Merge branch 'fix/misc' into for-linus
[linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS                                               \
48         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS                                               \
52         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
54                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
55                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59  * - enable syscall per default because its emulated by KVM
60  * - enable LME and LMA per default on 64 bit KVM
61  */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72                                     struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74                                               u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80         { "pf_fixed", VCPU_STAT(pf_fixed) },
81         { "pf_guest", VCPU_STAT(pf_guest) },
82         { "tlb_flush", VCPU_STAT(tlb_flush) },
83         { "invlpg", VCPU_STAT(invlpg) },
84         { "exits", VCPU_STAT(exits) },
85         { "io_exits", VCPU_STAT(io_exits) },
86         { "mmio_exits", VCPU_STAT(mmio_exits) },
87         { "signal_exits", VCPU_STAT(signal_exits) },
88         { "irq_window", VCPU_STAT(irq_window_exits) },
89         { "nmi_window", VCPU_STAT(nmi_window_exits) },
90         { "halt_exits", VCPU_STAT(halt_exits) },
91         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92         { "hypercalls", VCPU_STAT(hypercalls) },
93         { "request_irq", VCPU_STAT(request_irq_exits) },
94         { "request_nmi", VCPU_STAT(request_nmi_exits) },
95         { "irq_exits", VCPU_STAT(irq_exits) },
96         { "host_state_reload", VCPU_STAT(host_state_reload) },
97         { "efer_reload", VCPU_STAT(efer_reload) },
98         { "fpu_reload", VCPU_STAT(fpu_reload) },
99         { "insn_emulation", VCPU_STAT(insn_emulation) },
100         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
101         { "irq_injections", VCPU_STAT(irq_injections) },
102         { "nmi_injections", VCPU_STAT(nmi_injections) },
103         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
104         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
105         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
106         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
107         { "mmu_flooded", VM_STAT(mmu_flooded) },
108         { "mmu_recycled", VM_STAT(mmu_recycled) },
109         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
110         { "mmu_unsync", VM_STAT(mmu_unsync) },
111         { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
112         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
113         { "largepages", VM_STAT(lpages) },
114         { NULL }
115 };
116
117 unsigned long segment_base(u16 selector)
118 {
119         struct descriptor_table gdt;
120         struct desc_struct *d;
121         unsigned long table_base;
122         unsigned long v;
123
124         if (selector == 0)
125                 return 0;
126
127         asm("sgdt %0" : "=m"(gdt));
128         table_base = gdt.base;
129
130         if (selector & 4) {           /* from ldt */
131                 u16 ldt_selector;
132
133                 asm("sldt %0" : "=g"(ldt_selector));
134                 table_base = segment_base(ldt_selector);
135         }
136         d = (struct desc_struct *)(table_base + (selector & ~7));
137         v = d->base0 | ((unsigned long)d->base1 << 16) |
138                 ((unsigned long)d->base2 << 24);
139 #ifdef CONFIG_X86_64
140         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
141                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
142 #endif
143         return v;
144 }
145 EXPORT_SYMBOL_GPL(segment_base);
146
147 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
148 {
149         if (irqchip_in_kernel(vcpu->kvm))
150                 return vcpu->arch.apic_base;
151         else
152                 return vcpu->arch.apic_base;
153 }
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
155
156 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
157 {
158         /* TODO: reserve bits check */
159         if (irqchip_in_kernel(vcpu->kvm))
160                 kvm_lapic_set_base(vcpu, data);
161         else
162                 vcpu->arch.apic_base = data;
163 }
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
165
166 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
167 {
168         WARN_ON(vcpu->arch.exception.pending);
169         vcpu->arch.exception.pending = true;
170         vcpu->arch.exception.has_error_code = false;
171         vcpu->arch.exception.nr = nr;
172 }
173 EXPORT_SYMBOL_GPL(kvm_queue_exception);
174
175 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
176                            u32 error_code)
177 {
178         ++vcpu->stat.pf_guest;
179
180         if (vcpu->arch.exception.pending) {
181                 if (vcpu->arch.exception.nr == PF_VECTOR) {
182                         printk(KERN_DEBUG "kvm: inject_page_fault:"
183                                         " double fault 0x%lx\n", addr);
184                         vcpu->arch.exception.nr = DF_VECTOR;
185                         vcpu->arch.exception.error_code = 0;
186                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
187                         /* triple fault -> shutdown */
188                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
189                 }
190                 return;
191         }
192         vcpu->arch.cr2 = addr;
193         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
194 }
195
196 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
197 {
198         vcpu->arch.nmi_pending = 1;
199 }
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
201
202 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
203 {
204         WARN_ON(vcpu->arch.exception.pending);
205         vcpu->arch.exception.pending = true;
206         vcpu->arch.exception.has_error_code = true;
207         vcpu->arch.exception.nr = nr;
208         vcpu->arch.exception.error_code = error_code;
209 }
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
211
212 static void __queue_exception(struct kvm_vcpu *vcpu)
213 {
214         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
215                                      vcpu->arch.exception.has_error_code,
216                                      vcpu->arch.exception.error_code);
217 }
218
219 /*
220  * Load the pae pdptrs.  Return true is they are all valid.
221  */
222 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
223 {
224         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
225         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
226         int i;
227         int ret;
228         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229
230         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
231                                   offset * sizeof(u64), sizeof(pdpte));
232         if (ret < 0) {
233                 ret = 0;
234                 goto out;
235         }
236         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
237                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
238                         ret = 0;
239                         goto out;
240                 }
241         }
242         ret = 1;
243
244         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
245 out:
246
247         return ret;
248 }
249 EXPORT_SYMBOL_GPL(load_pdptrs);
250
251 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
252 {
253         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
254         bool changed = true;
255         int r;
256
257         if (is_long_mode(vcpu) || !is_pae(vcpu))
258                 return false;
259
260         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
261         if (r < 0)
262                 goto out;
263         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
264 out:
265
266         return changed;
267 }
268
269 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
270 {
271         if (cr0 & CR0_RESERVED_BITS) {
272                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273                        cr0, vcpu->arch.cr0);
274                 kvm_inject_gp(vcpu, 0);
275                 return;
276         }
277
278         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
279                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
280                 kvm_inject_gp(vcpu, 0);
281                 return;
282         }
283
284         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
285                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
286                        "and a clear PE flag\n");
287                 kvm_inject_gp(vcpu, 0);
288                 return;
289         }
290
291         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
292 #ifdef CONFIG_X86_64
293                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
294                         int cs_db, cs_l;
295
296                         if (!is_pae(vcpu)) {
297                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
298                                        "in long mode while PAE is disabled\n");
299                                 kvm_inject_gp(vcpu, 0);
300                                 return;
301                         }
302                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
303                         if (cs_l) {
304                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
305                                        "in long mode while CS.L == 1\n");
306                                 kvm_inject_gp(vcpu, 0);
307                                 return;
308
309                         }
310                 } else
311 #endif
312                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
313                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
314                                "reserved bits\n");
315                         kvm_inject_gp(vcpu, 0);
316                         return;
317                 }
318
319         }
320
321         kvm_x86_ops->set_cr0(vcpu, cr0);
322         vcpu->arch.cr0 = cr0;
323
324         kvm_mmu_sync_global(vcpu);
325         kvm_mmu_reset_context(vcpu);
326         return;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_cr0);
329
330 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
331 {
332         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
333         KVMTRACE_1D(LMSW, vcpu,
334                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
335                     handler);
336 }
337 EXPORT_SYMBOL_GPL(kvm_lmsw);
338
339 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
340 {
341         if (cr4 & CR4_RESERVED_BITS) {
342                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
343                 kvm_inject_gp(vcpu, 0);
344                 return;
345         }
346
347         if (is_long_mode(vcpu)) {
348                 if (!(cr4 & X86_CR4_PAE)) {
349                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
350                                "in long mode\n");
351                         kvm_inject_gp(vcpu, 0);
352                         return;
353                 }
354         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
355                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
356                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
357                 kvm_inject_gp(vcpu, 0);
358                 return;
359         }
360
361         if (cr4 & X86_CR4_VMXE) {
362                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
363                 kvm_inject_gp(vcpu, 0);
364                 return;
365         }
366         kvm_x86_ops->set_cr4(vcpu, cr4);
367         vcpu->arch.cr4 = cr4;
368         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
369         kvm_mmu_sync_global(vcpu);
370         kvm_mmu_reset_context(vcpu);
371 }
372 EXPORT_SYMBOL_GPL(kvm_set_cr4);
373
374 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
375 {
376         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
377                 kvm_mmu_sync_roots(vcpu);
378                 kvm_mmu_flush_tlb(vcpu);
379                 return;
380         }
381
382         if (is_long_mode(vcpu)) {
383                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
384                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
385                         kvm_inject_gp(vcpu, 0);
386                         return;
387                 }
388         } else {
389                 if (is_pae(vcpu)) {
390                         if (cr3 & CR3_PAE_RESERVED_BITS) {
391                                 printk(KERN_DEBUG
392                                        "set_cr3: #GP, reserved bits\n");
393                                 kvm_inject_gp(vcpu, 0);
394                                 return;
395                         }
396                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
397                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
398                                        "reserved bits\n");
399                                 kvm_inject_gp(vcpu, 0);
400                                 return;
401                         }
402                 }
403                 /*
404                  * We don't check reserved bits in nonpae mode, because
405                  * this isn't enforced, and VMware depends on this.
406                  */
407         }
408
409         /*
410          * Does the new cr3 value map to physical memory? (Note, we
411          * catch an invalid cr3 even in real-mode, because it would
412          * cause trouble later on when we turn on paging anyway.)
413          *
414          * A real CPU would silently accept an invalid cr3 and would
415          * attempt to use it - with largely undefined (and often hard
416          * to debug) behavior on the guest side.
417          */
418         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
419                 kvm_inject_gp(vcpu, 0);
420         else {
421                 vcpu->arch.cr3 = cr3;
422                 vcpu->arch.mmu.new_cr3(vcpu);
423         }
424 }
425 EXPORT_SYMBOL_GPL(kvm_set_cr3);
426
427 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
428 {
429         if (cr8 & CR8_RESERVED_BITS) {
430                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
431                 kvm_inject_gp(vcpu, 0);
432                 return;
433         }
434         if (irqchip_in_kernel(vcpu->kvm))
435                 kvm_lapic_set_tpr(vcpu, cr8);
436         else
437                 vcpu->arch.cr8 = cr8;
438 }
439 EXPORT_SYMBOL_GPL(kvm_set_cr8);
440
441 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
442 {
443         if (irqchip_in_kernel(vcpu->kvm))
444                 return kvm_lapic_get_cr8(vcpu);
445         else
446                 return vcpu->arch.cr8;
447 }
448 EXPORT_SYMBOL_GPL(kvm_get_cr8);
449
450 static inline u32 bit(int bitno)
451 {
452         return 1 << (bitno & 31);
453 }
454
455 /*
456  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
457  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
458  *
459  * This list is modified at module load time to reflect the
460  * capabilities of the host cpu.
461  */
462 static u32 msrs_to_save[] = {
463         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
464         MSR_K6_STAR,
465 #ifdef CONFIG_X86_64
466         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
467 #endif
468         MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
469         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
470 };
471
472 static unsigned num_msrs_to_save;
473
474 static u32 emulated_msrs[] = {
475         MSR_IA32_MISC_ENABLE,
476 };
477
478 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
479 {
480         if (efer & efer_reserved_bits) {
481                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
482                        efer);
483                 kvm_inject_gp(vcpu, 0);
484                 return;
485         }
486
487         if (is_paging(vcpu)
488             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
489                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
490                 kvm_inject_gp(vcpu, 0);
491                 return;
492         }
493
494         if (efer & EFER_FFXSR) {
495                 struct kvm_cpuid_entry2 *feat;
496
497                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
498                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
499                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
500                         kvm_inject_gp(vcpu, 0);
501                         return;
502                 }
503         }
504
505         if (efer & EFER_SVME) {
506                 struct kvm_cpuid_entry2 *feat;
507
508                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
509                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
510                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
511                         kvm_inject_gp(vcpu, 0);
512                         return;
513                 }
514         }
515
516         kvm_x86_ops->set_efer(vcpu, efer);
517
518         efer &= ~EFER_LMA;
519         efer |= vcpu->arch.shadow_efer & EFER_LMA;
520
521         vcpu->arch.shadow_efer = efer;
522 }
523
524 void kvm_enable_efer_bits(u64 mask)
525 {
526        efer_reserved_bits &= ~mask;
527 }
528 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
529
530
531 /*
532  * Writes msr value into into the appropriate "register".
533  * Returns 0 on success, non-0 otherwise.
534  * Assumes vcpu_load() was already called.
535  */
536 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
537 {
538         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
539 }
540
541 /*
542  * Adapt set_msr() to msr_io()'s calling convention
543  */
544 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
545 {
546         return kvm_set_msr(vcpu, index, *data);
547 }
548
549 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
550 {
551         static int version;
552         struct pvclock_wall_clock wc;
553         struct timespec now, sys, boot;
554
555         if (!wall_clock)
556                 return;
557
558         version++;
559
560         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
561
562         /*
563          * The guest calculates current wall clock time by adding
564          * system time (updated by kvm_write_guest_time below) to the
565          * wall clock specified here.  guest system time equals host
566          * system time for us, thus we must fill in host boot time here.
567          */
568         now = current_kernel_time();
569         ktime_get_ts(&sys);
570         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
571
572         wc.sec = boot.tv_sec;
573         wc.nsec = boot.tv_nsec;
574         wc.version = version;
575
576         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
577
578         version++;
579         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
580 }
581
582 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
583 {
584         uint32_t quotient, remainder;
585
586         /* Don't try to replace with do_div(), this one calculates
587          * "(dividend << 32) / divisor" */
588         __asm__ ( "divl %4"
589                   : "=a" (quotient), "=d" (remainder)
590                   : "0" (0), "1" (dividend), "r" (divisor) );
591         return quotient;
592 }
593
594 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
595 {
596         uint64_t nsecs = 1000000000LL;
597         int32_t  shift = 0;
598         uint64_t tps64;
599         uint32_t tps32;
600
601         tps64 = tsc_khz * 1000LL;
602         while (tps64 > nsecs*2) {
603                 tps64 >>= 1;
604                 shift--;
605         }
606
607         tps32 = (uint32_t)tps64;
608         while (tps32 <= (uint32_t)nsecs) {
609                 tps32 <<= 1;
610                 shift++;
611         }
612
613         hv_clock->tsc_shift = shift;
614         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
615
616         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
617                  __func__, tsc_khz, hv_clock->tsc_shift,
618                  hv_clock->tsc_to_system_mul);
619 }
620
621 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
622
623 static void kvm_write_guest_time(struct kvm_vcpu *v)
624 {
625         struct timespec ts;
626         unsigned long flags;
627         struct kvm_vcpu_arch *vcpu = &v->arch;
628         void *shared_kaddr;
629
630         if ((!vcpu->time_page))
631                 return;
632
633         if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
634                 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
635                 vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
636         }
637
638         /* Keep irq disabled to prevent changes to the clock */
639         local_irq_save(flags);
640         kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
641                           &vcpu->hv_clock.tsc_timestamp);
642         ktime_get_ts(&ts);
643         local_irq_restore(flags);
644
645         /* With all the info we got, fill in the values */
646
647         vcpu->hv_clock.system_time = ts.tv_nsec +
648                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
649         /*
650          * The interface expects us to write an even number signaling that the
651          * update is finished. Since the guest won't see the intermediate
652          * state, we just increase by 2 at the end.
