Merge branch 'linus' into x86/gart
[linux-2.6] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92
93 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
94 int sysctl_tcp_abc __read_mostly;
95
96 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
97 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
98 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
99 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
100 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
101 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
102 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
103 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
104 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
105 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
107 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
108 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
110
111 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
112 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
113 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
114 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
115 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
124 {
125         struct inet_connection_sock *icsk = inet_csk(sk);
126         const unsigned int lss = icsk->icsk_ack.last_seg_size;
127         unsigned int len;
128
129         icsk->icsk_ack.last_seg_size = 0;
130
131         /* skb->len may jitter because of SACKs, even if peer
132          * sends good full-sized frames.
133          */
134         len = skb_shinfo(skb)->gso_size ? : skb->len;
135         if (len >= icsk->icsk_ack.rcv_mss) {
136                 icsk->icsk_ack.rcv_mss = len;
137         } else {
138                 /* Otherwise, we make more careful check taking into account,
139                  * that SACKs block is variable.
140                  *
141                  * "len" is invariant segment length, including TCP header.
142                  */
143                 len += skb->data - skb_transport_header(skb);
144                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145                     /* If PSH is not set, packet should be
146                      * full sized, provided peer TCP is not badly broken.
147                      * This observation (if it is correct 8)) allows
148                      * to handle super-low mtu links fairly.
149                      */
150                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152                         /* Subtract also invariant (if peer is RFC compliant),
153                          * tcp header plus fixed timestamp option length.
154                          * Resulting "len" is MSS free of SACK jitter.
155                          */
156                         len -= tcp_sk(sk)->tcp_header_len;
157                         icsk->icsk_ack.last_seg_size = len;
158                         if (len == lss) {
159                                 icsk->icsk_ack.rcv_mss = len;
160                                 return;
161                         }
162                 }
163                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166         }
167 }
168
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171         struct inet_connection_sock *icsk = inet_csk(sk);
172         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174         if (quickacks == 0)
175                 quickacks = 2;
176         if (quickacks > icsk->icsk_ack.quick)
177                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182         struct inet_connection_sock *icsk = inet_csk(sk);
183         tcp_incr_quickack(sk);
184         icsk->icsk_ack.pingpong = 0;
185         icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187
188 /* Send ACKs quickly, if "quick" count is not exhausted
189  * and the session is not interactive.
190  */
191
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194         const struct inet_connection_sock *icsk = inet_csk(sk);
195         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197
198 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199 {
200         if (tp->ecn_flags & TCP_ECN_OK)
201                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 }
203
204 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205 {
206         if (tcp_hdr(skb)->cwr)
207                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 }
209
210 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211 {
212         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216 {
217         if (tp->ecn_flags & TCP_ECN_OK) {
218                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
219                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
220                 /* Funny extension: if ECT is not set on a segment,
221                  * it is surely retransmit. It is not in ECN RFC,
222                  * but Linux follows this rule. */
223                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
224                         tcp_enter_quickack_mode((struct sock *)tp);
225         }
226 }
227
228 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229 {
230         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
231                 tp->ecn_flags &= ~TCP_ECN_OK;
232 }
233
234 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235 {
236         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
237                 tp->ecn_flags &= ~TCP_ECN_OK;
238 }
239
240 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241 {
242         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
243                 return 1;
244         return 0;
245 }
246
247 /* Buffer size and advertised window tuning.
248  *
249  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250  */
251
252 static void tcp_fixup_sndbuf(struct sock *sk)
253 {
254         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
255                      sizeof(struct sk_buff);
256
257         if (sk->sk_sndbuf < 3 * sndmem)
258                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 }
260
261 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262  *
263  * All tcp_full_space() is split to two parts: "network" buffer, allocated
264  * forward and advertised in receiver window (tp->rcv_wnd) and
265  * "application buffer", required to isolate scheduling/application
266  * latencies from network.
267  * window_clamp is maximal advertised window. It can be less than
268  * tcp_full_space(), in this case tcp_full_space() - window_clamp
269  * is reserved for "application" buffer. The less window_clamp is
270  * the smoother our behaviour from viewpoint of network, but the lower
271  * throughput and the higher sensitivity of the connection to losses. 8)
272  *
273  * rcv_ssthresh is more strict window_clamp used at "slow start"
274  * phase to predict further behaviour of this connection.
275  * It is used for two goals:
276  * - to enforce header prediction at sender, even when application
277  *   requires some significant "application buffer". It is check #1.
278  * - to prevent pruning of receive queue because of misprediction
279  *   of receiver window. Check #2.
280  *
281  * The scheme does not work when sender sends good segments opening
282  * window and then starts to feed us spaghetti. But it should work
283  * in common situations. Otherwise, we have to rely on queue collapsing.
284  */
285
286 /* Slow part of check#2. */
287 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288 {
289         struct tcp_sock *tp = tcp_sk(sk);
290         /* Optimize this! */
291         int truesize = tcp_win_from_space(skb->truesize) >> 1;
292         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
293
294         while (tp->rcv_ssthresh <= window) {
295                 if (truesize <= skb->len)
296                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
297
298                 truesize >>= 1;
299                 window >>= 1;
300         }
301         return 0;
302 }
303
304 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
305 {
306         struct tcp_sock *tp = tcp_sk(sk);
307
308         /* Check #1 */
309         if (tp->rcv_ssthresh < tp->window_clamp &&
310             (int)tp->rcv_ssthresh < tcp_space(sk) &&
311             !tcp_memory_pressure) {
312                 int incr;
313
314                 /* Check #2. Increase window, if skb with such overhead
315                  * will fit to rcvbuf in future.
316                  */
317                 if (tcp_win_from_space(skb->truesize) <= skb->len)
318                         incr = 2 * tp->advmss;
319                 else
320                         incr = __tcp_grow_window(sk, skb);
321
322                 if (incr) {
323                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
324                                                tp->window_clamp);
325                         inet_csk(sk)->icsk_ack.quick |= 1;
326                 }
327         }
328 }
329
330 /* 3. Tuning rcvbuf, when connection enters established state. */
331
332 static void tcp_fixup_rcvbuf(struct sock *sk)
333 {
334         struct tcp_sock *tp = tcp_sk(sk);
335         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336
337         /* Try to select rcvbuf so that 4 mss-sized segments
338          * will fit to window and corresponding skbs will fit to our rcvbuf.
339          * (was 3; 4 is minimum to allow fast retransmit to work.)
340          */
341         while (tcp_win_from_space(rcvmem) < tp->advmss)
342                 rcvmem += 128;
343         if (sk->sk_rcvbuf < 4 * rcvmem)
344                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 }
346
347 /* 4. Try to fixup all. It is made immediately after connection enters
348  *    established state.
349  */
350 static void tcp_init_buffer_space(struct sock *sk)
351 {
352         struct tcp_sock *tp = tcp_sk(sk);
353         int maxwin;
354
355         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
356                 tcp_fixup_rcvbuf(sk);
357         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
358                 tcp_fixup_sndbuf(sk);
359
360         tp->rcvq_space.space = tp->rcv_wnd;
361
362         maxwin = tcp_full_space(sk);
363
364         if (tp->window_clamp >= maxwin) {
365                 tp->window_clamp = maxwin;
366
367                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
368                         tp->window_clamp = max(maxwin -
369                                                (maxwin >> sysctl_tcp_app_win),
370                                                4 * tp->advmss);
371         }
372
373         /* Force reservation of one segment. */
374         if (sysctl_tcp_app_win &&
375             tp->window_clamp > 2 * tp->advmss &&
376             tp->window_clamp + tp->advmss > maxwin)
377                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378
379         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
380         tp->snd_cwnd_stamp = tcp_time_stamp;
381 }
382
383 /* 5. Recalculate window clamp after socket hit its memory bounds. */
384 static void tcp_clamp_window(struct sock *sk)
385 {
386         struct tcp_sock *tp = tcp_sk(sk);
387         struct inet_connection_sock *icsk = inet_csk(sk);
388
389         icsk->icsk_ack.quick = 0;
390
391         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
392             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
393             !tcp_memory_pressure &&
394             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
395                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
396                                     sysctl_tcp_rmem[2]);
397         }
398         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
399                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 }
401
402 /* Initialize RCV_MSS value.
403  * RCV_MSS is an our guess about MSS used by the peer.
404  * We haven't any direct information about the MSS.
405  * It's better to underestimate the RCV_MSS rather than overestimate.
406  * Overestimations make us ACKing less frequently than needed.
407  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408  */
409 void tcp_initialize_rcv_mss(struct sock *sk)
410 {
411         struct tcp_sock *tp = tcp_sk(sk);
412         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
413
414         hint = min(hint, tp->rcv_wnd / 2);
415         hint = min(hint, TCP_MIN_RCVMSS);
416         hint = max(hint, TCP_MIN_MSS);
417
418         inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 }
420
421 /* Receiver "autotuning" code.
422  *
423  * The algorithm for RTT estimation w/o timestamps is based on
424  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
425  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426  *
427  * More detail on this code can be found at
428  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
429  * though this reference is out of date.  A new paper
430  * is pending.
431  */
432 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
433 {
434         u32 new_sample = tp->rcv_rtt_est.rtt;
435         long m = sample;
436
437         if (m == 0)
438                 m = 1;
439
440         if (new_sample != 0) {
441                 /* If we sample in larger samples in the non-timestamp
442                  * case, we could grossly overestimate the RTT especially
443                  * with chatty applications or bulk transfer apps which
444                  * are stalled on filesystem I/O.
445                  *
446                  * Also, since we are only going for a minimum in the
447                  * non-timestamp case, we do not smooth things out
448                  * else with timestamps disabled convergence takes too
449                  * long.
450                  */
451                 if (!win_dep) {
452                         m -= (new_sample >> 3);
453                         new_sample += m;
454                 } else if (m < new_sample)
455                         new_sample = m << 3;
456         } else {
457                 /* No previous measure. */
458                 new_sample = m << 3;
459         }
460
461         if (tp->rcv_rtt_est.rtt != new_sample)
462                 tp->rcv_rtt_est.rtt = new_sample;
463 }
464
465 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
466 {
467         if (tp->rcv_rtt_est.time == 0)
468                 goto new_measure;
469         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
470                 return;
471         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
472
473 new_measure:
474         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
475         tp->rcv_rtt_est.time = tcp_time_stamp;
476 }
477
478 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
479                                           const struct sk_buff *skb)
480 {
481         struct tcp_sock *tp = tcp_sk(sk);
482         if (tp->rx_opt.rcv_tsecr &&
483             (TCP_SKB_CB(skb)->end_seq -
484              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
485                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
486 }
487
488 /*
489  * This function should be called every time data is copied to user space.
490  * It calculates the appropriate TCP receive buffer space.
491  */
492 void tcp_rcv_space_adjust(struct sock *sk)
493 {
494         struct tcp_sock *tp = tcp_sk(sk);
495         int time;
496         int space;
497
498         if (tp->rcvq_space.time == 0)
499                 goto new_measure;
500
501         time = tcp_time_stamp - tp->rcvq_space.time;
502         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
503                 return;
504
505         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
506
507         space = max(tp->rcvq_space.space, space);
508
509         if (tp->rcvq_space.space != space) {
510                 int rcvmem;
511
512                 tp->rcvq_space.space = space;
513
514                 if (sysctl_tcp_moderate_rcvbuf &&
515                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
516                         int new_clamp = space;
517
518                         /* Receive space grows, normalize in order to
519                          * take into account packet headers and sk_buff
520                          * structure overhead.
521                          */
522                         space /= tp->advmss;
523                         if (!space)
524                                 space = 1;
525                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
526                                   16 + sizeof(struct sk_buff));
527                         while (tcp_win_from_space(rcvmem) < tp->advmss)
528                                 rcvmem += 128;
529                         space *= rcvmem;
530                         space = min(space, sysctl_tcp_rmem[2]);
531                         if (space > sk->sk_rcvbuf) {
532                                 sk->sk_rcvbuf = space;
533
534                                 /* Make the window clamp follow along.  */
535                                 tp->window_clamp = new_clamp;
536                         }
537                 }
538         }
539
540 new_measure:
541         tp->rcvq_space.seq = tp->copied_seq;
542         tp->rcvq_space.time = tcp_time_stamp;
543 }
544
545 /* There is something which you must keep in mind when you analyze the
546  * behavior of the tp->ato delayed ack timeout interval.  When a
547  * connection starts up, we want to ack as quickly as possible.  The
548  * problem is that "good" TCP's do slow start at the beginning of data
549  * transmission.  The means that until we send the first few ACK's the
550  * sender will sit on his end and only queue most of his data, because
551  * he can only send snd_cwnd unacked packets at any given time.  For
552  * each ACK we send, he increments snd_cwnd and transmits more of his
553  * queue.  -DaveM
554  */
555 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
556 {
557         struct tcp_sock *tp = tcp_sk(sk);
558         struct inet_connection_sock *icsk = inet_csk(sk);
559         u32 now;
560
561         inet_csk_schedule_ack(sk);
562
563         tcp_measure_rcv_mss(sk, skb);
564
565         tcp_rcv_rtt_measure(tp);
566
567         now = tcp_time_stamp;
568
569         if (!icsk->icsk_ack.ato) {
570                 /* The _first_ data packet received, initialize
571                  * delayed ACK engine.
572                  */
573                 tcp_incr_quickack(sk);
574                 icsk->icsk_ack.ato = TCP_ATO_MIN;
575         } else {
576                 int m = now - icsk->icsk_ack.lrcvtime;
577
578                 if (m <= TCP_ATO_MIN / 2) {
579                         /* The fastest case is the first. */
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
581                 } else if (m < icsk->icsk_ack.ato) {
582                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
583                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
584                                 icsk->icsk_ack.ato = icsk->icsk_rto;
585                 } else if (m > icsk->icsk_rto) {
586                         /* Too long gap. Apparently sender failed to
587                          * restart window, so that we send ACKs quickly.
588                          */
589                         tcp_incr_quickack(sk);
590                         sk_mem_reclaim(sk);
591                 }
592         }
593         icsk->icsk_ack.lrcvtime = now;
594
595         TCP_ECN_check_ce(tp, skb);
596
597         if (skb->len >= 128)
598                 tcp_grow_window(sk, skb);
599 }
600
601 static u32 tcp_rto_min(struct sock *sk)
602 {
603         struct dst_entry *dst = __sk_dst_get(sk);
604         u32 rto_min = TCP_RTO_MIN;
605
606         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
607                 rto_min = dst_metric(dst, RTAX_RTO_MIN);
608         return rto_min;
609 }
610
611 /* Called to compute a smoothed rtt estimate. The data fed to this
612  * routine either comes from timestamps, or from segments that were
613  * known _not_ to have been retransmitted [see Karn/Partridge
614  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
615  * piece by Van Jacobson.
616  * NOTE: the next three routines used to be one big routine.
617  * To save cycles in the RFC 1323 implementation it was better to break
618  * it up into three procedures. -- erics
619  */
620 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621 {
622         struct tcp_sock *tp = tcp_sk(sk);
623         long m = mrtt; /* RTT */
624
625         /*      The following amusing code comes from Jacobson's
626          *      article in SIGCOMM '88.  Note that rtt and mdev
627          *      are scaled versions of rtt and mean deviation.
628          *      This is designed to be as fast as possible
629          *      m stands for "measurement".
630          *
631          *      On a 1990 paper the rto value is changed to:
632          *      RTO = rtt + 4 * mdev
633          *
634          * Funny. This algorithm seems to be very broken.
635          * These formulae increase RTO, when it should be decreased, increase
636          * too slowly, when it should be increased quickly, decrease too quickly
637          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
638          * does not matter how to _calculate_ it. Seems, it was trap
639          * that VJ failed to avoid. 8)
640          */
641         if (m == 0)
642                 m = 1;
643         if (tp->srtt != 0) {
644                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
645                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
646                 if (m < 0) {
647                         m = -m;         /* m is now abs(error) */
648                         m -= (tp->mdev >> 2);   /* similar update on mdev */
649                         /* This is similar to one of Eifel findings.
650                          * Eifel blocks mdev updates when rtt decreases.
651                          * This solution is a bit different: we use finer gain
652                          * for mdev in this case (alpha*beta).
653                          * Like Eifel it also prevents growth of rto,
654                          * but also it limits too fast rto decreases,
655                          * happening in pure Eifel.
656                          */
657                         if (m > 0)
658                                 m >>= 3;
659                 } else {
660                         m -= (tp->mdev >> 2);   /* similar update on mdev */
661                 }
662                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
663                 if (tp->mdev > tp->mdev_max) {
664                         tp->mdev_max = tp->mdev;
665                         if (tp->mdev_max > tp->rttvar)
666                                 tp->rttvar = tp->mdev_max;
667                 }
668                 if (after(tp->snd_una, tp->rtt_seq)) {
669                         if (tp->mdev_max < tp->rttvar)
670                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
671                         tp->rtt_seq = tp->snd_nxt;
672                         tp->mdev_max = tcp_rto_min(sk);
673                 }
674         } else {
675                 /* no previous measure. */
676                 tp->srtt = m << 3;      /* take the measured time to be rtt */
677                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
678                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
679                 tp->rtt_seq = tp->snd_nxt;
680         }
681 }
682
683 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
684  * routine referred to above.
685  */
686 static inline void tcp_set_rto(struct sock *sk)
687 {
688         const struct tcp_sock *tp = tcp_sk(sk);
689         /* Old crap is replaced with new one. 8)
690          *
691          * More seriously:
692          * 1. If rtt variance happened to be less 50msec, it is hallucination.
693          *    It cannot be less due to utterly erratic ACK generation made
694          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
695          *    to do with delayed acks, because at cwnd>2 true delack timeout
696          *    is invisible. Actually, Linux-2.4 also generates erratic
697          *    ACKs in some circumstances.
698          */
699         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
700
701         /* 2. Fixups made earlier cannot be right.
702          *    If we do not estimate RTO correctly without them,
703          *    all the algo is pure shit and should be replaced
704          *    with correct one. It is exactly, which we pretend to do.
705          */
706 }
707
708 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
709  * guarantees that rto is higher.
710  */
711 static inline void tcp_bound_rto(struct sock *sk)
712 {
713         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
714                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 }
716
717 /* Save metrics learned by this TCP session.
718    This function is called only, when TCP finishes successfully
719    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
720  */
721 void tcp_update_metrics(struct sock *sk)
722 {
723         struct tcp_sock *tp = tcp_sk(sk);
724         struct dst_entry *dst = __sk_dst_get(sk);
725
726         if (sysctl_tcp_nometrics_save)
727                 return;
728
729         dst_confirm(dst);
730
731         if (dst && (dst->flags & DST_HOST)) {
732                 const struct inet_connection_sock *icsk = inet_csk(sk);
733                 int m;
734
735                 if (icsk->icsk_backoff || !tp->srtt) {
736                         /* This session failed to estimate rtt. Why?
737                          * Probably, no packets returned in time.
738                          * Reset our results.
739                          */
740                         if (!(dst_metric_locked(dst, RTAX_RTT)))
741                                 dst->metrics[RTAX_RTT - 1] = 0;
742                         return;
743                 }
744
745                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
754                         else
755                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         if (m < 0)
760                                 m = -m;
761
762                         /* Scale deviation to rttvar fixed point */
763                         m >>= 1;
764                         if (m < tp->mdev)
765                                 m = tp->mdev;
766
767                         if (m >= dst_metric(dst, RTAX_RTTVAR))
768                                 dst->metrics[RTAX_RTTVAR - 1] = m;
769                         else
770                                 dst->metrics[RTAX_RTTVAR-1] -=
771                                         (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
772                 }
773
774                 if (tp->snd_ssthresh >= 0xFFFF) {
775                         /* Slow start still did not finish. */
776                         if (dst_metric(dst, RTAX_SSTHRESH) &&
777                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780                         if (!dst_metric_locked(dst, RTAX_CWND) &&
781                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784                            icsk->icsk_ca_state == TCP_CA_Open) {
785                         /* Cong. avoidance phase, cwnd is reliable. */
786                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787                                 dst->metrics[RTAX_SSTHRESH-1] =
788                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789                         if (!dst_metric_locked(dst, RTAX_CWND))
790                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791                 } else {
792                         /* Else slow start did not finish, cwnd is non-sense,
793                            ssthresh may be also invalid.
794                          */
795                         if (!dst_metric_locked(dst, RTAX_CWND))
796                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797                         if (dst_metric(dst, RTAX_SSTHRESH) &&
798                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801                 }
802
803                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805                             tp->reordering != sysctl_tcp_reordering)
806                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807                 }
808         }
809 }
810
811 /* Numbers are taken from RFC3390.
812  *
813  * John Heffner states:
814  *
815  *      The RFC specifies a window of no more than 4380 bytes
816  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
817  *      is a bit misleading because they use a clamp at 4380 bytes
818  *      rather than use a multiplier in the relevant range.
