i386: don't check_pgt_cache in flush_tlb_mm
[linux-2.6] / arch / i386 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  *
12  * All EFI Runtime Services are not implemented yet as EFI only
13  * supports physical mode addressing on SoftSDV. This is to be fixed
14  * in a future version.  --drummond 1999-07-20
15  *
16  * Implemented EFI runtime services and virtual mode calls.  --davidm
17  *
18  * Goutham Rao: <goutham.rao@intel.com>
19  *      Skip non-WB memory and ignore empty memory ranges.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/types.h>
26 #include <linux/time.h>
27 #include <linux/spinlock.h>
28 #include <linux/bootmem.h>
29 #include <linux/ioport.h>
30 #include <linux/module.h>
31 #include <linux/efi.h>
32 #include <linux/kexec.h>
33
34 #include <asm/setup.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/desc.h>
40 #include <asm/tlbflush.h>
41
42 #define EFI_DEBUG       0
43 #define PFX             "EFI: "
44
45 extern efi_status_t asmlinkage efi_call_phys(void *, ...);
46
47 struct efi efi;
48 EXPORT_SYMBOL(efi);
49 static struct efi efi_phys;
50 struct efi_memory_map memmap;
51
52 /*
53  * We require an early boot_ioremap mapping mechanism initially
54  */
55 extern void * boot_ioremap(unsigned long, unsigned long);
56
57 /*
58  * To make EFI call EFI runtime service in physical addressing mode we need
59  * prelog/epilog before/after the invocation to disable interrupt, to
60  * claim EFI runtime service handler exclusively and to duplicate a memory in
61  * low memory space say 0 - 3G.
62  */
63
64 static unsigned long efi_rt_eflags;
65 static DEFINE_SPINLOCK(efi_rt_lock);
66 static pgd_t efi_bak_pg_dir_pointer[2];
67
68 static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
69 {
70         unsigned long cr4;
71         unsigned long temp;
72         struct Xgt_desc_struct gdt_descr;
73
74         spin_lock(&efi_rt_lock);
75         local_irq_save(efi_rt_eflags);
76
77         /*
78          * If I don't have PSE, I should just duplicate two entries in page
79          * directory. If I have PSE, I just need to duplicate one entry in
80          * page directory.
81          */
82         cr4 = read_cr4();
83
84         if (cr4 & X86_CR4_PSE) {
85                 efi_bak_pg_dir_pointer[0].pgd =
86                     swapper_pg_dir[pgd_index(0)].pgd;
87                 swapper_pg_dir[0].pgd =
88                     swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
89         } else {
90                 efi_bak_pg_dir_pointer[0].pgd =
91                     swapper_pg_dir[pgd_index(0)].pgd;
92                 efi_bak_pg_dir_pointer[1].pgd =
93                     swapper_pg_dir[pgd_index(0x400000)].pgd;
94                 swapper_pg_dir[pgd_index(0)].pgd =
95                     swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
96                 temp = PAGE_OFFSET + 0x400000;
97                 swapper_pg_dir[pgd_index(0x400000)].pgd =
98                     swapper_pg_dir[pgd_index(temp)].pgd;
99         }
100
101         /*
102          * After the lock is released, the original page table is restored.
103          */
104         local_flush_tlb();
105
106         gdt_descr.address = __pa(get_cpu_gdt_table(0));
107         gdt_descr.size = GDT_SIZE - 1;
108         load_gdt(&gdt_descr);
109 }
110
111 static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
112 {
113         unsigned long cr4;
114         struct Xgt_desc_struct gdt_descr;
115
116         gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
117         gdt_descr.size = GDT_SIZE - 1;
118         load_gdt(&gdt_descr);
119
120         cr4 = read_cr4();
121
122         if (cr4 & X86_CR4_PSE) {
123                 swapper_pg_dir[pgd_index(0)].pgd =
124                     efi_bak_pg_dir_pointer[0].pgd;
125         } else {
126                 swapper_pg_dir[pgd_index(0)].pgd =
127                     efi_bak_pg_dir_pointer[0].pgd;
128                 swapper_pg_dir[pgd_index(0x400000)].pgd =
129                     efi_bak_pg_dir_pointer[1].pgd;
130         }
131
132         /*
133          * After the lock is released, the original page table is restored.
