Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <net/tcp.h>
79
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/io.h>
83 #include <asm/div64.h>
84 #include <asm/irq.h>
85
86 /* local include */
87 #include "s2io.h"
88 #include "s2io-regs.h"
89
90 #define DRV_VERSION "2.0.26.25"
91
92 /* S2io Driver name & version. */
93 static char s2io_driver_name[] = "Neterion";
94 static char s2io_driver_version[] = DRV_VERSION;
95
96 static int rxd_size[2] = {32,48};
97 static int rxd_count[2] = {127,85};
98
99 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 {
101         int ret;
102
103         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
104                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
105
106         return ret;
107 }
108
109 /*
110  * Cards with following subsystem_id have a link state indication
111  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
112  * macro below identifies these cards given the subsystem_id.
113  */
114 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
115         (dev_type == XFRAME_I_DEVICE) ?                 \
116                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
117                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118
119 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
120                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121
122 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 {
124         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
125 }
126
127 /* Ethtool related variables and Macros. */
128 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
129         "Register test\t(offline)",
130         "Eeprom test\t(offline)",
131         "Link test\t(online)",
132         "RLDRAM test\t(offline)",
133         "BIST Test\t(offline)"
134 };
135
136 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
137         {"tmac_frms"},
138         {"tmac_data_octets"},
139         {"tmac_drop_frms"},
140         {"tmac_mcst_frms"},
141         {"tmac_bcst_frms"},
142         {"tmac_pause_ctrl_frms"},
143         {"tmac_ttl_octets"},
144         {"tmac_ucst_frms"},
145         {"tmac_nucst_frms"},
146         {"tmac_any_err_frms"},
147         {"tmac_ttl_less_fb_octets"},
148         {"tmac_vld_ip_octets"},
149         {"tmac_vld_ip"},
150         {"tmac_drop_ip"},
151         {"tmac_icmp"},
152         {"tmac_rst_tcp"},
153         {"tmac_tcp"},
154         {"tmac_udp"},
155         {"rmac_vld_frms"},
156         {"rmac_data_octets"},
157         {"rmac_fcs_err_frms"},
158         {"rmac_drop_frms"},
159         {"rmac_vld_mcst_frms"},
160         {"rmac_vld_bcst_frms"},
161         {"rmac_in_rng_len_err_frms"},
162         {"rmac_out_rng_len_err_frms"},
163         {"rmac_long_frms"},
164         {"rmac_pause_ctrl_frms"},
165         {"rmac_unsup_ctrl_frms"},
166         {"rmac_ttl_octets"},
167         {"rmac_accepted_ucst_frms"},
168         {"rmac_accepted_nucst_frms"},
169         {"rmac_discarded_frms"},
170         {"rmac_drop_events"},
171         {"rmac_ttl_less_fb_octets"},
172         {"rmac_ttl_frms"},
173         {"rmac_usized_frms"},
174         {"rmac_osized_frms"},
175         {"rmac_frag_frms"},
176         {"rmac_jabber_frms"},
177         {"rmac_ttl_64_frms"},
178         {"rmac_ttl_65_127_frms"},
179         {"rmac_ttl_128_255_frms"},
180         {"rmac_ttl_256_511_frms"},
181         {"rmac_ttl_512_1023_frms"},
182         {"rmac_ttl_1024_1518_frms"},
183         {"rmac_ip"},
184         {"rmac_ip_octets"},
185         {"rmac_hdr_err_ip"},
186         {"rmac_drop_ip"},
187         {"rmac_icmp"},
188         {"rmac_tcp"},
189         {"rmac_udp"},
190         {"rmac_err_drp_udp"},
191         {"rmac_xgmii_err_sym"},
192         {"rmac_frms_q0"},
193         {"rmac_frms_q1"},
194         {"rmac_frms_q2"},
195         {"rmac_frms_q3"},
196         {"rmac_frms_q4"},
197         {"rmac_frms_q5"},
198         {"rmac_frms_q6"},
199         {"rmac_frms_q7"},
200         {"rmac_full_q0"},
201         {"rmac_full_q1"},
202         {"rmac_full_q2"},
203         {"rmac_full_q3"},
204         {"rmac_full_q4"},
205         {"rmac_full_q5"},
206         {"rmac_full_q6"},
207         {"rmac_full_q7"},
208         {"rmac_pause_cnt"},
209         {"rmac_xgmii_data_err_cnt"},