819  */
820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 {
822         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823
824         if (!cwnd) {
825                 if (tp->mss_cache > 1460)
826                         cwnd = 2;
827                 else
828                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829         }
830         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835 {
836         struct tcp_sock *tp = tcp_sk(sk);
837         const struct inet_connection_sock *icsk = inet_csk(sk);
838
839         tp->prior_ssthresh = 0;
840         tp->bytes_acked = 0;
841         if (icsk->icsk_ca_state < TCP_CA_CWR) {
842                 tp->undo_marker = 0;
843                 if (set_ssthresh)
844                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845                 tp->snd_cwnd = min(tp->snd_cwnd,
846                                    tcp_packets_in_flight(tp) + 1U);
847                 tp->snd_cwnd_cnt = 0;
848                 tp->high_seq = tp->snd_nxt;
849                 tp->snd_cwnd_stamp = tcp_time_stamp;
850                 TCP_ECN_queue_cwr(tp);
851
852                 tcp_set_ca_state(sk, TCP_CA_CWR);
853         }
854 }
855
856 /*
857  * Packet counting of FACK is based on in-order assumptions, therefore TCP
858  * disables it when reordering is detected
859  */
860 static void tcp_disable_fack(struct tcp_sock *tp)
861 {
862         /* RFC3517 uses different metric in lost marker => reset on change */
863         if (tcp_is_fack(tp))
864                 tp->lost_skb_hint = NULL;
865         tp->rx_opt.sack_ok &= ~2;
866 }
867
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871         tp->rx_opt.sack_ok |= 4;
872 }
873
874 /* Initialize metrics on socket. */
875
876 static void tcp_init_metrics(struct sock *sk)
877 {
878         struct tcp_sock *tp = tcp_sk(sk);
879         struct dst_entry *dst = __sk_dst_get(sk);
880
881         if (dst == NULL)
882                 goto reset;
883
884         dst_confirm(dst);
885
886         if (dst_metric_locked(dst, RTAX_CWND))
887                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888         if (dst_metric(dst, RTAX_SSTHRESH)) {
889                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
892         }
893         if (dst_metric(dst, RTAX_REORDERING) &&
894             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895                 tcp_disable_fack(tp);
896                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
897         }
898
899         if (dst_metric(dst, RTAX_RTT) == 0)
900                 goto reset;
901
902         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903                 goto reset;
904
905         /* Initial rtt is determined from SYN,SYN-ACK.
906          * The segment is small and rtt may appear much
907          * less than real one. Use per-dst memory
908          * to make it more realistic.
909          *
910          * A bit of theory. RTT is time passed after "normal" sized packet
911          * is sent until it is ACKed. In normal circumstances sending small
912          * packets force peer to delay ACKs and calculation is correct too.
913          * The algorithm is adaptive and, provided we follow specs, it
914          * NEVER underestimate RTT. BUT! If peer tries to make some clever
915          * tricks sort of "quick acks" for time long enough to decrease RTT
916          * to low value, and then abruptly stops to do it and starts to delay
917          * ACKs, wait for troubles.
918          */
919         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
920                 tp->srtt = dst_metric(dst, RTAX_RTT);
921                 tp->rtt_seq = tp->snd_nxt;
922         }
923         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
924                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
925                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926         }
927         tcp_set_rto(sk);
928         tcp_bound_rto(sk);
929         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930                 goto reset;
931         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932         tp->snd_cwnd_stamp = tcp_time_stamp;
933         return;
934
935 reset:
936         /* Play conservative. If timestamps are not
937          * supported, TCP will fail to recalculate correct
938          * rtt, if initial rto is too small. FORGET ALL AND RESET!
939          */
940         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941                 tp->srtt = 0;
942                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
944         }
945 }
946
947 static void tcp_update_reordering(struct sock *sk, const int metric,
948                                   const int ts)
949 {
950         struct tcp_sock *tp = tcp_sk(sk);
951         if (metric > tp->reordering) {
952                 tp->reordering = min(TCP_MAX_REORDERING, metric);
953
954                 /* This exciting event is worth to be remembered. 8) */
955                 if (ts)
956                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
957                 else if (tcp_is_reno(tp))
958                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
959                 else if (tcp_is_fack(tp))
960                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
961                 else
962                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
963 #if FASTRETRANS_DEBUG > 1
964                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
965                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
966                        tp->reordering,
967                        tp->fackets_out,
968                        tp->sacked_out,
969                        tp->undo_marker ? tp->undo_retrans : 0);
970 #endif
971                 tcp_disable_fack(tp);
972         }
973 }
974
975 /* This procedure tags the retransmission queue when SACKs arrive.
976  *
977  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
978  * Packets in queue with these bits set are counted in variables
979  * sacked_out, retrans_out and lost_out, correspondingly.
980  *
981  * Valid combinations are:
982  * Tag  InFlight        Description
983  * 0    1               - orig segment is in flight.
984  * S    0               - nothing flies, orig reached receiver.
985  * L    0               - nothing flies, orig lost by net.
986  * R    2               - both orig and retransmit are in flight.
987  * L|R  1               - orig is lost, retransmit is in flight.
988  * S|R  1               - orig reached receiver, retrans is still in flight.
989  * (L|S|R is logically valid, it could occur when L|R is sacked,
990  *  but it is equivalent to plain S and code short-curcuits it to S.
991  *  L|S is logically invalid, it would mean -1 packet in flight 8))
992  *
993  * These 6 states form finite state machine, controlled by the following events:
994  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
995  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
996  * 3. Loss detection event of one of three flavors:
997  *      A. Scoreboard estimator decided the packet is lost.
998  *         A'. Reno "three dupacks" marks head of queue lost.
999  *         A''. Its FACK modfication, head until snd.fack is lost.
1000  *      B. SACK arrives sacking data transmitted after never retransmitted
1001  *         hole was sent out.
1002  *      C. SACK arrives sacking SND.NXT at the moment, when the
1003  *         segment was retransmitted.
1004  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005  *
1006  * It is pleasant to note, that state diagram turns out to be commutative,
1007  * so that we are allowed not to be bothered by order of our actions,
1008  * when multiple events arrive simultaneously. (see the function below).
1009  *
1010  * Reordering detection.
1011  * --------------------
1012  * Reordering metric is maximal distance, which a packet can be displaced
1013  * in packet stream. With SACKs we can estimate it:
1014  *
1015  * 1. SACK fills old hole and the corresponding segment was not
1016  *    ever retransmitted -> reordering. Alas, we cannot use it
1017  *    when segment was retransmitted.
1018  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019  *    for retransmitted and already SACKed segment -> reordering..
1020  * Both of these heuristics are not used in Loss state, when we cannot
1021  * account for retransmits accurately.
1022  *
1023  * SACK block validation.
1024  * ----------------------
1025  *
1026  * SACK block range validation checks that the received SACK block fits to
1027  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028  * Note that SND.UNA is not included to the range though being valid because
1029  * it means that the receiver is rather inconsistent with itself reporting
1030  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031  * perfectly valid, however, in light of RFC2018 which explicitly states
1032  * that "SACK block MUST reflect the newest segment.  Even if the newest
1033  * segment is going to be discarded ...", not that it looks very clever
1034  * in case of head skb. Due to potentional receiver driven attacks, we
1035  * choose to avoid immediate execution of a walk in write queue due to
1036  * reneging and defer head skb's loss recovery to standard loss recovery
1037  * procedure that will eventually trigger (nothing forbids us doing this).
1038  *
1039  * Implements also blockage to start_seq wrap-around. Problem lies in the
1040  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041  * there's no guarantee that it will be before snd_nxt (n). The problem
1042  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1043  * wrap (s_w):
1044  *
1045  *         <- outs wnd ->                          <- wrapzone ->
1046  *         u     e      n                         u_w   e_w  s n_w
1047  *         |     |      |                          |     |   |  |
1048  * |<------------+------+----- TCP seqno space --------------+---------->|
1049  * ...-- <2^31 ->|                                           |<--------...
1050  * ...---- >2^31 ------>|                                    |<--------...
1051  *
1052  * Current code wouldn't be vulnerable but it's better still to discard such
1053  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056  * equal to the ideal case (infinite seqno space without wrap caused issues).
1057  *
1058  * With D-SACK the lower bound is extended to cover sequence space below
1059  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060  * again, D-SACK block must not to go across snd_una (for the same reason as
1061  * for the normal SACK blocks, explained above). But there all simplicity
1062  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063  * fully below undo_marker they do not affect behavior in anyway and can
1064  * therefore be safely ignored. In rare cases (which are more or less
1065  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066  * fragmentation and packet reordering past skb's retransmission. To consider
1067  * them correctly, the acceptable range must be extended even more though
1068  * the exact amount is rather hard to quantify. However, tp->max_window can
1069  * be used as an exaggerated estimate.
1070  */
1071 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1072                                   u32 start_seq, u32 end_seq)
1073 {
1074         /* Too far in future, or reversed (interpretation is ambiguous) */
1075         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1076                 return 0;
1077
1078         /* Nasty start_seq wrap-around check (see comments above) */
1079         if (!before(start_seq, tp->snd_nxt))
1080                 return 0;
1081
1082         /* In outstanding window? ...This is valid exit for D-SACKs too.
1083          * start_seq == snd_una is non-sensical (see comments above)
1084          */
1085         if (after(start_seq, tp->snd_una))
1086                 return 1;
1087
1088         if (!is_dsack || !tp->undo_marker)
1089                 return 0;
1090
1091         /* ...Then it's D-SACK, and must reside below snd_una completely */
1092         if (!after(end_seq, tp->snd_una))
1093                 return 0;
1094
1095         if (!before(start_seq, tp->undo_marker))
1096                 return 1;
1097
1098         /* Too old */
1099         if (!after(end_seq, tp->undo_marker))
1100                 return 0;
1101
1102         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1103          *   start_seq < undo_marker and end_seq >= undo_marker.
1104          */
1105         return !before(start_seq, end_seq - tp->max_window);
1106 }
1107
1108 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1109  * Event "C". Later note: FACK people cheated me again 8), we have to account
1110  * for reordering! Ugly, but should help.
1111  *
1112  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1113  * less than what is now known to be received by the other end (derived from
1114  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1115  * retransmitted skbs to avoid some costly processing per ACKs.
1116  */
1117 static void tcp_mark_lost_retrans(struct sock *sk)
1118 {
1119         const struct inet_connection_sock *icsk = inet_csk(sk);
1120         struct tcp_sock *tp = tcp_sk(sk);
1121         struct sk_buff *skb;
1122         int cnt = 0;
1123         u32 new_low_seq = tp->snd_nxt;
1124         u32 received_upto = tcp_highest_sack_seq(tp);
1125
1126         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1127             !after(received_upto, tp->lost_retrans_low) ||
1128             icsk->icsk_ca_state != TCP_CA_Recovery)
1129                 return;
1130
1131         tcp_for_write_queue(skb, sk) {
1132                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1133
1134                 if (skb == tcp_send_head(sk))
1135                         break;
1136                 if (cnt == tp->retrans_out)
1137                         break;
1138                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1139                         continue;
1140
1141                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1142                         continue;
1143
1144                 if (after(received_upto, ack_seq) &&
1145                     (tcp_is_fack(tp) ||
1146                      !before(received_upto,
1147                              ack_seq + tp->reordering * tp->mss_cache))) {
1148                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1149                         tp->retrans_out -= tcp_skb_pcount(skb);
1150
1151                         /* clear lost hint */
1152                         tp->retransmit_skb_hint = NULL;
1153
1154                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1155                                 tp->lost_out += tcp_skb_pcount(skb);
1156                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1157                         }
1158                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1159                 } else {
1160                         if (before(ack_seq, new_low_seq))
1161                                 new_low_seq = ack_seq;
1162                         cnt += tcp_skb_pcount(skb);
1163                 }
1164         }
1165
1166         if (tp->retrans_out)
1167                 tp->lost_retrans_low = new_low_seq;
1168 }
1169
1170 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1171                            struct tcp_sack_block_wire *sp, int num_sacks,
1172                            u32 prior_snd_una)
1173 {
1174         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1175         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1176         int dup_sack = 0;
1177
1178         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1179                 dup_sack = 1;
1180                 tcp_dsack_seen(tp);
1181                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1182         } else if (num_sacks > 1) {
1183                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1184                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1185
1186                 if (!after(end_seq_0, end_seq_1) &&
1187                     !before(start_seq_0, start_seq_1)) {
1188                         dup_sack = 1;
1189                         tcp_dsack_seen(tp);
1190                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1191                 }
1192         }
1193
1194         /* D-SACK for already forgotten data... Do dumb counting. */
1195         if (dup_sack &&
1196             !after(end_seq_0, prior_snd_una) &&
1197             after(end_seq_0, tp->undo_marker))
1198                 tp->undo_retrans--;
1199
1200         return dup_sack;
1201 }
1202
1203 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1204  * the incoming SACK may not exactly match but we can find smaller MSS
1205  * aligned portion of it that matches. Therefore we might need to fragment
1206  * which may fail and creates some hassle (caller must handle error case
1207  * returns).
1208  */
1209 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1210                                  u32 start_seq, u32 end_seq)
1211 {
1212         int in_sack, err;
1213         unsigned int pkt_len;
1214
1215         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1216                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1217
1218         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1219             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1220
1221                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1222
1223                 if (!in_sack)
1224                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1225                 else
1226                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1227                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1228                 if (err < 0)
1229                         return err;
1230         }
1231
1232         return in_sack;
1233 }
1234
1235 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1236                            int *reord, int dup_sack, int fack_count)
1237 {
1238         struct tcp_sock *tp = tcp_sk(sk);
1239         u8 sacked = TCP_SKB_CB(skb)->sacked;
1240         int flag = 0;
1241
1242         /* Account D-SACK for retransmitted packet. */
1243         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1244                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1245                         tp->undo_retrans--;
1246                 if (sacked & TCPCB_SACKED_ACKED)
1247                         *reord = min(fack_count, *reord);
1248         }
1249
1250         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1251         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1252                 return flag;
1253
1254         if (!(sacked & TCPCB_SACKED_ACKED)) {
1255                 if (sacked & TCPCB_SACKED_RETRANS) {
1256                         /* If the segment is not tagged as lost,
1257                          * we do not clear RETRANS, believing
1258                          * that retransmission is still in flight.
1259                          */
1260                         if (sacked & TCPCB_LOST) {
1261                                 TCP_SKB_CB(skb)->sacked &=
1262                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1263                                 tp->lost_out -= tcp_skb_pcount(skb);
1264                                 tp->retrans_out -= tcp_skb_pcount(skb);
1265
1266                                 /* clear lost hint */
1267                                 tp->retransmit_skb_hint = NULL;
1268                         }
1269                 } else {
1270                         if (!(sacked & TCPCB_RETRANS)) {
1271                                 /* New sack for not retransmitted frame,
1272                                  * which was in hole. It is reordering.
1273                                  */
1274                                 if (before(TCP_SKB_CB(skb)->seq,
1275                                            tcp_highest_sack_seq(tp)))
1276                                         *reord = min(fack_count, *reord);
1277
1278                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1279                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1280                                         flag |= FLAG_ONLY_ORIG_SACKED;
1281                         }
1282
1283                         if (sacked & TCPCB_LOST) {
1284                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1285                                 tp->lost_out -= tcp_skb_pcount(skb);
1286
1287                                 /* clear lost hint */
1288                                 tp->retransmit_skb_hint = NULL;
1289                         }
1290                 }
1291
1292                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1293                 flag |= FLAG_DATA_SACKED;
1294                 tp->sacked_out += tcp_skb_pcount(skb);
1295
1296                 fack_count += tcp_skb_pcount(skb);
1297
1298                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1299                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1300                     before(TCP_SKB_CB(skb)->seq,
1301                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1302                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1303
1304                 if (fack_count > tp->fackets_out)
1305                         tp->fackets_out = fack_count;
1306
1307                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1308                         tcp_advance_highest_sack(sk, skb);
1309         }
1310
1311         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1312          * frames and clear it. undo_retrans is decreased above, L|R frames
1313          * are accounted above as well.
1314          */
1315         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1316                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1317                 tp->retrans_out -= tcp_skb_pcount(skb);
1318                 tp->retransmit_skb_hint = NULL;
1319         }
1320
1321         return flag;
1322 }
1323
1324 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1325                                         struct tcp_sack_block *next_dup,
1326                                         u32 start_seq, u32 end_seq,
1327                                         int dup_sack_in, int *fack_count,
1328                                         int *reord, int *flag)
1329 {
1330         tcp_for_write_queue_from(skb, sk) {
1331                 int in_sack = 0;
1332                 int dup_sack = dup_sack_in;
1333
1334                 if (skb == tcp_send_head(sk))
1335                         break;
1336
1337                 /* queue is in-order => we can short-circuit the walk early */
1338                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1339                         break;
1340
1341                 if ((next_dup != NULL) &&
1342                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1343                         in_sack = tcp_match_skb_to_sack(sk, skb,
1344                                                         next_dup->start_seq,
1345                                                         next_dup->end_seq);
1346                         if (in_sack > 0)
1347                                 dup_sack = 1;
1348                 }
1349
1350                 if (in_sack <= 0)
1351                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1352                                                         end_seq);
1353                 if (unlikely(in_sack < 0))
1354                         break;
1355
1356                 if (in_sack)
1357                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1358                                                  *fack_count);
1359
1360                 *fack_count += tcp_skb_pcount(skb);
1361         }
1362         return skb;
1363 }
1364
1365 /* Avoid all extra work that is being done by sacktag while walking in
1366  * a normal way
1367  */
1368 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1369                                         u32 skip_to_seq, int *fack_count)
1370 {
1371         tcp_for_write_queue_from(skb, sk) {
1372                 if (skb == tcp_send_head(sk))
1373                         break;
1374
1375                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1376                         break;
1377
1378                 *fack_count += tcp_skb_pcount(skb);
1379         }
1380         return skb;
1381 }
1382
1383 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1384                                                 struct sock *sk,
1385                                                 struct tcp_sack_block *next_dup,
1386                                                 u32 skip_to_seq,
1387                                                 int *fack_count, int *reord,
1388                                                 int *flag)
1389 {
1390         if (next_dup == NULL)
1391                 return skb;
1392
1393         if (before(next_dup->start_seq, skip_to_seq)) {
1394                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1395                 skb = tcp_sacktag_walk(skb, sk, NULL,
1396                                      next_dup->start_seq, next_dup->end_seq,
1397                                      1, fack_count, reord, flag);
1398         }
1399
1400         return skb;
1401 }
1402
1403 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1404 {
1405         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1406 }
1407
1408 static int
1409 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1410                         u32 prior_snd_una)
1411 {
1412         const struct inet_connection_sock *icsk = inet_csk(sk);
1413         struct tcp_sock *tp = tcp_sk(sk);
1414         unsigned char *ptr = (skb_transport_header(ack_skb) +
1415                               TCP_SKB_CB(ack_skb)->sacked);
1416         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1417         struct tcp_sack_block sp[4];
1418         struct tcp_sack_block *cache;
1419         struct sk_buff *skb;
1420         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1421         int used_sacks;
1422         int reord = tp->packets_out;
1423         int flag = 0;
1424         int found_dup_sack = 0;
1425         int fack_count;
1426         int i, j;
1427         int first_sack_index;
1428
1429         if (!tp->sacked_out) {
1430                 if (WARN_ON(tp->fackets_out))
1431                         tp->fackets_out = 0;
1432                 tcp_highest_sack_reset(sk);
1433         }
1434
1435         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1436                                          num_sacks, prior_snd_una);
1437         if (found_dup_sack)
1438                 flag |= FLAG_DSACKING_ACK;
1439
1440         /* Eliminate too old ACKs, but take into
1441          * account more or less fresh ones, they can
1442          * contain valid SACK info.
