2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 /* Simple attribute files */
46 int (*get)(void *, u64 *);
47 int (*set)(void *, u64);
48 char get_buf[24]; /* enough to store a u64 and "\n\0" */
51 const char *fmt; /* format for read operation */
52 struct mutex mutex; /* protects access to these buffers */
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 int (*get)(void *, u64 *), int (*set)(void *, u64),
59 struct spufs_attr *attr;
61 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
67 attr->data = inode->i_private;
69 mutex_init(&attr->mutex);
70 file->private_data = attr;
72 return nonseekable_open(inode, file);
75 static int spufs_attr_release(struct inode *inode, struct file *file)
77 kfree(file->private_data);
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 size_t len, loff_t *ppos)
84 struct spufs_attr *attr;
88 attr = file->private_data;
92 ret = mutex_lock_interruptible(&attr->mutex);
96 if (*ppos) { /* continued read */
97 size = strlen(attr->get_buf);
98 } else { /* first read */
100 ret = attr->get(attr->data, &val);
104 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 attr->fmt, (unsigned long long)val);
108 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 mutex_unlock(&attr->mutex);
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 size_t len, loff_t *ppos)
117 struct spufs_attr *attr;
122 attr = file->private_data;
126 ret = mutex_lock_interruptible(&attr->mutex);
131 size = min(sizeof(attr->set_buf) - 1, len);
132 if (copy_from_user(attr->set_buf, buf, size))
135 ret = len; /* claim we got the whole input */
136 attr->set_buf[size] = '\0';
137 val = simple_strtol(attr->set_buf, NULL, 0);
138 attr->set(attr->data, val);
140 mutex_unlock(&attr->mutex);
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
145 static int __fops ## _open(struct inode *inode, struct file *file) \
147 __simple_attr_check_format(__fmt, 0ull); \
148 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 static struct file_operations __fops = { \
151 .owner = THIS_MODULE, \
152 .open = __fops ## _open, \
153 .release = spufs_attr_release, \
154 .read = spufs_attr_read, \
155 .write = spufs_attr_write, \
160 spufs_mem_open(struct inode *inode, struct file *file)
162 struct spufs_inode_info *i = SPUFS_I(inode);
163 struct spu_context *ctx = i->i_ctx;
165 mutex_lock(&ctx->mapping_lock);
166 file->private_data = ctx;
168 ctx->local_store = inode->i_mapping;
169 mutex_unlock(&ctx->mapping_lock);
174 spufs_mem_release(struct inode *inode, struct file *file)
176 struct spufs_inode_info *i = SPUFS_I(inode);
177 struct spu_context *ctx = i->i_ctx;
179 mutex_lock(&ctx->mapping_lock);
181 ctx->local_store = NULL;
182 mutex_unlock(&ctx->mapping_lock);
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 size_t size, loff_t *pos)
190 char *local_store = ctx->ops->get_ls(ctx);
191 return simple_read_from_buffer(buffer, size, pos, local_store,
196 spufs_mem_read(struct file *file, char __user *buffer,
197 size_t size, loff_t *pos)
199 struct spu_context *ctx = file->private_data;
202 ret = spu_acquire(ctx);
205 ret = __spufs_mem_read(ctx, buffer, size, pos);
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 size_t size, loff_t *ppos)
215 struct spu_context *ctx = file->private_data;
224 if (size > LS_SIZE - pos)
225 size = LS_SIZE - pos;
227 ret = spu_acquire(ctx);
231 local_store = ctx->ops->get_ls(ctx);
232 ret = copy_from_user(local_store + pos, buffer, size);
242 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
244 struct spu_context *ctx = vma->vm_file->private_data;
245 unsigned long address = (unsigned long)vmf->virtual_address;
246 unsigned long pfn, offset;
248 #ifdef CONFIG_SPU_FS_64K_LS
249 struct spu_state *csa = &ctx->csa;
252 /* Check what page size we are using */
253 psize = get_slice_psize(vma->vm_mm, address);
255 /* Some sanity checking */
256 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
258 /* Wow, 64K, cool, we need to align the address though */
259 if (csa->use_big_pages) {
260 BUG_ON(vma->vm_start & 0xffff);
261 address &= ~0xfffful;
263 #endif /* CONFIG_SPU_FS_64K_LS */
265 offset = vmf->pgoff << PAGE_SHIFT;
266 if (offset >= LS_SIZE)
267 return VM_FAULT_SIGBUS;
269 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
272 if (spu_acquire(ctx))
273 return VM_FAULT_NOPAGE;
275 if (ctx->state == SPU_STATE_SAVED) {
276 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
277 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
279 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
280 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
282 vm_insert_pfn(vma, address, pfn);
286 return VM_FAULT_NOPAGE;
289 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
290 unsigned long address,
291 void *buf, int len, int write)
293 struct spu_context *ctx = vma->vm_file->private_data;
294 unsigned long offset = address - vma->vm_start;
297 if (write && !(vma->vm_flags & VM_WRITE))
299 if (spu_acquire(ctx))
301 if ((offset + len) > vma->vm_end)
302 len = vma->vm_end - offset;
303 local_store = ctx->ops->get_ls(ctx);
305 memcpy_toio(local_store + offset, buf, len);
307 memcpy_fromio(buf, local_store + offset, len);
312 static struct vm_operations_struct spufs_mem_mmap_vmops = {
313 .fault = spufs_mem_mmap_fault,
314 .access = spufs_mem_mmap_access,
317 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
319 #ifdef CONFIG_SPU_FS_64K_LS
320 struct spu_context *ctx = file->private_data;
321 struct spu_state *csa = &ctx->csa;
323 /* Sanity check VMA alignment */
324 if (csa->use_big_pages) {
325 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
326 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
328 if (vma->vm_start & 0xffff)
330 if (vma->vm_pgoff & 0xf)
333 #endif /* CONFIG_SPU_FS_64K_LS */
335 if (!(vma->vm_flags & VM_SHARED))
338 vma->vm_flags |= VM_IO | VM_PFNMAP;
339 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
341 vma->vm_ops = &spufs_mem_mmap_vmops;
345 #ifdef CONFIG_SPU_FS_64K_LS
346 static unsigned long spufs_get_unmapped_area(struct file *file,
347 unsigned long addr, unsigned long len, unsigned long pgoff,
350 struct spu_context *ctx = file->private_data;
351 struct spu_state *csa = &ctx->csa;
353 /* If not using big pages, fallback to normal MM g_u_a */
354 if (!csa->use_big_pages)
355 return current->mm->get_unmapped_area(file, addr, len,
358 /* Else, try to obtain a 64K pages slice */
359 return slice_get_unmapped_area(addr, len, flags,
362 #endif /* CONFIG_SPU_FS_64K_LS */
364 static const struct file_operations spufs_mem_fops = {
365 .open = spufs_mem_open,
366 .release = spufs_mem_release,
367 .read = spufs_mem_read,
368 .write = spufs_mem_write,
369 .llseek = generic_file_llseek,
370 .mmap = spufs_mem_mmap,
371 #ifdef CONFIG_SPU_FS_64K_LS
372 .get_unmapped_area = spufs_get_unmapped_area,
376 static int spufs_ps_fault(struct vm_area_struct *vma,
377 struct vm_fault *vmf,
378 unsigned long ps_offs,
379 unsigned long ps_size)
381 struct spu_context *ctx = vma->vm_file->private_data;
382 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
385 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
387 if (offset >= ps_size)
388 return VM_FAULT_SIGBUS;
390 if (fatal_signal_pending(current))
391 return VM_FAULT_SIGBUS;
394 * Because we release the mmap_sem, the context may be destroyed while
395 * we're in spu_wait. Grab an extra reference so it isn't destroyed
398 get_spu_context(ctx);
401 * We have to wait for context to be loaded before we have
402 * pages to hand out to the user, but we don't want to wait
403 * with the mmap_sem held.
