 2 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1815 sector_t rv = (mddev->size << 1) - sector_nr;
1819 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1820 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1821 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
1822 /* we can skip this block, and probably more */
1823 sync_blocks /= STRIPE_SECTORS;
1825 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
1829 chunk_offset = sector_div(x, sectors_per_chunk);
1831 BUG_ON(x != stripe);
1833 first_sector = raid6_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk
1834 + chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf);
1835 sh = get_active_stripe(conf, sector_nr, pd_idx, 1);
1837 sh = get_active_stripe(conf, sector_nr, pd_idx, 0);
1838 /* make sure we don't swamp the stripe cache if someone else
1839 * is trying to get access
1841 schedule_timeout_uninterruptible(1);
1843 /* Need to check if array will still be degraded after recovery/resync
1844 * We don't need to check the 'failed' flag as when that gets set,
1847 for (i=0; i<mddev->raid_disks; i++)
1848 if (conf->disks[i].rdev == NULL)
1851 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
1853 spin_lock(&sh->lock);
1854 set_bit(STRIPE_SYNCING, &sh->state);
1855 clear_bit(STRIPE_INSYNC, &sh->state);
1856 spin_unlock(&sh->lock);
1858 handle_stripe(sh, NULL);
1861 return STRIPE_SECTORS;
1865 * This is our raid6 kernel thread.
1867 * We scan the hash table for stripes which can be handled now.
1868 * During the scan, completed stripes are saved for us by the interrupt
1869 * handler, so that they will not have to wait for our next wakeup.
1871 static void raid6d (mddev_t *mddev)
1873 struct stripe_head *sh;
1874 raid6_conf_t *conf = mddev_to_conf(mddev);
1877 PRINTK("+++ raid6d active\n");
1879 md_check_recovery(mddev);
1882 spin_lock_irq(&conf->device_lock);
1884 struct list_head *first;
1886 if (conf->seq_flush - conf->seq_write > 0) {
1887 int seq = conf->seq_flush;
1888 spin_unlock_irq(&conf->device_lock);
1889 bitmap_unplug(mddev->bitmap);
1890 spin_lock_irq(&conf->device_lock);
1891 conf->seq_write = seq;
1892 activate_bit_delay(conf);
1895 if (list_empty(&conf->handle_list) &&
1896 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
1897 !blk_queue_plugged(mddev->queue) &&
1898 !list_empty(&conf->delayed_list))
1899 raid6_activate_delayed(conf);
1901 if (list_empty(&conf->handle_list))
1904 first = conf->handle_list.next;
1905 sh = list_entry(first, struct stripe_head, lru);
1907 list_del_init(first);
1908 atomic_inc(&sh->count);
1909 if (atomic_read(&sh->count)!= 1)
1911 spin_unlock_irq(&conf->device_lock);
1914 handle_stripe(sh, conf->spare_page);
1917 spin_lock_irq(&conf->device_lock);
1919 PRINTK("%d stripes handled\n", handled);
1921 spin_unlock_irq(&conf->device_lock);
1923 unplug_slaves(mddev);
1925 PRINTK("--- raid6d inactive\n");
1929 raid6_show_stripe_cache_size(mddev_t *mddev, char *page)
1931 raid6_conf_t *conf = mddev_to_conf(mddev);
1933 return sprintf(page, "%d\n", conf->max_nr_stripes);
1939 raid6_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
1941 raid6_conf_t *conf = mddev_to_conf(mddev);
1944 if (len >= PAGE_SIZE)
1949 new = simple_strtoul(page, &end, 10);
1950 if (!*page || (*end && *end != '\n') )
1952 if (new <= 16 || new > 32768)
1954 while (new < conf->max_nr_stripes) {
1955 if (drop_one_stripe(conf))
1956 conf->max_nr_stripes--;
1960 while (new > conf->max_nr_stripes) {
1961 if (grow_one_stripe(conf))
1962 conf->max_nr_stripes++;
1968 static struct md_sysfs_entry
1969 raid6_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