134          */
135         local_flush_tlb();
136
137         local_irq_restore(efi_rt_eflags);
138         spin_unlock(&efi_rt_lock);
139 }
140
141 static efi_status_t
142 phys_efi_set_virtual_address_map(unsigned long memory_map_size,
143                                  unsigned long descriptor_size,
144                                  u32 descriptor_version,
145                                  efi_memory_desc_t *virtual_map)
146 {
147         efi_status_t status;
148
149         efi_call_phys_prelog();
150         status = efi_call_phys(efi_phys.set_virtual_address_map,
151                                      memory_map_size, descriptor_size,
152                                      descriptor_version, virtual_map);
153         efi_call_phys_epilog();
154         return status;
155 }
156
157 static efi_status_t
158 phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
159 {
160         efi_status_t status;
161
162         efi_call_phys_prelog();
163         status = efi_call_phys(efi_phys.get_time, tm, tc);
164         efi_call_phys_epilog();
165         return status;
166 }
167
168 inline int efi_set_rtc_mmss(unsigned long nowtime)
169 {
170         int real_seconds, real_minutes;
171         efi_status_t    status;
172         efi_time_t      eft;
173         efi_time_cap_t  cap;
174
175         spin_lock(&efi_rt_lock);
176         status = efi.get_time(&eft, &cap);
177         spin_unlock(&efi_rt_lock);
178         if (status != EFI_SUCCESS)
179                 panic("Ooops, efitime: can't read time!\n");
180         real_seconds = nowtime % 60;
181         real_minutes = nowtime / 60;
182
183         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
184                 real_minutes += 30;
185         real_minutes %= 60;
186
187         eft.minute = real_minutes;
188         eft.second = real_seconds;
189
190         if (status != EFI_SUCCESS) {
191                 printk("Ooops: efitime: can't read time!\n");
192                 return -1;
193         }
194         return 0;
195 }
196 /*
197  * This is used during kernel init before runtime
198  * services have been remapped and also during suspend, therefore,
199  * we'll need to call both in physical and virtual modes.
200  */
201 inline unsigned long efi_get_time(void)
202 {
203         efi_status_t status;
204         efi_time_t eft;
205         efi_time_cap_t cap;
206
207         if (efi.get_time) {
208                 /* if we are in virtual mode use remapped function */
209                 status = efi.get_time(&eft, &cap);
210         } else {
211                 /* we are in physical mode */
212                 status = phys_efi_get_time(&eft, &cap);
213         }
214
215         if (status != EFI_SUCCESS)
216                 printk("Oops: efitime: can't read time status: 0x%lx\n",status);
217
218         return mktime(eft.year, eft.month, eft.day, eft.hour,
219                         eft.minute, eft.second);
220 }
221
222 int is_available_memory(efi_memory_desc_t * md)
223 {
224         if (!(md->attribute & EFI_MEMORY_WB))
225                 return 0;
226
227         switch (md->type) {
228                 case EFI_LOADER_CODE:
229                 case EFI_LOADER_DATA:
230                 case EFI_BOOT_SERVICES_CODE:
231                 case EFI_BOOT_SERVICES_DATA:
232                 case EFI_CONVENTIONAL_MEMORY:
233                         return 1;
234         }
235         return 0;
236 }
237
238 /*
239  * We need to map the EFI memory map again after paging_init().
240  */
241 void __init efi_map_memmap(void)
242 {
243         memmap.map = NULL;
244
245         memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
246                         (memmap.nr_map * memmap.desc_size));
247         if (memmap.map == NULL)
248                 printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
249
250         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
251 }
252
253 #if EFI_DEBUG
254 static void __init print_efi_memmap(void)
255 {
256         efi_memory_desc_t *md;
257         void *p;
258         int i;
259
260         for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
261                 md = p;
262                 printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
263                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
264                         i, md->type, md->attribute, md->phys_addr,
265                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
266                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
267         }
268 }
269 #endif  /*  EFI_DEBUG  */
270
271 /*
272  * Walks the EFI memory map and calls CALLBACK once for each EFI
273  * memory descriptor that has memory that is available for kernel use.