404 * It is possible to drop the mmap_sem here, but then we need
405 * to return VM_FAULT_NOPAGE because the mappings may have
408 if (spu_acquire(ctx))
411 if (ctx->state == SPU_STATE_SAVED) {
412 up_read(¤t->mm->mmap_sem);
413 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
415 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416 down_read(¤t->mm->mmap_sem);
418 area = ctx->spu->problem_phys + ps_offs;
419 vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
420 (area + offset) >> PAGE_SHIFT);
421 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
428 put_spu_context(ctx);
429 return VM_FAULT_NOPAGE;
433 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
434 struct vm_fault *vmf)
436 return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
439 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
440 .fault = spufs_cntl_mmap_fault,
444 * mmap support for problem state control area [0x4000 - 0x4fff].
446 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
448 if (!(vma->vm_flags & VM_SHARED))
451 vma->vm_flags |= VM_IO | VM_PFNMAP;
452 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
454 vma->vm_ops = &spufs_cntl_mmap_vmops;
457 #else /* SPUFS_MMAP_4K */
458 #define spufs_cntl_mmap NULL
459 #endif /* !SPUFS_MMAP_4K */
461 static int spufs_cntl_get(void *data, u64 *val)
463 struct spu_context *ctx = data;
466 ret = spu_acquire(ctx);
469 *val = ctx->ops->status_read(ctx);
475 static int spufs_cntl_set(void *data, u64 val)
477 struct spu_context *ctx = data;
480 ret = spu_acquire(ctx);
483 ctx->ops->runcntl_write(ctx, val);
489 static int spufs_cntl_open(struct inode *inode, struct file *file)
491 struct spufs_inode_info *i = SPUFS_I(inode);
492 struct spu_context *ctx = i->i_ctx;
494 mutex_lock(&ctx->mapping_lock);
495 file->private_data = ctx;
497 ctx->cntl = inode->i_mapping;
498 mutex_unlock(&ctx->mapping_lock);
499 return simple_attr_open(inode, file, spufs_cntl_get,
500 spufs_cntl_set, "0x%08lx");
504 spufs_cntl_release(struct inode *inode, struct file *file)
506 struct spufs_inode_info *i = SPUFS_I(inode);
507 struct spu_context *ctx = i->i_ctx;
509 simple_attr_release(inode, file);
511 mutex_lock(&ctx->mapping_lock);
514 mutex_unlock(&ctx->mapping_lock);
518 static const struct file_operations spufs_cntl_fops = {
519 .open = spufs_cntl_open,
520 .release = spufs_cntl_release,
521 .read = simple_attr_read,
522 .write = simple_attr_write,
523 .mmap = spufs_cntl_mmap,
527 spufs_regs_open(struct inode *inode, struct file *file)
529 struct spufs_inode_info *i = SPUFS_I(inode);
530 file->private_data = i->i_ctx;
535 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
536 size_t size, loff_t *pos)
538 struct spu_lscsa *lscsa = ctx->csa.lscsa;
539 return simple_read_from_buffer(buffer, size, pos,
540 lscsa->gprs, sizeof lscsa->gprs);
544 spufs_regs_read(struct file *file, char __user *buffer,
545 size_t size, loff_t *pos)
548 struct spu_context *ctx = file->private_data;
550 /* pre-check for file position: if we'd return EOF, there's no point
551 * causing a deschedule */
552 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
555 ret = spu_acquire_saved(ctx);
558 ret = __spufs_regs_read(ctx, buffer, size, pos);
559 spu_release_saved(ctx);
564 spufs_regs_write(struct file *file, const char __user *buffer,
565 size_t size, loff_t *pos)
567 struct spu_context *ctx = file->private_data;
568 struct spu_lscsa *lscsa = ctx->csa.lscsa;
571 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
576 ret = spu_acquire_saved(ctx);
580 ret = copy_from_user(lscsa->gprs + *pos - size,
581 buffer, size) ? -EFAULT : size;
583 spu_release_saved(ctx);
587 static const struct file_operations spufs_regs_fops = {
588 .open = spufs_regs_open,
589 .read = spufs_regs_read,
590 .write = spufs_regs_write,
591 .llseek = generic_file_llseek,
595 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
596 size_t size, loff_t * pos)
598 struct spu_lscsa *lscsa = ctx->csa.lscsa;
599 return simple_read_from_buffer(buffer, size, pos,
600 &lscsa->fpcr, sizeof(lscsa->fpcr));
604 spufs_fpcr_read(struct file *file, char __user * buffer,
605 size_t size, loff_t * pos)
608 struct spu_context *ctx = file->private_data;
610 ret = spu_acquire_saved(ctx);
613 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
614 spu_release_saved(ctx);
619 spufs_fpcr_write(struct file *file, const char __user * buffer,
620 size_t size, loff_t * pos)
622 struct spu_context *ctx = file->private_data;
623 struct spu_lscsa *lscsa = ctx->csa.lscsa;
626 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
630 ret = spu_acquire_saved(ctx);
635 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
636 buffer, size) ? -EFAULT : size;
638 spu_release_saved(ctx);
642 static const struct file_operations spufs_fpcr_fops = {
643 .open = spufs_regs_open,
644 .read = spufs_fpcr_read,
645 .write = spufs_fpcr_write,
646 .llseek = generic_file_llseek,
649 /* generic open function for all pipe-like files */
650 static int spufs_pipe_open(struct inode *inode, struct file *file)
652 struct spufs_inode_info *i = SPUFS_I(inode);
653 file->private_data = i->i_ctx;
655 return nonseekable_open(inode, file);
659 * Read as many bytes from the mailbox as possible, until
660 * one of the conditions becomes true:
662 * - no more data available in the mailbox
663 * - end of the user provided buffer
664 * - end of the mapped area
666 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
667 size_t len, loff_t *pos)
669 struct spu_context *ctx = file->private_data;
670 u32 mbox_data, __user *udata;
676 if (!access_ok(VERIFY_WRITE, buf, len))
679 udata = (void __user *)buf;
681 count = spu_acquire(ctx);
685 for (count = 0; (count + 4) <= len; count += 4, udata++) {
687 ret = ctx->ops->mbox_read(ctx, &mbox_data);
692 * at the end of the mapped area, we can fault
693 * but still need to return the data we have
694 * read successfully so far.