210         {"rmac_xgmii_ctrl_err_cnt"},
211         {"rmac_accepted_ip"},
212         {"rmac_err_tcp"},
213         {"rd_req_cnt"},
214         {"new_rd_req_cnt"},
215         {"new_rd_req_rtry_cnt"},
216         {"rd_rtry_cnt"},
217         {"wr_rtry_rd_ack_cnt"},
218         {"wr_req_cnt"},
219         {"new_wr_req_cnt"},
220         {"new_wr_req_rtry_cnt"},
221         {"wr_rtry_cnt"},
222         {"wr_disc_cnt"},
223         {"rd_rtry_wr_ack_cnt"},
224         {"txp_wr_cnt"},
225         {"txd_rd_cnt"},
226         {"txd_wr_cnt"},
227         {"rxd_rd_cnt"},
228         {"rxd_wr_cnt"},
229         {"txf_rd_cnt"},
230         {"rxf_wr_cnt"}
231 };
232
233 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
234         {"rmac_ttl_1519_4095_frms"},
235         {"rmac_ttl_4096_8191_frms"},
236         {"rmac_ttl_8192_max_frms"},
237         {"rmac_ttl_gt_max_frms"},
238         {"rmac_osized_alt_frms"},
239         {"rmac_jabber_alt_frms"},
240         {"rmac_gt_max_alt_frms"},
241         {"rmac_vlan_frms"},
242         {"rmac_len_discard"},
243         {"rmac_fcs_discard"},
244         {"rmac_pf_discard"},
245         {"rmac_da_discard"},
246         {"rmac_red_discard"},
247         {"rmac_rts_discard"},
248         {"rmac_ingm_full_discard"},
249         {"link_fault_cnt"}
250 };
251
252 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
253         {"\n DRIVER STATISTICS"},
254         {"single_bit_ecc_errs"},
255         {"double_bit_ecc_errs"},
256         {"parity_err_cnt"},
257         {"serious_err_cnt"},
258         {"soft_reset_cnt"},
259         {"fifo_full_cnt"},
260         {"ring_0_full_cnt"},
261         {"ring_1_full_cnt"},
262         {"ring_2_full_cnt"},
263         {"ring_3_full_cnt"},
264         {"ring_4_full_cnt"},
265         {"ring_5_full_cnt"},
266         {"ring_6_full_cnt"},
267         {"ring_7_full_cnt"},
268         {"alarm_transceiver_temp_high"},
269         {"alarm_transceiver_temp_low"},
270         {"alarm_laser_bias_current_high"},
271         {"alarm_laser_bias_current_low"},
272         {"alarm_laser_output_power_high"},
273         {"alarm_laser_output_power_low"},
274         {"warn_transceiver_temp_high"},
275         {"warn_transceiver_temp_low"},
276         {"warn_laser_bias_current_high"},
277         {"warn_laser_bias_current_low"},
278         {"warn_laser_output_power_high"},
279         {"warn_laser_output_power_low"},
280         {"lro_aggregated_pkts"},
281         {"lro_flush_both_count"},
282         {"lro_out_of_sequence_pkts"},
283         {"lro_flush_due_to_max_pkts"},
284         {"lro_avg_aggr_pkts"},
285         {"mem_alloc_fail_cnt"},
286         {"pci_map_fail_cnt"},
287         {"watchdog_timer_cnt"},
288         {"mem_allocated"},
289         {"mem_freed"},
290         {"link_up_cnt"},
291         {"link_down_cnt"},
292         {"link_up_time"},
293         {"link_down_time"},
294         {"tx_tcode_buf_abort_cnt"},
295         {"tx_tcode_desc_abort_cnt"},
296         {"tx_tcode_parity_err_cnt"},
297         {"tx_tcode_link_loss_cnt"},
298         {"tx_tcode_list_proc_err_cnt"},
299         {"rx_tcode_parity_err_cnt"},
300         {"rx_tcode_abort_cnt"},
301         {"rx_tcode_parity_abort_cnt"},
302         {"rx_tcode_rda_fail_cnt"},
303         {"rx_tcode_unkn_prot_cnt"},
304         {"rx_tcode_fcs_err_cnt"},
305         {"rx_tcode_buf_size_err_cnt"},
306         {"rx_tcode_rxd_corrupt_cnt"},
307         {"rx_tcode_unkn_err_cnt"},
308         {"tda_err_cnt"},
309         {"pfc_err_cnt"},
310         {"pcc_err_cnt"},
311         {"tti_err_cnt"},
312         {"tpa_err_cnt"},
313         {"sm_err_cnt"},
314         {"lso_err_cnt"},
315         {"mac_tmac_err_cnt"},
316         {"mac_rmac_err_cnt"},
317         {"xgxs_txgxs_err_cnt"},
318         {"xgxs_rxgxs_err_cnt"},
319         {"rc_err_cnt"},
320         {"prc_pcix_err_cnt"},
321         {"rpa_err_cnt"},
322         {"rda_err_cnt"},
323         {"rti_err_cnt"},
324         {"mc_err_cnt"}
325 };
326
327 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
328 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
329 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
330
331 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
332 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333
