Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluet...
[linux-2.6] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include <linux/netdevice.h>
47 #include <linux/delay.h>
48 #include <linux/pci.h>
49
50 #include "e1000.h"
51
52 #define ID_LED_RESERVED_F746 0xF746
53 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
54                               (ID_LED_OFF1_ON2  <<  8) | \
55                               (ID_LED_DEF1_DEF2 <<  4) | \
56                               (ID_LED_DEF1_DEF2))
57
58 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
59
60 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
61
62 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
63 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
65 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
67                                       u16 words, u16 *data);
68 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
69 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
70 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
71 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
72 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
73 static s32 e1000_led_on_82574(struct e1000_hw *hw);
74 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
75
76 /**
77  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
78  *  @hw: pointer to the HW structure
79  *
80  *  This is a function pointer entry point called by the api module.
81  **/
82 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
83 {
84         struct e1000_phy_info *phy = &hw->phy;
85         s32 ret_val;
86
87         if (hw->phy.media_type != e1000_media_type_copper) {
88                 phy->type = e1000_phy_none;
89                 return 0;
90         }
91
92         phy->addr                        = 1;
93         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94         phy->reset_delay_us              = 100;
95
96         switch (hw->mac.type) {
97         case e1000_82571:
98         case e1000_82572:
99                 phy->type                = e1000_phy_igp_2;
100                 break;
101         case e1000_82573:
102                 phy->type                = e1000_phy_m88;
103                 break;
104         case e1000_82574:
105         case e1000_82583:
106                 phy->type                = e1000_phy_bm;
107                 break;
108         default:
109                 return -E1000_ERR_PHY;
110                 break;
111         }
112
113         /* This can only be done after all function pointers are setup. */
114         ret_val = e1000_get_phy_id_82571(hw);
115
116         /* Verify phy id */
117         switch (hw->mac.type) {
118         case e1000_82571:
119         case e1000_82572:
120                 if (phy->id != IGP01E1000_I_PHY_ID)
121                         return -E1000_ERR_PHY;
122                 break;
123         case e1000_82573:
124                 if (phy->id != M88E1111_I_PHY_ID)
125                         return -E1000_ERR_PHY;
126                 break;
127         case e1000_82574:
128         case e1000_82583:
129                 if (phy->id != BME1000_E_PHY_ID_R2)
130                         return -E1000_ERR_PHY;
131                 break;
132         default:
133                 return -E1000_ERR_PHY;
134                 break;
135         }
136
137         return 0;
138 }
139
140 /**
141  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
142  *  @hw: pointer to the HW structure
143  *
144  *  This is a function pointer entry point called by the api module.
145  **/
146 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
147 {
148         struct e1000_nvm_info *nvm = &hw->nvm;
149         u32 eecd = er32(EECD);
150         u16 size;
151
152         nvm->opcode_bits = 8;
153         nvm->delay_usec = 1;
154         switch (nvm->override) {
155         case e1000_nvm_override_spi_large:
156                 nvm->page_size = 32;
157                 nvm->address_bits = 16;
158                 break;
159         case e1000_nvm_override_spi_small:
160                 nvm->page_size = 8;
161                 nvm->address_bits = 8;
162                 break;
163         default:
164                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
165                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
166                 break;
167         }
168
169         switch (hw->mac.type) {
170         case e1000_82573:
171         case e1000_82574:
172         case e1000_82583:
173                 if (((eecd >> 15) & 0x3) == 0x3) {
174                         nvm->type = e1000_nvm_flash_hw;
175                         nvm->word_size = 2048;
176                         /*
177                          * Autonomous Flash update bit must be cleared due
178                          * to Flash update issue.
179                          */
180                         eecd &= ~E1000_EECD_AUPDEN;
181                         ew32(EECD, eecd);
182                         break;
183                 }
184                 /* Fall Through */
185         default:
186                 nvm->type = e1000_nvm_eeprom_spi;
187                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
188                                   E1000_EECD_SIZE_EX_SHIFT);
189                 /*
190                  * Added to a constant, "size" becomes the left-shift value
191                  * for setting word_size.
192                  */
193                 size += NVM_WORD_SIZE_BASE_SHIFT;
194
195                 /* EEPROM access above 16k is unsupported */
196                 if (size > 14)
197                         size = 14;
198                 nvm->word_size  = 1 << size;
199                 break;
200         }
201
202         return 0;
203 }
204
205 /**
206  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
207  *  @hw: pointer to the HW structure
208  *
209  *  This is a function pointer entry point called by the api module.
210  **/
211 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
212 {
213         struct e1000_hw *hw = &adapter->hw;
214         struct e1000_mac_info *mac = &hw->mac;
215         struct e1000_mac_operations *func = &mac->ops;
216         u32 swsm = 0;
217         u32 swsm2 = 0;
218         bool force_clear_smbi = false;
219
220         /* Set media type */
221         switch (adapter->pdev->device) {
222         case E1000_DEV_ID_82571EB_FIBER:
223         case E1000_DEV_ID_82572EI_FIBER:
224         case E1000_DEV_ID_82571EB_QUAD_FIBER:
225                 hw->phy.media_type = e1000_media_type_fiber;
226                 break;
227         case E1000_DEV_ID_82571EB_SERDES:
228         case E1000_DEV_ID_82572EI_SERDES:
229         case E1000_DEV_ID_82571EB_SERDES_DUAL:
230         case E1000_DEV_ID_82571EB_SERDES_QUAD:
231                 hw->phy.media_type = e1000_media_type_internal_serdes;
232                 break;
233         default:
234                 hw->phy.media_type = e1000_media_type_copper;
235                 break;
236         }
237
238         /* Set mta register count */
239         mac->mta_reg_count = 128;
240         /* Set rar entry count */
241         mac->rar_entry_count = E1000_RAR_ENTRIES;
242         /* Set if manageability features are enabled. */
243         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
244
245         /* check for link */
246         switch (hw->phy.media_type) {
247         case e1000_media_type_copper:
248                 func->setup_physical_interface = e1000_setup_copper_link_82571;
249                 func->check_for_link = e1000e_check_for_copper_link;
250                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
251                 break;
252         case e1000_media_type_fiber:
253                 func->setup_physical_interface =
254                         e1000_setup_fiber_serdes_link_82571;
255                 func->check_for_link = e1000e_check_for_fiber_link;
256                 func->get_link_up_info =
257                         e1000e_get_speed_and_duplex_fiber_serdes;
258                 break;
259         case e1000_media_type_internal_serdes:
260                 func->setup_physical_interface =
261                         e1000_setup_fiber_serdes_link_82571;
262                 func->check_for_link = e1000_check_for_serdes_link_82571;
263                 func->get_link_up_info =
264                         e1000e_get_speed_and_duplex_fiber_serdes;
265                 break;
266         default:
267                 return -E1000_ERR_CONFIG;
268                 break;
269         }
270
271         switch (hw->mac.type) {
272         case e1000_82574:
273         case e1000_82583:
274                 func->check_mng_mode = e1000_check_mng_mode_82574;
275                 func->led_on = e1000_led_on_82574;
276                 break;
277         default:
278                 func->check_mng_mode = e1000e_check_mng_mode_generic;
279                 func->led_on = e1000e_led_on_generic;
280                 break;
281         }
282
283         /*
284          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
285          * first NVM or PHY acess. This should be done for single-port
286          * devices, and for one port only on dual-port devices so that
287          * for those devices we can still use the SMBI lock to synchronize
288          * inter-port accesses to the PHY & NVM.