696 ret = __put_user(mbox_data, udata);
711 static const struct file_operations spufs_mbox_fops = {
712 .open = spufs_pipe_open,
713 .read = spufs_mbox_read,
716 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
717 size_t len, loff_t *pos)
719 struct spu_context *ctx = file->private_data;
726 ret = spu_acquire(ctx);
730 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
734 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
740 static const struct file_operations spufs_mbox_stat_fops = {
741 .open = spufs_pipe_open,
742 .read = spufs_mbox_stat_read,
745 /* low-level ibox access function */
746 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
748 return ctx->ops->ibox_read(ctx, data);
751 static int spufs_ibox_fasync(int fd, struct file *file, int on)
753 struct spu_context *ctx = file->private_data;
755 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
758 /* interrupt-level ibox callback function. */
759 void spufs_ibox_callback(struct spu *spu)
761 struct spu_context *ctx = spu->ctx;
766 wake_up_all(&ctx->ibox_wq);
767 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
771 * Read as many bytes from the interrupt mailbox as possible, until
772 * one of the conditions becomes true:
774 * - no more data available in the mailbox
775 * - end of the user provided buffer
776 * - end of the mapped area
778 * If the file is opened without O_NONBLOCK, we wait here until
779 * any data is available, but return when we have been able to
782 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
783 size_t len, loff_t *pos)
785 struct spu_context *ctx = file->private_data;
786 u32 ibox_data, __user *udata;
792 if (!access_ok(VERIFY_WRITE, buf, len))
795 udata = (void __user *)buf;
797 count = spu_acquire(ctx);
801 /* wait only for the first element */
803 if (file->f_flags & O_NONBLOCK) {
804 if (!spu_ibox_read(ctx, &ibox_data)) {
809 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
814 /* if we can't write at all, return -EFAULT */
815 count = __put_user(ibox_data, udata);
819 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
821 ret = ctx->ops->ibox_read(ctx, &ibox_data);
825 * at the end of the mapped area, we can fault
826 * but still need to return the data we have
827 * read successfully so far.
829 ret = __put_user(ibox_data, udata);
840 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
842 struct spu_context *ctx = file->private_data;
845 poll_wait(file, &ctx->ibox_wq, wait);
848 * For now keep this uninterruptible and also ignore the rule
849 * that poll should not sleep. Will be fixed later.
851 mutex_lock(&ctx->state_mutex);
852 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
858 static const struct file_operations spufs_ibox_fops = {
859 .open = spufs_pipe_open,
860 .read = spufs_ibox_read,
861 .poll = spufs_ibox_poll,
862 .fasync = spufs_ibox_fasync,
865 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
866 size_t len, loff_t *pos)
868 struct spu_context *ctx = file->private_data;
875 ret = spu_acquire(ctx);
878 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
881 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
887 static const struct file_operations spufs_ibox_stat_fops = {
888 .open = spufs_pipe_open,
889 .read = spufs_ibox_stat_read,
892 /* low-level mailbox write */
893 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
895 return ctx->ops->wbox_write(ctx, data);
898 static int spufs_wbox_fasync(int fd, struct file *file, int on)
900 struct spu_context *ctx = file->private_data;
903 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
908 /* interrupt-level wbox callback function. */
909 void spufs_wbox_callback(struct spu *spu)
911 struct spu_context *ctx = spu->ctx;
916 wake_up_all(&ctx->wbox_wq);
917 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
921 * Write as many bytes to the interrupt mailbox as possible, until
922 * one of the conditions becomes true:
924 * - the mailbox is full
925 * - end of the user provided buffer
926 * - end of the mapped area
928 * If the file is opened without O_NONBLOCK, we wait here until
929 * space is availabyl, but return when we have been able to
932 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
933 size_t len, loff_t *pos)
935 struct spu_context *ctx = file->private_data;
936 u32 wbox_data, __user *udata;
942 udata = (void __user *)buf;
943 if (!access_ok(VERIFY_READ, buf, len))
946 if (__get_user(wbox_data, udata))
949 count = spu_acquire(ctx);
954 * make sure we can at least write one element, by waiting
955 * in case of !O_NONBLOCK
958 if (file->f_flags & O_NONBLOCK) {
959 if (!spu_wbox_write(ctx, wbox_data)) {
964 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
970 /* write as much as possible */
971 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
973 ret = __get_user(wbox_data, udata);
977 ret = spu_wbox_write(ctx, wbox_data);
988 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
990 struct spu_context *ctx = file->private_data;
993 poll_wait(file, &ctx->wbox_wq, wait);
996 * For now keep this uninterruptible and also ignore the rule
997 * that poll should not sleep. Will be fixed later.