1443          */
1444         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1445                 return 0;
1446
1447         if (!tp->packets_out)
1448                 goto out;
1449
1450         used_sacks = 0;
1451         first_sack_index = 0;
1452         for (i = 0; i < num_sacks; i++) {
1453                 int dup_sack = !i && found_dup_sack;
1454
1455                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1456                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1457
1458                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1459                                             sp[used_sacks].start_seq,
1460                                             sp[used_sacks].end_seq)) {
1461                         if (dup_sack) {
1462                                 if (!tp->undo_marker)
1463                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1464                                 else
1465                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1466                         } else {
1467                                 /* Don't count olds caused by ACK reordering */
1468                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1469                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1470                                         continue;
1471                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1472                         }
1473                         if (i == 0)
1474                                 first_sack_index = -1;
1475                         continue;
1476                 }
1477
1478                 /* Ignore very old stuff early */
1479                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1480                         continue;
1481
1482                 used_sacks++;
1483         }
1484
1485         /* order SACK blocks to allow in order walk of the retrans queue */
1486         for (i = used_sacks - 1; i > 0; i--) {
1487                 for (j = 0; j < i; j++) {
1488                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1489                                 struct tcp_sack_block tmp;
1490
1491                                 tmp = sp[j];
1492                                 sp[j] = sp[j + 1];
1493                                 sp[j + 1] = tmp;
1494
1495                                 /* Track where the first SACK block goes to */
1496                                 if (j == first_sack_index)
1497                                         first_sack_index = j + 1;
1498                         }
1499                 }
1500         }
1501
1502         skb = tcp_write_queue_head(sk);
1503         fack_count = 0;
1504         i = 0;
1505
1506         if (!tp->sacked_out) {
1507                 /* It's already past, so skip checking against it */
1508                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1509         } else {
1510                 cache = tp->recv_sack_cache;
1511                 /* Skip empty blocks in at head of the cache */
1512                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1513                        !cache->end_seq)
1514                         cache++;
1515         }
1516
1517         while (i < used_sacks) {
1518                 u32 start_seq = sp[i].start_seq;
1519                 u32 end_seq = sp[i].end_seq;
1520                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1521                 struct tcp_sack_block *next_dup = NULL;
1522
1523                 if (found_dup_sack && ((i + 1) == first_sack_index))
1524                         next_dup = &sp[i + 1];
1525
1526                 /* Event "B" in the comment above. */
1527                 if (after(end_seq, tp->high_seq))
1528                         flag |= FLAG_DATA_LOST;
1529
1530                 /* Skip too early cached blocks */
1531                 while (tcp_sack_cache_ok(tp, cache) &&
1532                        !before(start_seq, cache->end_seq))
1533                         cache++;
1534
1535                 /* Can skip some work by looking recv_sack_cache? */
1536                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1537                     after(end_seq, cache->start_seq)) {
1538
1539                         /* Head todo? */
1540                         if (before(start_seq, cache->start_seq)) {
1541                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1542                                                        &fack_count);
1543                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1544                                                        start_seq,
1545                                                        cache->start_seq,
1546                                                        dup_sack, &fack_count,
1547                                                        &reord, &flag);
1548                         }
1549
1550                         /* Rest of the block already fully processed? */
1551                         if (!after(end_seq, cache->end_seq))
1552                                 goto advance_sp;
1553
1554                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1555                                                        cache->end_seq,
1556                                                        &fack_count, &reord,
1557                                                        &flag);
1558
1559                         /* ...tail remains todo... */
1560                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1561                                 /* ...but better entrypoint exists! */
1562                                 skb = tcp_highest_sack(sk);
1563                                 if (skb == NULL)
1564                                         break;
1565                                 fack_count = tp->fackets_out;
1566                                 cache++;
1567                                 goto walk;
1568                         }
1569
1570                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1571                                                &fack_count);
1572                         /* Check overlap against next cached too (past this one already) */
1573                         cache++;
1574                         continue;
1575                 }
1576
1577                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1578                         skb = tcp_highest_sack(sk);
1579                         if (skb == NULL)
1580                                 break;
1581                         fack_count = tp->fackets_out;
1582                 }
1583                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1584
1585 walk:
1586                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1587                                        dup_sack, &fack_count, &reord, &flag);
1588
1589 advance_sp:
1590                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1591                  * due to in-order walk
1592                  */
1593                 if (after(end_seq, tp->frto_highmark))
1594                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1595
1596                 i++;
1597         }
1598
1599         /* Clear the head of the cache sack blocks so we can skip it next time */
1600         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1601                 tp->recv_sack_cache[i].start_seq = 0;
1602                 tp->recv_sack_cache[i].end_seq = 0;
1603         }
1604         for (j = 0; j < used_sacks; j++)
1605                 tp->recv_sack_cache[i++] = sp[j];
1606
1607         tcp_mark_lost_retrans(sk);
1608
1609         tcp_verify_left_out(tp);
1610
1611         if ((reord < tp->fackets_out) &&
1612             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1613             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1614                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1615
1616 out:
1617
1618 #if FASTRETRANS_DEBUG > 0
1619         BUG_TRAP((int)tp->sacked_out >= 0);
1620         BUG_TRAP((int)tp->lost_out >= 0);
1621         BUG_TRAP((int)tp->retrans_out >= 0);
1622         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1623 #endif
1624         return flag;
1625 }
1626
1627 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1628  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1629  */
1630 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1631 {
1632         u32 holes;
1633
1634         holes = max(tp->lost_out, 1U);
1635         holes = min(holes, tp->packets_out);
1636
1637         if ((tp->sacked_out + holes) > tp->packets_out) {
1638                 tp->sacked_out = tp->packets_out - holes;
1639                 return 1;
1640         }
1641         return 0;
1642 }
1643
1644 /* If we receive more dupacks than we expected counting segments
1645  * in assumption of absent reordering, interpret this as reordering.
1646  * The only another reason could be bug in receiver TCP.
1647  */
1648 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1649 {
1650         struct tcp_sock *tp = tcp_sk(sk);
1651         if (tcp_limit_reno_sacked(tp))
1652                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1653 }
1654
1655 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1656
1657 static void tcp_add_reno_sack(struct sock *sk)
1658 {
1659         struct tcp_sock *tp = tcp_sk(sk);
1660         tp->sacked_out++;
1661         tcp_check_reno_reordering(sk, 0);
1662         tcp_verify_left_out(tp);
1663 }
1664
1665 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1666
1667 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1668 {
1669         struct tcp_sock *tp = tcp_sk(sk);
1670
1671         if (acked > 0) {
1672                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1673                 if (acked - 1 >= tp->sacked_out)
1674                         tp->sacked_out = 0;
1675                 else
1676                         tp->sacked_out -= acked - 1;
1677         }
1678         tcp_check_reno_reordering(sk, acked);
1679         tcp_verify_left_out(tp);
1680 }
1681
1682 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1683 {
1684         tp->sacked_out = 0;
1685 }
1686
1687 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1688 {
1689         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1690 }
1691
1692 /* F-RTO can only be used if TCP has never retransmitted anything other than
1693  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1694  */
1695 int tcp_use_frto(struct sock *sk)
1696 {
1697         const struct tcp_sock *tp = tcp_sk(sk);
1698         const struct inet_connection_sock *icsk = inet_csk(sk);
1699         struct sk_buff *skb;
1700
1701         if (!sysctl_tcp_frto)
1702                 return 0;
1703
1704         /* MTU probe and F-RTO won't really play nicely along currently */
1705         if (icsk->icsk_mtup.probe_size)
1706                 return 0;
1707
1708         if (tcp_is_sackfrto(tp))
1709                 return 1;
1710
1711         /* Avoid expensive walking of rexmit queue if possible */
1712         if (tp->retrans_out > 1)
1713                 return 0;
1714
1715         skb = tcp_write_queue_head(sk);
1716         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1717         tcp_for_write_queue_from(skb, sk) {
1718                 if (skb == tcp_send_head(sk))
1719                         break;
1720                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1721                         return 0;
1722                 /* Short-circuit when first non-SACKed skb has been checked */
1723                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1724                         break;
1725         }
1726         return 1;
1727 }
1728
1729 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1730  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1731  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1732  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1733  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1734  * bits are handled if the Loss state is really to be entered (in
1735  * tcp_enter_frto_loss).
1736  *
1737  * Do like tcp_enter_loss() would; when RTO expires the second time it
1738  * does:
1739  *  "Reduce ssthresh if it has not yet been made inside this window."
1740  */
1741 void tcp_enter_frto(struct sock *sk)
1742 {
1743         const struct inet_connection_sock *icsk = inet_csk(sk);
1744         struct tcp_sock *tp = tcp_sk(sk);
1745         struct sk_buff *skb;
1746
1747         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1748             tp->snd_una == tp->high_seq ||
1749             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1750              !icsk->icsk_retransmits)) {
1751                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1752                 /* Our state is too optimistic in ssthresh() call because cwnd
1753                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1754                  * recovery has not yet completed. Pattern would be this: RTO,
1755                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1756                  * up here twice).
1757                  * RFC4138 should be more specific on what to do, even though
1758                  * RTO is quite unlikely to occur after the first Cumulative ACK
1759                  * due to back-off and complexity of triggering events ...
1760                  */
1761                 if (tp->frto_counter) {
1762                         u32 stored_cwnd;
1763                         stored_cwnd = tp->snd_cwnd;
1764                         tp->snd_cwnd = 2;
1765                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1766                         tp->snd_cwnd = stored_cwnd;
1767                 } else {
1768                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1769                 }
1770                 /* ... in theory, cong.control module could do "any tricks" in
1771                  * ssthresh(), which means that ca_state, lost bits and lost_out
1772                  * counter would have to be faked before the call occurs. We
1773                  * consider that too expensive, unlikely and hacky, so modules
1774                  * using these in ssthresh() must deal these incompatibility
1775                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1776                  */
1777                 tcp_ca_event(sk, CA_EVENT_FRTO);
1778         }
1779
1780         tp->undo_marker = tp->snd_una;
1781         tp->undo_retrans = 0;
1782
1783         skb = tcp_write_queue_head(sk);
1784         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1785                 tp->undo_marker = 0;
1786         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1787                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1788                 tp->retrans_out -= tcp_skb_pcount(skb);
1789         }
1790         tcp_verify_left_out(tp);
1791
1792         /* Too bad if TCP was application limited */
1793         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1794
1795         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1796          * The last condition is necessary at least in tp->frto_counter case.
1797          */
1798         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1799             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1800             after(tp->high_seq, tp->snd_una)) {
1801                 tp->frto_highmark = tp->high_seq;
1802         } else {
1803                 tp->frto_highmark = tp->snd_nxt;
1804         }
1805         tcp_set_ca_state(sk, TCP_CA_Disorder);
1806         tp->high_seq = tp->snd_nxt;
1807         tp->frto_counter = 1;
1808 }
1809
1810 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1811  * which indicates that we should follow the traditional RTO recovery,
1812  * i.e. mark everything lost and do go-back-N retransmission.
1813  */
1814 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1815 {
1816         struct tcp_sock *tp = tcp_sk(sk);
1817         struct sk_buff *skb;
1818
1819         tp->lost_out = 0;
1820         tp->retrans_out = 0;
1821         if (tcp_is_reno(tp))
1822                 tcp_reset_reno_sack(tp);
1823
1824         tcp_for_write_queue(skb, sk) {
1825                 if (skb == tcp_send_head(sk))
1826                         break;
1827
1828                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1829                 /*
1830                  * Count the retransmission made on RTO correctly (only when
1831                  * waiting for the first ACK and did not get it)...
1832                  */
1833                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1834                         /* For some reason this R-bit might get cleared? */
1835                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1836                                 tp->retrans_out += tcp_skb_pcount(skb);
1837                         /* ...enter this if branch just for the first segment */
1838                         flag |= FLAG_DATA_ACKED;
1839                 } else {
1840                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1841                                 tp->undo_marker = 0;
1842                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1843                 }
1844
1845                 /* Marking forward transmissions that were made after RTO lost
1846                  * can cause unnecessary retransmissions in some scenarios,
1847                  * SACK blocks will mitigate that in some but not in all cases.
1848                  * We used to not mark them but it was causing break-ups with
1849                  * receivers that do only in-order receival.
1850                  *
1851                  * TODO: we could detect presence of such receiver and select
1852                  * different behavior per flow.
1853                  */
1854                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1855                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1856                         tp->lost_out += tcp_skb_pcount(skb);
1857                 }
1858         }
1859         tcp_verify_left_out(tp);
1860
1861         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1862         tp->snd_cwnd_cnt = 0;
1863         tp->snd_cwnd_stamp = tcp_time_stamp;
1864         tp->frto_counter = 0;
1865         tp->bytes_acked = 0;
1866
1867         tp->reordering = min_t(unsigned int, tp->reordering,
1868                                sysctl_tcp_reordering);
1869         tcp_set_ca_state(sk, TCP_CA_Loss);
1870         tp->high_seq = tp->snd_nxt;
1871         TCP_ECN_queue_cwr(tp);
1872
1873         tcp_clear_retrans_hints_partial(tp);
1874 }
1875
1876 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1877 {
1878         tp->retrans_out = 0;
1879         tp->lost_out = 0;
1880
1881         tp->undo_marker = 0;
1882         tp->undo_retrans = 0;
1883 }
1884
1885 void tcp_clear_retrans(struct tcp_sock *tp)
1886 {
1887         tcp_clear_retrans_partial(tp);
1888
1889         tp->fackets_out = 0;
1890         tp->sacked_out = 0;
1891 }
1892
1893 /* Enter Loss state. If "how" is not zero, forget all SACK information
1894  * and reset tags completely, otherwise preserve SACKs. If receiver
1895  * dropped its ofo queue, we will know this due to reneging detection.
1896  */
1897 void tcp_enter_loss(struct sock *sk, int how)
1898 {
1899         const struct inet_connection_sock *icsk = inet_csk(sk);
1900         struct tcp_sock *tp = tcp_sk(sk);
1901         struct sk_buff *skb;
1902
1903         /* Reduce ssthresh if it has not yet been made inside this window. */
1904         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1905             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1906                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1907                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1908                 tcp_ca_event(sk, CA_EVENT_LOSS);
1909         }
1910         tp->snd_cwnd       = 1;
1911         tp->snd_cwnd_cnt   = 0;
1912         tp->snd_cwnd_stamp = tcp_time_stamp;
1913
1914         tp->bytes_acked = 0;
1915         tcp_clear_retrans_partial(tp);
1916
1917         if (tcp_is_reno(tp))
1918                 tcp_reset_reno_sack(tp);
1919
1920         if (!how) {
1921                 /* Push undo marker, if it was plain RTO and nothing
1922                  * was retransmitted. */
1923                 tp->undo_marker = tp->snd_una;
1924                 tcp_clear_retrans_hints_partial(tp);
1925         } else {
1926                 tp->sacked_out = 0;
1927                 tp->fackets_out = 0;
1928                 tcp_clear_all_retrans_hints(tp);
1929         }
1930
1931         tcp_for_write_queue(skb, sk) {
1932                 if (skb == tcp_send_head(sk))
1933                         break;
1934
1935                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1936                         tp->undo_marker = 0;
1937                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1938                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1939                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1940                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1941                         tp->lost_out += tcp_skb_pcount(skb);
1942                 }
1943         }
1944         tcp_verify_left_out(tp);
1945
1946         tp->reordering = min_t(unsigned int, tp->reordering,
1947                                sysctl_tcp_reordering);
1948         tcp_set_ca_state(sk, TCP_CA_Loss);
1949         tp->high_seq = tp->snd_nxt;
1950         TCP_ECN_queue_cwr(tp);
1951         /* Abort F-RTO algorithm if one is in progress */
1952         tp->frto_counter = 0;
1953 }
1954
1955 /* If ACK arrived pointing to a remembered SACK, it means that our
1956  * remembered SACKs do not reflect real state of receiver i.e.
1957  * receiver _host_ is heavily congested (or buggy).
1958  *
1959  * Do processing similar to RTO timeout.
1960  */
1961 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1962 {
1963         if (flag & FLAG_SACK_RENEGING) {
1964                 struct inet_connection_sock *icsk = inet_csk(sk);
1965                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1966
1967                 tcp_enter_loss(sk, 1);
1968                 icsk->icsk_retransmits++;
1969                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1970                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1971                                           icsk->icsk_rto, TCP_RTO_MAX);
1972                 return 1;
1973         }
1974         return 0;
1975 }
1976
1977 static inline int tcp_fackets_out(struct tcp_sock *tp)
1978 {
1979         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1980 }
1981
1982 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1983  * counter when SACK is enabled (without SACK, sacked_out is used for
1984  * that purpose).
1985  *
1986  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1987  * segments up to the highest received SACK block so far and holes in
1988  * between them.
1989  *
1990  * With reordering, holes may still be in flight, so RFC3517 recovery
1991  * uses pure sacked_out (total number of SACKed segments) even though
1992  * it violates the RFC that uses duplicate ACKs, often these are equal
1993  * but when e.g. out-of-window ACKs or packet duplication occurs,
1994  * they differ. Since neither occurs due to loss, TCP should really
1995  * ignore them.
1996  */
1997 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1998 {
1999         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2000 }
2001
2002 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2003 {
2004         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2005 }
2006
2007 static inline int tcp_head_timedout(struct sock *sk)
2008 {
2009         struct tcp_sock *tp = tcp_sk(sk);
2010
2011         return tp->packets_out &&
2012                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2013 }
2014
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016  * --------------------------------------
2017  *
2018  * "Open"       Normal state, no dubious events, fast path.
2019  * "Disorder"   In all the respects it is "Open",
2020  *              but requires a bit more attention. It is entered when
2021  *              we see some SACKs or dupacks. It is split of "Open"
2022  *              mainly to move some processing from fast path to slow one.
2023  * "CWR"        CWND was reduced due to some Congestion Notification event.
2024  *              It can be ECN, ICMP source quench, local device congestion.
2025  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2026  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2027  *
2028  * tcp_fastretrans_alert() is entered:
2029  * - each incoming ACK, if state is not "Open"
2030  * - when arrived ACK is unusual, namely:
2031  *      * SACK
2032  *      * Duplicate ACK.
2033  *      * ECN ECE.
2034  *
2035  * Counting packets in flight is pretty simple.
2036  *
2037  *      in_flight = packets_out - left_out + retrans_out
2038  *
2039  *      packets_out is SND.NXT-SND.UNA counted in packets.
2040  *
2041  *      retrans_out is number of retransmitted segments.
2042  *
2043  *      left_out is number of segments left network, but not ACKed yet.
2044  *
2045  *              left_out = sacked_out + lost_out
2046  *
2047  *     sacked_out: Packets, which arrived to receiver out of order
2048  *                 and hence not ACKed. With SACKs this number is simply
2049  *                 amount of SACKed data. Even without SACKs
2050  *                 it is easy to give pretty reliable estimate of this number,
2051  *                 counting duplicate ACKs.
2052  *
2053  *       lost_out: Packets lost by network. TCP has no explicit
2054  *                 "loss notification" feedback from network (for now).
2055  *                 It means that this number can be only _guessed_.
2056  *                 Actually, it is the heuristics to predict lossage that
2057  *                 distinguishes different algorithms.
2058  *
2059  *      F.e. after RTO, when all the queue is considered as lost,
2060  *      lost_out = packets_out and in_flight = retrans_out.
2061  *
2062  *              Essentially, we have now two algorithms counting
2063  *              lost packets.
2064  *
2065  *              FACK: It is the simplest heuristics. As soon as we decided
2066  *              that something is lost, we decide that _all_ not SACKed
2067  *              packets until the most forward SACK are lost. I.e.
2068  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069  *              It is absolutely correct estimate, if network does not reorder
2070  *              packets. And it loses any connection to reality when reordering
2071  *              takes place. We use FACK by default until reordering
2072  *              is suspected on the path to this destination.
2073  *
2074  *              NewReno: when Recovery is entered, we assume that one segment
2075  *              is lost (classic Reno). While we are in Recovery and
2076  *              a partial ACK arrives, we assume that one more packet
2077  *              is lost (NewReno). This heuristics are the same in NewReno
2078  *              and SACK.
2079  *
2080  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2081  *  deflation etc. CWND is real congestion window, never inflated, changes
2082  *  only according to classic VJ rules.
2083  *
2084  * Really tricky (and requiring careful tuning) part of algorithm
2085  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086  * The first determines the moment _when_ we should reduce CWND and,
2087  * hence, slow down forward transmission. In fact, it determines the moment
2088  * when we decide that hole is caused by loss, rather than by a reorder.
2089  *
2090  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091  * holes, caused by lost packets.
2092  *
2093  * And the most logically complicated part of algorithm is undo
2094  * heuristics. We detect false retransmits due to both too early
2095  * fast retransmit (reordering) and underestimated RTO, analyzing
2096  * timestamps and D-SACKs. When we detect that some segments were
2097  * retransmitted by mistake and CWND reduction was wrong, we undo
2098  * window reduction and abort recovery phase. This logic is hidden
2099  * inside several functions named tcp_try_undo_<something>.
2100  */
2101
2102 /* This function decides, when we should leave Disordered state
2103  * and enter Recovery phase, reducing congestion window.
2104  *
2105  * Main question: may we further continue forward transmission
2106  * with the same cwnd?
2107  */
2108 static int tcp_time_to_recover(struct sock *sk)
2109 {
2110         struct tcp_sock *tp = tcp_sk(sk);
2111         __u32 packets_out;
2112
2113         /* Do not perform any recovery during F-RTO algorithm */
2114         if (tp->frto_counter)
2115                 return 0;
2116
2117         /* Trick#1: The loss is proven. */
2118         if (tp->lost_out)
2119                 return 1;
2120
2121         /* Not-A-Trick#2 : Classic rule... */
2122         if (tcp_dupack_heurestics(tp) > tp->reordering)
2123                 return 1;
2124
2125         /* Trick#3 : when we use RFC2988 timer restart, fast
2126          * retransmit can be triggered by timeout of queue head.