653          */
654         vcpu->hv_clock.version += 2;
655
656         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
657
658         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
659                sizeof(vcpu->hv_clock));
660
661         kunmap_atomic(shared_kaddr, KM_USER0);
662
663         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
664 }
665
666 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
667 {
668         struct kvm_vcpu_arch *vcpu = &v->arch;
669
670         if (!vcpu->time_page)
671                 return 0;
672         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
673         return 1;
674 }
675
676 static bool msr_mtrr_valid(unsigned msr)
677 {
678         switch (msr) {
679         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
680         case MSR_MTRRfix64K_00000:
681         case MSR_MTRRfix16K_80000:
682         case MSR_MTRRfix16K_A0000:
683         case MSR_MTRRfix4K_C0000:
684         case MSR_MTRRfix4K_C8000:
685         case MSR_MTRRfix4K_D0000:
686         case MSR_MTRRfix4K_D8000:
687         case MSR_MTRRfix4K_E0000:
688         case MSR_MTRRfix4K_E8000:
689         case MSR_MTRRfix4K_F0000:
690         case MSR_MTRRfix4K_F8000:
691         case MSR_MTRRdefType:
692         case MSR_IA32_CR_PAT:
693                 return true;
694         case 0x2f8:
695                 return true;
696         }
697         return false;
698 }
699
700 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
701 {
702         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
703
704         if (!msr_mtrr_valid(msr))
705                 return 1;
706
707         if (msr == MSR_MTRRdefType) {
708                 vcpu->arch.mtrr_state.def_type = data;
709                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
710         } else if (msr == MSR_MTRRfix64K_00000)
711                 p[0] = data;
712         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
713                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
714         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
715                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
716         else if (msr == MSR_IA32_CR_PAT)
717                 vcpu->arch.pat = data;
718         else {  /* Variable MTRRs */
719                 int idx, is_mtrr_mask;
720                 u64 *pt;
721
722                 idx = (msr - 0x200) / 2;
723                 is_mtrr_mask = msr - 0x200 - 2 * idx;
724                 if (!is_mtrr_mask)
725                         pt =
726                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
727                 else
728                         pt =
729                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
730                 *pt = data;
731         }
732
733         kvm_mmu_reset_context(vcpu);
734         return 0;
735 }
736
737 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
738 {
739         switch (msr) {
740         case MSR_EFER:
741                 set_efer(vcpu, data);
742                 break;
743         case MSR_IA32_MC0_STATUS:
744                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
745                        __func__, data);
746                 break;
747         case MSR_IA32_MCG_STATUS:
748                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
749                         __func__, data);
750                 break;
751         case MSR_IA32_MCG_CTL:
752                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
753                         __func__, data);
754                 break;
755         case MSR_IA32_DEBUGCTLMSR:
756                 if (!data) {
757                         /* We support the non-activated case already */
758                         break;
759                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
760                         /* Values other than LBR and BTF are vendor-specific,
761                            thus reserved and should throw a #GP */
762                         return 1;
763                 }
764                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
765                         __func__, data);
766                 break;
767         case MSR_IA32_UCODE_REV:
768         case MSR_IA32_UCODE_WRITE:
769         case MSR_VM_HSAVE_PA:
770                 break;
771         case 0x200 ... 0x2ff:
772                 return set_msr_mtrr(vcpu, msr, data);
773         case MSR_IA32_APICBASE:
774                 kvm_set_apic_base(vcpu, data);
775                 break;
776         case MSR_IA32_MISC_ENABLE:
777                 vcpu->arch.ia32_misc_enable_msr = data;
778                 break;
779         case MSR_KVM_WALL_CLOCK:
780                 vcpu->kvm->arch.wall_clock = data;
781                 kvm_write_wall_clock(vcpu->kvm, data);
782                 break;
783         case MSR_KVM_SYSTEM_TIME: {
784                 if (vcpu->arch.time_page) {
785                         kvm_release_page_dirty(vcpu->arch.time_page);
786                         vcpu->arch.time_page = NULL;
787                 }
788
789                 vcpu->arch.time = data;
790
791                 /* we verify if the enable bit is set... */
792                 if (!(data & 1))
793                         break;
794
795                 /* ...but clean it before doing the actual write */
796                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
797
798                 vcpu->arch.time_page =
799                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
800
801                 if (is_error_page(vcpu->arch.time_page)) {
802                         kvm_release_page_clean(vcpu->arch.time_page);
803                         vcpu->arch.time_page = NULL;
804                 }
805
806                 kvm_request_guest_time_update(vcpu);
807                 break;
808         }
809         default:
810                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
811                 return 1;
812         }
813         return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
816
817
818 /*
819  * Reads an msr value (of 'msr_index') into 'pdata'.
820  * Returns 0 on success, non-0 otherwise.
821  * Assumes vcpu_load() was already called.
822  */
823 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
824 {
825         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
826 }
827
828 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
829 {
830         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
831
832         if (!msr_mtrr_valid(msr))
833                 return 1;
834
835         if (msr == MSR_MTRRdefType)
836                 *pdata = vcpu->arch.mtrr_state.def_type +
837                          (vcpu->arch.mtrr_state.enabled << 10);
838         else if (msr == MSR_MTRRfix64K_00000)
839                 *pdata = p[0];
840         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
841                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
842         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
843                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
844         else if (msr == MSR_IA32_CR_PAT)
845                 *pdata = vcpu->arch.pat;
846         else {  /* Variable MTRRs */
847                 int idx, is_mtrr_mask;
848                 u64 *pt;
849
850                 idx = (msr - 0x200) / 2;
851                 is_mtrr_mask = msr - 0x200 - 2 * idx;
852                 if (!is_mtrr_mask)
853                         pt =
854                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
855                 else
856                         pt =
857                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
858                 *pdata = *pt;
859         }
860
861         return 0;
862 }
863
864 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
865 {
866         u64 data;
867
868         switch (msr) {
869         case 0xc0010010: /* SYSCFG */
870         case 0xc0010015: /* HWCR */
871         case MSR_IA32_PLATFORM_ID:
872         case MSR_IA32_P5_MC_ADDR:
873         case MSR_IA32_P5_MC_TYPE:
874         case MSR_IA32_MC0_CTL:
875         case MSR_IA32_MCG_STATUS:
876         case MSR_IA32_MCG_CAP:
877         case MSR_IA32_MCG_CTL:
878         case MSR_IA32_MC0_MISC:
879         case MSR_IA32_MC0_MISC+4:
880         case MSR_IA32_MC0_MISC+8:
881         case MSR_IA32_MC0_MISC+12:
882         case MSR_IA32_MC0_MISC+16:
883         case MSR_IA32_MC0_MISC+20:
884         case MSR_IA32_UCODE_REV:
885         case MSR_IA32_EBL_CR_POWERON:
886         case MSR_IA32_DEBUGCTLMSR:
887         case MSR_IA32_LASTBRANCHFROMIP:
888         case MSR_IA32_LASTBRANCHTOIP:
889         case MSR_IA32_LASTINTFROMIP:
890         case MSR_IA32_LASTINTTOIP:
891         case MSR_VM_HSAVE_PA:
892                 data = 0;
893                 break;
894         case MSR_MTRRcap:
895                 data = 0x500 | KVM_NR_VAR_MTRR;
896                 break;
897         case 0x200 ... 0x2ff:
898                 return get_msr_mtrr(vcpu, msr, pdata);
899         case 0xcd: /* fsb frequency */
900                 data = 3;
901                 break;
902         case MSR_IA32_APICBASE:
903                 data = kvm_get_apic_base(vcpu);
904                 break;
905         case MSR_IA32_MISC_ENABLE:
906                 data = vcpu->arch.ia32_misc_enable_msr;
907                 break;
908         case MSR_IA32_PERF_STATUS:
909                 /* TSC increment by tick */
910                 data = 1000ULL;
911                 /* CPU multiplier */
912                 data |= (((uint64_t)4ULL) << 40);
913                 break;
914         case MSR_EFER:
915                 data = vcpu->arch.shadow_efer;
916                 break;
917         case MSR_KVM_WALL_CLOCK:
918                 data = vcpu->kvm->arch.wall_clock;
919                 break;
920         case MSR_KVM_SYSTEM_TIME:
921                 data = vcpu->arch.time;
922                 break;
923         default:
924                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
925                 return 1;
926         }
927         *pdata = data;
928         return 0;
929 }
930 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
931
932 /*
933  * Read or write a bunch of msrs. All parameters are kernel addresses.
934  *
935  * @return number of msrs set successfully.
936  */
937 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
938                     struct kvm_msr_entry *entries,
939                     int (*do_msr)(struct kvm_vcpu *vcpu,
940                                   unsigned index, u64 *data))
941 {
942         int i;
943
944         vcpu_load(vcpu);
945
946         down_read(&vcpu->kvm->slots_lock);
947         for (i = 0; i < msrs->nmsrs; ++i)
948                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
949                         break;
950         up_read(&vcpu->kvm->slots_lock);
951
952         vcpu_put(vcpu);
953
954         return i;
955 }
956
957 /*
958  * Read or write a bunch of msrs. Parameters are user addresses.
959  *
960  * @return number of msrs set successfully.
961  */
962 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
963                   int (*do_msr)(struct kvm_vcpu *vcpu,
964                                 unsigned index, u64 *data),
965                   int writeback)
966 {
967         struct kvm_msrs msrs;
968         struct kvm_msr_entry *entries;
969         int r, n;
970         unsigned size;
971
972         r = -EFAULT;
973         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
974                 goto out;
975
976         r = -E2BIG;
977         if (msrs.nmsrs >= MAX_IO_MSRS)
978                 goto out;
979
980         r = -ENOMEM;
981         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
982         entries = vmalloc(size);
983         if (!entries)
984                 goto out;
985
986         r = -EFAULT;
987         if (copy_from_user(entries, user_msrs->entries, size))
988                 goto out_free;
989
990         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
991         if (r < 0)
992                 goto out_free;
993
994         r = -EFAULT;
995         if (writeback && copy_to_user(user_msrs->entries, entries, size))
996                 goto out_free;
997
998         r = n;
999
1000 out_free:
1001         vfree(entries);
1002 out:
1003         return r;
1004 }
1005
1006 int kvm_dev_ioctl_check_extension(long ext)
1007 {
1008         int r;
1009
1010         switch (ext) {
1011         case KVM_CAP_IRQCHIP:
1012         case KVM_CAP_HLT:
1013         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1014         case KVM_CAP_SET_TSS_ADDR:
1015         case KVM_CAP_EXT_CPUID:
1016         case KVM_CAP_CLOCKSOURCE:
1017         case KVM_CAP_PIT:
1018         case KVM_CAP_NOP_IO_DELAY:
1019         case KVM_CAP_MP_STATE:
1020         case KVM_CAP_SYNC_MMU:
1021         case KVM_CAP_REINJECT_CONTROL:
1022         case KVM_CAP_IRQ_INJECT_STATUS:
1023                 r = 1;
1024                 break;
1025         case KVM_CAP_COALESCED_MMIO:
1026                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1027                 break;
1028         case KVM_CAP_VAPIC:
1029                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1030                 break;
1031         case KVM_CAP_NR_VCPUS:
1032                 r = KVM_MAX_VCPUS;
1033                 break;
1034         case KVM_CAP_NR_MEMSLOTS:
1035                 r = KVM_MEMORY_SLOTS;
1036                 break;
1037         case KVM_CAP_PV_MMU:
1038                 r = !tdp_enabled;
1039                 break;
1040         case KVM_CAP_IOMMU:
1041                 r = iommu_found();
1042                 break;
1043         default:
1044                 r = 0;
1045                 break;
1046         }
1047         return r;
1048
1049 }
1050
1051 long kvm_arch_dev_ioctl(struct file *filp,
1052                         unsigned int ioctl, unsigned long arg)
1053 {
1054         void __user *argp = (void __user *)arg;
1055         long r;
1056
1057         switch (ioctl) {
1058         case KVM_GET_MSR_INDEX_LIST: {
1059                 struct kvm_msr_list __user *user_msr_list = argp;
1060                 struct kvm_msr_list msr_list;
1061                 unsigned n;
1062
1063                 r = -EFAULT;
1064                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1065                         goto out;
1066                 n = msr_list.nmsrs;
1067                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1068                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1069                         goto out;
1070                 r = -E2BIG;
1071                 if (n < num_msrs_to_save)
1072                         goto out;
1073                 r = -EFAULT;
1074                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1075                                  num_msrs_to_save * sizeof(u32)))
1076                         goto out;
1077                 if (copy_to_user(user_msr_list->indices
1078                                  + num_msrs_to_save * sizeof(u32),
1079                                  &emulated_msrs,
1080                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1081                         goto out;
1082                 r = 0;
1083                 break;
1084         }
1085         case KVM_GET_SUPPORTED_CPUID: {
1086                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1087                 struct kvm_cpuid2 cpuid;
1088
1089                 r = -EFAULT;
1090                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1091                         goto out;
1092                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1093                                                       cpuid_arg->entries);
1094                 if (r)
1095                         goto out;
1096
1097                 r = -EFAULT;
1098                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1099                         goto out;
1100                 r = 0;
1101                 break;
1102         }
1103         default:
1104                 r = -EINVAL;
1105         }
1106 out:
1107         return r;
1108 }
1109
1110 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1111 {
1112         kvm_x86_ops->vcpu_load(vcpu, cpu);
1113         kvm_request_guest_time_update(vcpu);
1114 }
1115
1116 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1117 {
1118         kvm_x86_ops->vcpu_put(vcpu);
1119         kvm_put_guest_fpu(vcpu);
1120 }
1121
1122 static int is_efer_nx(void)
1123 {
1124         u64 efer;
1125
1126         rdmsrl(MSR_EFER, efer);
1127         return efer & EFER_NX;
1128 }
1129
1130 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1131 {
1132         int i;
1133         struct kvm_cpuid_entry2 *e, *entry;
1134
1135         entry = NULL;
1136         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1137                 e = &vcpu->arch.cpuid_entries[i];
1138                 if (e->function == 0x80000001) {
1139                         entry = e;
1140                         break;
1141                 }
1142         }
1143         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1144                 entry->edx &= ~(1 << 20);
1145                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1146         }
1147 }
1148
1149 /* when an old userspace process fills a new kernel module */
1150 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1151                                     struct kvm_cpuid *cpuid,
1152                                     struct kvm_cpuid_entry __user *entries)
1153 {
1154         int r, i;
1155         struct kvm_cpuid_entry *cpuid_entries;
1156
1157         r = -E2BIG;
1158         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1159                 goto out;
1160         r = -ENOMEM;
1161         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1162         if (!cpuid_entries)
1163                 goto out;
1164         r = -EFAULT;
1165         if (copy_from_user(cpuid_entries, entries,
1166                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1167                 goto out_free;
1168         for (i = 0; i < cpuid->nent; i++) {
1169                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1170                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1171                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1172                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1173                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1174                 vcpu->arch.cpuid_entries[i].index = 0;
1175                 vcpu->arch.cpuid_entries[i].flags = 0;
1176                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1177                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1178                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1179         }
1180         vcpu->arch.cpuid_nent = cpuid->nent;
1181         cpuid_fix_nx_cap(vcpu);
1182         r = 0;
1183
1184 out_free:
1185         vfree(cpuid_entries);
1186 out:
1187         return r;
1188 }
1189
1190 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1191                                      struct kvm_cpuid2 *cpuid,
1192                                      struct kvm_cpuid_entry2 __user *entries)
1193 {
1194         int r;
1195
1196         r = -E2BIG;
1197         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1198                 goto out;
1199         r = -EFAULT;
1200         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1201                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1202                 goto out;
1203         vcpu->arch.cpuid_nent = cpuid->nent;
1204         return 0;
1205
1206 out:
1207         return r;
1208 }
1209
1210 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1211                                      struct kvm_cpuid2 *cpuid,
1212                                      struct kvm_cpuid_entry2 __user *entries)
1213 {
1214         int r;
1215
1216         r = -E2BIG;
1217         if (cpuid->nent < vcpu->arch.cpuid_nent)
1218                 goto out;
1219         r = -EFAULT;
1220         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1221                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1222                 goto out;