999 mutex_lock(&ctx->state_mutex);
1000 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
1006 static const struct file_operations spufs_wbox_fops = {
1007 .open = spufs_pipe_open,
1008 .write = spufs_wbox_write,
1009 .poll = spufs_wbox_poll,
1010 .fasync = spufs_wbox_fasync,
1013 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1014 size_t len, loff_t *pos)
1016 struct spu_context *ctx = file->private_data;
1023 ret = spu_acquire(ctx);
1026 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1029 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1035 static const struct file_operations spufs_wbox_stat_fops = {
1036 .open = spufs_pipe_open,
1037 .read = spufs_wbox_stat_read,
1040 static int spufs_signal1_open(struct inode *inode, struct file *file)
1042 struct spufs_inode_info *i = SPUFS_I(inode);
1043 struct spu_context *ctx = i->i_ctx;
1045 mutex_lock(&ctx->mapping_lock);
1046 file->private_data = ctx;
1047 if (!i->i_openers++)
1048 ctx->signal1 = inode->i_mapping;
1049 mutex_unlock(&ctx->mapping_lock);
1050 return nonseekable_open(inode, file);
1054 spufs_signal1_release(struct inode *inode, struct file *file)
1056 struct spufs_inode_info *i = SPUFS_I(inode);
1057 struct spu_context *ctx = i->i_ctx;
1059 mutex_lock(&ctx->mapping_lock);
1060 if (!--i->i_openers)
1061 ctx->signal1 = NULL;
1062 mutex_unlock(&ctx->mapping_lock);
1066 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1067 size_t len, loff_t *pos)
1075 if (ctx->csa.spu_chnlcnt_RW[3]) {
1076 data = ctx->csa.spu_chnldata_RW[3];
1083 if (copy_to_user(buf, &data, 4))
1090 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1091 size_t len, loff_t *pos)
1094 struct spu_context *ctx = file->private_data;
1096 ret = spu_acquire_saved(ctx);
1099 ret = __spufs_signal1_read(ctx, buf, len, pos);
1100 spu_release_saved(ctx);
1105 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1106 size_t len, loff_t *pos)
1108 struct spu_context *ctx;
1112 ctx = file->private_data;
1117 if (copy_from_user(&data, buf, 4))
1120 ret = spu_acquire(ctx);
1123 ctx->ops->signal1_write(ctx, data);
1130 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1132 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1133 return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1134 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1135 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1136 * signal 1 and 2 area
1138 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1140 #error unsupported page size
1144 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1145 .fault = spufs_signal1_mmap_fault,
1148 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1150 if (!(vma->vm_flags & VM_SHARED))
1153 vma->vm_flags |= VM_IO | VM_PFNMAP;
1154 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1156 vma->vm_ops = &spufs_signal1_mmap_vmops;
1160 static const struct file_operations spufs_signal1_fops = {
1161 .open = spufs_signal1_open,
1162 .release = spufs_signal1_release,
1163 .read = spufs_signal1_read,
1164 .write = spufs_signal1_write,
1165 .mmap = spufs_signal1_mmap,
1168 static const struct file_operations spufs_signal1_nosched_fops = {
1169 .open = spufs_signal1_open,
1170 .release = spufs_signal1_release,
1171 .write = spufs_signal1_write,
1172 .mmap = spufs_signal1_mmap,
1175 static int spufs_signal2_open(struct inode *inode, struct file *file)
1177 struct spufs_inode_info *i = SPUFS_I(inode);
1178 struct spu_context *ctx = i->i_ctx;
1180 mutex_lock(&ctx->mapping_lock);
1181 file->private_data = ctx;
1182 if (!i->i_openers++)
1183 ctx->signal2 = inode->i_mapping;
1184 mutex_unlock(&ctx->mapping_lock);
1185 return nonseekable_open(inode, file);
1189 spufs_signal2_release(struct inode *inode, struct file *file)
1191 struct spufs_inode_info *i = SPUFS_I(inode);
1192 struct spu_context *ctx = i->i_ctx;
1194 mutex_lock(&ctx->mapping_lock);
1195 if (!--i->i_openers)
1196 ctx->signal2 = NULL;
1197 mutex_unlock(&ctx->mapping_lock);
1201 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1202 size_t len, loff_t *pos)
1210 if (ctx->csa.spu_chnlcnt_RW[4]) {
1211 data = ctx->csa.spu_chnldata_RW[4];
1218 if (copy_to_user(buf, &data, 4))
1225 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1226 size_t len, loff_t *pos)
1228 struct spu_context *ctx = file->private_data;
1231 ret = spu_acquire_saved(ctx);
1234 ret = __spufs_signal2_read(ctx, buf, len, pos);
1235 spu_release_saved(ctx);
1240 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1241 size_t len, loff_t *pos)
1243 struct spu_context *ctx;
1247 ctx = file->private_data;
1252 if (copy_from_user(&data, buf, 4))
1255 ret = spu_acquire(ctx);
1258 ctx->ops->signal2_write(ctx, data);
1266 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1268 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1269 return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1270 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1271 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1272 * signal 1 and 2 area
1274 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1276 #error unsupported page size
1280 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1281 .fault = spufs_signal2_mmap_fault,
1284 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1286 if (!(vma->vm_flags & VM_SHARED))
1289 vma->vm_flags |= VM_IO | VM_PFNMAP;
1290 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1292 vma->vm_ops = &spufs_signal2_mmap_vmops;
1295 #else /* SPUFS_MMAP_4K */
1296 #define spufs_signal2_mmap NULL
1297 #endif /* !SPUFS_MMAP_4K */
1299 static const struct file_operations spufs_signal2_fops = {
1300 .open = spufs_signal2_open,
1301 .release = spufs_signal2_release,
1302 .read = spufs_signal2_read,
1303 .write = spufs_signal2_write,
1304 .mmap = spufs_signal2_mmap,
1307 static const struct file_operations spufs_signal2_nosched_fops = {
1308 .open = spufs_signal2_open,
1309 .release = spufs_signal2_release,
1310 .write = spufs_signal2_write,
1311 .mmap = spufs_signal2_mmap,
1315 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1316 * work of acquiring (or not) the SPU context before calling through
1317 * to the actual get routine. The set routine is called directly.
1319 #define SPU_ATTR_NOACQUIRE 0
1320 #define SPU_ATTR_ACQUIRE 1
1321 #define SPU_ATTR_ACQUIRE_SAVED 2
1323 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1324 static int __##__get(void *data, u64 *val) \
1326 struct spu_context *ctx = data; \
1329 if (__acquire == SPU_ATTR_ACQUIRE) { \
1330 ret = spu_acquire(ctx); \
1333 *val = __get(ctx); \
1335 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1336 ret = spu_acquire_saved(ctx); \
1339 *val = __get(ctx); \
1340 spu_release_saved(ctx); \
1342 *val = __get(ctx); \
1346 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1348 static int spufs_signal1_type_set(void *data, u64 val)
1350 struct spu_context *ctx = data;
1353 ret = spu_acquire(ctx);
1356 ctx->ops->signal1_type_set(ctx, val);
1362 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1364 return ctx->ops->signal1_type_get(ctx);
1366 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1367 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1370 static int spufs_signal2_type_set(void *data, u64 val)
1372 struct spu_context *ctx = data;
1375 ret = spu_acquire(ctx);
1378 ctx->ops->signal2_type_set(ctx, val);
1384 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1386 return ctx->ops->signal2_type_get(ctx);
1388 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1389 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1393 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1398 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1399 .fault = spufs_mss_mmap_fault,
1403 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1405 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1407 if (!(vma->vm_flags & VM_SHARED))
1410 vma->vm_flags |= VM_IO | VM_PFNMAP;
1411 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1413 vma->vm_ops = &spufs_mss_mmap_vmops;
1416 #else /* SPUFS_MMAP_4K */
1417 #define spufs_mss_mmap NULL
1418 #endif /* !SPUFS_MMAP_4K */
1420 static int spufs_mss_open(struct inode *inode, struct file *file)
1422 struct spufs_inode_info *i = SPUFS_I(inode);
1423 struct spu_context *ctx = i->i_ctx;
1425 file->private_data = i->i_ctx;
1427 mutex_lock(&ctx->mapping_lock);
1428 if (!i->i_openers++)
1429 ctx->mss = inode->i_mapping;
1430 mutex_unlock(&ctx->mapping_lock);
1431 return nonseekable_open(inode, file);
1435 spufs_mss_release(struct inode *inode, struct file *file)
1437 struct spufs_inode_info *i = SPUFS_I(inode);
1438 struct spu_context *ctx = i->i_ctx;
1440 mutex_lock(&ctx->mapping_lock);
1441 if (!--i->i_openers)
1443 mutex_unlock(&ctx->mapping_lock);
1447 static const struct file_operations spufs_mss_fops = {
1448 .open = spufs_mss_open,
1449 .release = spufs_mss_release,
1450 .mmap = spufs_mss_mmap,
1454 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1456 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1459 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1460 .fault = spufs_psmap_mmap_fault,
1464 * mmap support for full problem state area [0x00000 - 0x1ffff].