334 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
335 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336
337 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
338 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
339
340 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
341                         init_timer(&timer);                     \
342                         timer.function = handle;                \
343                         timer.data = (unsigned long) arg;       \
344                         mod_timer(&timer, (jiffies + exp))      \
345
346 /* copy mac addr to def_mac_addr array */
347 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 {
349         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
350         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
351         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
352         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
353         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
354         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
355 }
356
357 /* Add the vlan */
358 static void s2io_vlan_rx_register(struct net_device *dev,
359                                   struct vlan_group *grp)
360 {
361         int i;
362         struct s2io_nic *nic = netdev_priv(dev);
363         unsigned long flags[MAX_TX_FIFOS];
364         struct mac_info *mac_control = &nic->mac_control;
365         struct config_param *config = &nic->config;
366
367         for (i = 0; i < config->tx_fifo_num; i++)
368                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
369
370         nic->vlgrp = grp;
371         for (i = config->tx_fifo_num - 1; i >= 0; i--)
372                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
373                                 flags[i]);
374 }
375
376 /* Unregister the vlan */
377 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
378 {
379         int i;
380         struct s2io_nic *nic = netdev_priv(dev);
381         unsigned long flags[MAX_TX_FIFOS];
382         struct mac_info *mac_control = &nic->mac_control;
383         struct config_param *config = &nic->config;
384
385         for (i = 0; i < config->tx_fifo_num; i++)
386                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
387
388         if (nic->vlgrp)
389                 vlan_group_set_device(nic->vlgrp, vid, NULL);
390
391         for (i = config->tx_fifo_num - 1; i >= 0; i--)
392                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
393                         flags[i]);
394 }
395
396 /*
397  * Constants to be programmed into the Xena's registers, to configure
398  * the XAUI.
399  */
400
401 #define END_SIGN        0x0
402 static const u64 herc_act_dtx_cfg[] = {
403         /* Set address */
404         0x8000051536750000ULL, 0x80000515367500E0ULL,
405         /* Write data */
406         0x8000051536750004ULL, 0x80000515367500E4ULL,
407         /* Set address */
408         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
409         /* Write data */
410         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
411         /* Set address */
412         0x801205150D440000ULL, 0x801205150D4400E0ULL,
413         /* Write data */
414         0x801205150D440004ULL, 0x801205150D4400E4ULL,
415         /* Set address */
416         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
417         /* Write data */
418         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
419         /* Done */
420         END_SIGN
421 };
422
423 static const u64 xena_dtx_cfg[] = {
424         /* Set address */
425         0x8000051500000000ULL, 0x80000515000000E0ULL,
426         /* Write data */
427         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
428         /* Set address */
429         0x8001051500000000ULL, 0x80010515000000E0ULL,
430         /* Write data */
431         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
432         /* Set address */
433         0x8002051500000000ULL, 0x80020515000000E0ULL,
434         /* Write data */
435         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
436         END_SIGN
437 };
438
439 /*
440  * Constants for Fixing the MacAddress problem seen mostly on
441  * Alpha machines.