1223         return 0;
1224
1225 out:
1226         cpuid->nent = vcpu->arch.cpuid_nent;
1227         return r;
1228 }
1229
1230 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1231                            u32 index)
1232 {
1233         entry->function = function;
1234         entry->index = index;
1235         cpuid_count(entry->function, entry->index,
1236                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1237         entry->flags = 0;
1238 }
1239
1240 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1241                          u32 index, int *nent, int maxnent)
1242 {
1243         const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1244                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1245                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1246                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1247                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1248                 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1249                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1250                 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1251                 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1252                 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1253         const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1254                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1255                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1256                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1257                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1258                 bit(X86_FEATURE_PGE) |
1259                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1260                 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1261                 bit(X86_FEATURE_SYSCALL) |
1262                 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1263 #ifdef CONFIG_X86_64
1264                 bit(X86_FEATURE_LM) |
1265 #endif
1266                 bit(X86_FEATURE_FXSR_OPT) |
1267                 bit(X86_FEATURE_MMXEXT) |
1268                 bit(X86_FEATURE_3DNOWEXT) |
1269                 bit(X86_FEATURE_3DNOW);
1270         const u32 kvm_supported_word3_x86_features =
1271                 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1272         const u32 kvm_supported_word6_x86_features =
1273                 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1274                 bit(X86_FEATURE_SVM);
1275
1276         /* all calls to cpuid_count() should be made on the same cpu */
1277         get_cpu();
1278         do_cpuid_1_ent(entry, function, index);
1279         ++*nent;
1280
1281         switch (function) {
1282         case 0:
1283                 entry->eax = min(entry->eax, (u32)0xb);
1284                 break;
1285         case 1:
1286                 entry->edx &= kvm_supported_word0_x86_features;
1287                 entry->ecx &= kvm_supported_word3_x86_features;
1288                 break;
1289         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1290          * may return different values. This forces us to get_cpu() before
1291          * issuing the first command, and also to emulate this annoying behavior
1292          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1293         case 2: {
1294                 int t, times = entry->eax & 0xff;
1295
1296                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1297                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1298                 for (t = 1; t < times && *nent < maxnent; ++t) {
1299                         do_cpuid_1_ent(&entry[t], function, 0);
1300                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1301                         ++*nent;
1302                 }
1303                 break;
1304         }
1305         /* function 4 and 0xb have additional index. */
1306         case 4: {
1307                 int i, cache_type;
1308
1309                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1310                 /* read more entries until cache_type is zero */
1311                 for (i = 1; *nent < maxnent; ++i) {
1312                         cache_type = entry[i - 1].eax & 0x1f;
1313                         if (!cache_type)
1314                                 break;
1315                         do_cpuid_1_ent(&entry[i], function, i);
1316                         entry[i].flags |=
1317                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1318                         ++*nent;
1319                 }
1320                 break;
1321         }
1322         case 0xb: {
1323                 int i, level_type;
1324
1325                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1326                 /* read more entries until level_type is zero */
1327                 for (i = 1; *nent < maxnent; ++i) {
1328                         level_type = entry[i - 1].ecx & 0xff00;
1329                         if (!level_type)
1330                                 break;
1331                         do_cpuid_1_ent(&entry[i], function, i);
1332                         entry[i].flags |=
1333                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1334                         ++*nent;
1335                 }
1336                 break;
1337         }
1338         case 0x80000000:
1339                 entry->eax = min(entry->eax, 0x8000001a);
1340                 break;
1341         case 0x80000001:
1342                 entry->edx &= kvm_supported_word1_x86_features;
1343                 entry->ecx &= kvm_supported_word6_x86_features;
1344                 break;
1345         }
1346         put_cpu();
1347 }
1348
1349 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1350                                      struct kvm_cpuid_entry2 __user *entries)
1351 {
1352         struct kvm_cpuid_entry2 *cpuid_entries;
1353         int limit, nent = 0, r = -E2BIG;
1354         u32 func;
1355
1356         if (cpuid->nent < 1)
1357                 goto out;
1358         r = -ENOMEM;
1359         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1360         if (!cpuid_entries)
1361                 goto out;
1362
1363         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1364         limit = cpuid_entries[0].eax;
1365         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1366                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1367                              &nent, cpuid->nent);
1368         r = -E2BIG;
1369         if (nent >= cpuid->nent)
1370                 goto out_free;
1371
1372         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1373         limit = cpuid_entries[nent - 1].eax;
1374         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1375                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1376                              &nent, cpuid->nent);
1377         r = -EFAULT;
1378         if (copy_to_user(entries, cpuid_entries,
1379                          nent * sizeof(struct kvm_cpuid_entry2)))
1380                 goto out_free;
1381         cpuid->nent = nent;
1382         r = 0;
1383
1384 out_free:
1385         vfree(cpuid_entries);
1386 out:
1387         return r;
1388 }
1389
1390 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1391                                     struct kvm_lapic_state *s)
1392 {
1393         vcpu_load(vcpu);
1394         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1395         vcpu_put(vcpu);
1396
1397         return 0;
1398 }
1399
1400 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1401                                     struct kvm_lapic_state *s)
1402 {
1403         vcpu_load(vcpu);
1404         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1405         kvm_apic_post_state_restore(vcpu);
1406         vcpu_put(vcpu);
1407
1408         return 0;
1409 }
1410
1411 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1412                                     struct kvm_interrupt *irq)
1413 {
1414         if (irq->irq < 0 || irq->irq >= 256)
1415                 return -EINVAL;
1416         if (irqchip_in_kernel(vcpu->kvm))
1417                 return -ENXIO;
1418         vcpu_load(vcpu);
1419
1420         set_bit(irq->irq, vcpu->arch.irq_pending);
1421         set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1422
1423         vcpu_put(vcpu);
1424
1425         return 0;
1426 }
1427
1428 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1429 {
1430         vcpu_load(vcpu);
1431         kvm_inject_nmi(vcpu);
1432         vcpu_put(vcpu);
1433
1434         return 0;
1435 }
1436
1437 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1438                                            struct kvm_tpr_access_ctl *tac)
1439 {
1440         if (tac->flags)
1441                 return -EINVAL;
1442         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1443         return 0;
1444 }
1445
1446 long kvm_arch_vcpu_ioctl(struct file *filp,
1447                          unsigned int ioctl, unsigned long arg)
1448 {
1449         struct kvm_vcpu *vcpu = filp->private_data;
1450         void __user *argp = (void __user *)arg;
1451         int r;
1452         struct kvm_lapic_state *lapic = NULL;
1453
1454         switch (ioctl) {
1455         case KVM_GET_LAPIC: {
1456                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1457
1458                 r = -ENOMEM;
1459                 if (!lapic)
1460                         goto out;
1461                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1462                 if (r)
1463                         goto out;
1464                 r = -EFAULT;
1465                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1466                         goto out;
1467                 r = 0;
1468                 break;
1469         }
1470         case KVM_SET_LAPIC: {
1471                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1472                 r = -ENOMEM;
1473                 if (!lapic)
1474                         goto out;
1475                 r = -EFAULT;
1476                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1477                         goto out;
1478                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1479                 if (r)
1480                         goto out;
1481                 r = 0;
1482                 break;
1483         }
1484         case KVM_INTERRUPT: {
1485                 struct kvm_interrupt irq;
1486
1487                 r = -EFAULT;
1488                 if (copy_from_user(&irq, argp, sizeof irq))
1489                         goto out;
1490                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1491                 if (r)
1492                         goto out;
1493                 r = 0;
1494                 break;
1495         }
1496         case KVM_NMI: {
1497                 r = kvm_vcpu_ioctl_nmi(vcpu);
1498                 if (r)
1499                         goto out;
1500                 r = 0;
1501                 break;
1502         }
1503         case KVM_SET_CPUID: {
1504                 struct kvm_cpuid __user *cpuid_arg = argp;
1505                 struct kvm_cpuid cpuid;
1506
1507                 r = -EFAULT;
1508                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1509                         goto out;
1510                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1511                 if (r)
1512                         goto out;
1513                 break;
1514         }
1515         case KVM_SET_CPUID2: {
1516                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1517                 struct kvm_cpuid2 cpuid;
1518
1519                 r = -EFAULT;
1520                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1521                         goto out;
1522                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1523                                               cpuid_arg->entries);
1524                 if (r)
1525                         goto out;
1526                 break;
1527         }
1528         case KVM_GET_CPUID2: {
1529                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1530                 struct kvm_cpuid2 cpuid;
1531
1532                 r = -EFAULT;
1533                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1534                         goto out;
1535                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1536                                               cpuid_arg->entries);
1537                 if (r)
1538                         goto out;
1539                 r = -EFAULT;
1540                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1541                         goto out;
1542                 r = 0;
1543                 break;
1544         }
1545         case KVM_GET_MSRS:
1546                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1547                 break;
1548         case KVM_SET_MSRS:
1549                 r = msr_io(vcpu, argp, do_set_msr, 0);
1550                 break;
1551         case KVM_TPR_ACCESS_REPORTING: {
1552                 struct kvm_tpr_access_ctl tac;
1553
1554                 r = -EFAULT;
1555                 if (copy_from_user(&tac, argp, sizeof tac))
1556                         goto out;
1557                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1558                 if (r)
1559                         goto out;
1560                 r = -EFAULT;
1561                 if (copy_to_user(argp, &tac, sizeof tac))
1562                         goto out;
1563                 r = 0;
1564                 break;
1565         };
1566         case KVM_SET_VAPIC_ADDR: {
1567                 struct kvm_vapic_addr va;
1568
1569                 r = -EINVAL;
1570                 if (!irqchip_in_kernel(vcpu->kvm))
1571                         goto out;
1572                 r = -EFAULT;
1573                 if (copy_from_user(&va, argp, sizeof va))
1574                         goto out;
1575                 r = 0;
1576                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1577                 break;
1578         }
1579         default:
1580                 r = -EINVAL;
1581         }
1582 out:
1583         if (lapic)
1584                 kfree(lapic);
1585         return r;
1586 }
1587
1588 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1589 {
1590         int ret;
1591
1592         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1593                 return -1;
1594         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1595         return ret;
1596 }
1597
1598 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1599                                           u32 kvm_nr_mmu_pages)
1600 {
1601         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1602                 return -EINVAL;
1603
1604         down_write(&kvm->slots_lock);
1605
1606         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1607         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1608
1609         up_write(&kvm->slots_lock);
1610         return 0;
1611 }
1612
1613 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1614 {
1615         return kvm->arch.n_alloc_mmu_pages;
1616 }
1617
1618 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1619 {
1620         int i;
1621         struct kvm_mem_alias *alias;
1622
1623         for (i = 0; i < kvm->arch.naliases; ++i) {
1624                 alias = &kvm->arch.aliases[i];
1625                 if (gfn >= alias->base_gfn
1626                     && gfn < alias->base_gfn + alias->npages)
1627                         return alias->target_gfn + gfn - alias->base_gfn;
1628         }
1629         return gfn;
1630 }
1631
1632 /*
1633  * Set a new alias region.  Aliases map a portion of physical memory into
1634  * another portion.  This is useful for memory windows, for example the PC
1635  * VGA region.
1636  */
1637 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1638                                          struct kvm_memory_alias *alias)
1639 {
1640         int r, n;
1641         struct kvm_mem_alias *p;
1642
1643         r = -EINVAL;
1644         /* General sanity checks */
1645         if (alias->memory_size & (PAGE_SIZE - 1))
1646                 goto out;
1647         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1648                 goto out;
1649         if (alias->slot >= KVM_ALIAS_SLOTS)
1650                 goto out;
1651         if (alias->guest_phys_addr + alias->memory_size
1652             < alias->guest_phys_addr)
1653                 goto out;
1654         if (alias->target_phys_addr + alias->memory_size
1655             < alias->target_phys_addr)
1656                 goto out;
1657
1658         down_write(&kvm->slots_lock);
1659         spin_lock(&kvm->mmu_lock);
1660
1661         p = &kvm->arch.aliases[alias->slot];
1662         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1663         p->npages = alias->memory_size >> PAGE_SHIFT;
1664         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1665
1666         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1667                 if (kvm->arch.aliases[n - 1].npages)
1668                         break;
1669         kvm->arch.naliases = n;
1670
1671         spin_unlock(&kvm->mmu_lock);
1672         kvm_mmu_zap_all(kvm);
1673
1674         up_write(&kvm->slots_lock);
1675
1676         return 0;
1677
1678 out:
1679         return r;
1680 }
1681
1682 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1683 {
1684         int r;
1685
1686         r = 0;
1687         switch (chip->chip_id) {
1688         case KVM_IRQCHIP_PIC_MASTER:
1689                 memcpy(&chip->chip.pic,
1690                         &pic_irqchip(kvm)->pics[0],
1691                         sizeof(struct kvm_pic_state));
1692                 break;
1693         case KVM_IRQCHIP_PIC_SLAVE:
1694                 memcpy(&chip->chip.pic,
1695                         &pic_irqchip(kvm)->pics[1],
1696                         sizeof(struct kvm_pic_state));
1697                 break;
1698         case KVM_IRQCHIP_IOAPIC:
1699                 memcpy(&chip->chip.ioapic,
1700                         ioapic_irqchip(kvm),
1701                         sizeof(struct kvm_ioapic_state));
1702                 break;
1703         default:
1704                 r = -EINVAL;
1705                 break;
1706         }
1707         return r;
1708 }
1709
1710 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1711 {
1712         int r;
1713
1714         r = 0;
1715         switch (chip->chip_id) {
1716         case KVM_IRQCHIP_PIC_MASTER:
1717                 memcpy(&pic_irqchip(kvm)->pics[0],
1718                         &chip->chip.pic,
1719                         sizeof(struct kvm_pic_state));
1720                 break;
1721         case KVM_IRQCHIP_PIC_SLAVE:
1722                 memcpy(&pic_irqchip(kvm)->pics[1],
1723                         &chip->chip.pic,
1724                         sizeof(struct kvm_pic_state));
1725                 break;
1726         case KVM_IRQCHIP_IOAPIC:
1727                 memcpy(ioapic_irqchip(kvm),
1728                         &chip->chip.ioapic,
1729                         sizeof(struct kvm_ioapic_state));
1730                 break;
1731         default:
1732                 r = -EINVAL;
1733                 break;
1734         }
1735         kvm_pic_update_irq(pic_irqchip(kvm));
1736         return r;
1737 }
1738
1739 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1740 {
1741         int r = 0;
1742
1743         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1744         return r;
1745 }
1746
1747 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1748 {
1749         int r = 0;
1750
1751         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1752         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1753         return r;
1754 }
1755
1756 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1757                                  struct kvm_reinject_control *control)
1758 {
1759         if (!kvm->arch.vpit)
1760                 return -ENXIO;
1761         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1762         return 0;
1763 }
1764
1765 /*
1766  * Get (and clear) the dirty memory log for a memory slot.