1466 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1468 if (!(vma->vm_flags & VM_SHARED))
1471 vma->vm_flags |= VM_IO | VM_PFNMAP;
1472 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1474 vma->vm_ops = &spufs_psmap_mmap_vmops;
1478 static int spufs_psmap_open(struct inode *inode, struct file *file)
1480 struct spufs_inode_info *i = SPUFS_I(inode);
1481 struct spu_context *ctx = i->i_ctx;
1483 mutex_lock(&ctx->mapping_lock);
1484 file->private_data = i->i_ctx;
1485 if (!i->i_openers++)
1486 ctx->psmap = inode->i_mapping;
1487 mutex_unlock(&ctx->mapping_lock);
1488 return nonseekable_open(inode, file);
1492 spufs_psmap_release(struct inode *inode, struct file *file)
1494 struct spufs_inode_info *i = SPUFS_I(inode);
1495 struct spu_context *ctx = i->i_ctx;
1497 mutex_lock(&ctx->mapping_lock);
1498 if (!--i->i_openers)
1500 mutex_unlock(&ctx->mapping_lock);
1504 static const struct file_operations spufs_psmap_fops = {
1505 .open = spufs_psmap_open,
1506 .release = spufs_psmap_release,
1507 .mmap = spufs_psmap_mmap,
1513 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515 return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1518 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1519 .fault = spufs_mfc_mmap_fault,
1523 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1525 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1527 if (!(vma->vm_flags & VM_SHARED))
1530 vma->vm_flags |= VM_IO | VM_PFNMAP;
1531 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1533 vma->vm_ops = &spufs_mfc_mmap_vmops;
1536 #else /* SPUFS_MMAP_4K */
1537 #define spufs_mfc_mmap NULL
1538 #endif /* !SPUFS_MMAP_4K */
1540 static int spufs_mfc_open(struct inode *inode, struct file *file)
1542 struct spufs_inode_info *i = SPUFS_I(inode);
1543 struct spu_context *ctx = i->i_ctx;
1545 /* we don't want to deal with DMA into other processes */
1546 if (ctx->owner != current->mm)
1549 if (atomic_read(&inode->i_count) != 1)
1552 mutex_lock(&ctx->mapping_lock);
1553 file->private_data = ctx;
1554 if (!i->i_openers++)
1555 ctx->mfc = inode->i_mapping;
1556 mutex_unlock(&ctx->mapping_lock);
1557 return nonseekable_open(inode, file);
1561 spufs_mfc_release(struct inode *inode, struct file *file)
1563 struct spufs_inode_info *i = SPUFS_I(inode);
1564 struct spu_context *ctx = i->i_ctx;
1566 mutex_lock(&ctx->mapping_lock);
1567 if (!--i->i_openers)
1569 mutex_unlock(&ctx->mapping_lock);
1573 /* interrupt-level mfc callback function. */
1574 void spufs_mfc_callback(struct spu *spu)
1576 struct spu_context *ctx = spu->ctx;
1581 wake_up_all(&ctx->mfc_wq);
1583 pr_debug("%s %s\n", __func__, spu->name);
1584 if (ctx->mfc_fasync) {
1585 u32 free_elements, tagstatus;
1588 /* no need for spu_acquire in interrupt context */
1589 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1590 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1593 if (free_elements & 0xffff)
1595 if (tagstatus & ctx->tagwait)
1598 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1602 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1604 /* See if there is one tag group is complete */
1605 /* FIXME we need locking around tagwait */
1606 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1607 ctx->tagwait &= ~*status;
1611 /* enable interrupt waiting for any tag group,
1612 may silently fail if interrupts are already enabled */
1613 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1617 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1618 size_t size, loff_t *pos)
1620 struct spu_context *ctx = file->private_data;
1627 ret = spu_acquire(ctx);
1632 if (file->f_flags & O_NONBLOCK) {
1633 status = ctx->ops->read_mfc_tagstatus(ctx);
1634 if (!(status & ctx->tagwait))
1637 /* XXX(hch): shouldn't we clear ret here? */
1638 ctx->tagwait &= ~status;
1640 ret = spufs_wait(ctx->mfc_wq,
1641 spufs_read_mfc_tagstatus(ctx, &status));
1648 if (copy_to_user(buffer, &status, 4))
1655 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1657 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1658 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1669 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1673 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1674 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1679 switch (cmd->size & 0xf) {
1700 pr_debug("invalid DMA alignment %x for size %x\n",
1701 cmd->lsa & 0xf, cmd->size);
1705 if (cmd->size > 16 * 1024) {
1706 pr_debug("invalid DMA size %x\n", cmd->size);
1710 if (cmd->tag & 0xfff0) {
1711 /* we reserve the higher tag numbers for kernel use */
1712 pr_debug("invalid DMA tag\n");
1717 /* not supported in this version */
1718 pr_debug("invalid DMA class\n");
1725 static int spu_send_mfc_command(struct spu_context *ctx,
1726 struct mfc_dma_command cmd,
1729 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1730 if (*error == -EAGAIN) {
1731 /* wait for any tag group to complete
1732 so we have space for the new command */
1733 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1734 /* try again, because the queue might be
1736 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1737 if (*error == -EAGAIN)
1743 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1744 size_t size, loff_t *pos)
1746 struct spu_context *ctx = file->private_data;
1747 struct mfc_dma_command cmd;
1750 if (size != sizeof cmd)
1754 if (copy_from_user(&cmd, buffer, sizeof cmd))
1757 ret = spufs_check_valid_dma(&cmd);
1761 ret = spu_acquire(ctx);
1765 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1769 if (file->f_flags & O_NONBLOCK) {
1770 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1773 ret = spufs_wait(ctx->mfc_wq,
1774 spu_send_mfc_command(ctx, cmd, &status));
1784 ctx->tagwait |= 1 << cmd.tag;
1793 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1795 struct spu_context *ctx = file->private_data;
1796 u32 free_elements, tagstatus;
1799 poll_wait(file, &ctx->mfc_wq, wait);
1802 * For now keep this uninterruptible and also ignore the rule
1803 * that poll should not sleep. Will be fixed later.