274  */
275 void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
276 {
277         int prev_valid = 0;
278         struct range {
279                 unsigned long start;
280                 unsigned long end;
281         } prev, curr;
282         efi_memory_desc_t *md;
283         unsigned long start, end;
284         void *p;
285
286         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
287                 md = p;
288
289                 if ((md->num_pages == 0) || (!is_available_memory(md)))
290                         continue;
291
292                 curr.start = md->phys_addr;
293                 curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
294
295                 if (!prev_valid) {
296                         prev = curr;
297                         prev_valid = 1;
298                 } else {
299                         if (curr.start < prev.start)
300                                 printk(KERN_INFO PFX "Unordered memory map\n");
301                         if (prev.end == curr.start)
302                                 prev.end = curr.end;
303                         else {
304                                 start =
305                                     (unsigned long) (PAGE_ALIGN(prev.start));
306                                 end = (unsigned long) (prev.end & PAGE_MASK);
307                                 if ((end > start)
308                                     && (*callback) (start, end, arg) < 0)
309                                         return;
310                                 prev = curr;
311                         }
312                 }
313         }
314         if (prev_valid) {
315                 start = (unsigned long) PAGE_ALIGN(prev.start);
316                 end = (unsigned long) (prev.end & PAGE_MASK);
317                 if (end > start)
318                         (*callback) (start, end, arg);
319         }
320 }
321
322 void __init efi_init(void)
323 {
324         efi_config_table_t *config_tables;
325         efi_runtime_services_t *runtime;
326         efi_char16_t *c16;
327         char vendor[100] = "unknown";
328         unsigned long num_config_tables;
329         int i = 0;
330
331         memset(&efi, 0, sizeof(efi) );
332         memset(&efi_phys, 0, sizeof(efi_phys));
333
334         efi_phys.systab = EFI_SYSTAB;
335         memmap.phys_map = EFI_MEMMAP;
336         memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
337         memmap.desc_version = EFI_MEMDESC_VERSION;
338         memmap.desc_size = EFI_MEMDESC_SIZE;
339
340         efi.systab = (efi_system_table_t *)
341                 boot_ioremap((unsigned long) efi_phys.systab,
342                         sizeof(efi_system_table_t));
343         /*
344          * Verify the EFI Table
345          */
346         if (efi.systab == NULL)
347                 printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
348         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
349                 printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
350         if ((efi.systab->hdr.revision >> 16) == 0)
351                 printk(KERN_ERR PFX "Warning: EFI system table version "
352                        "%d.%02d, expected 1.00 or greater\n",
353                        efi.systab->hdr.revision >> 16,
354                        efi.systab->hdr.revision & 0xffff);
355
356         /*
357          * Grab some details from the system table
358          */
359         num_config_tables = efi.systab->nr_tables;
360         config_tables = (efi_config_table_t *)efi.systab->tables;
361         runtime = efi.systab->runtime;
362
363         /*
364          * Show what we know for posterity
365          */
366         c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
367         if (c16) {
368                 for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
369                         vendor[i] = *c16++;
370                 vendor[i] = '\0';
371         } else
372                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
373
374         printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
375                efi.systab->hdr.revision >> 16,
376                efi.systab->hdr.revision & 0xffff, vendor);
377
378         /*
379          * Let's see what config tables the firmware passed to us.
380          */
381         config_tables = (efi_config_table_t *)
382                                 boot_ioremap((unsigned long) config_tables,
383                                 num_config_tables * sizeof(efi_config_table_t));
384
385         if (config_tables == NULL)
386                 printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
387
388         efi.mps        = EFI_INVALID_TABLE_ADDR;
389         efi.acpi       = EFI_INVALID_TABLE_ADDR;
390         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
391         efi.smbios     = EFI_INVALID_TABLE_ADDR;
392         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
393         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
394         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
395         efi.uga        = EFI_INVALID_TABLE_ADDR;
396
397         for (i = 0; i < num_config_tables; i++) {
398                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
399                         efi.mps = config_tables[i].table;
400                         printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
401                 } else
402                     if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
403                         efi.acpi20 = config_tables[i].table;
404                         printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
405                 } else
406                     if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
407                         efi.acpi = config_tables[i].table;
408                         printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
409                 } else
410                     if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
411                         efi.smbios = config_tables[i].table;
412                         printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
413                 } else
414                     if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
415                         efi.hcdp = config_tables[i].table;
416                         printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
417                 } else
418                     if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
419                         efi.uga = config_tables[i].table;
420                         printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
421                 }
422         }
423         printk("\n");
424
425         /*
426          * Check out the runtime services table. We need to map
427          * the runtime services table so that we can grab the physical
428          * address of several of the EFI runtime functions, needed to
429          * set the firmware into virtual mode.