2127          */
2128         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2129                 return 1;
2130
2131         /* Trick#4: It is still not OK... But will it be useful to delay
2132          * recovery more?
2133          */
2134         packets_out = tp->packets_out;
2135         if (packets_out <= tp->reordering &&
2136             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2137             !tcp_may_send_now(sk)) {
2138                 /* We have nothing to send. This connection is limited
2139                  * either by receiver window or by application.
2140                  */
2141                 return 1;
2142         }
2143
2144         return 0;
2145 }
2146
2147 /* RFC: This is from the original, I doubt that this is necessary at all:
2148  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2149  * retransmitted past LOST markings in the first place? I'm not fully sure
2150  * about undo and end of connection cases, which can cause R without L?
2151  */
2152 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2153 {
2154         if ((tp->retransmit_skb_hint != NULL) &&
2155             before(TCP_SKB_CB(skb)->seq,
2156                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2157                 tp->retransmit_skb_hint = NULL;
2158 }
2159
2160 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2161  * is against sacked "cnt", otherwise it's against facked "cnt"
2162  */
2163 static void tcp_mark_head_lost(struct sock *sk, int packets)
2164 {
2165         struct tcp_sock *tp = tcp_sk(sk);
2166         struct sk_buff *skb;
2167         int cnt, oldcnt;
2168         int err;
2169         unsigned int mss;
2170
2171         BUG_TRAP(packets <= tp->packets_out);
2172         if (tp->lost_skb_hint) {
2173                 skb = tp->lost_skb_hint;
2174                 cnt = tp->lost_cnt_hint;
2175         } else {
2176                 skb = tcp_write_queue_head(sk);
2177                 cnt = 0;
2178         }
2179
2180         tcp_for_write_queue_from(skb, sk) {
2181                 if (skb == tcp_send_head(sk))
2182                         break;
2183                 /* TODO: do this better */
2184                 /* this is not the most efficient way to do this... */
2185                 tp->lost_skb_hint = skb;
2186                 tp->lost_cnt_hint = cnt;
2187
2188                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2189                         break;
2190
2191                 oldcnt = cnt;
2192                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2193                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2194                         cnt += tcp_skb_pcount(skb);
2195
2196                 if (cnt > packets) {
2197                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2198                                 break;
2199
2200                         mss = skb_shinfo(skb)->gso_size;
2201                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2202                         if (err < 0)
2203                                 break;
2204                         cnt = packets;
2205                 }
2206
2207                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2208                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2209                         tp->lost_out += tcp_skb_pcount(skb);
2210                         tcp_verify_retransmit_hint(tp, skb);
2211                 }
2212         }
2213         tcp_verify_left_out(tp);
2214 }
2215
2216 /* Account newly detected lost packet(s) */
2217
2218 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2219 {
2220         struct tcp_sock *tp = tcp_sk(sk);
2221
2222         if (tcp_is_reno(tp)) {
2223                 tcp_mark_head_lost(sk, 1);
2224         } else if (tcp_is_fack(tp)) {
2225                 int lost = tp->fackets_out - tp->reordering;
2226                 if (lost <= 0)
2227                         lost = 1;
2228                 tcp_mark_head_lost(sk, lost);
2229         } else {
2230                 int sacked_upto = tp->sacked_out - tp->reordering;
2231                 if (sacked_upto < fast_rexmit)
2232                         sacked_upto = fast_rexmit;
2233                 tcp_mark_head_lost(sk, sacked_upto);
2234         }
2235
2236         /* New heuristics: it is possible only after we switched
2237          * to restart timer each time when something is ACKed.
2238          * Hence, we can detect timed out packets during fast
2239          * retransmit without falling to slow start.
2240          */
2241         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2242                 struct sk_buff *skb;
2243
2244                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2245                         : tcp_write_queue_head(sk);
2246
2247                 tcp_for_write_queue_from(skb, sk) {
2248                         if (skb == tcp_send_head(sk))
2249                                 break;
2250                         if (!tcp_skb_timedout(sk, skb))
2251                                 break;
2252
2253                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2254                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255                                 tp->lost_out += tcp_skb_pcount(skb);
2256                                 tcp_verify_retransmit_hint(tp, skb);
2257                         }
2258                 }
2259
2260                 tp->scoreboard_skb_hint = skb;
2261
2262                 tcp_verify_left_out(tp);
2263         }
2264 }
2265
2266 /* CWND moderation, preventing bursts due to too big ACKs
2267  * in dubious situations.
2268  */
2269 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2270 {
2271         tp->snd_cwnd = min(tp->snd_cwnd,
2272                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2273         tp->snd_cwnd_stamp = tcp_time_stamp;
2274 }
2275
2276 /* Lower bound on congestion window is slow start threshold
2277  * unless congestion avoidance choice decides to overide it.
2278  */
2279 static inline u32 tcp_cwnd_min(const struct sock *sk)
2280 {
2281         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2282
2283         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2284 }
2285
2286 /* Decrease cwnd each second ack. */
2287 static void tcp_cwnd_down(struct sock *sk, int flag)
2288 {
2289         struct tcp_sock *tp = tcp_sk(sk);
2290         int decr = tp->snd_cwnd_cnt + 1;
2291
2292         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2293             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2294                 tp->snd_cwnd_cnt = decr & 1;
2295                 decr >>= 1;
2296
2297                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2298                         tp->snd_cwnd -= decr;
2299
2300                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2301                 tp->snd_cwnd_stamp = tcp_time_stamp;
2302         }
2303 }
2304
2305 /* Nothing was retransmitted or returned timestamp is less
2306  * than timestamp of the first retransmission.
2307  */
2308 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2309 {
2310         return !tp->retrans_stamp ||
2311                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2312                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2313 }
2314
2315 /* Undo procedures. */
2316
2317 #if FASTRETRANS_DEBUG > 1
2318 static void DBGUNDO(struct sock *sk, const char *msg)
2319 {
2320         struct tcp_sock *tp = tcp_sk(sk);
2321         struct inet_sock *inet = inet_sk(sk);
2322
2323         if (sk->sk_family == AF_INET) {
2324                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2325                        msg,
2326                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2327                        tp->snd_cwnd, tcp_left_out(tp),
2328                        tp->snd_ssthresh, tp->prior_ssthresh,
2329                        tp->packets_out);
2330         }
2331 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2332         else if (sk->sk_family == AF_INET6) {
2333                 struct ipv6_pinfo *np = inet6_sk(sk);
2334                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2335                        msg,
2336                        NIP6(np->daddr), ntohs(inet->dport),
2337                        tp->snd_cwnd, tcp_left_out(tp),
2338                        tp->snd_ssthresh, tp->prior_ssthresh,
2339                        tp->packets_out);
2340         }
2341 #endif
2342 }
2343 #else
2344 #define DBGUNDO(x...) do { } while (0)
2345 #endif
2346
2347 static void tcp_undo_cwr(struct sock *sk, const int undo)
2348 {
2349         struct tcp_sock *tp = tcp_sk(sk);
2350
2351         if (tp->prior_ssthresh) {
2352                 const struct inet_connection_sock *icsk = inet_csk(sk);
2353
2354                 if (icsk->icsk_ca_ops->undo_cwnd)
2355                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2356                 else
2357                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2358
2359                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2360                         tp->snd_ssthresh = tp->prior_ssthresh;
2361                         TCP_ECN_withdraw_cwr(tp);
2362                 }
2363         } else {
2364                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2365         }
2366         tcp_moderate_cwnd(tp);
2367         tp->snd_cwnd_stamp = tcp_time_stamp;
2368
2369         /* There is something screwy going on with the retrans hints after
2370            an undo */
2371         tcp_clear_all_retrans_hints(tp);
2372 }
2373
2374 static inline int tcp_may_undo(struct tcp_sock *tp)
2375 {
2376         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2377 }
2378
2379 /* People celebrate: "We love our President!" */
2380 static int tcp_try_undo_recovery(struct sock *sk)
2381 {
2382         struct tcp_sock *tp = tcp_sk(sk);
2383
2384         if (tcp_may_undo(tp)) {
2385                 /* Happy end! We did not retransmit anything
2386                  * or our original transmission succeeded.
2387                  */
2388                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389                 tcp_undo_cwr(sk, 1);
2390                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2392                 else
2393                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2394                 tp->undo_marker = 0;
2395         }
2396         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2397                 /* Hold old state until something *above* high_seq
2398                  * is ACKed. For Reno it is MUST to prevent false
2399                  * fast retransmits (RFC2582). SACK TCP is safe. */
2400                 tcp_moderate_cwnd(tp);
2401                 return 1;
2402         }
2403         tcp_set_ca_state(sk, TCP_CA_Open);
2404         return 0;
2405 }
2406
2407 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2408 static void tcp_try_undo_dsack(struct sock *sk)
2409 {
2410         struct tcp_sock *tp = tcp_sk(sk);
2411
2412         if (tp->undo_marker && !tp->undo_retrans) {
2413                 DBGUNDO(sk, "D-SACK");
2414                 tcp_undo_cwr(sk, 1);
2415                 tp->undo_marker = 0;
2416                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2417         }
2418 }
2419
2420 /* Undo during fast recovery after partial ACK. */
2421
2422 static int tcp_try_undo_partial(struct sock *sk, int acked)
2423 {
2424         struct tcp_sock *tp = tcp_sk(sk);
2425         /* Partial ACK arrived. Force Hoe's retransmit. */
2426         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2427
2428         if (tcp_may_undo(tp)) {
2429                 /* Plain luck! Hole if filled with delayed
2430                  * packet, rather than with a retransmit.
2431                  */
2432                 if (tp->retrans_out == 0)
2433                         tp->retrans_stamp = 0;
2434
2435                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2436
2437                 DBGUNDO(sk, "Hoe");
2438                 tcp_undo_cwr(sk, 0);
2439                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2440
2441                 /* So... Do not make Hoe's retransmit yet.
2442                  * If the first packet was delayed, the rest
2443                  * ones are most probably delayed as well.
2444                  */
2445                 failed = 0;
2446         }
2447         return failed;
2448 }
2449
2450 /* Undo during loss recovery after partial ACK. */
2451 static int tcp_try_undo_loss(struct sock *sk)
2452 {
2453         struct tcp_sock *tp = tcp_sk(sk);
2454
2455         if (tcp_may_undo(tp)) {
2456                 struct sk_buff *skb;
2457                 tcp_for_write_queue(skb, sk) {
2458                         if (skb == tcp_send_head(sk))
2459                                 break;
2460                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2461                 }
2462
2463                 tcp_clear_all_retrans_hints(tp);
2464
2465                 DBGUNDO(sk, "partial loss");
2466                 tp->lost_out = 0;
2467                 tcp_undo_cwr(sk, 1);
2468                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2469                 inet_csk(sk)->icsk_retransmits = 0;
2470                 tp->undo_marker = 0;
2471                 if (tcp_is_sack(tp))
2472                         tcp_set_ca_state(sk, TCP_CA_Open);
2473                 return 1;
2474         }
2475         return 0;
2476 }
2477
2478 static inline void tcp_complete_cwr(struct sock *sk)
2479 {
2480         struct tcp_sock *tp = tcp_sk(sk);
2481         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2482         tp->snd_cwnd_stamp = tcp_time_stamp;
2483         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2484 }
2485
2486 static void tcp_try_keep_open(struct sock *sk)
2487 {
2488         struct tcp_sock *tp = tcp_sk(sk);
2489         int state = TCP_CA_Open;
2490
2491         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2492                 state = TCP_CA_Disorder;
2493
2494         if (inet_csk(sk)->icsk_ca_state != state) {
2495                 tcp_set_ca_state(sk, state);
2496                 tp->high_seq = tp->snd_nxt;
2497         }
2498 }
2499
2500 static void tcp_try_to_open(struct sock *sk, int flag)
2501 {
2502         struct tcp_sock *tp = tcp_sk(sk);
2503
2504         tcp_verify_left_out(tp);
2505
2506         if (!tp->frto_counter && tp->retrans_out == 0)
2507                 tp->retrans_stamp = 0;
2508
2509         if (flag & FLAG_ECE)
2510                 tcp_enter_cwr(sk, 1);
2511
2512         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2513                 tcp_try_keep_open(sk);
2514                 tcp_moderate_cwnd(tp);
2515         } else {
2516                 tcp_cwnd_down(sk, flag);
2517         }
2518 }
2519
2520 static void tcp_mtup_probe_failed(struct sock *sk)
2521 {
2522         struct inet_connection_sock *icsk = inet_csk(sk);
2523
2524         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2525         icsk->icsk_mtup.probe_size = 0;
2526 }
2527
2528 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2529 {
2530         struct tcp_sock *tp = tcp_sk(sk);
2531         struct inet_connection_sock *icsk = inet_csk(sk);
2532
2533         /* FIXME: breaks with very large cwnd */
2534         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2535         tp->snd_cwnd = tp->snd_cwnd *
2536                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2537                        icsk->icsk_mtup.probe_size;
2538         tp->snd_cwnd_cnt = 0;
2539         tp->snd_cwnd_stamp = tcp_time_stamp;
2540         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2541
2542         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2543         icsk->icsk_mtup.probe_size = 0;
2544         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2545 }
2546
2547 /* Process an event, which can update packets-in-flight not trivially.
2548  * Main goal of this function is to calculate new estimate for left_out,
2549  * taking into account both packets sitting in receiver's buffer and
2550  * packets lost by network.
2551  *
2552  * Besides that it does CWND reduction, when packet loss is detected
2553  * and changes state of machine.
2554  *
2555  * It does _not_ decide what to send, it is made in function
2556  * tcp_xmit_retransmit_queue().
2557  */
2558 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2559 {
2560         struct inet_connection_sock *icsk = inet_csk(sk);
2561         struct tcp_sock *tp = tcp_sk(sk);
2562         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2563         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2564                                     (tcp_fackets_out(tp) > tp->reordering));
2565         int fast_rexmit = 0;
2566
2567         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2568                 tp->sacked_out = 0;
2569         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2570                 tp->fackets_out = 0;
2571
2572         /* Now state machine starts.
2573          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2574         if (flag & FLAG_ECE)
2575                 tp->prior_ssthresh = 0;
2576
2577         /* B. In all the states check for reneging SACKs. */
2578         if (tcp_check_sack_reneging(sk, flag))
2579                 return;
2580
2581         /* C. Process data loss notification, provided it is valid. */
2582         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2583             before(tp->snd_una, tp->high_seq) &&
2584             icsk->icsk_ca_state != TCP_CA_Open &&
2585             tp->fackets_out > tp->reordering) {
2586                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2587                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2588         }
2589
2590         /* D. Check consistency of the current state. */
2591         tcp_verify_left_out(tp);
2592
2593         /* E. Check state exit conditions. State can be terminated
2594          *    when high_seq is ACKed. */
2595         if (icsk->icsk_ca_state == TCP_CA_Open) {
2596                 BUG_TRAP(tp->retrans_out == 0);
2597                 tp->retrans_stamp = 0;
2598         } else if (!before(tp->snd_una, tp->high_seq)) {
2599                 switch (icsk->icsk_ca_state) {
2600                 case TCP_CA_Loss:
2601                         icsk->icsk_retransmits = 0;
2602                         if (tcp_try_undo_recovery(sk))
2603                                 return;
2604                         break;
2605
2606                 case TCP_CA_CWR:
2607                         /* CWR is to be held something *above* high_seq
2608                          * is ACKed for CWR bit to reach receiver. */
2609                         if (tp->snd_una != tp->high_seq) {
2610                                 tcp_complete_cwr(sk);
2611                                 tcp_set_ca_state(sk, TCP_CA_Open);
2612                         }
2613                         break;
2614
2615                 case TCP_CA_Disorder:
2616                         tcp_try_undo_dsack(sk);
2617                         if (!tp->undo_marker ||
2618                             /* For SACK case do not Open to allow to undo
2619                              * catching for all duplicate ACKs. */
2620                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2621                                 tp->undo_marker = 0;
2622                                 tcp_set_ca_state(sk, TCP_CA_Open);
2623                         }
2624                         break;
2625
2626                 case TCP_CA_Recovery:
2627                         if (tcp_is_reno(tp))
2628                                 tcp_reset_reno_sack(tp);
2629                         if (tcp_try_undo_recovery(sk))
2630                                 return;
2631                         tcp_complete_cwr(sk);
2632                         break;
2633                 }
2634         }
2635
2636         /* F. Process state. */
2637         switch (icsk->icsk_ca_state) {
2638         case TCP_CA_Recovery:
2639                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2640                         if (tcp_is_reno(tp) && is_dupack)
2641                                 tcp_add_reno_sack(sk);
2642                 } else
2643                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2644                 break;
2645         case TCP_CA_Loss:
2646                 if (flag & FLAG_DATA_ACKED)
2647                         icsk->icsk_retransmits = 0;
2648                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2649                         tcp_reset_reno_sack(tp);
2650                 if (!tcp_try_undo_loss(sk)) {
2651                         tcp_moderate_cwnd(tp);
2652                         tcp_xmit_retransmit_queue(sk);
2653                         return;
2654                 }
2655                 if (icsk->icsk_ca_state != TCP_CA_Open)
2656                         return;
2657                 /* Loss is undone; fall through to processing in Open state. */
2658         default:
2659                 if (tcp_is_reno(tp)) {
2660                         if (flag & FLAG_SND_UNA_ADVANCED)
2661                                 tcp_reset_reno_sack(tp);
2662                         if (is_dupack)
2663                                 tcp_add_reno_sack(sk);
2664                 }
2665
2666                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2667                         tcp_try_undo_dsack(sk);
2668
2669                 if (!tcp_time_to_recover(sk)) {
2670                         tcp_try_to_open(sk, flag);
2671                         return;
2672                 }
2673
2674                 /* MTU probe failure: don't reduce cwnd */
2675                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2676                     icsk->icsk_mtup.probe_size &&
2677                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2678                         tcp_mtup_probe_failed(sk);
2679                         /* Restores the reduction we did in tcp_mtup_probe() */
2680                         tp->snd_cwnd++;
2681                         tcp_simple_retransmit(sk);
2682                         return;
2683                 }
2684
2685                 /* Otherwise enter Recovery state */
2686
2687                 if (tcp_is_reno(tp))
2688                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2689                 else
2690                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2691
2692                 tp->high_seq = tp->snd_nxt;
2693                 tp->prior_ssthresh = 0;
2694                 tp->undo_marker = tp->snd_una;
2695                 tp->undo_retrans = tp->retrans_out;
2696
2697                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2698                         if (!(flag & FLAG_ECE))
2699                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2700                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2701                         TCP_ECN_queue_cwr(tp);
2702                 }
2703
2704                 tp->bytes_acked = 0;
2705                 tp->snd_cwnd_cnt = 0;
2706                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2707                 fast_rexmit = 1;
2708         }
2709
2710         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2711                 tcp_update_scoreboard(sk, fast_rexmit);
2712         tcp_cwnd_down(sk, flag);
2713         tcp_xmit_retransmit_queue(sk);
2714 }
2715
2716 /* Read draft-ietf-tcplw-high-performance before mucking
2717  * with this code. (Supersedes RFC1323)
2718  */
2719 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2720 {
2721         /* RTTM Rule: A TSecr value received in a segment is used to
2722          * update the averaged RTT measurement only if the segment
2723          * acknowledges some new data, i.e., only if it advances the
2724          * left edge of the send window.
2725          *
2726          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2727          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2728          *
2729          * Changed: reset backoff as soon as we see the first valid sample.
2730          * If we do not, we get strongly overestimated rto. With timestamps
2731          * samples are accepted even from very old segments: f.e., when rtt=1
2732          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2733          * answer arrives rto becomes 120 seconds! If at least one of segments
2734          * in window is lost... Voila.                          --ANK (010210)
2735          */
2736         struct tcp_sock *tp = tcp_sk(sk);
2737         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2738         tcp_rtt_estimator(sk, seq_rtt);
2739         tcp_set_rto(sk);
2740         inet_csk(sk)->icsk_backoff = 0;
2741         tcp_bound_rto(sk);
2742 }
2743
2744 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2745 {
2746         /* We don't have a timestamp. Can only use
2747          * packets that are not retransmitted to determine
2748          * rtt estimates. Also, we must not reset the
2749          * backoff for rto until we get a non-retransmitted
2750          * packet. This allows us to deal with a situation
2751          * where the network delay has increased suddenly.
2752          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2753          */
2754
2755         if (flag & FLAG_RETRANS_DATA_ACKED)
2756                 return;
2757
2758         tcp_rtt_estimator(sk, seq_rtt);
2759         tcp_set_rto(sk);
2760         inet_csk(sk)->icsk_backoff = 0;
2761         tcp_bound_rto(sk);
2762 }
2763
2764 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2765                                       const s32 seq_rtt)
2766 {
2767         const struct tcp_sock *tp = tcp_sk(sk);
2768         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2769         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2770                 tcp_ack_saw_tstamp(sk, flag);
2771         else if (seq_rtt >= 0)
2772                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2773 }
2774
2775 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2776 {
2777         const struct inet_connection_sock *icsk = inet_csk(sk);
2778         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2779         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2780 }
2781
2782 /* Restart timer after forward progress on connection.