1805 mutex_lock(&ctx->state_mutex);
1806 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1807 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1808 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1812 if (free_elements & 0xffff)
1813 mask |= POLLOUT | POLLWRNORM;
1814 if (tagstatus & ctx->tagwait)
1815 mask |= POLLIN | POLLRDNORM;
1817 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1818 free_elements, tagstatus, ctx->tagwait);
1823 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1825 struct spu_context *ctx = file->private_data;
1828 ret = spu_acquire(ctx);
1832 /* this currently hangs */
1833 ret = spufs_wait(ctx->mfc_wq,
1834 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1837 ret = spufs_wait(ctx->mfc_wq,
1838 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1849 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1852 return spufs_mfc_flush(file, NULL);
1855 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1857 struct spu_context *ctx = file->private_data;
1859 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1862 static const struct file_operations spufs_mfc_fops = {
1863 .open = spufs_mfc_open,
1864 .release = spufs_mfc_release,
1865 .read = spufs_mfc_read,
1866 .write = spufs_mfc_write,
1867 .poll = spufs_mfc_poll,
1868 .flush = spufs_mfc_flush,
1869 .fsync = spufs_mfc_fsync,
1870 .fasync = spufs_mfc_fasync,
1871 .mmap = spufs_mfc_mmap,
1874 static int spufs_npc_set(void *data, u64 val)
1876 struct spu_context *ctx = data;
1879 ret = spu_acquire(ctx);
1882 ctx->ops->npc_write(ctx, val);
1888 static u64 spufs_npc_get(struct spu_context *ctx)
1890 return ctx->ops->npc_read(ctx);
1892 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1893 "0x%llx\n", SPU_ATTR_ACQUIRE);
1895 static int spufs_decr_set(void *data, u64 val)
1897 struct spu_context *ctx = data;
1898 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1901 ret = spu_acquire_saved(ctx);
1904 lscsa->decr.slot[0] = (u32) val;
1905 spu_release_saved(ctx);
1910 static u64 spufs_decr_get(struct spu_context *ctx)
1912 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1913 return lscsa->decr.slot[0];
1915 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1916 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1918 static int spufs_decr_status_set(void *data, u64 val)
1920 struct spu_context *ctx = data;
1923 ret = spu_acquire_saved(ctx);
1927 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1929 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1930 spu_release_saved(ctx);
1935 static u64 spufs_decr_status_get(struct spu_context *ctx)
1937 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1938 return SPU_DECR_STATUS_RUNNING;
1942 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1943 spufs_decr_status_set, "0x%llx\n",
1944 SPU_ATTR_ACQUIRE_SAVED);
1946 static int spufs_event_mask_set(void *data, u64 val)
1948 struct spu_context *ctx = data;
1949 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1952 ret = spu_acquire_saved(ctx);
1955 lscsa->event_mask.slot[0] = (u32) val;
1956 spu_release_saved(ctx);
1961 static u64 spufs_event_mask_get(struct spu_context *ctx)
1963 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1964 return lscsa->event_mask.slot[0];
1967 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1968 spufs_event_mask_set, "0x%llx\n",
1969 SPU_ATTR_ACQUIRE_SAVED);
1971 static u64 spufs_event_status_get(struct spu_context *ctx)
1973 struct spu_state *state = &ctx->csa;
1975 stat = state->spu_chnlcnt_RW[0];
1977 return state->spu_chnldata_RW[0];
1980 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1981 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1983 static int spufs_srr0_set(void *data, u64 val)
1985 struct spu_context *ctx = data;
1986 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1989 ret = spu_acquire_saved(ctx);
1992 lscsa->srr0.slot[0] = (u32) val;
1993 spu_release_saved(ctx);
1998 static u64 spufs_srr0_get(struct spu_context *ctx)
2000 struct spu_lscsa *lscsa = ctx->csa.lscsa;
2001 return lscsa->srr0.slot[0];
2003 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2004 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2006 static u64 spufs_id_get(struct spu_context *ctx)
2010 if (ctx->state == SPU_STATE_RUNNABLE)
2011 num = ctx->spu->number;
2013 num = (unsigned int)-1;
2017 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2020 static u64 spufs_object_id_get(struct spu_context *ctx)
2022 /* FIXME: Should there really be no locking here? */
2023 return ctx->object_id;
2026 static int spufs_object_id_set(void *data, u64 id)
2028 struct spu_context *ctx = data;
2029 ctx->object_id = id;
2034 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2035 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2037 static u64 spufs_lslr_get(struct spu_context *ctx)
2039 return ctx->csa.priv2.spu_lslr_RW;
2041 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2042 SPU_ATTR_ACQUIRE_SAVED);
2044 static int spufs_info_open(struct inode *inode, struct file *file)
2046 struct spufs_inode_info *i = SPUFS_I(inode);
2047 struct spu_context *ctx = i->i_ctx;
2048 file->private_data = ctx;
2052 static int spufs_caps_show(struct seq_file *s, void *private)
2054 struct spu_context *ctx = s->private;
2056 if (!(ctx->flags & SPU_CREATE_NOSCHED))
2057 seq_puts(s, "sched\n");
2058 if (!(ctx->flags & SPU_CREATE_ISOLATE))
2059 seq_puts(s, "step\n");
2063 static int spufs_caps_open(struct inode *inode, struct file *file)
2065 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2068 static const struct file_operations spufs_caps_fops = {
2069 .open = spufs_caps_open,
2071 .llseek = seq_lseek,
2072 .release = single_release,
2075 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2076 char __user *buf, size_t len, loff_t *pos)
2080 /* EOF if there's no entry in the mbox */
2081 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2084 data = ctx->csa.prob.pu_mb_R;
2086 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2089 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2090 size_t len, loff_t *pos)
2093 struct spu_context *ctx = file->private_data;
2095 if (!access_ok(VERIFY_WRITE, buf, len))
2098 ret = spu_acquire_saved(ctx);
2101 spin_lock(&ctx->csa.register_lock);
2102 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2103 spin_unlock(&ctx->csa.register_lock);
2104 spu_release_saved(ctx);
2109 static const struct file_operations spufs_mbox_info_fops = {
2110 .open = spufs_info_open,
2111 .read = spufs_mbox_info_read,
2112 .llseek = generic_file_llseek,
2115 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2116 char __user *buf, size_t len, loff_t *pos)
2120 /* EOF if there's no entry in the ibox */
2121 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2124 data = ctx->csa.priv2.puint_mb_R;
2126 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2129 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2130 size_t len, loff_t *pos)
2132 struct spu_context *ctx = file->private_data;
2135 if (!access_ok(VERIFY_WRITE, buf, len))
2138 ret = spu_acquire_saved(ctx);
2141 spin_lock(&ctx->csa.register_lock);
2142 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2143 spin_unlock(&ctx->csa.register_lock);
2144 spu_release_saved(ctx);
2149 static const struct file_operations spufs_ibox_info_fops = {
2150 .open = spufs_info_open,
2151 .read = spufs_ibox_info_read,
2152 .llseek = generic_file_llseek,
2155 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2156 char __user *buf, size_t len, loff_t *pos)
2162 wbox_stat = ctx->csa.prob.mb_stat_R;
2163 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2164 for (i = 0; i < cnt; i++) {
2165 data[i] = ctx->csa.spu_mailbox_data[i];
2168 return simple_read_from_buffer(buf, len, pos, &data,
2172 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2173 size_t len, loff_t *pos)