442  */
443 static const u64 fix_mac[] = {
444         0x0060000000000000ULL, 0x0060600000000000ULL,
445         0x0040600000000000ULL, 0x0000600000000000ULL,
446         0x0020600000000000ULL, 0x0060600000000000ULL,
447         0x0020600000000000ULL, 0x0060600000000000ULL,
448         0x0020600000000000ULL, 0x0060600000000000ULL,
449         0x0020600000000000ULL, 0x0060600000000000ULL,
450         0x0020600000000000ULL, 0x0060600000000000ULL,
451         0x0020600000000000ULL, 0x0060600000000000ULL,
452         0x0020600000000000ULL, 0x0060600000000000ULL,
453         0x0020600000000000ULL, 0x0060600000000000ULL,
454         0x0020600000000000ULL, 0x0060600000000000ULL,
455         0x0020600000000000ULL, 0x0060600000000000ULL,
456         0x0020600000000000ULL, 0x0000600000000000ULL,
457         0x0040600000000000ULL, 0x0060600000000000ULL,
458         END_SIGN
459 };
460
461 MODULE_LICENSE("GPL");
462 MODULE_VERSION(DRV_VERSION);
463
464
465 /* Module Loadable parameters. */
466 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
467 S2IO_PARM_INT(rx_ring_num, 1);
468 S2IO_PARM_INT(multiq, 0);
469 S2IO_PARM_INT(rx_ring_mode, 1);
470 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
471 S2IO_PARM_INT(rmac_pause_time, 0x100);
472 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
473 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
474 S2IO_PARM_INT(shared_splits, 0);
475 S2IO_PARM_INT(tmac_util_period, 5);
476 S2IO_PARM_INT(rmac_util_period, 5);
477 S2IO_PARM_INT(l3l4hdr_size, 128);
478 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
479 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
480 /* Frequency of Rx desc syncs expressed as power of 2 */
481 S2IO_PARM_INT(rxsync_frequency, 3);
482 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
483 S2IO_PARM_INT(intr_type, 2);
484 /* Large receive offload feature */
485 static unsigned int lro_enable;
486 module_param_named(lro, lro_enable, uint, 0);
487
488 /* Max pkts to be aggregated by LRO at one time. If not specified,
489  * aggregation happens until we hit max IP pkt size(64K)
490  */
491 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
492 S2IO_PARM_INT(indicate_max_pkts, 0);
493
494 S2IO_PARM_INT(napi, 1);
495 S2IO_PARM_INT(ufo, 0);
496 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
497
498 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
499     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
500 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
501     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
502 static unsigned int rts_frm_len[MAX_RX_RINGS] =
503     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
504
505 module_param_array(tx_fifo_len, uint, NULL, 0);
506 module_param_array(rx_ring_sz, uint, NULL, 0);
507 module_param_array(rts_frm_len, uint, NULL, 0);
508
509 /*
510  * S2IO device table.
511  * This table lists all the devices that this driver supports.