289          */
290         switch (hw->mac.type) {
291         case e1000_82571:
292         case e1000_82572:
293                 swsm2 = er32(SWSM2);
294
295                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
296                         /* Only do this for the first interface on this card */
297                         ew32(SWSM2,
298                             swsm2 | E1000_SWSM2_LOCK);
299                         force_clear_smbi = true;
300                 } else
301                         force_clear_smbi = false;
302                 break;
303         default:
304                 force_clear_smbi = true;
305                 break;
306         }
307
308         if (force_clear_smbi) {
309                 /* Make sure SWSM.SMBI is clear */
310                 swsm = er32(SWSM);
311                 if (swsm & E1000_SWSM_SMBI) {
312                         /* This bit should not be set on a first interface, and
313                          * indicates that the bootagent or EFI code has
314                          * improperly left this bit enabled
315                          */
316                         hw_dbg(hw, "Please update your 82571 Bootagent\n");
317                 }
318                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
319         }
320
321         /*
322          * Initialze device specific counter of SMBI acquisition
323          * timeouts.
324          */
325          hw->dev_spec.e82571.smb_counter = 0;
326
327         return 0;
328 }
329
330 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
331 {
332         struct e1000_hw *hw = &adapter->hw;
333         static int global_quad_port_a; /* global port a indication */
334         struct pci_dev *pdev = adapter->pdev;
335         u16 eeprom_data = 0;
336         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
337         s32 rc;
338
339         rc = e1000_init_mac_params_82571(adapter);
340         if (rc)
341                 return rc;
342
343         rc = e1000_init_nvm_params_82571(hw);
344         if (rc)
345                 return rc;
346
347         rc = e1000_init_phy_params_82571(hw);
348         if (rc)
349                 return rc;
350
351         /* tag quad port adapters first, it's used below */
352         switch (pdev->device) {
353         case E1000_DEV_ID_82571EB_QUAD_COPPER:
354         case E1000_DEV_ID_82571EB_QUAD_FIBER:
355         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
356         case E1000_DEV_ID_82571PT_QUAD_COPPER:
357                 adapter->flags |= FLAG_IS_QUAD_PORT;
358                 /* mark the first port */
359                 if (global_quad_port_a == 0)
360                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
361                 /* Reset for multiple quad port adapters */
362                 global_quad_port_a++;
363                 if (global_quad_port_a == 4)
364                         global_quad_port_a = 0;
365                 break;
366         default:
367                 break;
368         }
369
370         switch (adapter->hw.mac.type) {
371         case e1000_82571:
372                 /* these dual ports don't have WoL on port B at all */
373                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
374                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
375                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
376                     (is_port_b))
377                         adapter->flags &= ~FLAG_HAS_WOL;
378                 /* quad ports only support WoL on port A */
379                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
380                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
381                         adapter->flags &= ~FLAG_HAS_WOL;
382                 /* Does not support WoL on any port */
383                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
384                         adapter->flags &= ~FLAG_HAS_WOL;
385                 break;
386
387         case e1000_82573:
388                 if (pdev->device == E1000_DEV_ID_82573L) {
389                         if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
390                                        &eeprom_data) < 0)
391                                 break;
392                         if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
393                                 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
394                                 adapter->max_hw_frame_size = DEFAULT_JUMBO;
395                         }
396                 }
397                 break;
398         default:
399                 break;
400         }
401
402         return 0;
403 }
404
405 /**
406  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
407  *  @hw: pointer to the HW structure
408  *
409  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
410  *  revision in the hardware structure.
411  **/
412 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
413 {
414         struct e1000_phy_info *phy = &hw->phy;
415         s32 ret_val;
416         u16 phy_id = 0;
417
418         switch (hw->mac.type) {
419         case e1000_82571:
420         case e1000_82572:
421                 /*
422                  * The 82571 firmware may still be configuring the PHY.
423                  * In this case, we cannot access the PHY until the
424                  * configuration is done.  So we explicitly set the
425                  * PHY ID.
426                  */
427                 phy->id = IGP01E1000_I_PHY_ID;
428                 break;
429         case e1000_82573:
430                 return e1000e_get_phy_id(hw);
431                 break;
432         case e1000_82574:
433         case e1000_82583:
434                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
435                 if (ret_val)
436                         return ret_val;
437
438                 phy->id = (u32)(phy_id << 16);
439                 udelay(20);
440                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
441                 if (ret_val)
442                         return ret_val;
443
444                 phy->id |= (u32)(phy_id);
445                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
446                 break;
447         default:
448                 return -E1000_ERR_PHY;
449                 break;
450         }
451
452         return 0;
453 }
454
455 /**
456  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
457  *  @hw: pointer to the HW structure
458  *
459  *  Acquire the HW semaphore to access the PHY or NVM
460  **/
461 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
462 {
463         u32 swsm;
464         s32 sw_timeout = hw->nvm.word_size + 1;
465         s32 fw_timeout = hw->nvm.word_size + 1;
466         s32 i = 0;
467
468         /*
469          * If we have timedout 3 times on trying to acquire
470          * the inter-port SMBI semaphore, there is old code
471          * operating on the other port, and it is not
472          * releasing SMBI. Modify the number of times that
473          * we try for the semaphore to interwork with this
474          * older code.
475          */
476         if (hw->dev_spec.e82571.smb_counter > 2)
477                 sw_timeout = 1;
478
479         /* Get the SW semaphore */
480         while (i < sw_timeout) {
481                 swsm = er32(SWSM);
482                 if (!(swsm & E1000_SWSM_SMBI))
483                         break;
484
485                 udelay(50);
486                 i++;
487         }
488
489         if (i == sw_timeout) {
490                 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
491                 hw->dev_spec.e82571.smb_counter++;
492         }
493         /* Get the FW semaphore. */
494         for (i = 0; i < fw_timeout; i++) {
495                 swsm = er32(SWSM);
496                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
497
498                 /* Semaphore acquired if bit latched */
499                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
500                         break;
501
502                 udelay(50);
503         }
504
505         if (i == fw_timeout) {
506                 /* Release semaphores */
507                 e1000_put_hw_semaphore_82571(hw);
508                 hw_dbg(hw, "Driver can't access the NVM\n");
509                 return -E1000_ERR_NVM;
510         }
511
512         return 0;
513 }
514
515 /**
516  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
517  *  @hw: pointer to the HW structure
518  *
519  *  Release hardware semaphore used to access the PHY or NVM
520  **/
521 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
522 {
523         u32 swsm;
524
525         swsm = er32(SWSM);
526         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
527         ew32(SWSM, swsm);
528 }
529
530 /**
531  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
532  *  @hw: pointer to the HW structure
533  *
534  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
535  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
536  *  for EEPROM access grant bit.  If the access grant bit is not set, release
537  *  hardware semaphore.