2175 struct spu_context *ctx = file->private_data;
2178 if (!access_ok(VERIFY_WRITE, buf, len))
2181 ret = spu_acquire_saved(ctx);
2184 spin_lock(&ctx->csa.register_lock);
2185 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2186 spin_unlock(&ctx->csa.register_lock);
2187 spu_release_saved(ctx);
2192 static const struct file_operations spufs_wbox_info_fops = {
2193 .open = spufs_info_open,
2194 .read = spufs_wbox_info_read,
2195 .llseek = generic_file_llseek,
2198 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2199 char __user *buf, size_t len, loff_t *pos)
2201 struct spu_dma_info info;
2202 struct mfc_cq_sr *qp, *spuqp;
2205 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2206 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2207 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2208 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2209 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2210 for (i = 0; i < 16; i++) {
2211 qp = &info.dma_info_command_data[i];
2212 spuqp = &ctx->csa.priv2.spuq[i];
2214 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2215 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2216 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2217 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2220 return simple_read_from_buffer(buf, len, pos, &info,
2224 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2225 size_t len, loff_t *pos)
2227 struct spu_context *ctx = file->private_data;
2230 if (!access_ok(VERIFY_WRITE, buf, len))
2233 ret = spu_acquire_saved(ctx);
2236 spin_lock(&ctx->csa.register_lock);
2237 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2238 spin_unlock(&ctx->csa.register_lock);
2239 spu_release_saved(ctx);
2244 static const struct file_operations spufs_dma_info_fops = {
2245 .open = spufs_info_open,
2246 .read = spufs_dma_info_read,
2249 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2250 char __user *buf, size_t len, loff_t *pos)
2252 struct spu_proxydma_info info;
2253 struct mfc_cq_sr *qp, *puqp;
2254 int ret = sizeof info;
2260 if (!access_ok(VERIFY_WRITE, buf, len))
2263 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2264 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2265 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2266 for (i = 0; i < 8; i++) {
2267 qp = &info.proxydma_info_command_data[i];
2268 puqp = &ctx->csa.priv2.puq[i];
2270 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2271 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2272 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2273 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2276 return simple_read_from_buffer(buf, len, pos, &info,
2280 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2281 size_t len, loff_t *pos)
2283 struct spu_context *ctx = file->private_data;
2286 ret = spu_acquire_saved(ctx);
2289 spin_lock(&ctx->csa.register_lock);
2290 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2291 spin_unlock(&ctx->csa.register_lock);
2292 spu_release_saved(ctx);
2297 static const struct file_operations spufs_proxydma_info_fops = {
2298 .open = spufs_info_open,
2299 .read = spufs_proxydma_info_read,
2302 static int spufs_show_tid(struct seq_file *s, void *private)
2304 struct spu_context *ctx = s->private;
2306 seq_printf(s, "%d\n", ctx->tid);
2310 static int spufs_tid_open(struct inode *inode, struct file *file)
2312 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2315 static const struct file_operations spufs_tid_fops = {
2316 .open = spufs_tid_open,
2318 .llseek = seq_lseek,
2319 .release = single_release,
2322 static const char *ctx_state_names[] = {
2323 "user", "system", "iowait", "loaded"
2326 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2327 enum spu_utilization_state state)
2330 unsigned long long time = ctx->stats.times[state];
2333 * In general, utilization statistics are updated by the controlling
2334 * thread as the spu context moves through various well defined
2335 * state transitions, but if the context is lazily loaded its
2336 * utilization statistics are not updated as the controlling thread
2337 * is not tightly coupled with the execution of the spu context. We
2338 * calculate and apply the time delta from the last recorded state
2339 * of the spu context.
2341 if (ctx->spu && ctx->stats.util_state == state) {
2343 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2346 return time / NSEC_PER_MSEC;
2349 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2351 unsigned long long slb_flts = ctx->stats.slb_flt;
2353 if (ctx->state == SPU_STATE_RUNNABLE) {
2354 slb_flts += (ctx->spu->stats.slb_flt -
2355 ctx->stats.slb_flt_base);
2361 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2363 unsigned long long class2_intrs = ctx->stats.class2_intr;
2365 if (ctx->state == SPU_STATE_RUNNABLE) {
2366 class2_intrs += (ctx->spu->stats.class2_intr -
2367 ctx->stats.class2_intr_base);
2370 return class2_intrs;
2374 static int spufs_show_stat(struct seq_file *s, void *private)
2376 struct spu_context *ctx = s->private;
2379 ret = spu_acquire(ctx);
2383 seq_printf(s, "%s %llu %llu %llu %llu "
2384 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2385 ctx_state_names[ctx->stats.util_state],
2386 spufs_acct_time(ctx, SPU_UTIL_USER),
2387 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2388 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2389 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2390 ctx->stats.vol_ctx_switch,
2391 ctx->stats.invol_ctx_switch,
2392 spufs_slb_flts(ctx),
2393 ctx->stats.hash_flt,
2396 spufs_class2_intrs(ctx),
2397 ctx->stats.libassist);
2402 static int spufs_stat_open(struct inode *inode, struct file *file)
2404 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2407 static const struct file_operations spufs_stat_fops = {
2408 .open = spufs_stat_open,
2410 .llseek = seq_lseek,
2411 .release = single_release,
2414 static inline int spufs_switch_log_used(struct spu_context *ctx)
2416 return (ctx->switch_log->head - ctx->switch_log->tail) %
2420 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2422 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2425 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2427 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2430 rc = spu_acquire(ctx);
2434 if (ctx->switch_log) {
2439 ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2440 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2443 if (!ctx->switch_log) {
2448 ctx->switch_log->head = ctx->switch_log->tail = 0;
2449 init_waitqueue_head(&ctx->switch_log->wait);
2457 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2459 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2462 rc = spu_acquire(ctx);
2466 kfree(ctx->switch_log);
2467 ctx->switch_log = NULL;
2473 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2475 struct switch_log_entry *p;
2477 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2479 return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2480 (unsigned int) p->tstamp.tv_sec,
2481 (unsigned int) p->tstamp.tv_nsec,
2483 (unsigned int) p->type,
2484 (unsigned int) p->val,
2485 (unsigned long long) p->timebase);
2488 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2489 size_t len, loff_t *ppos)
2491 struct inode *inode = file->f_path.dentry->d_inode;
2492 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2493 int error = 0, cnt = 0;
2495 if (!buf || len < 0)
2498 error = spu_acquire(ctx);
2506 if (spufs_switch_log_used(ctx) == 0) {
2508 /* If there's data ready to go, we can
2509 * just return straight away */
2512 } else if (file->f_flags & O_NONBLOCK) {
2517 /* spufs_wait will drop the mutex and
2518 * re-acquire, but since we're in read(), the
2519 * file cannot be _released (and so
2520 * ctx->switch_log is stable).