2783  * RFC2988 recommends to restart timer to now+rto.
2784  */
2785 static void tcp_rearm_rto(struct sock *sk)
2786 {
2787         struct tcp_sock *tp = tcp_sk(sk);
2788
2789         if (!tp->packets_out) {
2790                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2791         } else {
2792                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2793                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2794         }
2795 }
2796
2797 /* If we get here, the whole TSO packet has not been acked. */
2798 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2799 {
2800         struct tcp_sock *tp = tcp_sk(sk);
2801         u32 packets_acked;
2802
2803         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2804
2805         packets_acked = tcp_skb_pcount(skb);
2806         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2807                 return 0;
2808         packets_acked -= tcp_skb_pcount(skb);
2809
2810         if (packets_acked) {
2811                 BUG_ON(tcp_skb_pcount(skb) == 0);
2812                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2813         }
2814
2815         return packets_acked;
2816 }
2817
2818 /* Remove acknowledged frames from the retransmission queue. If our packet
2819  * is before the ack sequence we can discard it as it's confirmed to have
2820  * arrived at the other end.
2821  */
2822 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2823 {
2824         struct tcp_sock *tp = tcp_sk(sk);
2825         const struct inet_connection_sock *icsk = inet_csk(sk);
2826         struct sk_buff *skb;
2827         u32 now = tcp_time_stamp;
2828         int fully_acked = 1;
2829         int flag = 0;
2830         u32 pkts_acked = 0;
2831         u32 reord = tp->packets_out;
2832         s32 seq_rtt = -1;
2833         s32 ca_seq_rtt = -1;
2834         ktime_t last_ackt = net_invalid_timestamp();
2835
2836         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2837                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2838                 u32 end_seq;
2839                 u32 acked_pcount;
2840                 u8 sacked = scb->sacked;
2841
2842                 /* Determine how many packets and what bytes were acked, tso and else */
2843                 if (after(scb->end_seq, tp->snd_una)) {
2844                         if (tcp_skb_pcount(skb) == 1 ||
2845                             !after(tp->snd_una, scb->seq))
2846                                 break;
2847
2848                         acked_pcount = tcp_tso_acked(sk, skb);
2849                         if (!acked_pcount)
2850                                 break;
2851
2852                         fully_acked = 0;
2853                         end_seq = tp->snd_una;
2854                 } else {
2855                         acked_pcount = tcp_skb_pcount(skb);
2856                         end_seq = scb->end_seq;
2857                 }
2858
2859                 /* MTU probing checks */
2860                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2861                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2862                         tcp_mtup_probe_success(sk, skb);
2863                 }
2864
2865                 if (sacked & TCPCB_RETRANS) {
2866                         if (sacked & TCPCB_SACKED_RETRANS)
2867                                 tp->retrans_out -= acked_pcount;
2868                         flag |= FLAG_RETRANS_DATA_ACKED;
2869                         ca_seq_rtt = -1;
2870                         seq_rtt = -1;
2871                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2872                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2873                 } else {
2874                         ca_seq_rtt = now - scb->when;
2875                         last_ackt = skb->tstamp;
2876                         if (seq_rtt < 0) {
2877                                 seq_rtt = ca_seq_rtt;
2878                         }
2879                         if (!(sacked & TCPCB_SACKED_ACKED))
2880                                 reord = min(pkts_acked, reord);
2881                 }
2882
2883                 if (sacked & TCPCB_SACKED_ACKED)
2884                         tp->sacked_out -= acked_pcount;
2885                 if (sacked & TCPCB_LOST)
2886                         tp->lost_out -= acked_pcount;
2887
2888                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2889                         tp->urg_mode = 0;
2890
2891                 tp->packets_out -= acked_pcount;
2892                 pkts_acked += acked_pcount;
2893
2894                 /* Initial outgoing SYN's get put onto the write_queue
2895                  * just like anything else we transmit.  It is not
2896                  * true data, and if we misinform our callers that
2897                  * this ACK acks real data, we will erroneously exit
2898                  * connection startup slow start one packet too
2899                  * quickly.  This is severely frowned upon behavior.
2900                  */
2901                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2902                         flag |= FLAG_DATA_ACKED;
2903                 } else {
2904                         flag |= FLAG_SYN_ACKED;
2905                         tp->retrans_stamp = 0;
2906                 }
2907
2908                 if (!fully_acked)
2909                         break;
2910
2911                 tcp_unlink_write_queue(skb, sk);
2912                 sk_wmem_free_skb(sk, skb);
2913                 tcp_clear_all_retrans_hints(tp);
2914         }
2915
2916         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2917                 flag |= FLAG_SACK_RENEGING;
2918
2919         if (flag & FLAG_ACKED) {
2920                 const struct tcp_congestion_ops *ca_ops
2921                         = inet_csk(sk)->icsk_ca_ops;
2922
2923                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2924                 tcp_rearm_rto(sk);
2925
2926                 if (tcp_is_reno(tp)) {
2927                         tcp_remove_reno_sacks(sk, pkts_acked);
2928                 } else {
2929                         /* Non-retransmitted hole got filled? That's reordering */
2930                         if (reord < prior_fackets)
2931                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2932                 }
2933
2934                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2935
2936                 if (ca_ops->pkts_acked) {
2937                         s32 rtt_us = -1;
2938
2939                         /* Is the ACK triggering packet unambiguous? */
2940                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2941                                 /* High resolution needed and available? */
2942                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2943                                     !ktime_equal(last_ackt,
2944                                                  net_invalid_timestamp()))
2945                                         rtt_us = ktime_us_delta(ktime_get_real(),
2946                                                                 last_ackt);
2947                                 else if (ca_seq_rtt > 0)
2948                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2949                         }
2950
2951                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2952                 }
2953         }
2954
2955 #if FASTRETRANS_DEBUG > 0
2956         BUG_TRAP((int)tp->sacked_out >= 0);
2957         BUG_TRAP((int)tp->lost_out >= 0);
2958         BUG_TRAP((int)tp->retrans_out >= 0);
2959         if (!tp->packets_out && tcp_is_sack(tp)) {
2960                 icsk = inet_csk(sk);
2961                 if (tp->lost_out) {
2962                         printk(KERN_DEBUG "Leak l=%u %d\n",
2963                                tp->lost_out, icsk->icsk_ca_state);
2964                         tp->lost_out = 0;
2965                 }
2966                 if (tp->sacked_out) {
2967                         printk(KERN_DEBUG "Leak s=%u %d\n",
2968                                tp->sacked_out, icsk->icsk_ca_state);
2969                         tp->sacked_out = 0;
2970                 }
2971                 if (tp->retrans_out) {
2972                         printk(KERN_DEBUG "Leak r=%u %d\n",
2973                                tp->retrans_out, icsk->icsk_ca_state);
2974                         tp->retrans_out = 0;
2975                 }
2976         }
2977 #endif
2978         return flag;
2979 }
2980
2981 static void tcp_ack_probe(struct sock *sk)
2982 {
2983         const struct tcp_sock *tp = tcp_sk(sk);
2984         struct inet_connection_sock *icsk = inet_csk(sk);
2985
2986         /* Was it a usable window open? */
2987
2988         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2989                 icsk->icsk_backoff = 0;
2990                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2991                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2992                  * This function is not for random using!
2993                  */
2994         } else {
2995                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2996                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2997                                           TCP_RTO_MAX);
2998         }
2999 }
3000
3001 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3002 {
3003         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3004                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3005 }
3006
3007 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3008 {
3009         const struct tcp_sock *tp = tcp_sk(sk);
3010         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3011                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3012 }
3013
3014 /* Check that window update is acceptable.
3015  * The function assumes that snd_una<=ack<=snd_next.
3016  */
3017 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3018                                         const u32 ack, const u32 ack_seq,
3019                                         const u32 nwin)
3020 {
3021         return (after(ack, tp->snd_una) ||
3022                 after(ack_seq, tp->snd_wl1) ||
3023                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3024 }
3025
3026 /* Update our send window.
3027  *
3028  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3029  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3030  */
3031 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3032                                  u32 ack_seq)
3033 {
3034         struct tcp_sock *tp = tcp_sk(sk);
3035         int flag = 0;
3036         u32 nwin = ntohs(tcp_hdr(skb)->window);
3037
3038         if (likely(!tcp_hdr(skb)->syn))
3039                 nwin <<= tp->rx_opt.snd_wscale;
3040
3041         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3042                 flag |= FLAG_WIN_UPDATE;
3043                 tcp_update_wl(tp, ack, ack_seq);
3044
3045                 if (tp->snd_wnd != nwin) {
3046                         tp->snd_wnd = nwin;
3047
3048                         /* Note, it is the only place, where
3049                          * fast path is recovered for sending TCP.
3050                          */
3051                         tp->pred_flags = 0;
3052                         tcp_fast_path_check(sk);
3053
3054                         if (nwin > tp->max_window) {
3055                                 tp->max_window = nwin;
3056                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3057                         }
3058                 }
3059         }
3060
3061         tp->snd_una = ack;
3062
3063         return flag;
3064 }
3065
3066 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3067  * continue in congestion avoidance.
3068  */
3069 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3070 {
3071         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3072         tp->snd_cwnd_cnt = 0;
3073         tp->bytes_acked = 0;
3074         TCP_ECN_queue_cwr(tp);
3075         tcp_moderate_cwnd(tp);
3076 }
3077
3078 /* A conservative spurious RTO response algorithm: reduce cwnd using
3079  * rate halving and continue in congestion avoidance.
3080  */
3081 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3082 {
3083         tcp_enter_cwr(sk, 0);
3084 }
3085
3086 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3087 {
3088         if (flag & FLAG_ECE)
3089                 tcp_ratehalving_spur_to_response(sk);
3090         else
3091                 tcp_undo_cwr(sk, 1);
3092 }
3093
3094 /* F-RTO spurious RTO detection algorithm (RFC4138)
3095  *
3096  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3097  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3098  * window (but not to or beyond highest sequence sent before RTO):
3099  *   On First ACK,  send two new segments out.
3100  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3101  *                  algorithm is not part of the F-RTO detection algorithm
3102  *                  given in RFC4138 but can be selected separately).
3103  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3104  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3105  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3106  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3107  *
3108  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3109  * original window even after we transmit two new data segments.
3110  *
3111  * SACK version:
3112  *   on first step, wait until first cumulative ACK arrives, then move to
3113  *   the second step. In second step, the next ACK decides.
3114  *
3115  * F-RTO is implemented (mainly) in four functions:
3116  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3117  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3118  *     called when tcp_use_frto() showed green light
3119  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3120  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3121  *     to prove that the RTO is indeed spurious. It transfers the control
3122  *     from F-RTO to the conventional RTO recovery
3123  */
3124 static int tcp_process_frto(struct sock *sk, int flag)
3125 {
3126         struct tcp_sock *tp = tcp_sk(sk);
3127
3128         tcp_verify_left_out(tp);
3129
3130         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3131         if (flag & FLAG_DATA_ACKED)
3132                 inet_csk(sk)->icsk_retransmits = 0;
3133
3134         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3135             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3136                 tp->undo_marker = 0;
3137
3138         if (!before(tp->snd_una, tp->frto_highmark)) {
3139                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3140                 return 1;
3141         }
3142
3143         if (!tcp_is_sackfrto(tp)) {
3144                 /* RFC4138 shortcoming in step 2; should also have case c):
3145                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3146                  * data, winupdate
3147                  */
3148                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3149                         return 1;
3150
3151                 if (!(flag & FLAG_DATA_ACKED)) {
3152                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3153                                             flag);
3154                         return 1;
3155                 }
3156         } else {
3157                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3158                         /* Prevent sending of new data. */
3159                         tp->snd_cwnd = min(tp->snd_cwnd,
3160                                            tcp_packets_in_flight(tp));
3161                         return 1;
3162                 }
3163
3164                 if ((tp->frto_counter >= 2) &&
3165                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3166                      ((flag & FLAG_DATA_SACKED) &&
3167                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3168                         /* RFC4138 shortcoming (see comment above) */
3169                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3170                             (flag & FLAG_NOT_DUP))
3171                                 return 1;
3172
3173                         tcp_enter_frto_loss(sk, 3, flag);
3174                         return 1;
3175                 }
3176         }
3177
3178         if (tp->frto_counter == 1) {
3179                 /* tcp_may_send_now needs to see updated state */
3180                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3181                 tp->frto_counter = 2;
3182
3183                 if (!tcp_may_send_now(sk))
3184                         tcp_enter_frto_loss(sk, 2, flag);
3185
3186                 return 1;
3187         } else {
3188                 switch (sysctl_tcp_frto_response) {
3189                 case 2:
3190                         tcp_undo_spur_to_response(sk, flag);
3191                         break;
3192                 case 1:
3193                         tcp_conservative_spur_to_response(tp);
3194                         break;
3195                 default:
3196                         tcp_ratehalving_spur_to_response(sk);
3197                         break;
3198                 }
3199                 tp->frto_counter = 0;
3200                 tp->undo_marker = 0;
3201                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3202         }
3203         return 0;
3204 }
3205
3206 /* This routine deals with incoming acks, but not outgoing ones. */
3207 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3208 {
3209         struct inet_connection_sock *icsk = inet_csk(sk);
3210         struct tcp_sock *tp = tcp_sk(sk);
3211         u32 prior_snd_una = tp->snd_una;
3212         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3213         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3214         u32 prior_in_flight;
3215         u32 prior_fackets;
3216         int prior_packets;
3217         int frto_cwnd = 0;
3218
3219         /* If the ack is newer than sent or older than previous acks
3220          * then we can probably ignore it.
3221          */
3222         if (after(ack, tp->snd_nxt))
3223                 goto uninteresting_ack;
3224
3225         if (before(ack, prior_snd_una))
3226                 goto old_ack;
3227
3228         if (after(ack, prior_snd_una))
3229                 flag |= FLAG_SND_UNA_ADVANCED;
3230
3231         if (sysctl_tcp_abc) {
3232                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3233                         tp->bytes_acked += ack - prior_snd_una;
3234                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3235                         /* we assume just one segment left network */
3236                         tp->bytes_acked += min(ack - prior_snd_una,
3237                                                tp->mss_cache);
3238         }
3239
3240         prior_fackets = tp->fackets_out;
3241         prior_in_flight = tcp_packets_in_flight(tp);
3242
3243         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3244                 /* Window is constant, pure forward advance.
3245                  * No more checks are required.
3246                  * Note, we use the fact that SND.UNA>=SND.WL2.
3247                  */
3248                 tcp_update_wl(tp, ack, ack_seq);
3249                 tp->snd_una = ack;
3250                 flag |= FLAG_WIN_UPDATE;
3251
3252                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3253
3254                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3255         } else {
3256                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3257                         flag |= FLAG_DATA;
3258                 else
3259                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3260
3261                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3262
3263                 if (TCP_SKB_CB(skb)->sacked)
3264                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3265
3266                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3267                         flag |= FLAG_ECE;
3268
3269                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3270         }
3271
3272         /* We passed data and got it acked, remove any soft error
3273          * log. Something worked...
3274          */
3275         sk->sk_err_soft = 0;
3276         tp->rcv_tstamp = tcp_time_stamp;
3277         prior_packets = tp->packets_out;
3278         if (!prior_packets)
3279                 goto no_queue;
3280
3281         /* See if we can take anything off of the retransmit queue. */
3282         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3283
3284         if (tp->frto_counter)
3285                 frto_cwnd = tcp_process_frto(sk, flag);
3286         /* Guarantee sacktag reordering detection against wrap-arounds */
3287         if (before(tp->frto_highmark, tp->snd_una))
3288                 tp->frto_highmark = 0;
3289
3290         if (tcp_ack_is_dubious(sk, flag)) {
3291                 /* Advance CWND, if state allows this. */
3292                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3293                     tcp_may_raise_cwnd(sk, flag))
3294                         tcp_cong_avoid(sk, ack, prior_in_flight);
3295                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3296                                       flag);
3297         } else {
3298                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3299                         tcp_cong_avoid(sk, ack, prior_in_flight);
3300         }
3301
3302         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3303                 dst_confirm(sk->sk_dst_cache);
3304
3305         return 1;
3306
3307 no_queue:
3308         icsk->icsk_probes_out = 0;
3309
3310         /* If this ack opens up a zero window, clear backoff.  It was
3311          * being used to time the probes, and is probably far higher than
3312          * it needs to be for normal retransmission.
3313          */
3314         if (tcp_send_head(sk))
3315                 tcp_ack_probe(sk);
3316         return 1;
3317
3318 old_ack:
3319         if (TCP_SKB_CB(skb)->sacked) {
3320                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3321                 if (icsk->icsk_ca_state == TCP_CA_Open)
3322                         tcp_try_keep_open(sk);
3323         }
3324
3325 uninteresting_ack:
3326         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3327         return 0;
3328 }
3329
3330 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3331  * But, this can also be called on packets in the established flow when
3332  * the fast version below fails.
3333  */
3334 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3335                        int estab)
3336 {
3337         unsigned char *ptr;
3338         struct tcphdr *th = tcp_hdr(skb);
3339         int length = (th->doff * 4) - sizeof(struct tcphdr);
3340
3341         ptr = (unsigned char *)(th + 1);
3342         opt_rx->saw_tstamp = 0;
3343
3344         while (length > 0) {
3345                 int opcode = *ptr++;
3346                 int opsize;
3347
3348                 switch (opcode) {
3349                 case TCPOPT_EOL:
3350                         return;
3351                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3352                         length--;
3353                         continue;
3354                 default:
3355                         opsize = *ptr++;
3356                         if (opsize < 2) /* "silly options" */
3357                                 return;
3358                         if (opsize > length)
3359                                 return; /* don't parse partial options */
3360                         switch (opcode) {
3361                         case TCPOPT_MSS:
3362                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3363                                         u16 in_mss = get_unaligned_be16(ptr);
3364                                         if (in_mss) {
3365                                                 if (opt_rx->user_mss &&
3366                                                     opt_rx->user_mss < in_mss)
3367                                                         in_mss = opt_rx->user_mss;
3368                                                 opt_rx->mss_clamp = in_mss;
3369                                         }
3370                                 }
3371                                 break;
3372                         case TCPOPT_WINDOW:
3373                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3374                                     !estab && sysctl_tcp_window_scaling) {
3375                                         __u8 snd_wscale = *(__u8 *)ptr;
3376                                         opt_rx->wscale_ok = 1;
3377                                         if (snd_wscale > 14) {
3378                                                 if (net_ratelimit())
3379                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3380                                                                "scaling value %d >14 received.\n",
3381                                                                snd_wscale);
3382                                                 snd_wscale = 14;
3383                                         }
3384                                         opt_rx->snd_wscale = snd_wscale;
3385                                 }
3386                                 break;
3387                         case TCPOPT_TIMESTAMP:
3388                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3389                                     ((estab && opt_rx->tstamp_ok) ||
3390                                      (!estab && sysctl_tcp_timestamps))) {
3391                                         opt_rx->saw_tstamp = 1;
3392                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3393                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3394                                 }
3395                                 break;
3396                         case TCPOPT_SACK_PERM:
3397                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3398                                     !estab && sysctl_tcp_sack) {
3399                                         opt_rx->sack_ok = 1;
3400                                         tcp_sack_reset(opt_rx);
3401                                 }
3402                                 break;
3403
3404                         case TCPOPT_SACK:
3405                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3406                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3407                                    opt_rx->sack_ok) {
3408                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3409                                 }
3410                                 break;
3411 #ifdef CONFIG_TCP_MD5SIG
3412                         case TCPOPT_MD5SIG:
3413                                 /*
3414                                  * The MD5 Hash has already been
3415                                  * checked (see tcp_v{4,6}_do_rcv()).
3416                                  */
3417                                 break;
3418 #endif
3419                         }
3420
3421                         ptr += opsize-2;
3422                         length -= opsize;
3423                 }
3424         }
3425 }
3426
3427 /* Fast parse options. This hopes to only see timestamps.
3428  * If it is wrong it falls back on tcp_parse_options().
3429  */
3430 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3431                                   struct tcp_sock *tp)
3432 {
3433         if (th->doff == sizeof(struct tcphdr) >> 2) {
3434                 tp->rx_opt.saw_tstamp = 0;
3435                 return 0;
3436         } else if (tp->rx_opt.tstamp_ok &&
3437                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3438                 __be32 *ptr = (__be32 *)(th + 1);
3439                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3440                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3441                         tp->rx_opt.saw_tstamp = 1;
3442                         ++ptr;
3443                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3444                         ++ptr;
3445                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3446                         return 1;
3447                 }
3448         }
3449         tcp_parse_options(skb, &tp->rx_opt, 1);
3450         return 1;
3451 }
3452
3453 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3454 {
3455         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3456         tp->rx_opt.ts_recent_stamp = get_seconds();
3457 }
3458
3459 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3460 {
3461         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3462                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3463                  * extra check below makes sure this can only happen
3464                  * for pure ACK frames.  -DaveM
3465                  *
3466                  * Not only, also it occurs for expired timestamps.