538  **/
539 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
540 {
541         s32 ret_val;
542
543         ret_val = e1000_get_hw_semaphore_82571(hw);
544         if (ret_val)
545                 return ret_val;
546
547         switch (hw->mac.type) {
548         case e1000_82573:
549         case e1000_82574:
550         case e1000_82583:
551                 break;
552         default:
553                 ret_val = e1000e_acquire_nvm(hw);
554                 break;
555         }
556
557         if (ret_val)
558                 e1000_put_hw_semaphore_82571(hw);
559
560         return ret_val;
561 }
562
563 /**
564  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
565  *  @hw: pointer to the HW structure
566  *
567  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
568  **/
569 static void e1000_release_nvm_82571(struct e1000_hw *hw)
570 {
571         e1000e_release_nvm(hw);
572         e1000_put_hw_semaphore_82571(hw);
573 }
574
575 /**
576  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
577  *  @hw: pointer to the HW structure
578  *  @offset: offset within the EEPROM to be written to
579  *  @words: number of words to write
580  *  @data: 16 bit word(s) to be written to the EEPROM
581  *
582  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
583  *
584  *  If e1000e_update_nvm_checksum is not called after this function, the
585  *  EEPROM will most likely contain an invalid checksum.
586  **/
587 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
588                                  u16 *data)
589 {
590         s32 ret_val;
591
592         switch (hw->mac.type) {
593         case e1000_82573:
594         case e1000_82574:
595         case e1000_82583:
596                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
597                 break;
598         case e1000_82571:
599         case e1000_82572:
600                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
601                 break;
602         default:
603                 ret_val = -E1000_ERR_NVM;
604                 break;
605         }
606
607         return ret_val;
608 }
609
610 /**
611  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
612  *  @hw: pointer to the HW structure
613  *
614  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
615  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
616  *  value to the EEPROM.
617  **/
618 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
619 {
620         u32 eecd;
621         s32 ret_val;
622         u16 i;
623
624         ret_val = e1000e_update_nvm_checksum_generic(hw);
625         if (ret_val)
626                 return ret_val;
627
628         /*
629          * If our nvm is an EEPROM, then we're done
630          * otherwise, commit the checksum to the flash NVM.
631          */
632         if (hw->nvm.type != e1000_nvm_flash_hw)
633                 return ret_val;
634
635         /* Check for pending operations. */
636         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
637                 msleep(1);
638                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
639                         break;
640         }
641
642         if (i == E1000_FLASH_UPDATES)
643                 return -E1000_ERR_NVM;
644
645         /* Reset the firmware if using STM opcode. */
646         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
647                 /*
648                  * The enabling of and the actual reset must be done
649                  * in two write cycles.
650                  */
651                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
652                 e1e_flush();
653                 ew32(HICR, E1000_HICR_FW_RESET);
654         }
655
656         /* Commit the write to flash */
657         eecd = er32(EECD) | E1000_EECD_FLUPD;
658         ew32(EECD, eecd);
659
660         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
661                 msleep(1);
662                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
663                         break;
664         }
665
666         if (i == E1000_FLASH_UPDATES)
667                 return -E1000_ERR_NVM;
668
669         return 0;
670 }
671
672 /**
673  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
674  *  @hw: pointer to the HW structure
675  *
676  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
677  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
678  **/
679 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
680 {
681         if (hw->nvm.type == e1000_nvm_flash_hw)
682                 e1000_fix_nvm_checksum_82571(hw);
683
684         return e1000e_validate_nvm_checksum_generic(hw);
685 }
686
687 /**
688  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
689  *  @hw: pointer to the HW structure
690  *  @offset: offset within the EEPROM to be written to
691  *  @words: number of words to write
692  *  @data: 16 bit word(s) to be written to the EEPROM
693  *
694  *  After checking for invalid values, poll the EEPROM to ensure the previous
695  *  command has completed before trying to write the next word.  After write
696  *  poll for completion.
697  *
698  *  If e1000e_update_nvm_checksum is not called after this function, the
699  *  EEPROM will most likely contain an invalid checksum.
700  **/
701 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
702                                       u16 words, u16 *data)
703 {
704         struct e1000_nvm_info *nvm = &hw->nvm;
705         u32 i;
706         u32 eewr = 0;
707         s32 ret_val = 0;
708
709         /*
710          * A check for invalid values:  offset too large, too many words,
711          * and not enough words.
712          */
713         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
714             (words == 0)) {
715                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
716                 return -E1000_ERR_NVM;
717         }
718
719         for (i = 0; i < words; i++) {
720                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
721                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
722                        E1000_NVM_RW_REG_START;
723
724                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
725                 if (ret_val)
726                         break;
727
728                 ew32(EEWR, eewr);
729
730                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
731                 if (ret_val)
732                         break;
733         }
734
735         return ret_val;
736 }
737
738 /**
739  *  e1000_get_cfg_done_82571 - Poll for configuration done
740  *  @hw: pointer to the HW structure
741  *
742  *  Reads the management control register for the config done bit to be set.
743  **/
744 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
745 {
746         s32 timeout = PHY_CFG_TIMEOUT;
747
748         while (timeout) {
749                 if (er32(EEMNGCTL) &
750                     E1000_NVM_CFG_DONE_PORT_0)
751                         break;
752                 msleep(1);
753                 timeout--;
754         }
755         if (!timeout) {
756                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
757                 return -E1000_ERR_RESET;
758         }
759
760         return 0;
761 }
762
763 /**
764  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
765  *  @hw: pointer to the HW structure
766  *  @active: TRUE to enable LPLU, FALSE to disable
767  *
768  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
769  *  this function also disables smart speed and vice versa.  LPLU will not be
770  *  activated unless the device autonegotiation advertisement meets standards
771  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
772  *  pointer entry point only called by PHY setup routines.
773  **/
774 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
775 {
776         struct e1000_phy_info *phy = &hw->phy;
777         s32 ret_val;
778         u16 data;
779
780         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
781         if (ret_val)
782                 return ret_val;
783
784         if (active) {
785                 data |= IGP02E1000_PM_D0_LPLU;
786                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
787                 if (ret_val)
788                         return ret_val;
789
790                 /* When LPLU is enabled, we should disable SmartSpeed */
791                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
792                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
793                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
794                 if (ret_val)
795                         return ret_val;
796         } else {
797                 data &= ~IGP02E1000_PM_D0_LPLU;
798                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
799                 /*
800                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
801                  * during Dx states where the power conservation is most
802                  * important.  During driver activity we should enable
803                  * SmartSpeed, so performance is maintained.