1970 raid6_show_stripe_cache_size,
1971 raid6_store_stripe_cache_size);
1974 stripe_cache_active_show(mddev_t *mddev, char *page)
1976 raid6_conf_t *conf = mddev_to_conf(mddev);
1978 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
1983 static struct md_sysfs_entry
1984 raid6_stripecache_active = __ATTR_RO(stripe_cache_active);
1986 static struct attribute *raid6_attrs[] = {
1987 &raid6_stripecache_size.attr,
1988 &raid6_stripecache_active.attr,
1991 static struct attribute_group raid6_attrs_group = {
1993 .attrs = raid6_attrs,
1996 static int run(mddev_t *mddev)
1999 int raid_disk, memory;
2001 struct disk_info *disk;
2002 struct list_head *tmp;
2004 if (mddev->level != 6) {
2005 PRINTK("raid6: %s: raid level not set to 6 (%d)\n", mdname(mddev), mddev->level);
2009 mddev->private = kzalloc(sizeof (raid6_conf_t)
2010 + mddev->raid_disks * sizeof(struct disk_info),
2012 if ((conf = mddev->private) == NULL)
2014 conf->mddev = mddev;
2016 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
2019 conf->spare_page = alloc_page(GFP_KERNEL);
2020 if (!conf->spare_page)
2023 spin_lock_init(&conf->device_lock);
2024 init_waitqueue_head(&conf->wait_for_stripe);
2025 init_waitqueue_head(&conf->wait_for_overlap);
2026 INIT_LIST_HEAD(&conf->handle_list);
2027 INIT_LIST_HEAD(&conf->delayed_list);
2028 INIT_LIST_HEAD(&conf->bitmap_list);
2029 INIT_LIST_HEAD(&conf->inactive_list);
2030 atomic_set(&conf->active_stripes, 0);
2031 atomic_set(&conf->preread_active_stripes, 0);
2033 PRINTK("raid6: run(%s) called.\n", mdname(mddev));
2035 ITERATE_RDEV(mddev,rdev,tmp) {
2036 raid_disk = rdev->raid_disk;
2037 if (raid_disk >= mddev->raid_disks
2040 disk = conf->disks + raid_disk;
2044 if (test_bit(In_sync, &rdev->flags)) {
2045 char b[BDEVNAME_SIZE];
2046 printk(KERN_INFO "raid6: device %s operational as raid"
2047 " disk %d\n", bdevname(rdev->bdev,b),
2049 conf->working_disks++;
2053 conf->raid_disks = mddev->raid_disks;
2056 * 0 for a fully functional array, 1 or 2 for a degraded array.
2058 mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
2059 conf->mddev = mddev;
2060 conf->chunk_size = mddev->chunk_size;
2061 conf->level = mddev->level;
2062 conf->algorithm = mddev->layout;
2063 conf->max_nr_stripes = NR_STRIPES;
2065 /* device size must be a multiple of chunk size */
2066 mddev->size &= ~(mddev->chunk_size/1024 -1);
2067 mddev->resync_max_sectors = mddev->size << 1;
2069 if (conf->raid_disks < 4) {
2070 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
2071 mdname(mddev), conf->raid_disks);
2074 if (!conf->chunk_size || conf->chunk_size % 4) {
2075 printk(KERN_ERR "raid6: invalid chunk size %d for %s\n",
2076 conf->chunk_size, mdname(mddev));
2079 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
2081 "raid6: unsupported parity algorithm %d for %s\n",
2082 conf->algorithm, mdname(mddev));
2085 if (mddev->degraded > 2) {
2086 printk(KERN_ERR "raid6: not enough operational devices for %s"
2087 " (%d/%d failed)\n",
2088 mdname(mddev), conf->failed_disks, conf->raid_disks);
2092 if (mddev->degraded > 0 &&
2093 mddev->recovery_cp != MaxSector) {
2094 if (mddev->ok_start_degraded)
2095 printk(KERN_WARNING "raid6: starting dirty degraded array:%s"
2096 "- data corruption possible.\n",
2099 printk(KERN_ERR "raid6: cannot start dirty degraded array"
2100 " for %s\n", mdname(mddev));
2106 mddev->thread = md_register_thread(raid6d, mddev, "%s_raid6");
2107 if (!mddev->thread) {
2109 "raid6: couldn't allocate thread for %s\n",
2115 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
2116 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