3467                  */
3468
3469                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3470                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3471                         tcp_store_ts_recent(tp);
3472         }
3473 }
3474
3475 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3476  *
3477  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3478  * it can pass through stack. So, the following predicate verifies that
3479  * this segment is not used for anything but congestion avoidance or
3480  * fast retransmit. Moreover, we even are able to eliminate most of such
3481  * second order effects, if we apply some small "replay" window (~RTO)
3482  * to timestamp space.
3483  *
3484  * All these measures still do not guarantee that we reject wrapped ACKs
3485  * on networks with high bandwidth, when sequence space is recycled fastly,
3486  * but it guarantees that such events will be very rare and do not affect
3487  * connection seriously. This doesn't look nice, but alas, PAWS is really
3488  * buggy extension.
3489  *
3490  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3491  * states that events when retransmit arrives after original data are rare.
3492  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3493  * the biggest problem on large power networks even with minor reordering.
3494  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3495  * up to bandwidth of 18Gigabit/sec. 8) ]
3496  */
3497
3498 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3499 {
3500         struct tcp_sock *tp = tcp_sk(sk);
3501         struct tcphdr *th = tcp_hdr(skb);
3502         u32 seq = TCP_SKB_CB(skb)->seq;
3503         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3504
3505         return (/* 1. Pure ACK with correct sequence number. */
3506                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3507
3508                 /* 2. ... and duplicate ACK. */
3509                 ack == tp->snd_una &&
3510
3511                 /* 3. ... and does not update window. */
3512                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3513
3514                 /* 4. ... and sits in replay window. */
3515                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3516 }
3517
3518 static inline int tcp_paws_discard(const struct sock *sk,
3519                                    const struct sk_buff *skb)
3520 {
3521         const struct tcp_sock *tp = tcp_sk(sk);
3522         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3523                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3524                 !tcp_disordered_ack(sk, skb));
3525 }
3526
3527 /* Check segment sequence number for validity.
3528  *
3529  * Segment controls are considered valid, if the segment
3530  * fits to the window after truncation to the window. Acceptability
3531  * of data (and SYN, FIN, of course) is checked separately.
3532  * See tcp_data_queue(), for example.
3533  *
3534  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3535  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3536  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3537  * (borrowed from freebsd)
3538  */
3539
3540 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3541 {
3542         return  !before(end_seq, tp->rcv_wup) &&
3543                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3544 }
3545
3546 /* When we get a reset we do this. */
3547 static void tcp_reset(struct sock *sk)
3548 {
3549         /* We want the right error as BSD sees it (and indeed as we do). */
3550         switch (sk->sk_state) {
3551         case TCP_SYN_SENT:
3552                 sk->sk_err = ECONNREFUSED;
3553                 break;
3554         case TCP_CLOSE_WAIT:
3555                 sk->sk_err = EPIPE;
3556                 break;
3557         case TCP_CLOSE:
3558                 return;
3559         default:
3560                 sk->sk_err = ECONNRESET;
3561         }
3562
3563         if (!sock_flag(sk, SOCK_DEAD))
3564                 sk->sk_error_report(sk);
3565
3566         tcp_done(sk);
3567 }
3568
3569 /*
3570  *      Process the FIN bit. This now behaves as it is supposed to work
3571  *      and the FIN takes effect when it is validly part of sequence
3572  *      space. Not before when we get holes.
3573  *
3574  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3575  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3576  *      TIME-WAIT)
3577  *
3578  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3579  *      close and we go into CLOSING (and later onto TIME-WAIT)
3580  *
3581  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3582  */
3583 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3584 {
3585         struct tcp_sock *tp = tcp_sk(sk);
3586
3587         inet_csk_schedule_ack(sk);
3588
3589         sk->sk_shutdown |= RCV_SHUTDOWN;
3590         sock_set_flag(sk, SOCK_DONE);
3591
3592         switch (sk->sk_state) {
3593         case TCP_SYN_RECV:
3594         case TCP_ESTABLISHED:
3595                 /* Move to CLOSE_WAIT */
3596                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3597                 inet_csk(sk)->icsk_ack.pingpong = 1;
3598                 break;
3599
3600         case TCP_CLOSE_WAIT:
3601         case TCP_CLOSING:
3602                 /* Received a retransmission of the FIN, do
3603                  * nothing.
3604                  */
3605                 break;
3606         case TCP_LAST_ACK:
3607                 /* RFC793: Remain in the LAST-ACK state. */
3608                 break;
3609
3610         case TCP_FIN_WAIT1:
3611                 /* This case occurs when a simultaneous close
3612                  * happens, we must ack the received FIN and
3613                  * enter the CLOSING state.
3614                  */
3615                 tcp_send_ack(sk);
3616                 tcp_set_state(sk, TCP_CLOSING);
3617                 break;
3618         case TCP_FIN_WAIT2:
3619                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3620                 tcp_send_ack(sk);
3621                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3622                 break;
3623         default:
3624                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3625                  * cases we should never reach this piece of code.
3626                  */
3627                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3628                        __func__, sk->sk_state);
3629                 break;
3630         }
3631
3632         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3633          * Probably, we should reset in this case. For now drop them.
3634          */
3635         __skb_queue_purge(&tp->out_of_order_queue);
3636         if (tcp_is_sack(tp))
3637                 tcp_sack_reset(&tp->rx_opt);
3638         sk_mem_reclaim(sk);
3639
3640         if (!sock_flag(sk, SOCK_DEAD)) {
3641                 sk->sk_state_change(sk);
3642
3643                 /* Do not send POLL_HUP for half duplex close. */
3644                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3645                     sk->sk_state == TCP_CLOSE)
3646                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3647                 else
3648                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3649         }
3650 }
3651
3652 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3653                                   u32 end_seq)
3654 {
3655         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3656                 if (before(seq, sp->start_seq))
3657                         sp->start_seq = seq;
3658                 if (after(end_seq, sp->end_seq))
3659                         sp->end_seq = end_seq;
3660                 return 1;
3661         }
3662         return 0;
3663 }
3664
3665 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3666 {
3667         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3668                 if (before(seq, tp->rcv_nxt))
3669                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3670                 else
3671                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3672
3673                 tp->rx_opt.dsack = 1;
3674                 tp->duplicate_sack[0].start_seq = seq;
3675                 tp->duplicate_sack[0].end_seq = end_seq;
3676                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3677                                            4 - tp->rx_opt.tstamp_ok);
3678         }
3679 }
3680
3681 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3682 {
3683         if (!tp->rx_opt.dsack)
3684                 tcp_dsack_set(tp, seq, end_seq);
3685         else
3686                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3687 }
3688
3689 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3690 {
3691         struct tcp_sock *tp = tcp_sk(sk);
3692
3693         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3694             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3695                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3696                 tcp_enter_quickack_mode(sk);
3697
3698                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3699                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3700
3701                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3702                                 end_seq = tp->rcv_nxt;
3703                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3704                 }
3705         }
3706
3707         tcp_send_ack(sk);
3708 }
3709
3710 /* These routines update the SACK block as out-of-order packets arrive or
3711  * in-order packets close up the sequence space.
3712  */
3713 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3714 {
3715         int this_sack;
3716         struct tcp_sack_block *sp = &tp->selective_acks[0];
3717         struct tcp_sack_block *swalk = sp + 1;
3718
3719         /* See if the recent change to the first SACK eats into
3720          * or hits the sequence space of other SACK blocks, if so coalesce.
3721          */
3722         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3723                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3724                         int i;
3725
3726                         /* Zap SWALK, by moving every further SACK up by one slot.
3727                          * Decrease num_sacks.
3728                          */
3729                         tp->rx_opt.num_sacks--;
3730                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3731                                                    tp->rx_opt.dsack,
3732                                                    4 - tp->rx_opt.tstamp_ok);
3733                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3734                                 sp[i] = sp[i + 1];
3735                         continue;
3736                 }
3737                 this_sack++, swalk++;
3738         }
3739 }
3740
3741 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3742                                  struct tcp_sack_block *sack2)
3743 {
3744         __u32 tmp;
3745
3746         tmp = sack1->start_seq;
3747         sack1->start_seq = sack2->start_seq;
3748         sack2->start_seq = tmp;
3749
3750         tmp = sack1->end_seq;
3751         sack1->end_seq = sack2->end_seq;
3752         sack2->end_seq = tmp;
3753 }
3754
3755 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3756 {
3757         struct tcp_sock *tp = tcp_sk(sk);
3758         struct tcp_sack_block *sp = &tp->selective_acks[0];
3759         int cur_sacks = tp->rx_opt.num_sacks;
3760         int this_sack;
3761
3762         if (!cur_sacks)
3763                 goto new_sack;
3764
3765         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3766                 if (tcp_sack_extend(sp, seq, end_seq)) {
3767                         /* Rotate this_sack to the first one. */
3768                         for (; this_sack > 0; this_sack--, sp--)
3769                                 tcp_sack_swap(sp, sp - 1);
3770                         if (cur_sacks > 1)
3771                                 tcp_sack_maybe_coalesce(tp);
3772                         return;
3773                 }
3774         }
3775
3776         /* Could not find an adjacent existing SACK, build a new one,
3777          * put it at the front, and shift everyone else down.  We
3778          * always know there is at least one SACK present already here.
3779          *
3780          * If the sack array is full, forget about the last one.
3781          */
3782         if (this_sack >= 4) {
3783                 this_sack--;
3784                 tp->rx_opt.num_sacks--;
3785                 sp--;
3786         }
3787         for (; this_sack > 0; this_sack--, sp--)
3788                 *sp = *(sp - 1);
3789
3790 new_sack:
3791         /* Build the new head SACK, and we're done. */
3792         sp->start_seq = seq;
3793         sp->end_seq = end_seq;
3794         tp->rx_opt.num_sacks++;
3795         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3796                                    4 - tp->rx_opt.tstamp_ok);
3797 }
3798
3799 /* RCV.NXT advances, some SACKs should be eaten. */
3800
3801 static void tcp_sack_remove(struct tcp_sock *tp)
3802 {
3803         struct tcp_sack_block *sp = &tp->selective_acks[0];
3804         int num_sacks = tp->rx_opt.num_sacks;
3805         int this_sack;
3806
3807         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3808         if (skb_queue_empty(&tp->out_of_order_queue)) {
3809                 tp->rx_opt.num_sacks = 0;
3810                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3811                 return;
3812         }
3813
3814         for (this_sack = 0; this_sack < num_sacks;) {
3815                 /* Check if the start of the sack is covered by RCV.NXT. */
3816                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3817                         int i;
3818
3819                         /* RCV.NXT must cover all the block! */
3820                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3821
3822                         /* Zap this SACK, by moving forward any other SACKS. */
3823                         for (i=this_sack+1; i < num_sacks; i++)
3824                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3825                         num_sacks--;
3826                         continue;
3827                 }
3828                 this_sack++;
3829                 sp++;
3830         }
3831         if (num_sacks != tp->rx_opt.num_sacks) {
3832                 tp->rx_opt.num_sacks = num_sacks;
3833                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3834                                            tp->rx_opt.dsack,
3835                                            4 - tp->rx_opt.tstamp_ok);
3836         }
3837 }
3838
3839 /* This one checks to see if we can put data from the
3840  * out_of_order queue into the receive_queue.
3841  */
3842 static void tcp_ofo_queue(struct sock *sk)
3843 {
3844         struct tcp_sock *tp = tcp_sk(sk);
3845         __u32 dsack_high = tp->rcv_nxt;
3846         struct sk_buff *skb;
3847
3848         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3849                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3850                         break;
3851
3852                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3853                         __u32 dsack = dsack_high;
3854                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3855                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3856                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3857                 }
3858
3859                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3860                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3861                         __skb_unlink(skb, &tp->out_of_order_queue);
3862                         __kfree_skb(skb);
3863                         continue;
3864                 }
3865                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3866                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3867                            TCP_SKB_CB(skb)->end_seq);
3868
3869                 __skb_unlink(skb, &tp->out_of_order_queue);
3870                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3871                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3872                 if (tcp_hdr(skb)->fin)
3873                         tcp_fin(skb, sk, tcp_hdr(skb));
3874         }
3875 }
3876
3877 static int tcp_prune_ofo_queue(struct sock *sk);
3878 static int tcp_prune_queue(struct sock *sk);
3879
3880 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3881 {
3882         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3883             !sk_rmem_schedule(sk, size)) {
3884
3885                 if (tcp_prune_queue(sk) < 0)
3886                         return -1;
3887
3888                 if (!sk_rmem_schedule(sk, size)) {
3889                         if (!tcp_prune_ofo_queue(sk))
3890                                 return -1;
3891
3892                         if (!sk_rmem_schedule(sk, size))
3893                                 return -1;
3894                 }
3895         }
3896         return 0;
3897 }
3898
3899 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3900 {
3901         struct tcphdr *th = tcp_hdr(skb);
3902         struct tcp_sock *tp = tcp_sk(sk);
3903         int eaten = -1;
3904
3905         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3906                 goto drop;
3907
3908         __skb_pull(skb, th->doff * 4);
3909
3910         TCP_ECN_accept_cwr(tp, skb);
3911
3912         if (tp->rx_opt.dsack) {
3913                 tp->rx_opt.dsack = 0;
3914                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3915                                              4 - tp->rx_opt.tstamp_ok);
3916         }
3917
3918         /*  Queue data for delivery to the user.
3919          *  Packets in sequence go to the receive queue.
3920          *  Out of sequence packets to the out_of_order_queue.
3921          */
3922         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3923                 if (tcp_receive_window(tp) == 0)
3924                         goto out_of_window;
3925
3926                 /* Ok. In sequence. In window. */
3927                 if (tp->ucopy.task == current &&
3928                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3929                     sock_owned_by_user(sk) && !tp->urg_data) {
3930                         int chunk = min_t(unsigned int, skb->len,
3931                                           tp->ucopy.len);
3932
3933                         __set_current_state(TASK_RUNNING);
3934
3935                         local_bh_enable();
3936                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3937                                 tp->ucopy.len -= chunk;
3938                                 tp->copied_seq += chunk;
3939                                 eaten = (chunk == skb->len && !th->fin);
3940                                 tcp_rcv_space_adjust(sk);
3941                         }
3942                         local_bh_disable();
3943                 }
3944
3945                 if (eaten <= 0) {
3946 queue_and_out:
3947                         if (eaten < 0 &&
3948                             tcp_try_rmem_schedule(sk, skb->truesize))
3949                                 goto drop;
3950
3951                         skb_set_owner_r(skb, sk);
3952                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3953                 }
3954                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3955                 if (skb->len)
3956                         tcp_event_data_recv(sk, skb);
3957                 if (th->fin)
3958                         tcp_fin(skb, sk, th);
3959
3960                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3961                         tcp_ofo_queue(sk);
3962
3963                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3964                          * gap in queue is filled.
3965                          */
3966                         if (skb_queue_empty(&tp->out_of_order_queue))
3967                                 inet_csk(sk)->icsk_ack.pingpong = 0;
3968                 }
3969
3970                 if (tp->rx_opt.num_sacks)
3971                         tcp_sack_remove(tp);
3972
3973                 tcp_fast_path_check(sk);
3974
3975                 if (eaten > 0)
3976                         __kfree_skb(skb);
3977                 else if (!sock_flag(sk, SOCK_DEAD))
3978                         sk->sk_data_ready(sk, 0);
3979                 return;
3980         }
3981
3982         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3983                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
3984                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3985                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3986
3987 out_of_window:
3988                 tcp_enter_quickack_mode(sk);
3989                 inet_csk_schedule_ack(sk);
3990 drop:
3991                 __kfree_skb(skb);
3992                 return;
3993         }
3994
3995         /* Out of window. F.e. zero window probe. */
3996         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3997                 goto out_of_window;
3998
3999         tcp_enter_quickack_mode(sk);
4000
4001         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4002                 /* Partial packet, seq < rcv_next < end_seq */
4003                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4004                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4005                            TCP_SKB_CB(skb)->end_seq);
4006
4007                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4008
4009                 /* If window is closed, drop tail of packet. But after
4010                  * remembering D-SACK for its head made in previous line.
4011                  */
4012                 if (!tcp_receive_window(tp))
4013                         goto out_of_window;
4014                 goto queue_and_out;
4015         }
4016
4017         TCP_ECN_check_ce(tp, skb);
4018
4019         if (tcp_try_rmem_schedule(sk, skb->truesize))
4020                 goto drop;
4021
4022         /* Disable header prediction. */
4023         tp->pred_flags = 0;
4024         inet_csk_schedule_ack(sk);
4025
4026         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4027                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4028
4029         skb_set_owner_r(skb, sk);
4030
4031         if (!skb_peek(&tp->out_of_order_queue)) {
4032                 /* Initial out of order segment, build 1 SACK. */
4033                 if (tcp_is_sack(tp)) {
4034                         tp->rx_opt.num_sacks = 1;
4035                         tp->rx_opt.dsack     = 0;
4036                         tp->rx_opt.eff_sacks = 1;
4037                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4038                         tp->selective_acks[0].end_seq =
4039                                                 TCP_SKB_CB(skb)->end_seq;
4040                 }
4041                 __skb_queue_head(&tp->out_of_order_queue, skb);
4042         } else {
4043                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4044                 u32 seq = TCP_SKB_CB(skb)->seq;
4045                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4046
4047                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4048                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4049
4050                         if (!tp->rx_opt.num_sacks ||
4051                             tp->selective_acks[0].end_seq != seq)
4052                                 goto add_sack;
4053
4054                         /* Common case: data arrive in order after hole. */
4055                         tp->selective_acks[0].end_seq = end_seq;
4056                         return;
4057                 }
4058
4059                 /* Find place to insert this segment. */
4060                 do {
4061                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4062                                 break;
4063                 } while ((skb1 = skb1->prev) !=
4064                          (struct sk_buff *)&tp->out_of_order_queue);
4065
4066                 /* Do skb overlap to previous one? */
4067                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4068                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4069                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4070                                 /* All the bits are present. Drop. */
4071                                 __kfree_skb(skb);
4072                                 tcp_dsack_set(tp, seq, end_seq);
4073                                 goto add_sack;
4074                         }
4075                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4076                                 /* Partial overlap. */
4077                                 tcp_dsack_set(tp, seq,
4078                                               TCP_SKB_CB(skb1)->end_seq);
4079                         } else {
4080                                 skb1 = skb1->prev;
4081                         }
4082                 }
4083                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4084
4085                 /* And clean segments covered by new one as whole. */
4086                 while ((skb1 = skb->next) !=
4087                        (struct sk_buff *)&tp->out_of_order_queue &&
4088                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4089                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4090                                 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4091                                                  end_seq);
4092                                 break;
4093                         }
4094                         __skb_unlink(skb1, &tp->out_of_order_queue);
4095                         tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4096                                          TCP_SKB_CB(skb1)->end_seq);
4097                         __kfree_skb(skb1);
4098                 }
4099
4100 add_sack:
4101                 if (tcp_is_sack(tp))
4102                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4103         }
4104 }
4105
4106 /* Collapse contiguous sequence of skbs head..tail with
4107  * sequence numbers start..end.
4108  * Segments with FIN/SYN are not collapsed (only because this
4109  * simplifies code)
4110  */
4111 static void
4112 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4113              struct sk_buff *head, struct sk_buff *tail,
4114              u32 start, u32 end)
4115 {
4116         struct sk_buff *skb;
4117
4118         /* First, check that queue is collapsible and find
4119          * the point where collapsing can be useful. */
4120         for (skb = head; skb != tail;) {
4121                 /* No new bits? It is possible on ofo queue. */
4122                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4123                         struct sk_buff *next = skb->next;
4124                         __skb_unlink(skb, list);
4125                         __kfree_skb(skb);
4126                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4127                         skb = next;
4128                         continue;
4129                 }
4130
4131                 /* The first skb to collapse is:
4132                  * - not SYN/FIN and
4133                  * - bloated or contains data before "start" or
4134                  *   overlaps to the next one.