512  */
513 static struct pci_device_id s2io_tbl[] __devinitdata = {
514         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
515          PCI_ANY_ID, PCI_ANY_ID},
516         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
517          PCI_ANY_ID, PCI_ANY_ID},
518         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
519          PCI_ANY_ID, PCI_ANY_ID},
520         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
521          PCI_ANY_ID, PCI_ANY_ID},
522         {0,}
523 };
524
525 MODULE_DEVICE_TABLE(pci, s2io_tbl);
526
527 static struct pci_error_handlers s2io_err_handler = {
528         .error_detected = s2io_io_error_detected,
529         .slot_reset = s2io_io_slot_reset,
530         .resume = s2io_io_resume,
531 };
532
533 static struct pci_driver s2io_driver = {
534       .name = "S2IO",
535       .id_table = s2io_tbl,
536       .probe = s2io_init_nic,
537       .remove = __devexit_p(s2io_rem_nic),
538       .err_handler = &s2io_err_handler,
539 };
540
541 /* A simplifier macro used both by init and free shared_mem Fns(). */
542 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
543
544 /* netqueue manipulation helper functions */
545 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
546 {
547         if (!sp->config.multiq) {
548                 int i;
549
550                 for (i = 0; i < sp->config.tx_fifo_num; i++)
551                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
552         }
553         netif_tx_stop_all_queues(sp->dev);
554 }
555
556 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
557 {
558         if (!sp->config.multiq)
559                 sp->mac_control.fifos[fifo_no].queue_state =
560                         FIFO_QUEUE_STOP;
561
562         netif_tx_stop_all_queues(sp->dev);
563 }
564
565 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
566 {
567         if (!sp->config.multiq) {
568                 int i;
569
570                 for (i = 0; i < sp->config.tx_fifo_num; i++)
571                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
572         }
573         netif_tx_start_all_queues(sp->dev);
574 }
575
576 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
577 {
578         if (!sp->config.multiq)
579                 sp->mac_control.fifos[fifo_no].queue_state =
580                         FIFO_QUEUE_START;
581
582         netif_tx_start_all_queues(sp->dev);
583 }
584
585 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
586 {
587         if (!sp->config.multiq) {
588                 int i;
589
590                 for (i = 0; i < sp->config.tx_fifo_num; i++)
591                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
592         }
593         netif_tx_wake_all_queues(sp->dev);
594 }
595
596 static inline void s2io_wake_tx_queue(
597         struct fifo_info *fifo, int cnt, u8 multiq)
598 {
599
600         if (multiq) {
601                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
602                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
603         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
604                 if (netif_queue_stopped(fifo->dev)) {
605                         fifo->queue_state = FIFO_QUEUE_START;
606                         netif_wake_queue(fifo->dev);
607                 }
608         }
609 }
610
611 /**
612  * init_shared_mem - Allocation and Initialization of Memory
613  * @nic: Device private variable.
614  * Description: The function allocates all the memory areas shared
615  * between the NIC and the driver. This includes Tx descriptors,
616  * Rx descriptors and the statistics block.
617  */
618
619 static int init_shared_mem(struct s2io_nic *nic)
620 {
621         u32 size;
622         void *tmp_v_addr, *tmp_v_addr_next;
623         dma_addr_t tmp_p_addr, tmp_p_addr_next;
624         struct RxD_block *pre_rxd_blk = NULL;
625         int i, j, blk_cnt;
626         int lst_size, lst_per_page;
627         struct net_device *dev = nic->dev;
628         unsigned long tmp;
629         struct buffAdd *ba;
630
631         struct mac_info *mac_control;
632         struct config_param *config;
633         unsigned long long mem_allocated = 0;
634
635         mac_control = &nic->mac_control;
636         config = &nic->config;
637
638
639         /* Allocation and initialization of TXDLs in FIOFs */
640         size = 0;
641         for (i = 0; i < config->tx_fifo_num; i++) {
642                 size += config->tx_cfg[i].fifo_len;
643         }
644         if (size > MAX_AVAILABLE_TXDS) {
645                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
646                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
647                 return -EINVAL;
648         }
649
650         size = 0;
651         for (i = 0; i < config->tx_fifo_num; i++) {
652                 size = config->tx_cfg[i].fifo_len;
653                 /*
654                  * Legal values are from 2 to 8192
655                  */
656                 if (size < 2) {
657                         DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
658                         DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
659                         DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
660                                 "are 2 to 8192\n");
661                         return -EINVAL;
662                 }
663         }
664
665         lst_size = (sizeof(struct TxD) * config->max_txds);
666         lst_per_page = PAGE_SIZE / lst_size;
667
668         for (i = 0; i < config->tx_fifo_num; i++) {
669                 int fifo_len = config->tx_cfg[i].fifo_len;
670                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
671                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
672                                                           GFP_KERNEL);
673                 if (!mac_control->fifos[i].list_info) {
674                         DBG_PRINT(INFO_DBG,
675                                   "Malloc failed for list_info\n");
676                         return -ENOMEM;
677                 }
678                 mem_allocated += list_holder_size;
679         }
680         for (i = 0; i < config->tx_fifo_num; i++) {
681                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
682                                                 lst_per_page);
683                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
684                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
685                     config->tx_cfg[i].fifo_len - 1;
686                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
687                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
688                     config->tx_cfg[i].fifo_len - 1;
689                 mac_control->fifos[i].fifo_no = i;
690                 mac_control->fifos[i].nic = nic;
691                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
692                 mac_control->fifos[i].dev = dev;
693
694                 for (j = 0; j < page_num; j++) {
695                         int k = 0;
696                         dma_addr_t tmp_p;
697                         void *tmp_v;
698                         tmp_v = pci_alloc_consistent(nic->pdev,
699                                                      PAGE_SIZE, &tmp_p);
700                         if (!tmp_v) {
701                                 DBG_PRINT(INFO_DBG,
702                                           "pci_alloc_consistent ");
703                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
704                                 return -ENOMEM;
705                         }
706                         /* If we got a zero DMA address(can happen on
707                          * certain platforms like PPC), reallocate.