804                  */
805                 if (phy->smart_speed == e1000_smart_speed_on) {
806                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
807                                            &data);
808                         if (ret_val)
809                                 return ret_val;
810
811                         data |= IGP01E1000_PSCFR_SMART_SPEED;
812                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
813                                            data);
814                         if (ret_val)
815                                 return ret_val;
816                 } else if (phy->smart_speed == e1000_smart_speed_off) {
817                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
818                                            &data);
819                         if (ret_val)
820                                 return ret_val;
821
822                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
823                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
824                                            data);
825                         if (ret_val)
826                                 return ret_val;
827                 }
828         }
829
830         return 0;
831 }
832
833 /**
834  *  e1000_reset_hw_82571 - Reset hardware
835  *  @hw: pointer to the HW structure
836  *
837  *  This resets the hardware into a known state.  This is a
838  *  function pointer entry point called by the api module.
839  **/
840 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
841 {
842         u32 ctrl;
843         u32 extcnf_ctrl;
844         u32 ctrl_ext;
845         u32 icr;
846         s32 ret_val;
847         u16 i = 0;
848
849         /*
850          * Prevent the PCI-E bus from sticking if there is no TLP connection
851          * on the last TLP read/write transaction when MAC is reset.
852          */
853         ret_val = e1000e_disable_pcie_master(hw);
854         if (ret_val)
855                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
856
857         hw_dbg(hw, "Masking off all interrupts\n");
858         ew32(IMC, 0xffffffff);
859
860         ew32(RCTL, 0);
861         ew32(TCTL, E1000_TCTL_PSP);
862         e1e_flush();
863
864         msleep(10);
865
866         /*
867          * Must acquire the MDIO ownership before MAC reset.
868          * Ownership defaults to firmware after a reset.
869          */
870         switch (hw->mac.type) {
871         case e1000_82573:
872         case e1000_82574:
873         case e1000_82583:
874                 extcnf_ctrl = er32(EXTCNF_CTRL);
875                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
876
877                 do {
878                         ew32(EXTCNF_CTRL, extcnf_ctrl);
879                         extcnf_ctrl = er32(EXTCNF_CTRL);
880
881                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
882                                 break;
883
884                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
885
886                         msleep(2);
887                         i++;
888                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
889                 break;
890         default:
891                 break;
892         }
893
894         ctrl = er32(CTRL);
895
896         hw_dbg(hw, "Issuing a global reset to MAC\n");
897         ew32(CTRL, ctrl | E1000_CTRL_RST);
898
899         if (hw->nvm.type == e1000_nvm_flash_hw) {
900                 udelay(10);
901                 ctrl_ext = er32(CTRL_EXT);
902                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
903                 ew32(CTRL_EXT, ctrl_ext);
904                 e1e_flush();
905         }
906
907         ret_val = e1000e_get_auto_rd_done(hw);
908         if (ret_val)
909                 /* We don't want to continue accessing MAC registers. */
910                 return ret_val;
911
912         /*
913          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
914          * Need to wait for Phy configuration completion before accessing
915          * NVM and Phy.
916          */
917
918         switch (hw->mac.type) {
919         case e1000_82573:
920         case e1000_82574:
921         case e1000_82583:
922                 msleep(25);
923                 break;
924         default:
925                 break;
926         }
927
928         /* Clear any pending interrupt events. */
929         ew32(IMC, 0xffffffff);
930         icr = er32(ICR);
931
932         if (hw->mac.type == e1000_82571 &&
933                 hw->dev_spec.e82571.alt_mac_addr_is_present)
934                         e1000e_set_laa_state_82571(hw, true);
935
936         /* Reinitialize the 82571 serdes link state machine */
937         if (hw->phy.media_type == e1000_media_type_internal_serdes)
938                 hw->mac.serdes_link_state = e1000_serdes_link_down;
939
940         return 0;
941 }
942
943 /**
944  *  e1000_init_hw_82571 - Initialize hardware
945  *  @hw: pointer to the HW structure
946  *
947  *  This inits the hardware readying it for operation.
948  **/
949 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
950 {
951         struct e1000_mac_info *mac = &hw->mac;
952         u32 reg_data;
953         s32 ret_val;
954         u16 i;
955         u16 rar_count = mac->rar_entry_count;
956
957         e1000_initialize_hw_bits_82571(hw);
958
959         /* Initialize identification LED */
960         ret_val = e1000e_id_led_init(hw);
961         if (ret_val) {
962                 hw_dbg(hw, "Error initializing identification LED\n");
963                 return ret_val;
964         }
965
966         /* Disabling VLAN filtering */
967         hw_dbg(hw, "Initializing the IEEE VLAN\n");
968         e1000e_clear_vfta(hw);
969
970         /* Setup the receive address. */
971         /*
972          * If, however, a locally administered address was assigned to the
973          * 82571, we must reserve a RAR for it to work around an issue where
974          * resetting one port will reload the MAC on the other port.
975          */
976         if (e1000e_get_laa_state_82571(hw))
977                 rar_count--;
978         e1000e_init_rx_addrs(hw, rar_count);
979
980         /* Zero out the Multicast HASH table */
981         hw_dbg(hw, "Zeroing the MTA\n");
982         for (i = 0; i < mac->mta_reg_count; i++)
983                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
984
985         /* Setup link and flow control */
986         ret_val = e1000_setup_link_82571(hw);
987
988         /* Set the transmit descriptor write-back policy */
989         reg_data = er32(TXDCTL(0));
990         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
991                    E1000_TXDCTL_FULL_TX_DESC_WB |
992                    E1000_TXDCTL_COUNT_DESC;
993         ew32(TXDCTL(0), reg_data);
994
995         /* ...for both queues. */
996         switch (mac->type) {
997         case e1000_82573:
998         case e1000_82574:
999         case e1000_82583:
1000                 e1000e_enable_tx_pkt_filtering(hw);
1001                 reg_data = er32(GCR);
1002                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1003                 ew32(GCR, reg_data);
1004                 break;
1005         default:
1006                 reg_data = er32(TXDCTL(1));
1007                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1008                            E1000_TXDCTL_FULL_TX_DESC_WB |
1009                            E1000_TXDCTL_COUNT_DESC;
1010                 ew32(TXDCTL(1), reg_data);
1011                 break;
1012         }
1013
1014         /*
1015          * Clear all of the statistics registers (clear on read).  It is
1016          * important that we do this after we have tried to establish link
1017          * because the symbol error count will increment wildly if there
1018          * is no link.
1019          */
1020         e1000_clear_hw_cntrs_82571(hw);
1021
1022         return ret_val;
1023 }
1024
1025 /**
1026  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1027  *  @hw: pointer to the HW structure
1028  *
1029  *  Initializes required hardware-dependent bits needed for normal operation.