4135                  */
4136                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4137                     (tcp_win_from_space(skb->truesize) > skb->len ||
4138                      before(TCP_SKB_CB(skb)->seq, start) ||
4139                      (skb->next != tail &&
4140                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4141                         break;
4142
4143                 /* Decided to skip this, advance start seq. */
4144                 start = TCP_SKB_CB(skb)->end_seq;
4145                 skb = skb->next;
4146         }
4147         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4148                 return;
4149
4150         while (before(start, end)) {
4151                 struct sk_buff *nskb;
4152                 unsigned int header = skb_headroom(skb);
4153                 int copy = SKB_MAX_ORDER(header, 0);
4154
4155                 /* Too big header? This can happen with IPv6. */
4156                 if (copy < 0)
4157                         return;
4158                 if (end - start < copy)
4159                         copy = end - start;
4160                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4161                 if (!nskb)
4162                         return;
4163
4164                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4165                 skb_set_network_header(nskb, (skb_network_header(skb) -
4166                                               skb->head));
4167                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4168                                                 skb->head));
4169                 skb_reserve(nskb, header);
4170                 memcpy(nskb->head, skb->head, header);
4171                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4172                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4173                 __skb_insert(nskb, skb->prev, skb, list);
4174                 skb_set_owner_r(nskb, sk);
4175
4176                 /* Copy data, releasing collapsed skbs. */
4177                 while (copy > 0) {
4178                         int offset = start - TCP_SKB_CB(skb)->seq;
4179                         int size = TCP_SKB_CB(skb)->end_seq - start;
4180
4181                         BUG_ON(offset < 0);
4182                         if (size > 0) {
4183                                 size = min(copy, size);
4184                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4185                                         BUG();
4186                                 TCP_SKB_CB(nskb)->end_seq += size;
4187                                 copy -= size;
4188                                 start += size;
4189                         }
4190                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4191                                 struct sk_buff *next = skb->next;
4192                                 __skb_unlink(skb, list);
4193                                 __kfree_skb(skb);
4194                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4195                                 skb = next;
4196                                 if (skb == tail ||
4197                                     tcp_hdr(skb)->syn ||
4198                                     tcp_hdr(skb)->fin)
4199                                         return;
4200                         }
4201                 }
4202         }
4203 }
4204
4205 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4206  * and tcp_collapse() them until all the queue is collapsed.
4207  */
4208 static void tcp_collapse_ofo_queue(struct sock *sk)
4209 {
4210         struct tcp_sock *tp = tcp_sk(sk);
4211         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4212         struct sk_buff *head;
4213         u32 start, end;
4214
4215         if (skb == NULL)
4216                 return;
4217
4218         start = TCP_SKB_CB(skb)->seq;
4219         end = TCP_SKB_CB(skb)->end_seq;
4220         head = skb;
4221
4222         for (;;) {
4223                 skb = skb->next;
4224
4225                 /* Segment is terminated when we see gap or when
4226                  * we are at the end of all the queue. */
4227                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4228                     after(TCP_SKB_CB(skb)->seq, end) ||
4229                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4230                         tcp_collapse(sk, &tp->out_of_order_queue,
4231                                      head, skb, start, end);
4232                         head = skb;
4233                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4234                                 break;
4235                         /* Start new segment */
4236                         start = TCP_SKB_CB(skb)->seq;
4237                         end = TCP_SKB_CB(skb)->end_seq;
4238                 } else {
4239                         if (before(TCP_SKB_CB(skb)->seq, start))
4240                                 start = TCP_SKB_CB(skb)->seq;
4241                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4242                                 end = TCP_SKB_CB(skb)->end_seq;
4243                 }
4244         }
4245 }
4246
4247 /*
4248  * Purge the out-of-order queue.
4249  * Return true if queue was pruned.
4250  */
4251 static int tcp_prune_ofo_queue(struct sock *sk)
4252 {
4253         struct tcp_sock *tp = tcp_sk(sk);
4254         int res = 0;
4255
4256         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4257                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4258                 __skb_queue_purge(&tp->out_of_order_queue);
4259
4260                 /* Reset SACK state.  A conforming SACK implementation will
4261                  * do the same at a timeout based retransmit.  When a connection
4262                  * is in a sad state like this, we care only about integrity
4263                  * of the connection not performance.
4264                  */
4265                 if (tp->rx_opt.sack_ok)
4266                         tcp_sack_reset(&tp->rx_opt);
4267                 sk_mem_reclaim(sk);
4268                 res = 1;
4269         }
4270         return res;
4271 }
4272
4273 /* Reduce allocated memory if we can, trying to get
4274  * the socket within its memory limits again.
4275  *
4276  * Return less than zero if we should start dropping frames
4277  * until the socket owning process reads some of the data
4278  * to stabilize the situation.
4279  */
4280 static int tcp_prune_queue(struct sock *sk)
4281 {
4282         struct tcp_sock *tp = tcp_sk(sk);
4283
4284         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4285
4286         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4287
4288         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4289                 tcp_clamp_window(sk);
4290         else if (tcp_memory_pressure)
4291                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4292
4293         tcp_collapse_ofo_queue(sk);
4294         tcp_collapse(sk, &sk->sk_receive_queue,
4295                      sk->sk_receive_queue.next,
4296                      (struct sk_buff *)&sk->sk_receive_queue,
4297                      tp->copied_seq, tp->rcv_nxt);
4298         sk_mem_reclaim(sk);
4299
4300         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4301                 return 0;
4302
4303         /* Collapsing did not help, destructive actions follow.
4304          * This must not ever occur. */
4305
4306         tcp_prune_ofo_queue(sk);
4307
4308         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4309                 return 0;
4310
4311         /* If we are really being abused, tell the caller to silently
4312          * drop receive data on the floor.  It will get retransmitted
4313          * and hopefully then we'll have sufficient space.
4314          */
4315         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4316
4317         /* Massive buffer overcommit. */
4318         tp->pred_flags = 0;
4319         return -1;
4320 }
4321
4322 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4323  * As additional protections, we do not touch cwnd in retransmission phases,
4324  * and if application hit its sndbuf limit recently.
4325  */
4326 void tcp_cwnd_application_limited(struct sock *sk)
4327 {
4328         struct tcp_sock *tp = tcp_sk(sk);
4329
4330         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4331             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4332                 /* Limited by application or receiver window. */
4333                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4334                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4335                 if (win_used < tp->snd_cwnd) {
4336                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4337                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4338                 }
4339                 tp->snd_cwnd_used = 0;
4340         }
4341         tp->snd_cwnd_stamp = tcp_time_stamp;
4342 }
4343
4344 static int tcp_should_expand_sndbuf(struct sock *sk)
4345 {
4346         struct tcp_sock *tp = tcp_sk(sk);
4347
4348         /* If the user specified a specific send buffer setting, do
4349          * not modify it.
4350          */
4351         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4352                 return 0;
4353
4354         /* If we are under global TCP memory pressure, do not expand.  */
4355         if (tcp_memory_pressure)
4356                 return 0;
4357
4358         /* If we are under soft global TCP memory pressure, do not expand.  */
4359         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4360                 return 0;
4361
4362         /* If we filled the congestion window, do not expand.  */
4363         if (tp->packets_out >= tp->snd_cwnd)
4364                 return 0;
4365
4366         return 1;
4367 }
4368
4369 /* When incoming ACK allowed to free some skb from write_queue,
4370  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4371  * on the exit from tcp input handler.
4372  *
4373  * PROBLEM: sndbuf expansion does not work well with largesend.
4374  */
4375 static void tcp_new_space(struct sock *sk)
4376 {
4377         struct tcp_sock *tp = tcp_sk(sk);
4378
4379         if (tcp_should_expand_sndbuf(sk)) {
4380                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4381                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4382                     demanded = max_t(unsigned int, tp->snd_cwnd,
4383                                      tp->reordering + 1);
4384                 sndmem *= 2 * demanded;
4385                 if (sndmem > sk->sk_sndbuf)
4386                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4387                 tp->snd_cwnd_stamp = tcp_time_stamp;
4388         }
4389
4390         sk->sk_write_space(sk);
4391 }
4392
4393 static void tcp_check_space(struct sock *sk)
4394 {
4395         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4396                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4397                 if (sk->sk_socket &&
4398                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4399                         tcp_new_space(sk);
4400         }
4401 }
4402
4403 static inline void tcp_data_snd_check(struct sock *sk)
4404 {
4405         tcp_push_pending_frames(sk);
4406         tcp_check_space(sk);
4407 }
4408
4409 /*
4410  * Check if sending an ack is needed.
4411  */
4412 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4413 {
4414         struct tcp_sock *tp = tcp_sk(sk);
4415
4416             /* More than one full frame received... */
4417         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4418              /* ... and right edge of window advances far enough.
4419               * (tcp_recvmsg() will send ACK otherwise). Or...
4420               */
4421              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4422             /* We ACK each frame or... */
4423             tcp_in_quickack_mode(sk) ||
4424             /* We have out of order data. */
4425             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4426                 /* Then ack it now */
4427                 tcp_send_ack(sk);
4428         } else {
4429                 /* Else, send delayed ack. */
4430                 tcp_send_delayed_ack(sk);
4431         }
4432 }
4433
4434 static inline void tcp_ack_snd_check(struct sock *sk)
4435 {
4436         if (!inet_csk_ack_scheduled(sk)) {
4437                 /* We sent a data segment already. */
4438                 return;
4439         }
4440         __tcp_ack_snd_check(sk, 1);
4441 }
4442
4443 /*
4444  *      This routine is only called when we have urgent data
4445  *      signaled. Its the 'slow' part of tcp_urg. It could be
4446  *      moved inline now as tcp_urg is only called from one
4447  *      place. We handle URGent data wrong. We have to - as
4448  *      BSD still doesn't use the correction from RFC961.
4449  *      For 1003.1g we should support a new option TCP_STDURG to permit
4450  *      either form (or just set the sysctl tcp_stdurg).
4451  */
4452
4453 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4454 {
4455         struct tcp_sock *tp = tcp_sk(sk);
4456         u32 ptr = ntohs(th->urg_ptr);
4457
4458         if (ptr && !sysctl_tcp_stdurg)
4459                 ptr--;
4460         ptr += ntohl(th->seq);
4461
4462         /* Ignore urgent data that we've already seen and read. */
4463         if (after(tp->copied_seq, ptr))
4464                 return;
4465
4466         /* Do not replay urg ptr.
4467          *
4468          * NOTE: interesting situation not covered by specs.
4469          * Misbehaving sender may send urg ptr, pointing to segment,
4470          * which we already have in ofo queue. We are not able to fetch
4471          * such data and will stay in TCP_URG_NOTYET until will be eaten
4472          * by recvmsg(). Seems, we are not obliged to handle such wicked
4473          * situations. But it is worth to think about possibility of some
4474          * DoSes using some hypothetical application level deadlock.
4475          */
4476         if (before(ptr, tp->rcv_nxt))
4477                 return;
4478
4479         /* Do we already have a newer (or duplicate) urgent pointer? */
4480         if (tp->urg_data && !after(ptr, tp->urg_seq))
4481                 return;
4482
4483         /* Tell the world about our new urgent pointer. */
4484         sk_send_sigurg(sk);
4485
4486         /* We may be adding urgent data when the last byte read was
4487          * urgent. To do this requires some care. We cannot just ignore
4488          * tp->copied_seq since we would read the last urgent byte again
4489          * as data, nor can we alter copied_seq until this data arrives
4490          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4491          *
4492          * NOTE. Double Dutch. Rendering to plain English: author of comment
4493          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4494          * and expect that both A and B disappear from stream. This is _wrong_.
4495          * Though this happens in BSD with high probability, this is occasional.
4496          * Any application relying on this is buggy. Note also, that fix "works"
4497          * only in this artificial test. Insert some normal data between A and B and we will
4498          * decline of BSD again. Verdict: it is better to remove to trap
4499          * buggy users.
4500          */
4501         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4502             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4503                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4504                 tp->copied_seq++;
4505                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4506                         __skb_unlink(skb, &sk->sk_receive_queue);
4507                         __kfree_skb(skb);
4508                 }
4509         }
4510
4511         tp->urg_data = TCP_URG_NOTYET;
4512         tp->urg_seq = ptr;
4513
4514         /* Disable header prediction. */
4515         tp->pred_flags = 0;
4516 }
4517
4518 /* This is the 'fast' part of urgent handling. */
4519 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4520 {
4521         struct tcp_sock *tp = tcp_sk(sk);
4522
4523         /* Check if we get a new urgent pointer - normally not. */
4524         if (th->urg)
4525                 tcp_check_urg(sk, th);
4526
4527         /* Do we wait for any urgent data? - normally not... */
4528         if (tp->urg_data == TCP_URG_NOTYET) {
4529                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4530                           th->syn;
4531
4532                 /* Is the urgent pointer pointing into this packet? */
4533                 if (ptr < skb->len) {
4534                         u8 tmp;
4535                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4536                                 BUG();
4537                         tp->urg_data = TCP_URG_VALID | tmp;
4538                         if (!sock_flag(sk, SOCK_DEAD))
4539                                 sk->sk_data_ready(sk, 0);
4540                 }
4541         }
4542 }
4543
4544 static int tcp_defer_accept_check(struct sock *sk)
4545 {
4546         struct tcp_sock *tp = tcp_sk(sk);
4547
4548         if (tp->defer_tcp_accept.request) {
4549                 int queued_data =  tp->rcv_nxt - tp->copied_seq;
4550                 int hasfin =  !skb_queue_empty(&sk->sk_receive_queue) ?
4551                         tcp_hdr((struct sk_buff *)
4552                                 sk->sk_receive_queue.prev)->fin : 0;
4553
4554                 if (queued_data && hasfin)
4555                         queued_data--;
4556
4557                 if (queued_data &&
4558                     tp->defer_tcp_accept.listen_sk->sk_state == TCP_LISTEN) {
4559                         if (sock_flag(sk, SOCK_KEEPOPEN)) {
4560                                 inet_csk_reset_keepalive_timer(sk,
4561                                                                keepalive_time_when(tp));
4562                         } else {
4563                                 inet_csk_delete_keepalive_timer(sk);
4564                         }
4565
4566                         inet_csk_reqsk_queue_add(
4567                                 tp->defer_tcp_accept.listen_sk,
4568                                 tp->defer_tcp_accept.request,
4569                                 sk);
4570
4571                         tp->defer_tcp_accept.listen_sk->sk_data_ready(
4572                                 tp->defer_tcp_accept.listen_sk, 0);
4573
4574                         sock_put(tp->defer_tcp_accept.listen_sk);
4575                         sock_put(sk);
4576                         tp->defer_tcp_accept.listen_sk = NULL;
4577                         tp->defer_tcp_accept.request = NULL;
4578                 } else if (hasfin ||
4579                            tp->defer_tcp_accept.listen_sk->sk_state != TCP_LISTEN) {
4580                         tcp_reset(sk);
4581                         return -1;
4582                 }
4583         }
4584         return 0;
4585 }
4586
4587 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4588 {
4589         struct tcp_sock *tp = tcp_sk(sk);
4590         int chunk = skb->len - hlen;
4591         int err;
4592
4593         local_bh_enable();
4594         if (skb_csum_unnecessary(skb))
4595                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4596         else
4597                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4598                                                        tp->ucopy.iov);
4599
4600         if (!err) {
4601                 tp->ucopy.len -= chunk;
4602                 tp->copied_seq += chunk;
4603                 tcp_rcv_space_adjust(sk);
4604         }
4605
4606         local_bh_disable();
4607         return err;
4608 }
4609
4610 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4611                                             struct sk_buff *skb)
4612 {
4613         __sum16 result;
4614
4615         if (sock_owned_by_user(sk)) {
4616                 local_bh_enable();
4617                 result = __tcp_checksum_complete(skb);
4618                 local_bh_disable();
4619         } else {
4620                 result = __tcp_checksum_complete(skb);
4621         }
4622         return result;
4623 }
4624
4625 static inline int tcp_checksum_complete_user(struct sock *sk,
4626                                              struct sk_buff *skb)
4627 {
4628         return !skb_csum_unnecessary(skb) &&
4629                __tcp_checksum_complete_user(sk, skb);
4630 }
4631
4632 #ifdef CONFIG_NET_DMA
4633 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4634                                   int hlen)
4635 {
4636         struct tcp_sock *tp = tcp_sk(sk);
4637         int chunk = skb->len - hlen;
4638         int dma_cookie;
4639         int copied_early = 0;
4640
4641         if (tp->ucopy.wakeup)
4642                 return 0;
4643
4644         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4645                 tp->ucopy.dma_chan = get_softnet_dma();
4646
4647         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4648
4649                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4650                                                          skb, hlen,
4651                                                          tp->ucopy.iov, chunk,
4652                                                          tp->ucopy.pinned_list);
4653
4654                 if (dma_cookie < 0)
4655                         goto out;
4656
4657                 tp->ucopy.dma_cookie = dma_cookie;
4658                 copied_early = 1;
4659
4660                 tp->ucopy.len -= chunk;
4661                 tp->copied_seq += chunk;
4662                 tcp_rcv_space_adjust(sk);
4663
4664                 if ((tp->ucopy.len == 0) ||
4665                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4666                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4667                         tp->ucopy.wakeup = 1;
4668                         sk->sk_data_ready(sk, 0);
4669                 }
4670         } else if (chunk > 0) {
4671                 tp->ucopy.wakeup = 1;
4672                 sk->sk_data_ready(sk, 0);
4673         }
4674 out:
4675         return copied_early;
4676 }
4677 #endif /* CONFIG_NET_DMA */
4678
4679 /*
4680  *      TCP receive function for the ESTABLISHED state.
4681  *
4682  *      It is split into a fast path and a slow path. The fast path is
4683  *      disabled when:
4684  *      - A zero window was announced from us - zero window probing
4685  *        is only handled properly in the slow path.
4686  *      - Out of order segments arrived.
4687  *      - Urgent data is expected.
4688  *      - There is no buffer space left
4689  *      - Unexpected TCP flags/window values/header lengths are received
4690  *        (detected by checking the TCP header against pred_flags)
4691  *      - Data is sent in both directions. Fast path only supports pure senders
4692  *        or pure receivers (this means either the sequence number or the ack
4693  *        value must stay constant)
4694  *      - Unexpected TCP option.
4695  *
4696  *      When these conditions are not satisfied it drops into a standard
4697  *      receive procedure patterned after RFC793 to handle all cases.
4698  *      The first three cases are guaranteed by proper pred_flags setting,
4699  *      the rest is checked inline. Fast processing is turned on in
4700  *      tcp_data_queue when everything is OK.
4701  */
4702 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4703                         struct tcphdr *th, unsigned len)
4704 {
4705         struct tcp_sock *tp = tcp_sk(sk);
4706
4707         /*
4708          *      Header prediction.
4709          *      The code loosely follows the one in the famous
4710          *      "30 instruction TCP receive" Van Jacobson mail.
4711          *
4712          *      Van's trick is to deposit buffers into socket queue
4713          *      on a device interrupt, to call tcp_recv function
4714          *      on the receive process context and checksum and copy
4715          *      the buffer to user space. smart...
4716          *
4717          *      Our current scheme is not silly either but we take the
4718          *      extra cost of the net_bh soft interrupt processing...
4719          *      We do checksum and copy also but from device to kernel.
4720          */
4721
4722         tp->rx_opt.saw_tstamp = 0;
4723
4724         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4725          *      if header_prediction is to be made
4726          *      'S' will always be tp->tcp_header_len >> 2
4727          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4728          *  turn it off (when there are holes in the receive
4729          *       space for instance)
4730          *      PSH flag is ignored.
4731          */
4732
4733         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4734             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4735                 int tcp_header_len = tp->tcp_header_len;
4736
4737                 /* Timestamp header prediction: tcp_header_len
4738                  * is automatically equal to th->doff*4 due to pred_flags
4739                  * match.
4740                  */
4741
4742                 /* Check timestamp */
4743                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4744                         __be32 *ptr = (__be32 *)(th + 1);
4745
4746                         /* No? Slow path! */
4747                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4748                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4749                                 goto slow_path;
4750
4751                         tp->rx_opt.saw_tstamp = 1;
4752                         ++ptr;
4753                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4754                         ++ptr;
4755                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4756
4757                         /* If PAWS failed, check it more carefully in slow path */
4758                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4759                                 goto slow_path;
4760
4761                         /* DO NOT update ts_recent here, if checksum fails
4762                          * and timestamp was corrupted part, it will result
4763                          * in a hung connection since we will drop all
4764                          * future packets due to the PAWS test.
4765                          */
4766                 }
4767
4768                 if (len <= tcp_header_len) {
4769                         /* Bulk data transfer: sender */
4770                         if (len == tcp_header_len) {
4771                                 /* Predicted packet is in window by definition.
4772                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4773                                  * Hence, check seq<=rcv_wup reduces to:
4774                                  */
4775                                 if (tcp_header_len ==
4776                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4777                                     tp->rcv_nxt == tp->rcv_wup)
4778                                         tcp_store_ts_recent(tp);
4779
4780                                 /* We know that such packets are checksummed
4781                                  * on entry.