2117 if (grow_stripes(conf, conf->max_nr_stripes)) {
2119 "raid6: couldn't allocate %dkB for buffers\n", memory);
2120 shrink_stripes(conf);
2121 md_unregister_thread(mddev->thread);
2124 printk(KERN_INFO "raid6: allocated %dkB for %s\n",
2125 memory, mdname(mddev));
2127 if (mddev->degraded == 0)
2128 printk(KERN_INFO "raid6: raid level %d set %s active with %d out of %d"
2129 " devices, algorithm %d\n", conf->level, mdname(mddev),
2130 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
2133 printk(KERN_ALERT "raid6: raid level %d set %s active with %d"
2134 " out of %d devices, algorithm %d\n", conf->level,
2135 mdname(mddev), mddev->raid_disks - mddev->degraded,
2136 mddev->raid_disks, conf->algorithm);
2138 print_raid6_conf(conf);
2140 /* read-ahead size must cover two whole stripes, which is
2141 * 2 * (n-2) * chunksize where 'n' is the number of raid devices
2144 int stripe = (mddev->raid_disks-2) * mddev->chunk_size
2146 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
2147 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
2150 /* Ok, everything is just fine now */
2151 mddev->array_size = mddev->size * (mddev->raid_disks - 2);
2153 mddev->queue->unplug_fn = raid6_unplug_device;
2154 mddev->queue->issue_flush_fn = raid6_issue_flush;
2158 print_raid6_conf(conf);
2159 safe_put_page(conf->spare_page);
2160 kfree(conf->stripe_hashtbl);
2163 mddev->private = NULL;
2164 printk(KERN_ALERT "raid6: failed to run raid set %s\n", mdname(mddev));
2170 static int stop (mddev_t *mddev)
2172 raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
2174 md_unregister_thread(mddev->thread);
2175 mddev->thread = NULL;
2176 shrink_stripes(conf);
2177 kfree(conf->stripe_hashtbl);
2178 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2179 sysfs_remove_group(&mddev->kobj, &raid6_attrs_group);
2181 mddev->private = NULL;
2186 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
2190 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
2191 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
2192 seq_printf(seq, "sh %llu, count %d.\n",
2193 (unsigned long long)sh->sector, atomic_read(&sh->count));
2194 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
2195 for (i = 0; i < sh->raid_conf->raid_disks; i++) {
2196 seq_printf(seq, "(cache%d: %p %ld) ",
2197 i, sh->dev[i].page, sh->dev[i].flags);
2199 seq_printf(seq, "\n");
2202 static void printall (struct seq_file *seq, raid6_conf_t *conf)
2204 struct stripe_head *sh;
2205 struct hlist_node *hn;
2208 spin_lock_irq(&conf->device_lock);
2209 for (i = 0; i < NR_HASH; i++) {
2210 sh = conf->stripe_hashtbl[i];
2211 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
2212 if (sh->raid_conf != conf)
2217 spin_unlock_irq(&conf->device_lock);
2221 static void status (struct seq_file *seq, mddev_t *mddev)
2223 raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
2226 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
2227 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
2228 for (i = 0; i < conf->raid_disks; i++)
2229 seq_printf (seq, "%s",
2230 conf->disks[i].rdev &&
2231 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
2232 seq_printf (seq, "]");
2234 seq_printf (seq, "\n");
2235 printall(seq, conf);
2239 static void print_raid6_conf (raid6_conf_t *conf)
2242 struct disk_info *tmp;
2244 printk("RAID6 conf printout:\n");
2246 printk("(conf==NULL)\n");
2249 printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
2250 conf->working_disks, conf->failed_disks);
2252 for (i = 0; i < conf->raid_disks; i++) {
2253 char b[BDEVNAME_SIZE];
2254 tmp = conf->disks + i;
2256 printk(" disk %d, o:%d, dev:%s\n",