1767  */
1768 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1769                                       struct kvm_dirty_log *log)
1770 {
1771         int r;
1772         int n;
1773         struct kvm_memory_slot *memslot;
1774         int is_dirty = 0;
1775
1776         down_write(&kvm->slots_lock);
1777
1778         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1779         if (r)
1780                 goto out;
1781
1782         /* If nothing is dirty, don't bother messing with page tables. */
1783         if (is_dirty) {
1784                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1785                 kvm_flush_remote_tlbs(kvm);
1786                 memslot = &kvm->memslots[log->slot];
1787                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1788                 memset(memslot->dirty_bitmap, 0, n);
1789         }
1790         r = 0;
1791 out:
1792         up_write(&kvm->slots_lock);
1793         return r;
1794 }
1795
1796 long kvm_arch_vm_ioctl(struct file *filp,
1797                        unsigned int ioctl, unsigned long arg)
1798 {
1799         struct kvm *kvm = filp->private_data;
1800         void __user *argp = (void __user *)arg;
1801         int r = -EINVAL;
1802         /*
1803          * This union makes it completely explicit to gcc-3.x
1804          * that these two variables' stack usage should be
1805          * combined, not added together.
1806          */
1807         union {
1808                 struct kvm_pit_state ps;
1809                 struct kvm_memory_alias alias;
1810         } u;
1811
1812         switch (ioctl) {
1813         case KVM_SET_TSS_ADDR:
1814                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1815                 if (r < 0)
1816                         goto out;
1817                 break;
1818         case KVM_SET_MEMORY_REGION: {
1819                 struct kvm_memory_region kvm_mem;
1820                 struct kvm_userspace_memory_region kvm_userspace_mem;
1821
1822                 r = -EFAULT;
1823                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1824                         goto out;
1825                 kvm_userspace_mem.slot = kvm_mem.slot;
1826                 kvm_userspace_mem.flags = kvm_mem.flags;
1827                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1828                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1829                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1830                 if (r)
1831                         goto out;
1832                 break;
1833         }
1834         case KVM_SET_NR_MMU_PAGES:
1835                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1836                 if (r)
1837                         goto out;
1838                 break;
1839         case KVM_GET_NR_MMU_PAGES:
1840                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1841                 break;
1842         case KVM_SET_MEMORY_ALIAS:
1843                 r = -EFAULT;
1844                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1845                         goto out;
1846                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1847                 if (r)
1848                         goto out;
1849                 break;
1850         case KVM_CREATE_IRQCHIP:
1851                 r = -ENOMEM;
1852                 kvm->arch.vpic = kvm_create_pic(kvm);
1853                 if (kvm->arch.vpic) {
1854                         r = kvm_ioapic_init(kvm);
1855                         if (r) {
1856                                 kfree(kvm->arch.vpic);
1857                                 kvm->arch.vpic = NULL;
1858                                 goto out;
1859                         }
1860                 } else
1861                         goto out;
1862                 r = kvm_setup_default_irq_routing(kvm);
1863                 if (r) {
1864                         kfree(kvm->arch.vpic);
1865                         kfree(kvm->arch.vioapic);
1866                         goto out;
1867                 }
1868                 break;
1869         case KVM_CREATE_PIT:
1870                 mutex_lock(&kvm->lock);
1871                 r = -EEXIST;
1872                 if (kvm->arch.vpit)
1873                         goto create_pit_unlock;
1874                 r = -ENOMEM;
1875                 kvm->arch.vpit = kvm_create_pit(kvm);
1876                 if (kvm->arch.vpit)
1877                         r = 0;
1878         create_pit_unlock:
1879                 mutex_unlock(&kvm->lock);
1880                 break;
1881         case KVM_IRQ_LINE_STATUS:
1882         case KVM_IRQ_LINE: {
1883                 struct kvm_irq_level irq_event;
1884
1885                 r = -EFAULT;
1886                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1887                         goto out;
1888                 if (irqchip_in_kernel(kvm)) {
1889                         __s32 status;
1890                         mutex_lock(&kvm->lock);
1891                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1892                                         irq_event.irq, irq_event.level);
1893                         mutex_unlock(&kvm->lock);
1894                         if (ioctl == KVM_IRQ_LINE_STATUS) {
1895                                 irq_event.status = status;
1896                                 if (copy_to_user(argp, &irq_event,
1897                                                         sizeof irq_event))
1898                                         goto out;
1899                         }
1900                         r = 0;
1901                 }
1902                 break;
1903         }
1904         case KVM_GET_IRQCHIP: {
1905                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1906                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1907
1908                 r = -ENOMEM;
1909                 if (!chip)
1910                         goto out;
1911                 r = -EFAULT;
1912                 if (copy_from_user(chip, argp, sizeof *chip))
1913                         goto get_irqchip_out;
1914                 r = -ENXIO;
1915                 if (!irqchip_in_kernel(kvm))
1916                         goto get_irqchip_out;
1917                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1918                 if (r)
1919                         goto get_irqchip_out;
1920                 r = -EFAULT;
1921                 if (copy_to_user(argp, chip, sizeof *chip))
1922                         goto get_irqchip_out;
1923                 r = 0;
1924         get_irqchip_out:
1925                 kfree(chip);
1926                 if (r)
1927                         goto out;
1928                 break;
1929         }
1930         case KVM_SET_IRQCHIP: {
1931                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1932                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1933
1934                 r = -ENOMEM;
1935                 if (!chip)
1936                         goto out;
1937                 r = -EFAULT;
1938                 if (copy_from_user(chip, argp, sizeof *chip))
1939                         goto set_irqchip_out;
1940                 r = -ENXIO;
1941                 if (!irqchip_in_kernel(kvm))
1942                         goto set_irqchip_out;
1943                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1944                 if (r)
1945                         goto set_irqchip_out;
1946                 r = 0;
1947         set_irqchip_out:
1948                 kfree(chip);
1949                 if (r)
1950                         goto out;
1951                 break;
1952         }
1953         case KVM_GET_PIT: {
1954                 r = -EFAULT;
1955                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1956                         goto out;
1957                 r = -ENXIO;
1958                 if (!kvm->arch.vpit)
1959                         goto out;
1960                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1961                 if (r)
1962                         goto out;
1963                 r = -EFAULT;
1964                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1965                         goto out;
1966                 r = 0;
1967                 break;
1968         }
1969         case KVM_SET_PIT: {
1970                 r = -EFAULT;
1971                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1972                         goto out;
1973                 r = -ENXIO;
1974                 if (!kvm->arch.vpit)
1975                         goto out;
1976                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1977                 if (r)
1978                         goto out;
1979                 r = 0;
1980                 break;
1981         }
1982         case KVM_REINJECT_CONTROL: {
1983                 struct kvm_reinject_control control;
1984                 r =  -EFAULT;
1985                 if (copy_from_user(&control, argp, sizeof(control)))
1986                         goto out;
1987                 r = kvm_vm_ioctl_reinject(kvm, &control);
1988                 if (r)
1989                         goto out;
1990                 r = 0;
1991                 break;
1992         }
1993         default:
1994                 ;
1995         }
1996 out:
1997         return r;
1998 }
1999
2000 static void kvm_init_msr_list(void)
2001 {
2002         u32 dummy[2];
2003         unsigned i, j;
2004
2005         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2006                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2007                         continue;
2008                 if (j < i)
2009                         msrs_to_save[j] = msrs_to_save[i];
2010                 j++;
2011         }
2012         num_msrs_to_save = j;
2013 }
2014
2015 /*
2016  * Only apic need an MMIO device hook, so shortcut now..
2017  */
2018 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2019                                                 gpa_t addr, int len,
2020                                                 int is_write)
2021 {
2022         struct kvm_io_device *dev;
2023
2024         if (vcpu->arch.apic) {
2025                 dev = &vcpu->arch.apic->dev;
2026                 if (dev->in_range(dev, addr, len, is_write))
2027                         return dev;
2028         }
2029         return NULL;
2030 }
2031
2032
2033 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2034                                                 gpa_t addr, int len,
2035                                                 int is_write)
2036 {
2037         struct kvm_io_device *dev;
2038
2039         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2040         if (dev == NULL)
2041                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2042                                           is_write);
2043         return dev;
2044 }
2045
2046 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2047                                struct kvm_vcpu *vcpu)
2048 {
2049         void *data = val;
2050         int r = X86EMUL_CONTINUE;
2051
2052         while (bytes) {
2053                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2054                 unsigned offset = addr & (PAGE_SIZE-1);
2055                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2056                 int ret;
2057
2058                 if (gpa == UNMAPPED_GVA) {
2059                         r = X86EMUL_PROPAGATE_FAULT;
2060                         goto out;
2061                 }
2062                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2063                 if (ret < 0) {
2064                         r = X86EMUL_UNHANDLEABLE;
2065                         goto out;
2066                 }
2067
2068                 bytes -= toread;
2069                 data += toread;
2070                 addr += toread;
2071         }
2072 out:
2073         return r;
2074 }
2075
2076 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2077                                 struct kvm_vcpu *vcpu)
2078 {
2079         void *data = val;
2080         int r = X86EMUL_CONTINUE;
2081
2082         while (bytes) {
2083                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2084                 unsigned offset = addr & (PAGE_SIZE-1);
2085                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2086                 int ret;
2087
2088                 if (gpa == UNMAPPED_GVA) {
2089                         r = X86EMUL_PROPAGATE_FAULT;
2090                         goto out;
2091                 }
2092                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2093                 if (ret < 0) {
2094                         r = X86EMUL_UNHANDLEABLE;
2095                         goto out;
2096                 }
2097
2098                 bytes -= towrite;
2099                 data += towrite;
2100                 addr += towrite;
2101         }
2102 out:
2103         return r;
2104 }
2105
2106
2107 static int emulator_read_emulated(unsigned long addr,
2108                                   void *val,
2109                                   unsigned int bytes,
2110                                   struct kvm_vcpu *vcpu)
2111 {
2112         struct kvm_io_device *mmio_dev;
2113         gpa_t                 gpa;
2114
2115         if (vcpu->mmio_read_completed) {
2116                 memcpy(val, vcpu->mmio_data, bytes);
2117                 vcpu->mmio_read_completed = 0;
2118                 return X86EMUL_CONTINUE;
2119         }
2120
2121         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2122
2123         /* For APIC access vmexit */
2124         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2125                 goto mmio;
2126
2127         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2128                                 == X86EMUL_CONTINUE)
2129                 return X86EMUL_CONTINUE;
2130         if (gpa == UNMAPPED_GVA)
2131                 return X86EMUL_PROPAGATE_FAULT;
2132
2133 mmio:
2134         /*
2135          * Is this MMIO handled locally?
2136          */
2137         mutex_lock(&vcpu->kvm->lock);
2138         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2139         if (mmio_dev) {
2140                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2141                 mutex_unlock(&vcpu->kvm->lock);
2142                 return X86EMUL_CONTINUE;
2143         }
2144         mutex_unlock(&vcpu->kvm->lock);
2145
2146         vcpu->mmio_needed = 1;
2147         vcpu->mmio_phys_addr = gpa;
2148         vcpu->mmio_size = bytes;
2149         vcpu->mmio_is_write = 0;
2150
2151         return X86EMUL_UNHANDLEABLE;
2152 }
2153
2154 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2155                           const void *val, int bytes)
2156 {
2157         int ret;
2158
2159         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2160         if (ret < 0)
2161                 return 0;
2162         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2163         return 1;
2164 }
2165
2166 static int emulator_write_emulated_onepage(unsigned long addr,
2167                                            const void *val,
2168                                            unsigned int bytes,
2169                                            struct kvm_vcpu *vcpu)
2170 {
2171         struct kvm_io_device *mmio_dev;
2172         gpa_t                 gpa;
2173
2174         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2175
2176         if (gpa == UNMAPPED_GVA) {
2177                 kvm_inject_page_fault(vcpu, addr, 2);
2178                 return X86EMUL_PROPAGATE_FAULT;
2179         }
2180
2181         /* For APIC access vmexit */
2182         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2183                 goto mmio;
2184
2185         if (emulator_write_phys(vcpu, gpa, val, bytes))
2186                 return X86EMUL_CONTINUE;
2187
2188 mmio:
2189         /*
2190          * Is this MMIO handled locally?