4782                                  */
4783                                 tcp_ack(sk, skb, 0);
4784                                 __kfree_skb(skb);
4785                                 tcp_data_snd_check(sk);
4786                                 return 0;
4787                         } else { /* Header too small */
4788                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4789                                 goto discard;
4790                         }
4791                 } else {
4792                         int eaten = 0;
4793                         int copied_early = 0;
4794
4795                         if (tp->copied_seq == tp->rcv_nxt &&
4796                             len - tcp_header_len <= tp->ucopy.len) {
4797 #ifdef CONFIG_NET_DMA
4798                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4799                                         copied_early = 1;
4800                                         eaten = 1;
4801                                 }
4802 #endif
4803                                 if (tp->ucopy.task == current &&
4804                                     sock_owned_by_user(sk) && !copied_early) {
4805                                         __set_current_state(TASK_RUNNING);
4806
4807                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4808                                                 eaten = 1;
4809                                 }
4810                                 if (eaten) {
4811                                         /* Predicted packet is in window by definition.
4812                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4813                                          * Hence, check seq<=rcv_wup reduces to:
4814                                          */
4815                                         if (tcp_header_len ==
4816                                             (sizeof(struct tcphdr) +
4817                                              TCPOLEN_TSTAMP_ALIGNED) &&
4818                                             tp->rcv_nxt == tp->rcv_wup)
4819                                                 tcp_store_ts_recent(tp);
4820
4821                                         tcp_rcv_rtt_measure_ts(sk, skb);
4822
4823                                         __skb_pull(skb, tcp_header_len);
4824                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4825                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4826                                 }
4827                                 if (copied_early)
4828                                         tcp_cleanup_rbuf(sk, skb->len);
4829                         }
4830                         if (!eaten) {
4831                                 if (tcp_checksum_complete_user(sk, skb))
4832                                         goto csum_error;
4833
4834                                 /* Predicted packet is in window by definition.
4835                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4836                                  * Hence, check seq<=rcv_wup reduces to:
4837                                  */
4838                                 if (tcp_header_len ==
4839                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4840                                     tp->rcv_nxt == tp->rcv_wup)
4841                                         tcp_store_ts_recent(tp);
4842
4843                                 tcp_rcv_rtt_measure_ts(sk, skb);
4844
4845                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4846                                         goto step5;
4847
4848                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4849
4850                                 /* Bulk data transfer: receiver */
4851                                 __skb_pull(skb, tcp_header_len);
4852                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4853                                 skb_set_owner_r(skb, sk);
4854                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4855                         }
4856
4857                         tcp_event_data_recv(sk, skb);
4858
4859                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4860                                 /* Well, only one small jumplet in fast path... */
4861                                 tcp_ack(sk, skb, FLAG_DATA);
4862                                 tcp_data_snd_check(sk);
4863                                 if (!inet_csk_ack_scheduled(sk))
4864                                         goto no_ack;
4865                         }
4866
4867                         __tcp_ack_snd_check(sk, 0);
4868 no_ack:
4869 #ifdef CONFIG_NET_DMA
4870                         if (copied_early)
4871                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4872                         else
4873 #endif
4874                         if (eaten)
4875                                 __kfree_skb(skb);
4876                         else
4877                                 sk->sk_data_ready(sk, 0);
4878                         return 0;
4879                 }
4880         }
4881
4882 slow_path:
4883         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4884                 goto csum_error;
4885
4886         /*
4887          * RFC1323: H1. Apply PAWS check first.
4888          */
4889         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4890             tcp_paws_discard(sk, skb)) {
4891                 if (!th->rst) {
4892                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4893                         tcp_send_dupack(sk, skb);
4894                         goto discard;
4895                 }
4896                 /* Resets are accepted even if PAWS failed.
4897
4898                    ts_recent update must be made after we are sure
4899                    that the packet is in window.
4900                  */
4901         }
4902
4903         /*
4904          *      Standard slow path.
4905          */
4906
4907         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4908                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4909                  * (RST) segments are validated by checking their SEQ-fields."
4910                  * And page 69: "If an incoming segment is not acceptable,
4911                  * an acknowledgment should be sent in reply (unless the RST bit
4912                  * is set, if so drop the segment and return)".
4913                  */
4914                 if (!th->rst)
4915                         tcp_send_dupack(sk, skb);
4916                 goto discard;
4917         }
4918
4919         if (th->rst) {
4920                 tcp_reset(sk);
4921                 goto discard;
4922         }
4923
4924         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4925
4926         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4927                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4928                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4929                 tcp_reset(sk);
4930                 return 1;
4931         }
4932
4933 step5:
4934         if (th->ack)
4935                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4936
4937         tcp_rcv_rtt_measure_ts(sk, skb);
4938
4939         /* Process urgent data. */
4940         tcp_urg(sk, skb, th);
4941
4942         /* step 7: process the segment text */
4943         tcp_data_queue(sk, skb);
4944
4945         tcp_data_snd_check(sk);
4946         tcp_ack_snd_check(sk);
4947
4948         tcp_defer_accept_check(sk);
4949         return 0;
4950
4951 csum_error:
4952         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4953
4954 discard:
4955         __kfree_skb(skb);
4956         return 0;
4957 }
4958
4959 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4960                                          struct tcphdr *th, unsigned len)
4961 {
4962         struct tcp_sock *tp = tcp_sk(sk);
4963         struct inet_connection_sock *icsk = inet_csk(sk);
4964         int saved_clamp = tp->rx_opt.mss_clamp;
4965
4966         tcp_parse_options(skb, &tp->rx_opt, 0);
4967
4968         if (th->ack) {
4969                 /* rfc793:
4970                  * "If the state is SYN-SENT then
4971                  *    first check the ACK bit
4972                  *      If the ACK bit is set
4973                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4974                  *        a reset (unless the RST bit is set, if so drop
4975                  *        the segment and return)"
4976                  *
4977                  *  We do not send data with SYN, so that RFC-correct
4978                  *  test reduces to:
4979                  */
4980                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4981                         goto reset_and_undo;
4982
4983                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4984                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4985                              tcp_time_stamp)) {
4986                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4987                         goto reset_and_undo;
4988                 }
4989
4990                 /* Now ACK is acceptable.
4991                  *
4992                  * "If the RST bit is set
4993                  *    If the ACK was acceptable then signal the user "error:
4994                  *    connection reset", drop the segment, enter CLOSED state,
4995                  *    delete TCB, and return."
4996                  */
4997
4998                 if (th->rst) {
4999                         tcp_reset(sk);
5000                         goto discard;
5001                 }
5002
5003                 /* rfc793:
5004                  *   "fifth, if neither of the SYN or RST bits is set then
5005                  *    drop the segment and return."
5006                  *
5007                  *    See note below!
5008                  *                                        --ANK(990513)
5009                  */
5010                 if (!th->syn)
5011                         goto discard_and_undo;
5012
5013                 /* rfc793:
5014                  *   "If the SYN bit is on ...
5015                  *    are acceptable then ...
5016                  *    (our SYN has been ACKed), change the connection
5017                  *    state to ESTABLISHED..."
5018                  */
5019
5020                 TCP_ECN_rcv_synack(tp, th);
5021
5022                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5023                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5024
5025                 /* Ok.. it's good. Set up sequence numbers and
5026                  * move to established.
5027                  */
5028                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5029                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5030
5031                 /* RFC1323: The window in SYN & SYN/ACK segments is
5032                  * never scaled.
5033                  */
5034                 tp->snd_wnd = ntohs(th->window);
5035                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5036
5037                 if (!tp->rx_opt.wscale_ok) {
5038                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5039                         tp->window_clamp = min(tp->window_clamp, 65535U);
5040                 }
5041
5042                 if (tp->rx_opt.saw_tstamp) {
5043                         tp->rx_opt.tstamp_ok       = 1;
5044                         tp->tcp_header_len =
5045                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5046                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5047                         tcp_store_ts_recent(tp);
5048                 } else {
5049                         tp->tcp_header_len = sizeof(struct tcphdr);
5050                 }
5051
5052                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5053                         tcp_enable_fack(tp);
5054
5055                 tcp_mtup_init(sk);
5056                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5057                 tcp_initialize_rcv_mss(sk);
5058
5059                 /* Remember, tcp_poll() does not lock socket!
5060                  * Change state from SYN-SENT only after copied_seq
5061                  * is initialized. */
5062                 tp->copied_seq = tp->rcv_nxt;
5063                 smp_mb();
5064                 tcp_set_state(sk, TCP_ESTABLISHED);
5065
5066                 security_inet_conn_established(sk, skb);
5067
5068                 /* Make sure socket is routed, for correct metrics.  */
5069                 icsk->icsk_af_ops->rebuild_header(sk);
5070
5071                 tcp_init_metrics(sk);
5072
5073                 tcp_init_congestion_control(sk);
5074
5075                 /* Prevent spurious tcp_cwnd_restart() on first data
5076                  * packet.
5077                  */
5078                 tp->lsndtime = tcp_time_stamp;
5079
5080                 tcp_init_buffer_space(sk);
5081
5082                 if (sock_flag(sk, SOCK_KEEPOPEN))
5083                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5084
5085                 if (!tp->rx_opt.snd_wscale)
5086                         __tcp_fast_path_on(tp, tp->snd_wnd);
5087                 else
5088                         tp->pred_flags = 0;
5089
5090                 if (!sock_flag(sk, SOCK_DEAD)) {
5091                         sk->sk_state_change(sk);
5092                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5093                 }
5094
5095                 if (sk->sk_write_pending ||
5096                     icsk->icsk_accept_queue.rskq_defer_accept ||
5097                     icsk->icsk_ack.pingpong) {
5098                         /* Save one ACK. Data will be ready after
5099                          * several ticks, if write_pending is set.
5100                          *
5101                          * It may be deleted, but with this feature tcpdumps
5102                          * look so _wonderfully_ clever, that I was not able
5103                          * to stand against the temptation 8)     --ANK
5104                          */
5105                         inet_csk_schedule_ack(sk);
5106                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5107                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5108                         tcp_incr_quickack(sk);
5109                         tcp_enter_quickack_mode(sk);
5110                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5111                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5112
5113 discard:
5114                         __kfree_skb(skb);
5115                         return 0;
5116                 } else {
5117                         tcp_send_ack(sk);
5118                 }
5119                 return -1;
5120         }
5121
5122         /* No ACK in the segment */
5123
5124         if (th->rst) {
5125                 /* rfc793:
5126                  * "If the RST bit is set
5127                  *
5128                  *      Otherwise (no ACK) drop the segment and return."
5129                  */
5130
5131                 goto discard_and_undo;
5132         }
5133
5134         /* PAWS check. */
5135         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5136             tcp_paws_check(&tp->rx_opt, 0))
5137                 goto discard_and_undo;
5138
5139         if (th->syn) {
5140                 /* We see SYN without ACK. It is attempt of
5141                  * simultaneous connect with crossed SYNs.
5142                  * Particularly, it can be connect to self.
5143                  */
5144                 tcp_set_state(sk, TCP_SYN_RECV);
5145
5146                 if (tp->rx_opt.saw_tstamp) {
5147                         tp->rx_opt.tstamp_ok = 1;
5148                         tcp_store_ts_recent(tp);
5149                         tp->tcp_header_len =
5150                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5151                 } else {
5152                         tp->tcp_header_len = sizeof(struct tcphdr);
5153                 }
5154
5155                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5156                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5157
5158                 /* RFC1323: The window in SYN & SYN/ACK segments is
5159                  * never scaled.
5160                  */
5161                 tp->snd_wnd    = ntohs(th->window);
5162                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5163                 tp->max_window = tp->snd_wnd;
5164
5165                 TCP_ECN_rcv_syn(tp, th);
5166
5167                 tcp_mtup_init(sk);
5168                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5169                 tcp_initialize_rcv_mss(sk);
5170
5171                 tcp_send_synack(sk);
5172 #if 0
5173                 /* Note, we could accept data and URG from this segment.
5174                  * There are no obstacles to make this.
5175                  *
5176                  * However, if we ignore data in ACKless segments sometimes,
5177                  * we have no reasons to accept it sometimes.
5178                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5179                  * is not flawless. So, discard packet for sanity.
5180                  * Uncomment this return to process the data.
5181                  */
5182                 return -1;
5183 #else
5184                 goto discard;
5185 #endif
5186         }
5187         /* "fifth, if neither of the SYN or RST bits is set then
5188          * drop the segment and return."
5189          */
5190
5191 discard_and_undo:
5192         tcp_clear_options(&tp->rx_opt);
5193         tp->rx_opt.mss_clamp = saved_clamp;
5194         goto discard;
5195
5196 reset_and_undo:
5197         tcp_clear_options(&tp->rx_opt);
5198         tp->rx_opt.mss_clamp = saved_clamp;
5199         return 1;
5200 }
5201
5202 /*
5203  *      This function implements the receiving procedure of RFC 793 for
5204  *      all states except ESTABLISHED and TIME_WAIT.
5205  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5206  *      address independent.
5207  */
5208
5209 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5210                           struct tcphdr *th, unsigned len)
5211 {
5212         struct tcp_sock *tp = tcp_sk(sk);
5213         struct inet_connection_sock *icsk = inet_csk(sk);
5214         int queued = 0;
5215
5216         tp->rx_opt.saw_tstamp = 0;
5217
5218         switch (sk->sk_state) {
5219         case TCP_CLOSE:
5220                 goto discard;
5221
5222         case TCP_LISTEN:
5223                 if (th->ack)
5224                         return 1;
5225
5226                 if (th->rst)
5227                         goto discard;
5228
5229                 if (th->syn) {
5230                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5231                                 return 1;
5232
5233                         /* Now we have several options: In theory there is
5234                          * nothing else in the frame. KA9Q has an option to
5235                          * send data with the syn, BSD accepts data with the
5236                          * syn up to the [to be] advertised window and
5237                          * Solaris 2.1 gives you a protocol error. For now
5238                          * we just ignore it, that fits the spec precisely
5239                          * and avoids incompatibilities. It would be nice in
5240                          * future to drop through and process the data.
5241                          *
5242                          * Now that TTCP is starting to be used we ought to
5243                          * queue this data.
5244                          * But, this leaves one open to an easy denial of
5245                          * service attack, and SYN cookies can't defend
5246                          * against this problem. So, we drop the data
5247                          * in the interest of security over speed unless
5248                          * it's still in use.
5249                          */
5250                         kfree_skb(skb);
5251                         return 0;
5252                 }
5253                 goto discard;
5254
5255         case TCP_SYN_SENT:
5256                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5257                 if (queued >= 0)
5258                         return queued;
5259
5260                 /* Do step6 onward by hand. */
5261                 tcp_urg(sk, skb, th);
5262                 __kfree_skb(skb);
5263                 tcp_data_snd_check(sk);
5264                 return 0;
5265         }
5266
5267         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5268             tcp_paws_discard(sk, skb)) {
5269                 if (!th->rst) {
5270                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5271                         tcp_send_dupack(sk, skb);
5272                         goto discard;
5273                 }
5274                 /* Reset is accepted even if it did not pass PAWS. */
5275         }
5276
5277         /* step 1: check sequence number */
5278         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5279                 if (!th->rst)
5280                         tcp_send_dupack(sk, skb);
5281                 goto discard;
5282         }
5283
5284         /* step 2: check RST bit */
5285         if (th->rst) {
5286                 tcp_reset(sk);
5287                 goto discard;
5288         }
5289
5290         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5291
5292         /* step 3: check security and precedence [ignored] */
5293
5294         /*      step 4:
5295          *
5296          *      Check for a SYN in window.
5297          */
5298         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5299                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5300                 tcp_reset(sk);
5301                 return 1;
5302         }
5303
5304         /* step 5: check the ACK field */
5305         if (th->ack) {
5306                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5307
5308                 switch (sk->sk_state) {
5309                 case TCP_SYN_RECV:
5310                         if (acceptable) {
5311                                 tp->copied_seq = tp->rcv_nxt;
5312                                 smp_mb();
5313                                 tcp_set_state(sk, TCP_ESTABLISHED);
5314                                 sk->sk_state_change(sk);
5315
5316                                 /* Note, that this wakeup is only for marginal
5317                                  * crossed SYN case. Passively open sockets
5318                                  * are not waked up, because sk->sk_sleep ==
5319                                  * NULL and sk->sk_socket == NULL.
5320                                  */
5321                                 if (sk->sk_socket)
5322                                         sk_wake_async(sk,
5323                                                       SOCK_WAKE_IO, POLL_OUT);
5324
5325                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5326                                 tp->snd_wnd = ntohs(th->window) <<
5327                                               tp->rx_opt.snd_wscale;
5328                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5329                                             TCP_SKB_CB(skb)->seq);
5330
5331                                 /* tcp_ack considers this ACK as duplicate
5332                                  * and does not calculate rtt.
5333                                  * Fix it at least with timestamps.
5334                                  */
5335                                 if (tp->rx_opt.saw_tstamp &&
5336                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5337                                         tcp_ack_saw_tstamp(sk, 0);
5338
5339                                 if (tp->rx_opt.tstamp_ok)
5340                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5341
5342                                 /* Make sure socket is routed, for
5343                                  * correct metrics.
5344                                  */
5345                                 icsk->icsk_af_ops->rebuild_header(sk);
5346
5347                                 tcp_init_metrics(sk);
5348
5349                                 tcp_init_congestion_control(sk);
5350
5351                                 /* Prevent spurious tcp_cwnd_restart() on
5352                                  * first data packet.
5353                                  */
5354                                 tp->lsndtime = tcp_time_stamp;
5355
5356                                 tcp_mtup_init(sk);
5357                                 tcp_initialize_rcv_mss(sk);
5358                                 tcp_init_buffer_space(sk);
5359                                 tcp_fast_path_on(tp);
5360                         } else {
5361                                 return 1;
5362                         }
5363                         break;
5364
5365                 case TCP_FIN_WAIT1:
5366                         if (tp->snd_una == tp->write_seq) {
5367                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5368                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5369                                 dst_confirm(sk->sk_dst_cache);
5370
5371                                 if (!sock_flag(sk, SOCK_DEAD))
5372                                         /* Wake up lingering close() */
5373                                         sk->sk_state_change(sk);
5374                                 else {
5375                                         int tmo;
5376
5377                                         if (tp->linger2 < 0 ||
5378                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5379                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5380                                                 tcp_done(sk);
5381                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5382                                                 return 1;
5383                                         }
5384
5385                                         tmo = tcp_fin_time(sk);
5386                                         if (tmo > TCP_TIMEWAIT_LEN) {
5387                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5388                                         } else if (th->fin || sock_owned_by_user(sk)) {
5389                                                 /* Bad case. We could lose such FIN otherwise.
5390                                                  * It is not a big problem, but it looks confusing
5391                                                  * and not so rare event. We still can lose it now,
5392                                                  * if it spins in bh_lock_sock(), but it is really
5393                                                  * marginal case.
5394                                                  */
5395                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5396                                         } else {
5397                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5398                                                 goto discard;
5399                                         }
5400                                 }
5401                         }
5402                         break;
5403
5404                 case TCP_CLOSING:
5405                         if (tp->snd_una == tp->write_seq) {
5406                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5407                                 goto discard;
5408                         }
5409                         break;
5410
5411                 case TCP_LAST_ACK:
5412                         if (tp->snd_una == tp->write_seq) {
5413                                 tcp_update_metrics(sk);
5414                                 tcp_done(sk);
5415                                 goto discard;
5416                         }
5417                         break;
5418                 }
5419         } else
5420                 goto discard;
5421
5422         /* step 6: check the URG bit */
5423         tcp_urg(sk, skb, th);
5424
5425         /* step 7: process the segment text */
5426         switch (sk->sk_state) {
5427         case TCP_CLOSE_WAIT:
5428         case TCP_CLOSING:
5429         case TCP_LAST_ACK:
5430                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5431                         break;
5432         case TCP_FIN_WAIT1:
5433         case TCP_FIN_WAIT2:
5434                 /* RFC 793 says to queue data in these states,
5435                  * RFC 1122 says we MUST send a reset.
5436                  * BSD 4.4 also does reset.
5437                  */
5438                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5439                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5440                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5441                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5442                                 tcp_reset(sk);
5443                                 return 1;
5444                         }
5445                 }
5446                 /* Fall through */
5447         case TCP_ESTABLISHED:
5448                 tcp_data_queue(sk, skb);
5449                 queued = 1;
5450                 break;
5451         }
5452
5453         /* tcp_data could move socket to TIME-WAIT */
5454         if (sk->sk_state != TCP_CLOSE) {
5455                 tcp_data_snd_check(sk);
5456                 tcp_ack_snd_check(sk);
5457         }
5458
5459         if (!queued) {
5460 discard:
5461                 __kfree_skb(skb);
5462         }
5463         return 0;
5464 }
5465
5466 EXPORT_SYMBOL(sysctl_tcp_ecn);
5467 EXPORT_SYMBOL(sysctl_tcp_reordering);
5468 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5469 EXPORT_SYMBOL(tcp_parse_options);
5470 EXPORT_SYMBOL(tcp_rcv_established);
5471 EXPORT_SYMBOL(tcp_rcv_state_process);
5472 EXPORT_SYMBOL(tcp_initialize_rcv_mss);