1030  **/
1031 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1032 {
1033         u32 reg;
1034
1035         /* Transmit Descriptor Control 0 */
1036         reg = er32(TXDCTL(0));
1037         reg |= (1 << 22);
1038         ew32(TXDCTL(0), reg);
1039
1040         /* Transmit Descriptor Control 1 */
1041         reg = er32(TXDCTL(1));
1042         reg |= (1 << 22);
1043         ew32(TXDCTL(1), reg);
1044
1045         /* Transmit Arbitration Control 0 */
1046         reg = er32(TARC(0));
1047         reg &= ~(0xF << 27); /* 30:27 */
1048         switch (hw->mac.type) {
1049         case e1000_82571:
1050         case e1000_82572:
1051                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1052                 break;
1053         default:
1054                 break;
1055         }
1056         ew32(TARC(0), reg);
1057
1058         /* Transmit Arbitration Control 1 */
1059         reg = er32(TARC(1));
1060         switch (hw->mac.type) {
1061         case e1000_82571:
1062         case e1000_82572:
1063                 reg &= ~((1 << 29) | (1 << 30));
1064                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1065                 if (er32(TCTL) & E1000_TCTL_MULR)
1066                         reg &= ~(1 << 28);
1067                 else
1068                         reg |= (1 << 28);
1069                 ew32(TARC(1), reg);
1070                 break;
1071         default:
1072                 break;
1073         }
1074
1075         /* Device Control */
1076         switch (hw->mac.type) {
1077         case e1000_82573:
1078         case e1000_82574:
1079         case e1000_82583:
1080                 reg = er32(CTRL);
1081                 reg &= ~(1 << 29);
1082                 ew32(CTRL, reg);
1083                 break;
1084         default:
1085                 break;
1086         }
1087
1088         /* Extended Device Control */
1089         switch (hw->mac.type) {
1090         case e1000_82573:
1091         case e1000_82574:
1092         case e1000_82583:
1093                 reg = er32(CTRL_EXT);
1094                 reg &= ~(1 << 23);
1095                 reg |= (1 << 22);
1096                 ew32(CTRL_EXT, reg);
1097                 break;
1098         default:
1099                 break;
1100         }
1101
1102         if (hw->mac.type == e1000_82571) {
1103                 reg = er32(PBA_ECC);
1104                 reg |= E1000_PBA_ECC_CORR_EN;
1105                 ew32(PBA_ECC, reg);
1106         }
1107         /*
1108          * Workaround for hardware errata.
1109          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1110          */
1111
1112         if ((hw->mac.type == e1000_82571) ||
1113            (hw->mac.type == e1000_82572)) {
1114                 reg = er32(CTRL_EXT);
1115                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1116                 ew32(CTRL_EXT, reg);
1117         }
1118
1119
1120         /* PCI-Ex Control Registers */
1121         switch (hw->mac.type) {
1122         case e1000_82574:
1123         case e1000_82583:
1124                 reg = er32(GCR);
1125                 reg |= (1 << 22);
1126                 ew32(GCR, reg);
1127
1128                 reg = er32(GCR2);
1129                 reg |= 1;
1130                 ew32(GCR2, reg);
1131                 break;
1132         default:
1133                 break;
1134         }
1135
1136         return;
1137 }
1138
1139 /**
1140  *  e1000e_clear_vfta - Clear VLAN filter table
1141  *  @hw: pointer to the HW structure
1142  *
1143  *  Clears the register array which contains the VLAN filter table by
1144  *  setting all the values to 0.
1145  **/
1146 void e1000e_clear_vfta(struct e1000_hw *hw)
1147 {
1148         u32 offset;
1149         u32 vfta_value = 0;
1150         u32 vfta_offset = 0;
1151         u32 vfta_bit_in_reg = 0;
1152
1153         switch (hw->mac.type) {
1154         case e1000_82573:
1155         case e1000_82574:
1156         case e1000_82583:
1157                 if (hw->mng_cookie.vlan_id != 0) {
1158                         /*
1159                          * The VFTA is a 4096b bit-field, each identifying
1160                          * a single VLAN ID.  The following operations
1161                          * determine which 32b entry (i.e. offset) into the
1162                          * array we want to set the VLAN ID (i.e. bit) of
1163                          * the manageability unit.
1164                          */
1165                         vfta_offset = (hw->mng_cookie.vlan_id >>
1166                                        E1000_VFTA_ENTRY_SHIFT) &
1167                                       E1000_VFTA_ENTRY_MASK;
1168                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1169                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1170                 }
1171                 break;
1172         default:
1173                 break;
1174         }
1175         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1176                 /*
1177                  * If the offset we want to clear is the same offset of the
1178                  * manageability VLAN ID, then clear all bits except that of
1179                  * the manageability unit.
1180                  */
1181                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1182                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1183                 e1e_flush();
1184         }
1185 }
1186
1187 /**
1188  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1189  *  @hw: pointer to the HW structure
1190  *
1191  *  Reads the NVM Initialization Control Word 2 and returns true
1192  *  (>0) if any manageability is enabled, else false (0).
1193  **/
1194 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1195 {
1196         u16 data;
1197
1198         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1199         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1200 }
1201
1202 /**
1203  *  e1000_led_on_82574 - Turn LED on
1204  *  @hw: pointer to the HW structure
1205  *
1206  *  Turn LED on.
1207  **/
1208 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1209 {
1210         u32 ctrl;
1211         u32 i;
1212
1213         ctrl = hw->mac.ledctl_mode2;
1214         if (!(E1000_STATUS_LU & er32(STATUS))) {
1215                 /*
1216                  * If no link, then turn LED on by setting the invert bit
1217                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1218                  */
1219                 for (i = 0; i < 4; i++)
1220                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1221                             E1000_LEDCTL_MODE_LED_ON)
1222                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1223         }
1224         ew32(LEDCTL, ctrl);
1225
1226         return 0;
1227 }
1228
1229 /**
1230  *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
1231  *  @hw: pointer to the HW structure
1232  *  @mc_addr_list: array of multicast addresses to program
1233  *  @mc_addr_count: number of multicast addresses to program
1234  *  @rar_used_count: the first RAR register free to program
1235  *  @rar_count: total number of supported Receive Address Registers
1236  *
1237  *  Updates the Receive Address Registers and Multicast Table Array.
1238  *  The caller must have a packed mc_addr_list of multicast addresses.
1239  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1240  *  unless there are workarounds that change this.
1241  **/
1242 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1243                                             u8 *mc_addr_list,
1244                                             u32 mc_addr_count,
1245                                             u32 rar_used_count,
1246                                             u32 rar_count)
1247 {
1248         if (e1000e_get_laa_state_82571(hw))
1249                 rar_count--;
1250
1251         e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1252                                            rar_used_count, rar_count);
1253 }
1254
1255 /**
1256  *  e1000_setup_link_82571 - Setup flow control and link settings
1257  *  @hw: pointer to the HW structure
1258  *
1259  *  Determines which flow control settings to use, then configures flow
1260  *  control.  Calls the appropriate media-specific link configuration
1261  *  function.  Assuming the adapter has a valid link partner, a valid link
1262  *  should be established.  Assumes the hardware has previously been reset
1263  *  and the transmitter and receiver are not enabled.
1264  **/
1265 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1266 {
1267         /*
1268          * 82573 does not have a word in the NVM to determine
1269          * the default flow control setting, so we explicitly
1270          * set it to full.