2191          */
2192         mutex_lock(&vcpu->kvm->lock);
2193         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2194         if (mmio_dev) {
2195                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2196                 mutex_unlock(&vcpu->kvm->lock);
2197                 return X86EMUL_CONTINUE;
2198         }
2199         mutex_unlock(&vcpu->kvm->lock);
2200
2201         vcpu->mmio_needed = 1;
2202         vcpu->mmio_phys_addr = gpa;
2203         vcpu->mmio_size = bytes;
2204         vcpu->mmio_is_write = 1;
2205         memcpy(vcpu->mmio_data, val, bytes);
2206
2207         return X86EMUL_CONTINUE;
2208 }
2209
2210 int emulator_write_emulated(unsigned long addr,
2211                                    const void *val,
2212                                    unsigned int bytes,
2213                                    struct kvm_vcpu *vcpu)
2214 {
2215         /* Crossing a page boundary? */
2216         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2217                 int rc, now;
2218
2219                 now = -addr & ~PAGE_MASK;
2220                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2221                 if (rc != X86EMUL_CONTINUE)
2222                         return rc;
2223                 addr += now;
2224                 val += now;
2225                 bytes -= now;
2226         }
2227         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2228 }
2229 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2230
2231 static int emulator_cmpxchg_emulated(unsigned long addr,
2232                                      const void *old,
2233                                      const void *new,
2234                                      unsigned int bytes,
2235                                      struct kvm_vcpu *vcpu)
2236 {
2237         static int reported;
2238
2239         if (!reported) {
2240                 reported = 1;
2241                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2242         }
2243 #ifndef CONFIG_X86_64
2244         /* guests cmpxchg8b have to be emulated atomically */
2245         if (bytes == 8) {
2246                 gpa_t gpa;
2247                 struct page *page;
2248                 char *kaddr;
2249                 u64 val;
2250
2251                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2252
2253                 if (gpa == UNMAPPED_GVA ||
2254                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2255                         goto emul_write;
2256
2257                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2258                         goto emul_write;
2259
2260                 val = *(u64 *)new;
2261
2262                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2263
2264                 kaddr = kmap_atomic(page, KM_USER0);
2265                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2266                 kunmap_atomic(kaddr, KM_USER0);
2267                 kvm_release_page_dirty(page);
2268         }
2269 emul_write:
2270 #endif
2271
2272         return emulator_write_emulated(addr, new, bytes, vcpu);
2273 }
2274
2275 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2276 {
2277         return kvm_x86_ops->get_segment_base(vcpu, seg);
2278 }
2279
2280 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2281 {
2282         kvm_mmu_invlpg(vcpu, address);
2283         return X86EMUL_CONTINUE;
2284 }
2285
2286 int emulate_clts(struct kvm_vcpu *vcpu)
2287 {
2288         KVMTRACE_0D(CLTS, vcpu, handler);
2289         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2290         return X86EMUL_CONTINUE;
2291 }
2292
2293 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2294 {
2295         struct kvm_vcpu *vcpu = ctxt->vcpu;
2296
2297         switch (dr) {
2298         case 0 ... 3:
2299                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2300                 return X86EMUL_CONTINUE;
2301         default:
2302                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2303                 return X86EMUL_UNHANDLEABLE;
2304         }
2305 }
2306
2307 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2308 {
2309         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2310         int exception;
2311
2312         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2313         if (exception) {
2314                 /* FIXME: better handling */
2315                 return X86EMUL_UNHANDLEABLE;
2316         }
2317         return X86EMUL_CONTINUE;
2318 }
2319
2320 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2321 {
2322         u8 opcodes[4];
2323         unsigned long rip = kvm_rip_read(vcpu);
2324         unsigned long rip_linear;
2325
2326         if (!printk_ratelimit())
2327                 return;
2328
2329         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2330
2331         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2332
2333         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2334                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2335 }
2336 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2337
2338 static struct x86_emulate_ops emulate_ops = {
2339         .read_std            = kvm_read_guest_virt,
2340         .read_emulated       = emulator_read_emulated,
2341         .write_emulated      = emulator_write_emulated,
2342         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2343 };
2344
2345 static void cache_all_regs(struct kvm_vcpu *vcpu)
2346 {
2347         kvm_register_read(vcpu, VCPU_REGS_RAX);
2348         kvm_register_read(vcpu, VCPU_REGS_RSP);
2349         kvm_register_read(vcpu, VCPU_REGS_RIP);
2350         vcpu->arch.regs_dirty = ~0;
2351 }
2352
2353 int emulate_instruction(struct kvm_vcpu *vcpu,
2354                         struct kvm_run *run,
2355                         unsigned long cr2,
2356                         u16 error_code,
2357                         int emulation_type)
2358 {
2359         int r;
2360         struct decode_cache *c;
2361
2362         kvm_clear_exception_queue(vcpu);
2363         vcpu->arch.mmio_fault_cr2 = cr2;
2364         /*
2365          * TODO: fix x86_emulate.c to use guest_read/write_register
2366          * instead of direct ->regs accesses, can save hundred cycles
2367          * on Intel for instructions that don't read/change RSP, for
2368          * for example.
2369          */
2370         cache_all_regs(vcpu);
2371
2372         vcpu->mmio_is_write = 0;
2373         vcpu->arch.pio.string = 0;
2374
2375         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2376                 int cs_db, cs_l;
2377                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2378
2379                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2380                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2381                 vcpu->arch.emulate_ctxt.mode =
2382                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2383                         ? X86EMUL_MODE_REAL : cs_l
2384                         ? X86EMUL_MODE_PROT64 : cs_db
2385                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2386
2387                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2388
2389                 /* Reject the instructions other than VMCALL/VMMCALL when
2390                  * try to emulate invalid opcode */
2391                 c = &vcpu->arch.emulate_ctxt.decode;
2392                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2393                     (!(c->twobyte && c->b == 0x01 &&
2394                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2395                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2396                         return EMULATE_FAIL;
2397
2398                 ++vcpu->stat.insn_emulation;
2399                 if (r)  {
2400                         ++vcpu->stat.insn_emulation_fail;
2401                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2402                                 return EMULATE_DONE;
2403                         return EMULATE_FAIL;
2404                 }
2405         }
2406
2407         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2408
2409         if (vcpu->arch.pio.string)
2410                 return EMULATE_DO_MMIO;
2411
2412         if ((r || vcpu->mmio_is_write) && run) {
2413                 run->exit_reason = KVM_EXIT_MMIO;
2414                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2415                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2416                 run->mmio.len = vcpu->mmio_size;
2417                 run->mmio.is_write = vcpu->mmio_is_write;
2418         }
2419
2420         if (r) {
2421                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2422                         return EMULATE_DONE;
2423                 if (!vcpu->mmio_needed) {
2424                         kvm_report_emulation_failure(vcpu, "mmio");
2425                         return EMULATE_FAIL;
2426                 }
2427                 return EMULATE_DO_MMIO;
2428         }
2429
2430         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2431
2432         if (vcpu->mmio_is_write) {
2433                 vcpu->mmio_needed = 0;
2434                 return EMULATE_DO_MMIO;
2435         }
2436
2437         return EMULATE_DONE;
2438 }
2439 EXPORT_SYMBOL_GPL(emulate_instruction);
2440
2441 static int pio_copy_data(struct kvm_vcpu *vcpu)
2442 {
2443         void *p = vcpu->arch.pio_data;
2444         gva_t q = vcpu->arch.pio.guest_gva;
2445         unsigned bytes;
2446         int ret;
2447
2448         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2449         if (vcpu->arch.pio.in)
2450                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2451         else
2452                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2453         return ret;
2454 }
2455
2456 int complete_pio(struct kvm_vcpu *vcpu)
2457 {
2458         struct kvm_pio_request *io = &vcpu->arch.pio;
2459         long delta;
2460         int r;
2461         unsigned long val;
2462
2463         if (!io->string) {
2464                 if (io->in) {
2465                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2466                         memcpy(&val, vcpu->arch.pio_data, io->size);
2467                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2468                 }
2469         } else {
2470                 if (io->in) {
2471                         r = pio_copy_data(vcpu);
2472                         if (r)
2473                                 return r;
2474                 }
2475
2476                 delta = 1;
2477                 if (io->rep) {
2478                         delta *= io->cur_count;
2479                         /*
2480                          * The size of the register should really depend on
2481                          * current address size.
2482                          */
2483                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2484                         val -= delta;
2485                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2486                 }
2487                 if (io->down)
2488                         delta = -delta;
2489                 delta *= io->size;
2490                 if (io->in) {
2491                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2492                         val += delta;
2493                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2494                 } else {
2495                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2496                         val += delta;
2497                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2498                 }
2499         }
2500
2501         io->count -= io->cur_count;
2502         io->cur_count = 0;
2503
2504         return 0;
2505 }
2506
2507 static void kernel_pio(struct kvm_io_device *pio_dev,
2508                        struct kvm_vcpu *vcpu,
2509                        void *pd)
2510 {
2511         /* TODO: String I/O for in kernel device */
2512
2513         mutex_lock(&vcpu->kvm->lock);
2514         if (vcpu->arch.pio.in)
2515                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2516                                   vcpu->arch.pio.size,
2517                                   pd);
2518         else
2519                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2520                                    vcpu->arch.pio.size,
2521                                    pd);
2522         mutex_unlock(&vcpu->kvm->lock);
2523 }
2524
2525 static void pio_string_write(struct kvm_io_device *pio_dev,
2526                              struct kvm_vcpu *vcpu)
2527 {
2528         struct kvm_pio_request *io = &vcpu->arch.pio;
2529         void *pd = vcpu->arch.pio_data;
2530         int i;
2531
2532         mutex_lock(&vcpu->kvm->lock);
2533         for (i = 0; i < io->cur_count; i++) {
2534                 kvm_iodevice_write(pio_dev, io->port,
2535                                    io->size,
2536                                    pd);
2537                 pd += io->size;
2538         }
2539         mutex_unlock(&vcpu->kvm->lock);
2540 }
2541
2542 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2543                                                gpa_t addr, int len,
2544                                                int is_write)
2545 {
2546         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2547 }
2548
2549 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2550                   int size, unsigned port)
2551 {
2552         struct kvm_io_device *pio_dev;
2553         unsigned long val;
2554
2555         vcpu->run->exit_reason = KVM_EXIT_IO;
2556         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2557         vcpu->run->io.size = vcpu->arch.pio.size = size;
2558         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2559         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2560         vcpu->run->io.port = vcpu->arch.pio.port = port;
2561         vcpu->arch.pio.in = in;
2562         vcpu->arch.pio.string = 0;
2563         vcpu->arch.pio.down = 0;
2564         vcpu->arch.pio.rep = 0;
2565
2566         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2567                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2568                             handler);
2569         else
2570                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2571                             handler);
2572
2573         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2574         memcpy(vcpu->arch.pio_data, &val, 4);
2575
2576         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2577         if (pio_dev) {
2578                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2579                 complete_pio(vcpu);
2580                 return 1;
2581         }
2582         return 0;
2583 }
2584 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2585
2586 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2587                   int size, unsigned long count, int down,
2588                   gva_t address, int rep, unsigned port)
2589 {
2590         unsigned now, in_page;
2591         int ret = 0;
2592         struct kvm_io_device *pio_dev;
2593
2594         vcpu->run->exit_reason = KVM_EXIT_IO;
2595         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2596         vcpu->run->io.size = vcpu->arch.pio.size = size;
2597         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2598         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2599         vcpu->run->io.port = vcpu->arch.pio.port = port;
2600         vcpu->arch.pio.in = in;
2601         vcpu->arch.pio.string = 1;
2602         vcpu->arch.pio.down = down;
2603         vcpu->arch.pio.rep = rep;
2604
2605         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2606                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2607                             handler);
2608         else
2609                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2610                             handler);
2611
2612         if (!count) {
2613                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2614                 return 1;
2615         }
2616
2617         if (!down)
2618                 in_page = PAGE_SIZE - offset_in_page(address);
2619         else
2620                 in_page = offset_in_page(address) + size;
2621         now = min(count, (unsigned long)in_page / size);
2622         if (!now)
2623                 now = 1;
2624         if (down) {
2625                 /*
2626                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2627                  */
2628                 pr_unimpl(vcpu, "guest string pio down\n");
2629                 kvm_inject_gp(vcpu, 0);
2630                 return 1;
2631         }
2632         vcpu->run->io.count = now;
2633         vcpu->arch.pio.cur_count = now;
2634
2635         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2636                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2637
2638         vcpu->arch.pio.guest_gva = address;
2639
2640         pio_dev = vcpu_find_pio_dev(vcpu, port,
2641                                     vcpu->arch.pio.cur_count,
2642                                     !vcpu->arch.pio.in);
2643         if (!vcpu->arch.pio.in) {
2644                 /* string PIO write */
2645                 ret = pio_copy_data(vcpu);
2646                 if (ret == X86EMUL_PROPAGATE_FAULT) {
2647                         kvm_inject_gp(vcpu, 0);
2648                         return 1;
2649                 }
2650                 if (ret == 0 && pio_dev) {
2651                         pio_string_write(pio_dev, vcpu);
2652                         complete_pio(vcpu);
2653                         if (vcpu->arch.pio.count == 0)
2654                                 ret = 1;
2655                 }
2656         } else if (pio_dev)
2657                 pr_unimpl(vcpu, "no string pio read support yet, "
2658                        "port %x size %d count %ld\n",
2659                         port, size, count);
2660
2661         return ret;
2662 }
2663 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2664
2665 static void bounce_off(void *info)
2666 {
2667         /* nothing */
2668 }
2669
2670 static unsigned int  ref_freq;
2671 static unsigned long tsc_khz_ref;
2672
2673 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2674                                      void *data)
2675 {
2676         struct cpufreq_freqs *freq = data;
2677         struct kvm *kvm;
2678         struct kvm_vcpu *vcpu;
2679         int i, send_ipi = 0;
2680
2681         if (!ref_freq)
2682                 ref_freq = freq->old;
2683
2684         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2685                 return 0;
2686         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2687                 return 0;
2688         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2689
2690         spin_lock(&kvm_lock);
2691         list_for_each_entry(kvm, &vm_list, vm_list) {
2692                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2693                         vcpu = kvm->vcpus[i];
2694                         if (!vcpu)
2695                                 continue;
2696                         if (vcpu->cpu != freq->cpu)
2697                                 continue;
2698                         if (!kvm_request_guest_time_update(vcpu))
2699                                 continue;
2700                         if (vcpu->cpu != smp_processor_id())
2701                                 send_ipi++;
2702                 }
2703         }
2704         spin_unlock(&kvm_lock);
2705
2706         if (freq->old < freq->new && send_ipi) {
2707                 /*
2708                  * We upscale the frequency.  Must make the guest
2709                  * doesn't see old kvmclock values while running with
2710                  * the new frequency, otherwise we risk the guest sees
2711                  * time go backwards.
2712                  *
2713                  * In case we update the frequency for another cpu
2714                  * (which might be in guest context) send an interrupt
2715                  * to kick the cpu out of guest context.  Next time
2716                  * guest context is entered kvmclock will be updated,
2717                  * so the guest will not see stale values.