430          */
431
432         runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
433                                                 runtime,
434                                                 sizeof(efi_runtime_services_t));
435         if (runtime != NULL) {
436                 /*
437                  * We will only need *early* access to the following
438                  * two EFI runtime services before set_virtual_address_map
439                  * is invoked.
440                  */
441                 efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
442                 efi_phys.set_virtual_address_map =
443                         (efi_set_virtual_address_map_t *)
444                                 runtime->set_virtual_address_map;
445         } else
446                 printk(KERN_ERR PFX "Could not map the runtime service table!\n");
447
448         /* Map the EFI memory map for use until paging_init() */
449         memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
450         if (memmap.map == NULL)
451                 printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
452
453         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
454
455 #if EFI_DEBUG
456         print_efi_memmap();
457 #endif
458 }
459
460 static inline void __init check_range_for_systab(efi_memory_desc_t *md)
461 {
462         if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
463                 ((unsigned long)efi_phys.systab < md->phys_addr +
464                 ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
465                 unsigned long addr;
466
467                 addr = md->virt_addr - md->phys_addr +
468                         (unsigned long)efi_phys.systab;
469                 efi.systab = (efi_system_table_t *)addr;
470         }
471 }
472
473 /*
474  * Wrap all the virtual calls in a way that forces the parameters on the stack.
475  */
476
477 #define efi_call_virt(f, args...) \
478      ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
479
480 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
481 {
482         return efi_call_virt(get_time, tm, tc);
483 }
484
485 static efi_status_t virt_efi_set_time (efi_time_t *tm)
486 {
487         return efi_call_virt(set_time, tm);
488 }
489
490 static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
491                                               efi_bool_t *pending,
492                                               efi_time_t *tm)
493 {
494         return efi_call_virt(get_wakeup_time, enabled, pending, tm);
495 }
496
497 static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
498                                               efi_time_t *tm)
499 {
500         return efi_call_virt(set_wakeup_time, enabled, tm);
501 }
502
503 static efi_status_t virt_efi_get_variable (efi_char16_t *name,
504                                            efi_guid_t *vendor, u32 *attr,
505                                            unsigned long *data_size, void *data)
506 {
507         return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
508 }
509
510 static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
511                                                 efi_char16_t *name,
512                                                 efi_guid_t *vendor)
513 {
514         return efi_call_virt(get_next_variable, name_size, name, vendor);
515 }
516
517 static efi_status_t virt_efi_set_variable (efi_char16_t *name,
518                                            efi_guid_t *vendor,
519                                            unsigned long attr,
520                                            unsigned long data_size, void *data)
521 {
522         return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
523 }
524
525 static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
526 {
527         return efi_call_virt(get_next_high_mono_count, count);
528 }
529
530 static void virt_efi_reset_system (int reset_type, efi_status_t status,
531                                    unsigned long data_size,
532                                    efi_char16_t *data)
533 {
534         efi_call_virt(reset_system, reset_type, status, data_size, data);
535 }
536
537 /*
538  * This function will switch the EFI runtime services to virtual mode.
539  * Essentially, look through the EFI memmap and map every region that
540  * has the runtime attribute bit set in its memory descriptor and update
541  * that memory descriptor with the virtual address obtained from ioremap().
542  * This enables the runtime services to be called without having to
543  * thunk back into physical mode for every invocation.
544  */
545
546 void __init efi_enter_virtual_mode(void)
547 {
548         efi_memory_desc_t *md;
549         efi_status_t status;
550         void *p;
551
552         efi.systab = NULL;
553
554         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
555                 md = p;
556
557                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
558                         continue;
559
560                 md->virt_addr = (unsigned long)ioremap(md->phys_addr,
561                         md->num_pages << EFI_PAGE_SHIFT);
562                 if (!(unsigned long)md->virt_addr) {
563                         printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
564                                 (unsigned long)md->phys_addr);
565                 }
566                 /* update the virtual address of the EFI system table */
567                 check_range_for_systab(md);
568         }
569
570         BUG_ON(!efi.systab);
571
572         status = phys_efi_set_virtual_address_map(
573                         memmap.desc_size * memmap.nr_map,
574                         memmap.desc_size,
575                         memmap.desc_version,
576                         memmap.phys_map);
577
578         if (status != EFI_SUCCESS) {
579                 printk (KERN_ALERT "You are screwed! "
580                         "Unable to switch EFI into virtual mode "
581                         "(status=%lx)\n", status);
582                 panic("EFI call to SetVirtualAddressMap() failed!");
583         }
584
585         /*
586          * Now that EFI is in virtual mode, update the function
587          * pointers in the runtime service table to the new virtual addresses.