1271          */
1272         switch (hw->mac.type) {
1273         case e1000_82573:
1274         case e1000_82574:
1275         case e1000_82583:
1276                 if (hw->fc.requested_mode == e1000_fc_default)
1277                         hw->fc.requested_mode = e1000_fc_full;
1278                 break;
1279         default:
1280                 break;
1281         }
1282
1283         return e1000e_setup_link(hw);
1284 }
1285
1286 /**
1287  *  e1000_setup_copper_link_82571 - Configure copper link settings
1288  *  @hw: pointer to the HW structure
1289  *
1290  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1291  *  for link, once link is established calls to configure collision distance
1292  *  and flow control are called.
1293  **/
1294 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1295 {
1296         u32 ctrl;
1297         u32 led_ctrl;
1298         s32 ret_val;
1299
1300         ctrl = er32(CTRL);
1301         ctrl |= E1000_CTRL_SLU;
1302         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1303         ew32(CTRL, ctrl);
1304
1305         switch (hw->phy.type) {
1306         case e1000_phy_m88:
1307         case e1000_phy_bm:
1308                 ret_val = e1000e_copper_link_setup_m88(hw);
1309                 break;
1310         case e1000_phy_igp_2:
1311                 ret_val = e1000e_copper_link_setup_igp(hw);
1312                 /* Setup activity LED */
1313                 led_ctrl = er32(LEDCTL);
1314                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1315                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1316                 ew32(LEDCTL, led_ctrl);
1317                 break;
1318         default:
1319                 return -E1000_ERR_PHY;
1320                 break;
1321         }
1322
1323         if (ret_val)
1324                 return ret_val;
1325
1326         ret_val = e1000e_setup_copper_link(hw);
1327
1328         return ret_val;
1329 }
1330
1331 /**
1332  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1333  *  @hw: pointer to the HW structure
1334  *
1335  *  Configures collision distance and flow control for fiber and serdes links.
1336  *  Upon successful setup, poll for link.
1337  **/
1338 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1339 {
1340         switch (hw->mac.type) {
1341         case e1000_82571:
1342         case e1000_82572:
1343                 /*
1344                  * If SerDes loopback mode is entered, there is no form
1345                  * of reset to take the adapter out of that mode.  So we
1346                  * have to explicitly take the adapter out of loopback
1347                  * mode.  This prevents drivers from twiddling their thumbs
1348                  * if another tool failed to take it out of loopback mode.
1349                  */
1350                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1351                 break;
1352         default:
1353                 break;
1354         }
1355
1356         return e1000e_setup_fiber_serdes_link(hw);
1357 }
1358
1359 /**
1360  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1361  *  @hw: pointer to the HW structure
1362  *
1363  *  Checks for link up on the hardware.  If link is not up and we have
1364  *  a signal, then we need to force link up.
1365  **/
1366 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1367 {
1368         struct e1000_mac_info *mac = &hw->mac;
1369         u32 rxcw;
1370         u32 ctrl;
1371         u32 status;
1372         s32 ret_val = 0;
1373
1374         ctrl = er32(CTRL);
1375         status = er32(STATUS);
1376         rxcw = er32(RXCW);
1377
1378         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1379
1380                 /* Receiver is synchronized with no invalid bits.  */
1381                 switch (mac->serdes_link_state) {
1382                 case e1000_serdes_link_autoneg_complete:
1383                         if (!(status & E1000_STATUS_LU)) {
1384                                 /*
1385                                  * We have lost link, retry autoneg before
1386                                  * reporting link failure
1387                                  */
1388                                 mac->serdes_link_state =
1389                                     e1000_serdes_link_autoneg_progress;
1390                                 hw_dbg(hw, "AN_UP     -> AN_PROG\n");
1391                         }
1392                 break;
1393
1394                 case e1000_serdes_link_forced_up:
1395                         /*
1396                          * If we are receiving /C/ ordered sets, re-enable
1397                          * auto-negotiation in the TXCW register and disable
1398                          * forced link in the Device Control register in an
1399                          * attempt to auto-negotiate with our link partner.
1400                          */
1401                         if (rxcw & E1000_RXCW_C) {
1402                                 /* Enable autoneg, and unforce link up */
1403                                 ew32(TXCW, mac->txcw);
1404                                 ew32(CTRL,
1405                                     (ctrl & ~E1000_CTRL_SLU));
1406                                 mac->serdes_link_state =
1407                                     e1000_serdes_link_autoneg_progress;
1408                                 hw_dbg(hw, "FORCED_UP -> AN_PROG\n");
1409                         }
1410                         break;
1411
1412                 case e1000_serdes_link_autoneg_progress:
1413                         /*
1414                          * If the LU bit is set in the STATUS register,
1415                          * autoneg has completed sucessfully. If not,
1416                          * try foring the link because the far end may be
1417                          * available but not capable of autonegotiation.
1418                          */
1419                         if (status & E1000_STATUS_LU)  {
1420                                 mac->serdes_link_state =
1421                                     e1000_serdes_link_autoneg_complete;
1422                                 hw_dbg(hw, "AN_PROG   -> AN_UP\n");
1423                         } else {
1424                                 /*
1425                                  * Disable autoneg, force link up and
1426                                  * full duplex, and change state to forced
1427                                  */
1428                                 ew32(TXCW,
1429                                     (mac->txcw & ~E1000_TXCW_ANE));
1430                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1431                                 ew32(CTRL, ctrl);
1432
1433                                 /* Configure Flow Control after link up. */
1434                                 ret_val =
1435                                     e1000e_config_fc_after_link_up(hw);
1436                                 if (ret_val) {
1437                                         hw_dbg(hw, "Error config flow control\n");
1438                                         break;
1439                                 }
1440                                 mac->serdes_link_state =
1441                                     e1000_serdes_link_forced_up;
1442                                 hw_dbg(hw, "AN_PROG   -> FORCED_UP\n");
1443                         }
1444                         mac->serdes_has_link = true;
1445                         break;
1446
1447                 case e1000_serdes_link_down:
1448                 default:
1449                         /* The link was down but the receiver has now gained
1450                          * valid sync, so lets see if we can bring the link
1451                          * up. */
1452                         ew32(TXCW, mac->txcw);
1453                         ew32(CTRL,
1454                             (ctrl & ~E1000_CTRL_SLU));
1455                         mac->serdes_link_state =
1456                             e1000_serdes_link_autoneg_progress;
1457                         hw_dbg(hw, "DOWN      -> AN_PROG\n");
1458                         break;
1459                 }
1460         } else {
1461                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1462                         mac->serdes_has_link = false;
1463                         mac->serdes_link_state = e1000_serdes_link_down;
1464                         hw_dbg(hw, "ANYSTATE  -> DOWN\n");
1465                 } else {
1466                         /*
1467                          * We have sync, and can tolerate one
1468                          * invalid (IV) codeword before declaring
1469                          * link down, so reread to look again
1470                          */
1471                         udelay(10);
1472                         rxcw = er32(RXCW);
1473                         if (rxcw & E1000_RXCW_IV) {
1474                                 mac->serdes_link_state = e1000_serdes_link_down;
1475                                 mac->serdes_has_link = false;
1476                                 hw_dbg(hw, "ANYSTATE  -> DOWN\n");
1477                         }
1478                 }
1479         }
1480
1481         return ret_val;
1482 }
1483
1484 /**
1485  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1486  *  @hw: pointer to the HW structure
1487  *  @data: pointer to the NVM (EEPROM)
1488  *
1489  *  Read the EEPROM for the current default LED configuration.  If the
1490  *  LED configuration is not valid, set to a valid LED configuration.