2718                  */
2719                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2720         }
2721         return 0;
2722 }
2723
2724 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2725         .notifier_call  = kvmclock_cpufreq_notifier
2726 };
2727
2728 int kvm_arch_init(void *opaque)
2729 {
2730         int r, cpu;
2731         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2732
2733         if (kvm_x86_ops) {
2734                 printk(KERN_ERR "kvm: already loaded the other module\n");
2735                 r = -EEXIST;
2736                 goto out;
2737         }
2738
2739         if (!ops->cpu_has_kvm_support()) {
2740                 printk(KERN_ERR "kvm: no hardware support\n");
2741                 r = -EOPNOTSUPP;
2742                 goto out;
2743         }
2744         if (ops->disabled_by_bios()) {
2745                 printk(KERN_ERR "kvm: disabled by bios\n");
2746                 r = -EOPNOTSUPP;
2747                 goto out;
2748         }
2749
2750         r = kvm_mmu_module_init();
2751         if (r)
2752                 goto out;
2753
2754         kvm_init_msr_list();
2755
2756         kvm_x86_ops = ops;
2757         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2758         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2759         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2760                         PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2761
2762         for_each_possible_cpu(cpu)
2763                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2764         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2765                 tsc_khz_ref = tsc_khz;
2766                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2767                                           CPUFREQ_TRANSITION_NOTIFIER);
2768         }
2769
2770         return 0;
2771
2772 out:
2773         return r;
2774 }
2775
2776 void kvm_arch_exit(void)
2777 {
2778         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2779                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2780                                             CPUFREQ_TRANSITION_NOTIFIER);
2781         kvm_x86_ops = NULL;
2782         kvm_mmu_module_exit();
2783 }
2784
2785 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2786 {
2787         ++vcpu->stat.halt_exits;
2788         KVMTRACE_0D(HLT, vcpu, handler);
2789         if (irqchip_in_kernel(vcpu->kvm)) {
2790                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2791                 return 1;
2792         } else {
2793                 vcpu->run->exit_reason = KVM_EXIT_HLT;
2794                 return 0;
2795         }
2796 }
2797 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2798
2799 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2800                            unsigned long a1)
2801 {
2802         if (is_long_mode(vcpu))
2803                 return a0;
2804         else
2805                 return a0 | ((gpa_t)a1 << 32);
2806 }
2807
2808 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2809 {
2810         unsigned long nr, a0, a1, a2, a3, ret;
2811         int r = 1;
2812
2813         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2814         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2815         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2816         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2817         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2818
2819         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2820
2821         if (!is_long_mode(vcpu)) {
2822                 nr &= 0xFFFFFFFF;
2823                 a0 &= 0xFFFFFFFF;
2824                 a1 &= 0xFFFFFFFF;
2825                 a2 &= 0xFFFFFFFF;
2826                 a3 &= 0xFFFFFFFF;
2827         }
2828
2829         switch (nr) {
2830         case KVM_HC_VAPIC_POLL_IRQ:
2831                 ret = 0;
2832                 break;
2833         case KVM_HC_MMU_OP:
2834                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2835                 break;
2836         default:
2837                 ret = -KVM_ENOSYS;
2838                 break;
2839         }
2840         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2841         ++vcpu->stat.hypercalls;
2842         return r;
2843 }
2844 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2845
2846 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2847 {
2848         char instruction[3];
2849         int ret = 0;
2850         unsigned long rip = kvm_rip_read(vcpu);
2851
2852
2853         /*
2854          * Blow out the MMU to ensure that no other VCPU has an active mapping
2855          * to ensure that the updated hypercall appears atomically across all
2856          * VCPUs.
2857          */
2858         kvm_mmu_zap_all(vcpu->kvm);
2859
2860         kvm_x86_ops->patch_hypercall(vcpu, instruction);
2861         if (emulator_write_emulated(rip, instruction, 3, vcpu)
2862             != X86EMUL_CONTINUE)
2863                 ret = -EFAULT;
2864
2865         return ret;
2866 }
2867
2868 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2869 {
2870         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2871 }
2872
2873 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2874 {
2875         struct descriptor_table dt = { limit, base };
2876
2877         kvm_x86_ops->set_gdt(vcpu, &dt);
2878 }
2879
2880 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2881 {
2882         struct descriptor_table dt = { limit, base };
2883
2884         kvm_x86_ops->set_idt(vcpu, &dt);
2885 }
2886
2887 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2888                    unsigned long *rflags)
2889 {
2890         kvm_lmsw(vcpu, msw);
2891         *rflags = kvm_x86_ops->get_rflags(vcpu);
2892 }
2893
2894 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2895 {
2896         unsigned long value;
2897
2898         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2899         switch (cr) {
2900         case 0:
2901                 value = vcpu->arch.cr0;
2902                 break;
2903         case 2:
2904                 value = vcpu->arch.cr2;
2905                 break;
2906         case 3:
2907                 value = vcpu->arch.cr3;
2908                 break;
2909         case 4:
2910                 value = vcpu->arch.cr4;
2911                 break;
2912         case 8:
2913                 value = kvm_get_cr8(vcpu);
2914                 break;
2915         default:
2916                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2917                 return 0;
2918         }
2919         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2920                     (u32)((u64)value >> 32), handler);
2921
2922         return value;
2923 }
2924
2925 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2926                      unsigned long *rflags)
2927 {
2928         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2929                     (u32)((u64)val >> 32), handler);
2930
2931         switch (cr) {
2932         case 0:
2933                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2934                 *rflags = kvm_x86_ops->get_rflags(vcpu);
2935                 break;
2936         case 2:
2937                 vcpu->arch.cr2 = val;
2938                 break;
2939         case 3:
2940                 kvm_set_cr3(vcpu, val);
2941                 break;
2942         case 4:
2943                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2944                 break;
2945         case 8:
2946                 kvm_set_cr8(vcpu, val & 0xfUL);
2947                 break;
2948         default:
2949                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2950         }
2951 }
2952
2953 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2954 {
2955         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2956         int j, nent = vcpu->arch.cpuid_nent;
2957
2958         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2959         /* when no next entry is found, the current entry[i] is reselected */
2960         for (j = i + 1; ; j = (j + 1) % nent) {
2961                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2962                 if (ej->function == e->function) {
2963                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2964                         return j;
2965                 }
2966         }
2967         return 0; /* silence gcc, even though control never reaches here */
2968 }
2969
2970 /* find an entry with matching function, matching index (if needed), and that
2971  * should be read next (if it's stateful) */
2972 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2973         u32 function, u32 index)
2974 {
2975         if (e->function != function)
2976                 return 0;
2977         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2978                 return 0;
2979         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2980             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2981                 return 0;
2982         return 1;
2983 }
2984
2985 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
2986                                               u32 function, u32 index)
2987 {
2988         int i;
2989         struct kvm_cpuid_entry2 *best = NULL;
2990
2991         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2992                 struct kvm_cpuid_entry2 *e;
2993
2994                 e = &vcpu->arch.cpuid_entries[i];
2995                 if (is_matching_cpuid_entry(e, function, index)) {
2996                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2997                                 move_to_next_stateful_cpuid_entry(vcpu, i);
2998                         best = e;
2999                         break;
3000                 }
3001                 /*
3002                  * Both basic or both extended?
3003                  */
3004                 if (((e->function ^ function) & 0x80000000) == 0)
3005                         if (!best || e->function > best->function)
3006                                 best = e;
3007         }
3008         return best;
3009 }
3010
3011 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3012 {
3013         u32 function, index;
3014         struct kvm_cpuid_entry2 *best;
3015
3016         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3017         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3018         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3019         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3020         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3021         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3022         best = kvm_find_cpuid_entry(vcpu, function, index);
3023         if (best) {
3024                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3025                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3026                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3027                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3028         }
3029         kvm_x86_ops->skip_emulated_instruction(vcpu);
3030         KVMTRACE_5D(CPUID, vcpu, function,
3031                     (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3032                     (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3033                     (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3034                     (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3035 }
3036 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3037
3038 /*
3039  * Check if userspace requested an interrupt window, and that the
3040  * interrupt window is open.
3041  *
3042  * No need to exit to userspace if we already have an interrupt queued.
3043  */
3044 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3045                                           struct kvm_run *kvm_run)
3046 {
3047         return (!vcpu->arch.irq_summary &&
3048                 kvm_run->request_interrupt_window &&
3049                 vcpu->arch.interrupt_window_open &&
3050                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3051 }
3052
3053 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3054                               struct kvm_run *kvm_run)
3055 {
3056         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3057         kvm_run->cr8 = kvm_get_cr8(vcpu);
3058         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3059         if (irqchip_in_kernel(vcpu->kvm))
3060                 kvm_run->ready_for_interrupt_injection = 1;
3061         else
3062                 kvm_run->ready_for_interrupt_injection =
3063                                         (vcpu->arch.interrupt_window_open &&
3064                                          vcpu->arch.irq_summary == 0);
3065 }
3066
3067 static void vapic_enter(struct kvm_vcpu *vcpu)
3068 {
3069         struct kvm_lapic *apic = vcpu->arch.apic;
3070         struct page *page;
3071
3072         if (!apic || !apic->vapic_addr)
3073                 return;
3074
3075         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3076
3077         vcpu->arch.apic->vapic_page = page;
3078 }
3079
3080 static void vapic_exit(struct kvm_vcpu *vcpu)
3081 {
3082         struct kvm_lapic *apic = vcpu->arch.apic;
3083
3084         if (!apic || !apic->vapic_addr)
3085                 return;
3086
3087         down_read(&vcpu->kvm->slots_lock);
3088         kvm_release_page_dirty(apic->vapic_page);
3089         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3090         up_read(&vcpu->kvm->slots_lock);
3091 }
3092
3093 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3094 {
3095         int r;
3096
3097         if (vcpu->requests)
3098                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3099                         kvm_mmu_unload(vcpu);
3100
3101         r = kvm_mmu_reload(vcpu);
3102         if (unlikely(r))
3103                 goto out;
3104
3105         if (vcpu->requests) {
3106                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3107                         __kvm_migrate_timers(vcpu);
3108                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3109                         kvm_write_guest_time(vcpu);
3110                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3111                         kvm_mmu_sync_roots(vcpu);
3112                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3113                         kvm_x86_ops->tlb_flush(vcpu);
3114                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3115                                        &vcpu->requests)) {
3116                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3117                         r = 0;
3118                         goto out;
3119                 }
3120                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3121                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3122                         r = 0;
3123                         goto out;
3124                 }
3125         }
3126
3127         clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3128         kvm_inject_pending_timer_irqs(vcpu);
3129
3130         preempt_disable();
3131
3132         kvm_x86_ops->prepare_guest_switch(vcpu);
3133         kvm_load_guest_fpu(vcpu);
3134
3135         local_irq_disable();
3136
3137         if (vcpu->requests || need_resched() || signal_pending(current)) {
3138                 local_irq_enable();
3139                 preempt_enable();
3140                 r = 1;
3141                 goto out;
3142         }
3143
3144         vcpu->guest_mode = 1;
3145         /*
3146          * Make sure that guest_mode assignment won't happen after
3147          * testing the pending IRQ vector bitmap.
3148          */
3149         smp_wmb();
3150
3151         if (vcpu->arch.exception.pending)
3152                 __queue_exception(vcpu);
3153         else if (irqchip_in_kernel(vcpu->kvm))
3154                 kvm_x86_ops->inject_pending_irq(vcpu);
3155         else
3156                 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3157
3158         kvm_lapic_sync_to_vapic(vcpu);
3159
3160         up_read(&vcpu->kvm->slots_lock);
3161
3162         kvm_guest_enter();
3163
3164         get_debugreg(vcpu->arch.host_dr6, 6);
3165         get_debugreg(vcpu->arch.host_dr7, 7);
3166         if (unlikely(vcpu->arch.switch_db_regs)) {
3167                 get_debugreg(vcpu->arch.host_db[0], 0);
3168                 get_debugreg(vcpu->arch.host_db[1], 1);
3169                 get_debugreg(vcpu->arch.host_db[2], 2);
3170                 get_debugreg(vcpu->arch.host_db[3], 3);
3171
3172                 set_debugreg(0, 7);
3173                 set_debugreg(vcpu->arch.eff_db[0], 0);
3174                 set_debugreg(vcpu->arch.eff_db[1], 1);
3175                 set_debugreg(vcpu->arch.eff_db[2], 2);
3176                 set_debugreg(vcpu->arch.eff_db[3], 3);
3177         }
3178
3179         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3180         kvm_x86_ops->run(vcpu, kvm_run);
3181
3182         if (unlikely(vcpu->arch.switch_db_regs)) {
3183                 set_debugreg(0, 7);
3184                 set_debugreg(vcpu->arch.host_db[0], 0);
3185                 set_debugreg(vcpu->arch.host_db[1], 1);
3186                 set_debugreg(vcpu->arch.host_db[2], 2);
3187                 set_debugreg(vcpu->arch.host_db[3], 3);
3188         }
3189         set_debugreg(vcpu->arch.host_dr6, 6);
3190         set_debugreg(vcpu->arch.host_dr7, 7);
3191
3192         vcpu->guest_mode = 0;
3193         local_irq_enable();
3194
3195         ++vcpu->stat.exits;
3196
3197         /*
3198          * We must have an instruction between local_irq_enable() and
3199          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3200          * the interrupt shadow.  The stat.exits increment will do nicely.
3201          * But we need to prevent reordering, hence this barrier():
3202          */
3203         barrier();
3204
3205         kvm_guest_exit();
3206
3207         preempt_enable();
3208
3209         down_read(&vcpu->kvm->slots_lock);
3210
3211         /*
3212          * Profile KVM exit RIPs:
3213          */
3214         if (unlikely(prof_on == KVM_PROFILING)) {
3215                 unsigned long rip = kvm_rip_read(vcpu);
3216                 profile_hit(KVM_PROFILING, (void *)rip);
3217         }
3218
3219         if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3220                 vcpu->arch.exception.pending = false;
3221
3222         kvm_lapic_sync_from_vapic(vcpu);
3223
3224         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3225 out:
3226         return r;
3227 }
3228
3229 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3230 {
3231         int r;
3232
3233         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3234                 pr_debug("vcpu %d received sipi with vector # %x\n",
3235                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3236                 kvm_lapic_reset(vcpu);
3237                 r = kvm_arch_vcpu_reset(vcpu);
3238                 if (r)
3239                         return r;
3240                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3241         }
3242
3243         down_read(&vcpu->kvm->slots_lock);
3244         vapic_enter(vcpu);
3245
3246         r = 1;
3247         while (r > 0) {
3248                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3249                         r = vcpu_enter_guest(vcpu, kvm_run);
3250                 else {
3251                         up_read(&vcpu->kvm->slots_lock);
3252                         kvm_vcpu_block(vcpu);
3253                         down_read(&vcpu->kvm->slots_lock);
3254                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3255                                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3256                                         vcpu->arch.mp_state =
3257                                                         KVM_MP_STATE_RUNNABLE;
3258                         if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3259                                 r = -EINTR;
3260                 }
3261
3262                 if (r > 0) {
3263                         if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3264                                 r = -EINTR;
3265                                 kvm_run->exit_reason = KVM_EXIT_INTR;
3266                                 ++vcpu->stat.request_irq_exits;
3267                         }
3268                         if (signal_pending(current)) {
3269                                 r = -EINTR;
3270                                 kvm_run->exit_reason = KVM_EXIT_INTR;
3271                                 ++vcpu->stat.signal_exits;
3272                         }
3273                         if (need_resched()) {
3274                                 up_read(&vcpu->kvm->slots_lock);
3275                                 kvm_resched(vcpu);
3276                                 down_read(&vcpu->kvm->slots_lock);
3277                         }
3278                 }
3279         }
3280
3281         up_read(&vcpu->kvm->slots_lock);
3282         post_kvm_run_save(vcpu, kvm_run);
3283
3284         vapic_exit(vcpu);
3285
3286         return r;
3287 }
3288
3289 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3290 {
3291         int r;
3292         sigset_t sigsaved;
3293
3294         vcpu_load(vcpu);
3295
3296         if (vcpu->sigset_active)
3297                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3298
3299         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3300                 kvm_vcpu_block(vcpu);
3301                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3302                 r = -EAGAIN;
3303                 goto out;
3304         }
3305
3306         /* re-sync apic's tpr */
3307         if (!irqchip_in_kernel(vcpu->kvm))
3308                 kvm_set_cr8(vcpu, kvm_run->cr8);
3309
3310         if (vcpu->arch.pio.cur_count) {
3311                 r = complete_pio(vcpu);
3312                 if (r)
3313                         goto out;
3314         }
3315 #if CONFIG_HAS_IOMEM
3316         if (vcpu->mmio_needed) {
3317                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3318                 vcpu->mmio_read_completed = 1;
3319                 vcpu->mmio_needed = 0;
3320
3321                 down_read(&vcpu->kvm->slots_lock);
3322                 r = emulate_instruction(vcpu, kvm_run,
3323                                         vcpu->arch.mmio_fault_cr2, 0,
3324                                         EMULTYPE_NO_DECODE);
3325                 up_read(&vcpu->kvm->slots_lock);
3326                 if (r == EMULATE_DO_MMIO) {
3327                         /*
3328                          * Read-modify-write.  Back to userspace.