2522 error = spufs_wait(ctx->switch_log->wait,
2523 spufs_switch_log_used(ctx) > 0);
2525 /* On error, spufs_wait returns without the
2526 * state mutex held */
2530 /* We may have had entries read from underneath
2531 * us while we dropped the mutex in spufs_wait,
2533 if (spufs_switch_log_used(ctx) == 0)
2538 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2540 ctx->switch_log->tail =
2541 (ctx->switch_log->tail + 1) %
2544 /* If the record is greater than space available return
2545 * partial buffer (so far) */
2548 error = copy_to_user(buf + cnt, tbuf, width);
2556 return cnt == 0 ? error : cnt;
2559 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2561 struct inode *inode = file->f_path.dentry->d_inode;
2562 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2563 unsigned int mask = 0;
2566 poll_wait(file, &ctx->switch_log->wait, wait);
2568 rc = spu_acquire(ctx);
2572 if (spufs_switch_log_used(ctx) > 0)
2580 static const struct file_operations spufs_switch_log_fops = {
2581 .owner = THIS_MODULE,
2582 .open = spufs_switch_log_open,
2583 .read = spufs_switch_log_read,
2584 .poll = spufs_switch_log_poll,
2585 .release = spufs_switch_log_release,
2589 * Log a context switch event to a switch log reader.
2591 * Must be called with ctx->state_mutex held.
2593 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2596 if (!ctx->switch_log)
2599 if (spufs_switch_log_avail(ctx) > 1) {
2600 struct switch_log_entry *p;
2602 p = ctx->switch_log->log + ctx->switch_log->head;
2603 ktime_get_ts(&p->tstamp);
2604 p->timebase = get_tb();
2605 p->spu_id = spu ? spu->number : -1;
2609 ctx->switch_log->head =
2610 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2613 wake_up(&ctx->switch_log->wait);
2616 static int spufs_show_ctx(struct seq_file *s, void *private)
2618 struct spu_context *ctx = s->private;
2621 mutex_lock(&ctx->state_mutex);
2623 struct spu *spu = ctx->spu;
2624 struct spu_priv2 __iomem *priv2 = spu->priv2;
2626 spin_lock_irq(&spu->register_lock);
2627 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2628 spin_unlock_irq(&spu->register_lock);
2630 struct spu_state *csa = &ctx->csa;
2632 mfc_control_RW = csa->priv2.mfc_control_RW;
2635 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2636 " %c %lx %lx %lx %lx %x %x\n",
2637 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2642 ctx->spu ? ctx->spu->number : -1,
2643 !list_empty(&ctx->rq) ? 'q' : ' ',
2644 ctx->csa.class_0_pending,
2645 ctx->csa.class_0_dar,
2646 ctx->csa.class_1_dsisr,
2648 ctx->ops->runcntl_read(ctx),
2649 ctx->ops->status_read(ctx));
2651 mutex_unlock(&ctx->state_mutex);
2656 static int spufs_ctx_open(struct inode *inode, struct file *file)
2658 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2661 static const struct file_operations spufs_ctx_fops = {
2662 .open = spufs_ctx_open,
2664 .llseek = seq_lseek,
2665 .release = single_release,
2668 struct spufs_tree_descr spufs_dir_contents[] = {
2669 { "capabilities", &spufs_caps_fops, 0444, },
2670 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2671 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2672 { "mbox", &spufs_mbox_fops, 0444, },
2673 { "ibox", &spufs_ibox_fops, 0444, },
2674 { "wbox", &spufs_wbox_fops, 0222, },
2675 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2676 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2677 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2678 { "signal1", &spufs_signal1_fops, 0666, },
2679 { "signal2", &spufs_signal2_fops, 0666, },
2680 { "signal1_type", &spufs_signal1_type, 0666, },
2681 { "signal2_type", &spufs_signal2_type, 0666, },
2682 { "cntl", &spufs_cntl_fops, 0666, },
2683 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2684 { "lslr", &spufs_lslr_ops, 0444, },
2685 { "mfc", &spufs_mfc_fops, 0666, },
2686 { "mss", &spufs_mss_fops, 0666, },
2687 { "npc", &spufs_npc_ops, 0666, },
2688 { "srr0", &spufs_srr0_ops, 0666, },
2689 { "decr", &spufs_decr_ops, 0666, },
2690 { "decr_status", &spufs_decr_status_ops, 0666, },
2691 { "event_mask", &spufs_event_mask_ops, 0666, },
2692 { "event_status", &spufs_event_status_ops, 0444, },
2693 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2694 { "phys-id", &spufs_id_ops, 0666, },
2695 { "object-id", &spufs_object_id_ops, 0666, },
2696 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2697 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2698 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2699 { "dma_info", &spufs_dma_info_fops, 0444,
2700 sizeof(struct spu_dma_info), },
2701 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2702 sizeof(struct spu_proxydma_info)},
2703 { "tid", &spufs_tid_fops, 0444, },
2704 { "stat", &spufs_stat_fops, 0444, },
2705 { "switch_log", &spufs_switch_log_fops, 0444 },
2709 struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2710 { "capabilities", &spufs_caps_fops, 0444, },
2711 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2712 { "mbox", &spufs_mbox_fops, 0444, },
2713 { "ibox", &spufs_ibox_fops, 0444, },
2714 { "wbox", &spufs_wbox_fops, 0222, },
2715 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2716 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2717 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2718 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2719 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2720 { "signal1_type", &spufs_signal1_type, 0666, },
2721 { "signal2_type", &spufs_signal2_type, 0666, },
2722 { "mss", &spufs_mss_fops, 0666, },
2723 { "mfc", &spufs_mfc_fops, 0666, },
2724 { "cntl", &spufs_cntl_fops, 0666, },
2725 { "npc", &spufs_npc_ops, 0666, },
2726 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2727 { "phys-id", &spufs_id_ops, 0666, },
2728 { "object-id", &spufs_object_id_ops, 0666, },
2729 { "tid", &spufs_tid_fops, 0444, },
2730 { "stat", &spufs_stat_fops, 0444, },
2734 struct spufs_tree_descr spufs_dir_debug_contents[] = {
2735 { ".ctx", &spufs_ctx_fops, 0444, },
2739 struct spufs_coredump_reader spufs_coredump_read[] = {
2740 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2741 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2742 { "lslr", NULL, spufs_lslr_get, 19 },
2743 { "decr", NULL, spufs_decr_get, 19 },
2744 { "decr_status", NULL, spufs_decr_status_get, 19 },
2745 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2746 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2747 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2748 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2749 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2750 { "event_mask", NULL, spufs_event_mask_get, 19 },
2751 { "event_status", NULL, spufs_event_status_get, 19 },
2752 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2753 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2754 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2755 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2756 { "proxydma_info", __spufs_proxydma_info_read,
2757 NULL, sizeof(struct spu_proxydma_info)},
2758 { "object-id", NULL, spufs_object_id_get, 19 },
2759 { "npc", NULL, spufs_npc_get, 19 },