1491  **/
1492 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1493 {
1494         s32 ret_val;
1495
1496         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1497         if (ret_val) {
1498                 hw_dbg(hw, "NVM Read Error\n");
1499                 return ret_val;
1500         }
1501
1502         switch (hw->mac.type) {
1503         case e1000_82573:
1504         case e1000_82574:
1505         case e1000_82583:
1506                 if (*data == ID_LED_RESERVED_F746)
1507                         *data = ID_LED_DEFAULT_82573;
1508                 break;
1509         default:
1510                 if (*data == ID_LED_RESERVED_0000 ||
1511                     *data == ID_LED_RESERVED_FFFF)
1512                         *data = ID_LED_DEFAULT;
1513                 break;
1514         }
1515
1516         return 0;
1517 }
1518
1519 /**
1520  *  e1000e_get_laa_state_82571 - Get locally administered address state
1521  *  @hw: pointer to the HW structure
1522  *
1523  *  Retrieve and return the current locally administered address state.
1524  **/
1525 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1526 {
1527         if (hw->mac.type != e1000_82571)
1528                 return 0;
1529
1530         return hw->dev_spec.e82571.laa_is_present;
1531 }
1532
1533 /**
1534  *  e1000e_set_laa_state_82571 - Set locally administered address state
1535  *  @hw: pointer to the HW structure
1536  *  @state: enable/disable locally administered address
1537  *
1538  *  Enable/Disable the current locally administers address state.
1539  **/
1540 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1541 {
1542         if (hw->mac.type != e1000_82571)
1543                 return;
1544
1545         hw->dev_spec.e82571.laa_is_present = state;
1546
1547         /* If workaround is activated... */
1548         if (state)
1549                 /*
1550                  * Hold a copy of the LAA in RAR[14] This is done so that
1551                  * between the time RAR[0] gets clobbered and the time it
1552                  * gets fixed, the actual LAA is in one of the RARs and no
1553                  * incoming packets directed to this port are dropped.
1554                  * Eventually the LAA will be in RAR[0] and RAR[14].
1555                  */
1556                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1557 }
1558
1559 /**
1560  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1561  *  @hw: pointer to the HW structure
1562  *
1563  *  Verifies that the EEPROM has completed the update.  After updating the
1564  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1565  *  the checksum fix is not implemented, we need to set the bit and update
1566  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1567  *  we need to return bad checksum.
1568  **/
1569 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1570 {
1571         struct e1000_nvm_info *nvm = &hw->nvm;
1572         s32 ret_val;
1573         u16 data;
1574
1575         if (nvm->type != e1000_nvm_flash_hw)
1576                 return 0;
1577
1578         /*
1579          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1580          * 10h-12h.  Checksum may need to be fixed.
1581          */
1582         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1583         if (ret_val)
1584                 return ret_val;
1585
1586         if (!(data & 0x10)) {
1587                 /*
1588                  * Read 0x23 and check bit 15.  This bit is a 1
1589                  * when the checksum has already been fixed.  If
1590                  * the checksum is still wrong and this bit is a
1591                  * 1, we need to return bad checksum.  Otherwise,
1592                  * we need to set this bit to a 1 and update the
1593                  * checksum.
1594                  */
1595                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1596                 if (ret_val)
1597                         return ret_val;
1598
1599                 if (!(data & 0x8000)) {
1600                         data |= 0x8000;
1601                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1602                         if (ret_val)
1603                                 return ret_val;
1604                         ret_val = e1000e_update_nvm_checksum(hw);
1605                 }
1606         }
1607
1608         return 0;
1609 }
1610
1611 /**
1612  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1613  *  @hw: pointer to the HW structure
1614  *
1615  *  Clears the hardware counters by reading the counter registers.
1616  **/
1617 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1618 {
1619         u32 temp;
1620
1621         e1000e_clear_hw_cntrs_base(hw);
1622
1623         temp = er32(PRC64);
1624         temp = er32(PRC127);
1625         temp = er32(PRC255);
1626         temp = er32(PRC511);
1627         temp = er32(PRC1023);
1628         temp = er32(PRC1522);
1629         temp = er32(PTC64);
1630         temp = er32(PTC127);
1631         temp = er32(PTC255);
1632         temp = er32(PTC511);
1633         temp = er32(PTC1023);
1634         temp = er32(PTC1522);
1635
1636         temp = er32(ALGNERRC);
1637         temp = er32(RXERRC);
1638         temp = er32(TNCRS);
1639         temp = er32(CEXTERR);
1640         temp = er32(TSCTC);
1641         temp = er32(TSCTFC);
1642
1643         temp = er32(MGTPRC);
1644         temp = er32(MGTPDC);
1645         temp = er32(MGTPTC);
1646
1647         temp = er32(IAC);
1648         temp = er32(ICRXOC);
1649
1650         temp = er32(ICRXPTC);
1651         temp = er32(ICRXATC);
1652         temp = er32(ICTXPTC);
1653         temp = er32(ICTXATC);
1654         temp = er32(ICTXQEC);
1655         temp = er32(ICTXQMTC);
1656         temp = er32(ICRXDMTC);
1657 }
1658
1659 static struct e1000_mac_operations e82571_mac_ops = {
1660         /* .check_mng_mode: mac type dependent */
1661         /* .check_for_link: media type dependent */
1662         .id_led_init            = e1000e_id_led_init,
1663         .cleanup_led            = e1000e_cleanup_led_generic,
1664         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1665         .get_bus_info           = e1000e_get_bus_info_pcie,
1666         /* .get_link_up_info: media type dependent */
1667         /* .led_on: mac type dependent */
1668         .led_off                = e1000e_led_off_generic,
1669         .update_mc_addr_list    = e1000_update_mc_addr_list_82571,
1670         .reset_hw               = e1000_reset_hw_82571,
1671         .init_hw                = e1000_init_hw_82571,
1672         .setup_link             = e1000_setup_link_82571,
1673         /* .setup_physical_interface: media type dependent */
1674         .setup_led              = e1000e_setup_led_generic,
1675 };
1676
1677 static struct e1000_phy_operations e82_phy_ops_igp = {
1678         .acquire_phy            = e1000_get_hw_semaphore_82571,
1679         .check_reset_block      = e1000e_check_reset_block_generic,
1680         .commit_phy             = NULL,
1681         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1682         .get_cfg_done           = e1000_get_cfg_done_82571,
1683         .get_cable_length       = e1000e_get_cable_length_igp_2,
1684         .get_phy_info           = e1000e_get_phy_info_igp,
1685         .read_phy_reg           = e1000e_read_phy_reg_igp,
1686         .release_phy            = e1000_put_hw_semaphore_82571,
1687         .reset_phy              = e1000e_phy_hw_reset_generic,