3329                          */
3330                         r = 0;
3331                         goto out;
3332                 }
3333         }
3334 #endif
3335         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3336                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3337                                      kvm_run->hypercall.ret);
3338
3339         r = __vcpu_run(vcpu, kvm_run);
3340
3341 out:
3342         if (vcpu->sigset_active)
3343                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3344
3345         vcpu_put(vcpu);
3346         return r;
3347 }
3348
3349 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3350 {
3351         vcpu_load(vcpu);
3352
3353         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3354         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3355         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3356         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3357         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3358         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3359         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3360         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3361 #ifdef CONFIG_X86_64
3362         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3363         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3364         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3365         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3366         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3367         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3368         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3369         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3370 #endif
3371
3372         regs->rip = kvm_rip_read(vcpu);
3373         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3374
3375         /*
3376          * Don't leak debug flags in case they were set for guest debugging
3377          */
3378         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3379                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3380
3381         vcpu_put(vcpu);
3382
3383         return 0;
3384 }
3385
3386 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3387 {
3388         vcpu_load(vcpu);
3389
3390         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3391         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3392         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3393         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3394         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3395         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3396         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3397         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3398 #ifdef CONFIG_X86_64
3399         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3400         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3401         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3402         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3403         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3404         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3405         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3406         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3407
3408 #endif
3409
3410         kvm_rip_write(vcpu, regs->rip);
3411         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3412
3413
3414         vcpu->arch.exception.pending = false;
3415
3416         vcpu_put(vcpu);
3417
3418         return 0;
3419 }
3420
3421 void kvm_get_segment(struct kvm_vcpu *vcpu,
3422                      struct kvm_segment *var, int seg)
3423 {
3424         kvm_x86_ops->get_segment(vcpu, var, seg);
3425 }
3426
3427 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3428 {
3429         struct kvm_segment cs;
3430
3431         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3432         *db = cs.db;
3433         *l = cs.l;
3434 }
3435 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3436
3437 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3438                                   struct kvm_sregs *sregs)
3439 {
3440         struct descriptor_table dt;
3441         int pending_vec;
3442
3443         vcpu_load(vcpu);
3444
3445         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3446         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3447         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3448         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3449         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3450         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3451
3452         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3453         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3454
3455         kvm_x86_ops->get_idt(vcpu, &dt);
3456         sregs->idt.limit = dt.limit;
3457         sregs->idt.base = dt.base;
3458         kvm_x86_ops->get_gdt(vcpu, &dt);
3459         sregs->gdt.limit = dt.limit;
3460         sregs->gdt.base = dt.base;
3461
3462         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3463         sregs->cr0 = vcpu->arch.cr0;
3464         sregs->cr2 = vcpu->arch.cr2;
3465         sregs->cr3 = vcpu->arch.cr3;
3466         sregs->cr4 = vcpu->arch.cr4;
3467         sregs->cr8 = kvm_get_cr8(vcpu);
3468         sregs->efer = vcpu->arch.shadow_efer;
3469         sregs->apic_base = kvm_get_apic_base(vcpu);
3470
3471         if (irqchip_in_kernel(vcpu->kvm)) {
3472                 memset(sregs->interrupt_bitmap, 0,
3473                        sizeof sregs->interrupt_bitmap);
3474                 pending_vec = kvm_x86_ops->get_irq(vcpu);
3475                 if (pending_vec >= 0)
3476                         set_bit(pending_vec,
3477                                 (unsigned long *)sregs->interrupt_bitmap);
3478         } else
3479                 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3480                        sizeof sregs->interrupt_bitmap);
3481
3482         vcpu_put(vcpu);
3483
3484         return 0;
3485 }
3486
3487 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3488                                     struct kvm_mp_state *mp_state)
3489 {
3490         vcpu_load(vcpu);
3491         mp_state->mp_state = vcpu->arch.mp_state;
3492         vcpu_put(vcpu);
3493         return 0;
3494 }
3495
3496 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3497                                     struct kvm_mp_state *mp_state)
3498 {
3499         vcpu_load(vcpu);
3500         vcpu->arch.mp_state = mp_state->mp_state;
3501         vcpu_put(vcpu);
3502         return 0;
3503 }
3504
3505 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3506                         struct kvm_segment *var, int seg)
3507 {
3508         kvm_x86_ops->set_segment(vcpu, var, seg);
3509 }
3510
3511 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3512                                    struct kvm_segment *kvm_desct)
3513 {
3514         kvm_desct->base = seg_desc->base0;
3515         kvm_desct->base |= seg_desc->base1 << 16;
3516         kvm_desct->base |= seg_desc->base2 << 24;
3517         kvm_desct->limit = seg_desc->limit0;
3518         kvm_desct->limit |= seg_desc->limit << 16;
3519         if (seg_desc->g) {
3520                 kvm_desct->limit <<= 12;
3521                 kvm_desct->limit |= 0xfff;
3522         }
3523         kvm_desct->selector = selector;
3524         kvm_desct->type = seg_desc->type;
3525         kvm_desct->present = seg_desc->p;
3526         kvm_desct->dpl = seg_desc->dpl;
3527         kvm_desct->db = seg_desc->d;
3528         kvm_desct->s = seg_desc->s;
3529         kvm_desct->l = seg_desc->l;
3530         kvm_desct->g = seg_desc->g;
3531         kvm_desct->avl = seg_desc->avl;
3532         if (!selector)
3533                 kvm_desct->unusable = 1;
3534         else
3535                 kvm_desct->unusable = 0;
3536         kvm_desct->padding = 0;
3537 }
3538
3539 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3540                                           u16 selector,
3541                                           struct descriptor_table *dtable)
3542 {
3543         if (selector & 1 << 2) {
3544                 struct kvm_segment kvm_seg;
3545
3546                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3547
3548                 if (kvm_seg.unusable)
3549                         dtable->limit = 0;
3550                 else
3551                         dtable->limit = kvm_seg.limit;
3552                 dtable->base = kvm_seg.base;
3553         }
3554         else
3555                 kvm_x86_ops->get_gdt(vcpu, dtable);
3556 }
3557
3558 /* allowed just for 8 bytes segments */
3559 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3560                                          struct desc_struct *seg_desc)
3561 {
3562         gpa_t gpa;
3563         struct descriptor_table dtable;
3564         u16 index = selector >> 3;
3565
3566         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3567
3568         if (dtable.limit < index * 8 + 7) {
3569                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3570                 return 1;
3571         }
3572         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3573         gpa += index * 8;
3574         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3575 }
3576
3577 /* allowed just for 8 bytes segments */
3578 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3579                                          struct desc_struct *seg_desc)
3580 {
3581         gpa_t gpa;
3582         struct descriptor_table dtable;
3583         u16 index = selector >> 3;
3584
3585         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3586
3587         if (dtable.limit < index * 8 + 7)
3588                 return 1;
3589         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3590         gpa += index * 8;
3591         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3592 }
3593
3594 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3595                              struct desc_struct *seg_desc)
3596 {
3597         u32 base_addr;
3598
3599         base_addr = seg_desc->base0;
3600         base_addr |= (seg_desc->base1 << 16);
3601         base_addr |= (seg_desc->base2 << 24);
3602
3603         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3604 }
3605
3606 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3607 {
3608         struct kvm_segment kvm_seg;
3609
3610         kvm_get_segment(vcpu, &kvm_seg, seg);
3611         return kvm_seg.selector;
3612 }
3613
3614 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3615                                                 u16 selector,
3616                                                 struct kvm_segment *kvm_seg)
3617 {
3618         struct desc_struct seg_desc;
3619
3620         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3621                 return 1;
3622         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3623         return 0;
3624 }
3625
3626 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3627 {
3628         struct kvm_segment segvar = {
3629                 .base = selector << 4,
3630                 .limit = 0xffff,
3631                 .selector = selector,
3632                 .type = 3,
3633                 .present = 1,
3634                 .dpl = 3,
3635                 .db = 0,
3636                 .s = 1,
3637                 .l = 0,
3638                 .g = 0,
3639                 .avl = 0,
3640                 .unusable = 0,
3641         };
3642         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3643         return 0;
3644 }
3645
3646 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3647                                 int type_bits, int seg)
3648 {
3649         struct kvm_segment kvm_seg;
3650
3651         if (!(vcpu->arch.cr0 & X86_CR0_PE))
3652                 return kvm_load_realmode_segment(vcpu, selector, seg);
3653         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3654                 return 1;
3655         kvm_seg.type |= type_bits;
3656
3657         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3658             seg != VCPU_SREG_LDTR)
3659                 if (!kvm_seg.s)
3660                         kvm_seg.unusable = 1;
3661
3662         kvm_set_segment(vcpu, &kvm_seg, seg);
3663         return 0;
3664 }
3665
3666 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3667                                 struct tss_segment_32 *tss)
3668 {
3669         tss->cr3 = vcpu->arch.cr3;
3670         tss->eip = kvm_rip_read(vcpu);
3671         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3672         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3673         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3674         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3675         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3676         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3677         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3678         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3679         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3680         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3681         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3682         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3683         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3684         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3685         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3686         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3687         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3688 }
3689
3690 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3691                                   struct tss_segment_32 *tss)
3692 {
3693         kvm_set_cr3(vcpu, tss->cr3);
3694
3695         kvm_rip_write(vcpu, tss->eip);
3696         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3697
3698         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3699         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3700         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3701         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3702         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3703         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3704         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3705         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3706
3707         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3708                 return 1;
3709
3710         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3711                 return 1;
3712
3713         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3714                 return 1;
3715
3716         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3717                 return 1;
3718
3719         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3720                 return 1;
3721
3722         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3723                 return 1;
3724
3725         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3726                 return 1;
3727         return 0;
3728 }
3729
3730 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3731                                 struct tss_segment_16 *tss)
3732 {
3733         tss->ip = kvm_rip_read(vcpu);
3734         tss->flag = kvm_x86_ops->get_rflags(vcpu);
3735         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3736         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3737         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3738         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3739         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3740         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3741         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3742         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3743
3744         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3745         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3746         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3747         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3748         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3749         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3750 }
3751
3752 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3753                                  struct tss_segment_16 *tss)
3754 {
3755         kvm_rip_write(vcpu, tss->ip);
3756         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3757         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3758         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3759         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3760         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3761         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3762         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3763         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3764         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3765
3766         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3767                 return 1;
3768
3769         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3770                 return 1;
3771
3772         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3773                 return 1;
3774
3775         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3776                 return 1;
3777
3778         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3779                 return 1;
3780         return 0;
3781 }
3782
3783 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3784                        u32 old_tss_base,
3785                        struct desc_struct *nseg_desc)
3786 {
3787         struct tss_segment_16 tss_segment_16;
3788         int ret = 0;
3789
3790         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3791                            sizeof tss_segment_16))
3792                 goto out;
3793
3794         save_state_to_tss16(vcpu, &tss_segment_16);
3795
3796         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3797                             sizeof tss_segment_16))
3798                 goto out;
3799
3800         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3801                            &tss_segment_16, sizeof tss_segment_16))
3802                 goto out;
3803
3804         if (load_state_from_tss16(vcpu, &tss_segment_16))
3805                 goto out;
3806
3807         ret = 1;
3808 out:
3809         return ret;
3810 }
3811
3812 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3813                        u32 old_tss_base,
3814                        struct desc_struct *nseg_desc)
3815 {
3816         struct tss_segment_32 tss_segment_32;
3817         int ret = 0;
3818
3819         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3820                            sizeof tss_segment_32))
3821                 goto out;
3822
3823         save_state_to_tss32(vcpu, &tss_segment_32);
3824
3825         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3826                             sizeof tss_segment_32))
3827                 goto out;
3828
3829         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3830                            &tss_segment_32, sizeof tss_segment_32))
3831                 goto out;
3832
3833         if (load_state_from_tss32(vcpu, &tss_segment_32))
3834                 goto out;
3835
3836         ret = 1;
3837 out:
3838         return ret;
3839 }
3840
3841 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3842 {
3843         struct kvm_segment tr_seg;
3844         struct desc_struct cseg_desc;
3845         struct desc_struct nseg_desc;
3846         int ret = 0;
3847         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3848         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3849
3850         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3851
3852         /* FIXME: Handle errors. Failure to read either TSS or their
3853          * descriptors should generate a pagefault.