588          */
589
590         efi.get_time = virt_efi_get_time;
591         efi.set_time = virt_efi_set_time;
592         efi.get_wakeup_time = virt_efi_get_wakeup_time;
593         efi.set_wakeup_time = virt_efi_set_wakeup_time;
594         efi.get_variable = virt_efi_get_variable;
595         efi.get_next_variable = virt_efi_get_next_variable;
596         efi.set_variable = virt_efi_set_variable;
597         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
598         efi.reset_system = virt_efi_reset_system;
599 }
600
601 void __init
602 efi_initialize_iomem_resources(struct resource *code_resource,
603                                struct resource *data_resource)
604 {
605         struct resource *res;
606         efi_memory_desc_t *md;
607         void *p;
608
609         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
610                 md = p;
611
612                 if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
613                     0x100000000ULL)
614                         continue;
615                 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
616                 switch (md->type) {
617                 case EFI_RESERVED_TYPE:
618                         res->name = "Reserved Memory";
619                         break;
620                 case EFI_LOADER_CODE:
621                         res->name = "Loader Code";
622                         break;
623                 case EFI_LOADER_DATA:
624                         res->name = "Loader Data";
625                         break;
626                 case EFI_BOOT_SERVICES_DATA:
627                         res->name = "BootServices Data";
628                         break;
629                 case EFI_BOOT_SERVICES_CODE:
630                         res->name = "BootServices Code";
631                         break;
632                 case EFI_RUNTIME_SERVICES_CODE:
633                         res->name = "Runtime Service Code";
634                         break;
635                 case EFI_RUNTIME_SERVICES_DATA:
636                         res->name = "Runtime Service Data";
637                         break;
638                 case EFI_CONVENTIONAL_MEMORY:
639                         res->name = "Conventional Memory";
640                         break;
641                 case EFI_UNUSABLE_MEMORY:
642                         res->name = "Unusable Memory";
643                         break;
644                 case EFI_ACPI_RECLAIM_MEMORY:
645                         res->name = "ACPI Reclaim";
646                         break;
647                 case EFI_ACPI_MEMORY_NVS:
648                         res->name = "ACPI NVS";
649                         break;
650                 case EFI_MEMORY_MAPPED_IO:
651                         res->name = "Memory Mapped IO";
652                         break;
653                 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
654                         res->name = "Memory Mapped IO Port Space";
655                         break;
656                 default:
657                         res->name = "Reserved";
658                         break;
659                 }
660                 res->start = md->phys_addr;
661                 res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
662                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
663                 if (request_resource(&iomem_resource, res) < 0)
664                         printk(KERN_ERR PFX "Failed to allocate res %s : "
665                                 "0x%llx-0x%llx\n", res->name,
666                                 (unsigned long long)res->start,
667                                 (unsigned long long)res->end);
668                 /*
669                  * We don't know which region contains kernel data so we try
670                  * it repeatedly and let the resource manager test it.
671                  */
672                 if (md->type == EFI_CONVENTIONAL_MEMORY) {
673                         request_resource(res, code_resource);
674                         request_resource(res, data_resource);
675 #ifdef CONFIG_KEXEC
676                         request_resource(res, &crashk_res);
677 #endif
678                 }
679         }
680 }
681
682 /*
683  * Convenience functions to obtain memory types and attributes
684  */
685
686 u32 efi_mem_type(unsigned long phys_addr)
687 {
688         efi_memory_desc_t *md;
689         void *p;
690
691         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
692                 md = p;
693                 if ((md->phys_addr <= phys_addr) && (phys_addr <
694                         (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
695                         return md->type;
696         }
697         return 0;
698 }
699
700 u64 efi_mem_attributes(unsigned long phys_addr)
701 {
702         efi_memory_desc_t *md;
703         void *p;
704
705         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
706                 md = p;
707                 if ((md->phys_addr <= phys_addr) && (phys_addr <
708                         (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
709                         return md->attribute;
710         }
711         return 0;
712 }