1688         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1689         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1690         .write_phy_reg          = e1000e_write_phy_reg_igp,
1691         .cfg_on_link_up         = NULL,
1692 };
1693
1694 static struct e1000_phy_operations e82_phy_ops_m88 = {
1695         .acquire_phy            = e1000_get_hw_semaphore_82571,
1696         .check_reset_block      = e1000e_check_reset_block_generic,
1697         .commit_phy             = e1000e_phy_sw_reset,
1698         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1699         .get_cfg_done           = e1000e_get_cfg_done,
1700         .get_cable_length       = e1000e_get_cable_length_m88,
1701         .get_phy_info           = e1000e_get_phy_info_m88,
1702         .read_phy_reg           = e1000e_read_phy_reg_m88,
1703         .release_phy            = e1000_put_hw_semaphore_82571,
1704         .reset_phy              = e1000e_phy_hw_reset_generic,
1705         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1706         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1707         .write_phy_reg          = e1000e_write_phy_reg_m88,
1708         .cfg_on_link_up         = NULL,
1709 };
1710
1711 static struct e1000_phy_operations e82_phy_ops_bm = {
1712         .acquire_phy            = e1000_get_hw_semaphore_82571,
1713         .check_reset_block      = e1000e_check_reset_block_generic,
1714         .commit_phy             = e1000e_phy_sw_reset,
1715         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1716         .get_cfg_done           = e1000e_get_cfg_done,
1717         .get_cable_length       = e1000e_get_cable_length_m88,
1718         .get_phy_info           = e1000e_get_phy_info_m88,
1719         .read_phy_reg           = e1000e_read_phy_reg_bm2,
1720         .release_phy            = e1000_put_hw_semaphore_82571,
1721         .reset_phy              = e1000e_phy_hw_reset_generic,
1722         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1723         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1724         .write_phy_reg          = e1000e_write_phy_reg_bm2,
1725         .cfg_on_link_up         = NULL,
1726 };
1727
1728 static struct e1000_nvm_operations e82571_nvm_ops = {
1729         .acquire_nvm            = e1000_acquire_nvm_82571,
1730         .read_nvm               = e1000e_read_nvm_eerd,
1731         .release_nvm            = e1000_release_nvm_82571,
1732         .update_nvm             = e1000_update_nvm_checksum_82571,
1733         .valid_led_default      = e1000_valid_led_default_82571,
1734         .validate_nvm           = e1000_validate_nvm_checksum_82571,
1735         .write_nvm              = e1000_write_nvm_82571,
1736 };
1737
1738 struct e1000_info e1000_82571_info = {
1739         .mac                    = e1000_82571,
1740         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1741                                   | FLAG_HAS_JUMBO_FRAMES
1742                                   | FLAG_HAS_WOL
1743                                   | FLAG_APME_IN_CTRL3
1744                                   | FLAG_RX_CSUM_ENABLED
1745                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1746                                   | FLAG_HAS_SMART_POWER_DOWN
1747                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1748                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1749                                   | FLAG_APME_CHECK_PORT_B,
1750         .pba                    = 38,
1751         .max_hw_frame_size      = DEFAULT_JUMBO,
1752         .get_variants           = e1000_get_variants_82571,
1753         .mac_ops                = &e82571_mac_ops,
1754         .phy_ops                = &e82_phy_ops_igp,
1755         .nvm_ops                = &e82571_nvm_ops,
1756 };
1757
1758 struct e1000_info e1000_82572_info = {
1759         .mac                    = e1000_82572,
1760         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1761                                   | FLAG_HAS_JUMBO_FRAMES
1762                                   | FLAG_HAS_WOL
1763                                   | FLAG_APME_IN_CTRL3
1764                                   | FLAG_RX_CSUM_ENABLED
1765                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1766                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1767         .pba                    = 38,
1768         .max_hw_frame_size      = DEFAULT_JUMBO,
1769         .get_variants           = e1000_get_variants_82571,
1770         .mac_ops                = &e82571_mac_ops,
1771         .phy_ops                = &e82_phy_ops_igp,
1772         .nvm_ops                = &e82571_nvm_ops,
1773 };
1774
1775 struct e1000_info e1000_82573_info = {
1776         .mac                    = e1000_82573,
1777         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1778                                   | FLAG_HAS_JUMBO_FRAMES
1779                                   | FLAG_HAS_WOL
1780                                   | FLAG_APME_IN_CTRL3
1781                                   | FLAG_RX_CSUM_ENABLED
1782                                   | FLAG_HAS_SMART_POWER_DOWN
1783                                   | FLAG_HAS_AMT
1784                                   | FLAG_HAS_ERT
1785                                   | FLAG_HAS_SWSM_ON_LOAD,
1786         .pba                    = 20,
1787         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1788         .get_variants           = e1000_get_variants_82571,
1789         .mac_ops                = &e82571_mac_ops,
1790         .phy_ops                = &e82_phy_ops_m88,
1791         .nvm_ops                = &e82571_nvm_ops,
1792 };
1793
1794 struct e1000_info e1000_82574_info = {
1795         .mac                    = e1000_82574,
1796         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1797                                   | FLAG_HAS_MSIX
1798                                   | FLAG_HAS_JUMBO_FRAMES
1799                                   | FLAG_HAS_WOL
1800                                   | FLAG_APME_IN_CTRL3
1801                                   | FLAG_RX_CSUM_ENABLED
1802                                   | FLAG_HAS_SMART_POWER_DOWN
1803                                   | FLAG_HAS_AMT
1804                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1805         .pba                    = 20,
1806         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1807         .get_variants           = e1000_get_variants_82571,
1808         .mac_ops                = &e82571_mac_ops,
1809         .phy_ops                = &e82_phy_ops_bm,
1810         .nvm_ops                = &e82571_nvm_ops,
1811 };
1812
1813 struct e1000_info e1000_82583_info = {
1814         .mac                    = e1000_82583,
1815         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1816                                   | FLAG_HAS_WOL
1817                                   | FLAG_APME_IN_CTRL3
1818                                   | FLAG_RX_CSUM_ENABLED
1819                                   | FLAG_HAS_SMART_POWER_DOWN
1820                                   | FLAG_HAS_AMT
1821                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1822         .pba                    = 20,
1823         .max_hw_frame_size      = DEFAULT_JUMBO,
1824         .get_variants           = e1000_get_variants_82571,
1825         .mac_ops                = &e82571_mac_ops,
1826         .phy_ops                = &e82_phy_ops_bm,
1827         .nvm_ops                = &e82571_nvm_ops,
1828 };
1829