3854          */
3855         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3856                 goto out;
3857
3858         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3859                 goto out;
3860
3861         if (reason != TASK_SWITCH_IRET) {
3862                 int cpl;
3863
3864                 cpl = kvm_x86_ops->get_cpl(vcpu);
3865                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3866                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3867                         return 1;
3868                 }
3869         }
3870
3871         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3872                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3873                 return 1;
3874         }
3875
3876         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3877                 cseg_desc.type &= ~(1 << 1); //clear the B flag
3878                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3879         }
3880
3881         if (reason == TASK_SWITCH_IRET) {
3882                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3883                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3884         }
3885
3886         kvm_x86_ops->skip_emulated_instruction(vcpu);
3887
3888         if (nseg_desc.type & 8)
3889                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3890                                          &nseg_desc);
3891         else
3892                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3893                                          &nseg_desc);
3894
3895         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3896                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3897                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3898         }
3899
3900         if (reason != TASK_SWITCH_IRET) {
3901                 nseg_desc.type |= (1 << 1);
3902                 save_guest_segment_descriptor(vcpu, tss_selector,
3903                                               &nseg_desc);
3904         }
3905
3906         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3907         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3908         tr_seg.type = 11;
3909         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3910 out:
3911         return ret;
3912 }
3913 EXPORT_SYMBOL_GPL(kvm_task_switch);
3914
3915 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3916                                   struct kvm_sregs *sregs)
3917 {
3918         int mmu_reset_needed = 0;
3919         int i, pending_vec, max_bits;
3920         struct descriptor_table dt;
3921
3922         vcpu_load(vcpu);
3923
3924         dt.limit = sregs->idt.limit;
3925         dt.base = sregs->idt.base;
3926         kvm_x86_ops->set_idt(vcpu, &dt);
3927         dt.limit = sregs->gdt.limit;
3928         dt.base = sregs->gdt.base;
3929         kvm_x86_ops->set_gdt(vcpu, &dt);
3930
3931         vcpu->arch.cr2 = sregs->cr2;
3932         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3933         vcpu->arch.cr3 = sregs->cr3;
3934
3935         kvm_set_cr8(vcpu, sregs->cr8);
3936
3937         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3938         kvm_x86_ops->set_efer(vcpu, sregs->efer);
3939         kvm_set_apic_base(vcpu, sregs->apic_base);
3940
3941         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3942
3943         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3944         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3945         vcpu->arch.cr0 = sregs->cr0;
3946
3947         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3948         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3949         if (!is_long_mode(vcpu) && is_pae(vcpu))
3950                 load_pdptrs(vcpu, vcpu->arch.cr3);
3951
3952         if (mmu_reset_needed)
3953                 kvm_mmu_reset_context(vcpu);
3954
3955         if (!irqchip_in_kernel(vcpu->kvm)) {
3956                 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3957                        sizeof vcpu->arch.irq_pending);
3958                 vcpu->arch.irq_summary = 0;
3959                 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3960                         if (vcpu->arch.irq_pending[i])
3961                                 __set_bit(i, &vcpu->arch.irq_summary);
3962         } else {
3963                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3964                 pending_vec = find_first_bit(
3965                         (const unsigned long *)sregs->interrupt_bitmap,
3966                         max_bits);
3967                 /* Only pending external irq is handled here */
3968                 if (pending_vec < max_bits) {
3969                         kvm_x86_ops->set_irq(vcpu, pending_vec);
3970                         pr_debug("Set back pending irq %d\n",
3971                                  pending_vec);
3972                 }
3973                 kvm_pic_clear_isr_ack(vcpu->kvm);
3974         }
3975
3976         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3977         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3978         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3979         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3980         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3981         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3982
3983         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3984         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3985
3986         /* Older userspace won't unhalt the vcpu on reset. */
3987         if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3988             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3989             !(vcpu->arch.cr0 & X86_CR0_PE))
3990                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3991
3992         vcpu_put(vcpu);
3993
3994         return 0;
3995 }
3996
3997 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
3998                                         struct kvm_guest_debug *dbg)
3999 {
4000         int i, r;
4001
4002         vcpu_load(vcpu);
4003
4004         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4005             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4006                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4007                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4008                 vcpu->arch.switch_db_regs =
4009                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4010         } else {
4011                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4012                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4013                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4014         }
4015
4016         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4017
4018         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4019                 kvm_queue_exception(vcpu, DB_VECTOR);
4020         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4021                 kvm_queue_exception(vcpu, BP_VECTOR);
4022
4023         vcpu_put(vcpu);
4024
4025         return r;
4026 }
4027
4028 /*
4029  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4030  * we have asm/x86/processor.h
4031  */
4032 struct fxsave {
4033         u16     cwd;
4034         u16     swd;
4035         u16     twd;
4036         u16     fop;
4037         u64     rip;
4038         u64     rdp;
4039         u32     mxcsr;
4040         u32     mxcsr_mask;
4041         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4042 #ifdef CONFIG_X86_64
4043         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4044 #else
4045         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4046 #endif
4047 };
4048
4049 /*
4050  * Translate a guest virtual address to a guest physical address.
4051  */
4052 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4053                                     struct kvm_translation *tr)
4054 {
4055         unsigned long vaddr = tr->linear_address;
4056         gpa_t gpa;
4057
4058         vcpu_load(vcpu);
4059         down_read(&vcpu->kvm->slots_lock);
4060         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4061         up_read(&vcpu->kvm->slots_lock);
4062         tr->physical_address = gpa;
4063         tr->valid = gpa != UNMAPPED_GVA;
4064         tr->writeable = 1;
4065         tr->usermode = 0;
4066         vcpu_put(vcpu);
4067
4068         return 0;
4069 }
4070
4071 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4072 {
4073         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4074
4075         vcpu_load(vcpu);
4076
4077         memcpy(fpu->fpr, fxsave->st_space, 128);
4078         fpu->fcw = fxsave->cwd;
4079         fpu->fsw = fxsave->swd;
4080         fpu->ftwx = fxsave->twd;
4081         fpu->last_opcode = fxsave->fop;
4082         fpu->last_ip = fxsave->rip;
4083         fpu->last_dp = fxsave->rdp;
4084         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4085
4086         vcpu_put(vcpu);
4087
4088         return 0;
4089 }
4090
4091 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4092 {
4093         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4094
4095         vcpu_load(vcpu);
4096
4097         memcpy(fxsave->st_space, fpu->fpr, 128);
4098         fxsave->cwd = fpu->fcw;
4099         fxsave->swd = fpu->fsw;
4100         fxsave->twd = fpu->ftwx;
4101         fxsave->fop = fpu->last_opcode;
4102         fxsave->rip = fpu->last_ip;
4103         fxsave->rdp = fpu->last_dp;
4104         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4105
4106         vcpu_put(vcpu);
4107
4108         return 0;
4109 }
4110
4111 void fx_init(struct kvm_vcpu *vcpu)
4112 {
4113         unsigned after_mxcsr_mask;
4114
4115         /*
4116          * Touch the fpu the first time in non atomic context as if
4117          * this is the first fpu instruction the exception handler
4118          * will fire before the instruction returns and it'll have to
4119          * allocate ram with GFP_KERNEL.
4120          */
4121         if (!used_math())
4122                 kvm_fx_save(&vcpu->arch.host_fx_image);
4123
4124         /* Initialize guest FPU by resetting ours and saving into guest's */
4125         preempt_disable();
4126         kvm_fx_save(&vcpu->arch.host_fx_image);
4127         kvm_fx_finit();
4128         kvm_fx_save(&vcpu->arch.guest_fx_image);
4129         kvm_fx_restore(&vcpu->arch.host_fx_image);
4130         preempt_enable();
4131
4132         vcpu->arch.cr0 |= X86_CR0_ET;
4133         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4134         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4135         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4136                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4137 }
4138 EXPORT_SYMBOL_GPL(fx_init);
4139
4140 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4141 {
4142         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4143                 return;
4144
4145         vcpu->guest_fpu_loaded = 1;
4146         kvm_fx_save(&vcpu->arch.host_fx_image);
4147         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4148 }
4149 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4150
4151 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4152 {
4153         if (!vcpu->guest_fpu_loaded)
4154                 return;
4155
4156         vcpu->guest_fpu_loaded = 0;
4157         kvm_fx_save(&vcpu->arch.guest_fx_image);
4158         kvm_fx_restore(&vcpu->arch.host_fx_image);
4159         ++vcpu->stat.fpu_reload;
4160 }
4161 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4162
4163 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4164 {
4165         if (vcpu->arch.time_page) {
4166                 kvm_release_page_dirty(vcpu->arch.time_page);
4167                 vcpu->arch.time_page = NULL;
4168         }
4169
4170         kvm_x86_ops->vcpu_free(vcpu);
4171 }
4172
4173 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4174                                                 unsigned int id)
4175 {
4176         return kvm_x86_ops->vcpu_create(kvm, id);
4177 }
4178
4179 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4180 {
4181         int r;
4182
4183         /* We do fxsave: this must be aligned. */
4184         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4185
4186         vcpu->arch.mtrr_state.have_fixed = 1;
4187         vcpu_load(vcpu);
4188         r = kvm_arch_vcpu_reset(vcpu);
4189         if (r == 0)
4190                 r = kvm_mmu_setup(vcpu);
4191         vcpu_put(vcpu);
4192         if (r < 0)
4193                 goto free_vcpu;
4194
4195         return 0;
4196 free_vcpu:
4197         kvm_x86_ops->vcpu_free(vcpu);
4198         return r;
4199 }
4200
4201 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4202 {
4203         vcpu_load(vcpu);
4204         kvm_mmu_unload(vcpu);
4205         vcpu_put(vcpu);
4206
4207         kvm_x86_ops->vcpu_free(vcpu);
4208 }
4209
4210 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4211 {
4212         vcpu->arch.nmi_pending = false;
4213         vcpu->arch.nmi_injected = false;
4214
4215         vcpu->arch.switch_db_regs = 0;
4216         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4217         vcpu->arch.dr6 = DR6_FIXED_1;
4218         vcpu->arch.dr7 = DR7_FIXED_1;
4219
4220         return kvm_x86_ops->vcpu_reset(vcpu);
4221 }
4222
4223 void kvm_arch_hardware_enable(void *garbage)
4224 {
4225         kvm_x86_ops->hardware_enable(garbage);
4226 }
4227
4228 void kvm_arch_hardware_disable(void *garbage)
4229 {
4230         kvm_x86_ops->hardware_disable(garbage);
4231 }
4232
4233 int kvm_arch_hardware_setup(void)
4234 {
4235         return kvm_x86_ops->hardware_setup();
4236 }
4237
4238 void kvm_arch_hardware_unsetup(void)
4239 {
4240         kvm_x86_ops->hardware_unsetup();
4241 }
4242
4243 void kvm_arch_check_processor_compat(void *rtn)
4244 {
4245         kvm_x86_ops->check_processor_compatibility(rtn);
4246 }
4247
4248 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4249 {
4250         struct page *page;
4251         struct kvm *kvm;
4252         int r;
4253
4254         BUG_ON(vcpu->kvm == NULL);
4255         kvm = vcpu->kvm;
4256
4257         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4258         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4259                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4260         else
4261                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4262
4263         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4264         if (!page) {
4265                 r = -ENOMEM;
4266                 goto fail;
4267         }
4268         vcpu->arch.pio_data = page_address(page);
4269
4270         r = kvm_mmu_create(vcpu);
4271         if (r < 0)
4272                 goto fail_free_pio_data;
4273
4274         if (irqchip_in_kernel(kvm)) {
4275                 r = kvm_create_lapic(vcpu);
4276                 if (r < 0)
4277                         goto fail_mmu_destroy;
4278         }
4279
4280         return 0;
4281
4282 fail_mmu_destroy:
4283         kvm_mmu_destroy(vcpu);
4284 fail_free_pio_data:
4285         free_page((unsigned long)vcpu->arch.pio_data);
4286 fail:
4287         return r;
4288 }
4289
4290 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4291 {
4292         kvm_free_lapic(vcpu);
4293         down_read(&vcpu->kvm->slots_lock);
4294         kvm_mmu_destroy(vcpu);
4295         up_read(&vcpu->kvm->slots_lock);
4296         free_page((unsigned long)vcpu->arch.pio_data);
4297 }
4298
4299 struct  kvm *kvm_arch_create_vm(void)
4300 {
4301         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4302
4303         if (!kvm)
4304                 return ERR_PTR(-ENOMEM);
4305
4306         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4307         INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4308         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4309
4310         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4311         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4312
4313         rdtscll(kvm->arch.vm_init_tsc);
4314
4315         return kvm;
4316 }
4317
4318 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4319 {
4320         vcpu_load(vcpu);
4321         kvm_mmu_unload(vcpu);
4322         vcpu_put(vcpu);
4323 }
4324
4325 static void kvm_free_vcpus(struct kvm *kvm)
4326 {
4327         unsigned int i;
4328
4329         /*
4330          * Unpin any mmu pages first.
4331          */
4332         for (i = 0; i < KVM_MAX_VCPUS; ++i)
4333                 if (kvm->vcpus[i])
4334                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4335         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4336                 if (kvm->vcpus[i]) {
4337                         kvm_arch_vcpu_free(kvm->vcpus[i]);
4338                         kvm->vcpus[i] = NULL;
4339                 }
4340         }
4341
4342 }
4343
4344 void kvm_arch_sync_events(struct kvm *kvm)
4345 {
4346         kvm_free_all_assigned_devices(kvm);
4347 }
4348
4349 void kvm_arch_destroy_vm(struct kvm *kvm)
4350 {
4351         kvm_iommu_unmap_guest(kvm);
4352         kvm_free_pit(kvm);
4353         kfree(kvm->arch.vpic);
4354         kfree(kvm->arch.vioapic);
4355         kvm_free_vcpus(kvm);
4356         kvm_free_physmem(kvm);
4357         if (kvm->arch.apic_access_page)
4358                 put_page(kvm->arch.apic_access_page);
4359         if (kvm->arch.ept_identity_pagetable)
4360                 put_page(kvm->arch.ept_identity_pagetable);
4361         kfree(kvm);
4362 }
4363
4364 int kvm_arch_set_memory_region(struct kvm *kvm,
4365                                 struct kvm_userspace_memory_region *mem,
4366                                 struct kvm_memory_slot old,
4367                                 int user_alloc)
4368 {
4369         int npages = mem->memory_size >> PAGE_SHIFT;
4370         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4371
4372         /*To keep backward compatibility with older userspace,
4373          *x86 needs to hanlde !user_alloc case.
4374          */
4375         if (!user_alloc) {
4376                 if (npages && !old.rmap) {
4377                         unsigned long userspace_addr;
4378
4379                         down_write(&current->mm->mmap_sem);
4380                         userspace_addr = do_mmap(NULL, 0,
4381                                                  npages * PAGE_SIZE,
4382                                                  PROT_READ | PROT_WRITE,
4383                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4384                                                  0);
4385                         up_write(&current->mm->mmap_sem);
4386
4387                         if (IS_ERR((void *)userspace_addr))
4388                                 return PTR_ERR((void *)userspace_addr);
4389
4390                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4391                         spin_lock(&kvm->mmu_lock);
4392                         memslot->userspace_addr = userspace_addr;
4393                         spin_unlock(&kvm->mmu_lock);
4394                 } else {
4395                         if (!old.user_alloc && old.rmap) {
4396                                 int ret;
4397
4398                                 down_write(&current->mm->mmap_sem);
4399                                 ret = do_munmap(current->mm, old.userspace_addr,
4400                                                 old.npages * PAGE_SIZE);
4401                                 up_write(&current->mm->mmap_sem);
4402                                 if (ret < 0)
4403                                         printk(KERN_WARNING
4404                                        "kvm_vm_ioctl_set_memory_region: "
4405                                        "failed to munmap memory\n");
4406                         }
4407                 }
4408         }
4409
4410         if (!kvm->arch.n_requested_mmu_pages) {
4411                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4412                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4413         }
4414
4415         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4416         kvm_flush_remote_tlbs(kvm);
4417
4418         return 0;
4419 }
4420
4421 void kvm_arch_flush_shadow(struct kvm *kvm)
4422 {
4423         kvm_mmu_zap_all(kvm);
4424 }
4425
4426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4427 {
4428         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4429                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4430                || vcpu->arch.nmi_pending;
4431 }
4432
4433 static void vcpu_kick_intr(void *info)
4434 {
4435 #ifdef DEBUG
4436         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4437         printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4438 #endif
4439 }
4440
4441 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4442 {
4443         int ipi_pcpu = vcpu->cpu;
4444         int cpu = get_cpu();
4445
4446         if (waitqueue_active(&vcpu->wq)) {
4447                 wake_up_interruptible(&vcpu->wq);
4448                 ++vcpu->stat.halt_wakeup;
4449         }
4450         /*
4451          * We may be called synchronously with irqs disabled in guest mode,
4452          * So need not to call smp_call_function_single() in that case.
4453          */
4454         if (vcpu->guest_mode && vcpu->cpu != cpu)
4455                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4456         put_cpu();
4457 }