2257 i, !test_bit(Faulty, &tmp->rdev->flags),
2258 bdevname(tmp->rdev->bdev,b));
2262 static int raid6_spare_active(mddev_t *mddev)
2265 raid6_conf_t *conf = mddev->private;
2266 struct disk_info *tmp;
2268 for (i = 0; i < conf->raid_disks; i++) {
2269 tmp = conf->disks + i;
2271 && !test_bit(Faulty, &tmp->rdev->flags)
2272 && !test_bit(In_sync, &tmp->rdev->flags)) {
2274 conf->failed_disks--;
2275 conf->working_disks++;
2276 set_bit(In_sync, &tmp->rdev->flags);
2279 print_raid6_conf(conf);
2283 static int raid6_remove_disk(mddev_t *mddev, int number)
2285 raid6_conf_t *conf = mddev->private;
2288 struct disk_info *p = conf->disks + number;
2290 print_raid6_conf(conf);
2293 if (test_bit(In_sync, &rdev->flags) ||
2294 atomic_read(&rdev->nr_pending)) {
2300 if (atomic_read(&rdev->nr_pending)) {
2301 /* lost the race, try later */
2309 print_raid6_conf(conf);
2313 static int raid6_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
2315 raid6_conf_t *conf = mddev->private;
2318 struct disk_info *p;
2320 if (mddev->degraded > 2)
2321 /* no point adding a device */
2324 * find the disk ... but prefer rdev->saved_raid_disk
2327 if (rdev->saved_raid_disk >= 0 &&
2328 conf->disks[rdev->saved_raid_disk].rdev == NULL)
2329 disk = rdev->saved_raid_disk;
2332 for ( ; disk < mddev->raid_disks; disk++)
2333 if ((p=conf->disks + disk)->rdev == NULL) {
2334 clear_bit(In_sync, &rdev->flags);
2335 rdev->raid_disk = disk;
2337 if (rdev->saved_raid_disk != disk)
2339 rcu_assign_pointer(p->rdev, rdev);
2342 print_raid6_conf(conf);
2346 static int raid6_resize(mddev_t *mddev, sector_t sectors)
2348 /* no resync is happening, and there is enough space
2349 * on all devices, so we can resize.
2350 * We need to make sure resync covers any new space.
2351 * If the array is shrinking we should possibly wait until
2352 * any io in the removed space completes, but it hardly seems
2355 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
2356 mddev->array_size = (sectors * (mddev->raid_disks-2))>>1;
2357 set_capacity(mddev->gendisk, mddev->array_size << 1);
2359 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
2360 mddev->recovery_cp = mddev->size << 1;
2361 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2363 mddev->size = sectors /2;
2364 mddev->resync_max_sectors = sectors;
2368 static void raid6_quiesce(mddev_t *mddev, int state)
2370 raid6_conf_t *conf = mddev_to_conf(mddev);
2373 case 1: /* stop all writes */
2374 spin_lock_irq(&conf->device_lock);
2376 wait_event_lock_irq(conf->wait_for_stripe,
2377 atomic_read(&conf->active_stripes) == 0,
2378 conf->device_lock, /* nothing */);
2379 spin_unlock_irq(&conf->device_lock);
2382 case 0: /* re-enable writes */
2383 spin_lock_irq(&conf->device_lock);
2385 wake_up(&conf->wait_for_stripe);
2386 spin_unlock_irq(&conf->device_lock);
2391 static struct mdk_personality raid6_personality =
2395 .owner = THIS_MODULE,
2396 .make_request = make_request,
2400 .error_handler = error,
2401 .hot_add_disk = raid6_add_disk,
2402 .hot_remove_disk= raid6_remove_disk,
2403 .spare_active = raid6_spare_active,
2404 .sync_request = sync_request,
2405 .resize = raid6_resize,
2406 .quiesce = raid6_quiesce,
2409 static int __init raid6_init(void)
2413 e = raid6_select_algo();
2417 return register_md_personality(&raid6_personality);
2420 static void raid6_exit (void)
2422 unregister_md_personality(&raid6_personality);
2425 module_init(raid6_init);
2426 module_exit(raid6_exit);
2427 MODULE_LICENSE("GPL");
2428 MODULE_ALIAS("md-personality-8"); /* RAID6 */
2429 MODULE_ALIAS("md-raid6");
2430 MODULE_ALIAS("md-level-6");