708                          * Store virtual address of page we don't want,
709                          * to be freed later.
710                          */
711                         if (!tmp_p) {
712                                 mac_control->zerodma_virt_addr = tmp_v;
713                                 DBG_PRINT(INIT_DBG,
714                                 "%s: Zero DMA address for TxDL. ", dev->name);
715                                 DBG_PRINT(INIT_DBG,
716                                 "Virtual address %p\n", tmp_v);
717                                 tmp_v = pci_alloc_consistent(nic->pdev,
718                                                      PAGE_SIZE, &tmp_p);
719                                 if (!tmp_v) {
720                                         DBG_PRINT(INFO_DBG,
721                                           "pci_alloc_consistent ");
722                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
723                                         return -ENOMEM;
724                                 }
725                                 mem_allocated += PAGE_SIZE;
726                         }
727                         while (k < lst_per_page) {
728                                 int l = (j * lst_per_page) + k;
729                                 if (l == config->tx_cfg[i].fifo_len)
730                                         break;
731                                 mac_control->fifos[i].list_info[l].list_virt_addr =
732                                     tmp_v + (k * lst_size);
733                                 mac_control->fifos[i].list_info[l].list_phy_addr =
734                                     tmp_p + (k * lst_size);
735                                 k++;
736                         }
737                 }
738         }
739
740         for (i = 0; i < config->tx_fifo_num; i++) {
741                 size = config->tx_cfg[i].fifo_len;
742                 mac_control->fifos[i].ufo_in_band_v
743                         = kcalloc(size, sizeof(u64), GFP_KERNEL);
744                 if (!mac_control->fifos[i].ufo_in_band_v)
745                         return -ENOMEM;
746                 mem_allocated += (size * sizeof(u64));
747         }
748
749         /* Allocation and initialization of RXDs in Rings */
750         size = 0;
751         for (i = 0; i < config->rx_ring_num; i++) {
752                 if (config->rx_cfg[i].num_rxd %
753                     (rxd_count[nic->rxd_mode] + 1)) {
754                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
755                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
756                                   i);
757                         DBG_PRINT(ERR_DBG, "RxDs per Block");
758                         return FAILURE;
759                 }
760                 size += config->rx_cfg[i].num_rxd;
761                 mac_control->rings[i].block_count =
762                         config->rx_cfg[i].num_rxd /
763                         (rxd_count[nic->rxd_mode] + 1 );
764                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
765                         mac_control->rings[i].block_count;
766         }
767         if (nic->rxd_mode == RXD_MODE_1)
768                 size = (size * (sizeof(struct RxD1)));
769         else
770                 size = (size * (sizeof(struct RxD3)));
771
772         for (i = 0; i < config->rx_ring_num; i++) {
773                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
774                 mac_control->rings[i].rx_curr_get_info.offset = 0;
775                 mac_control->rings[i].rx_curr_get_info.ring_len =
776                     config->rx_cfg[i].num_rxd - 1;
777                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
778                 mac_control->rings[i].rx_curr_put_info.offset = 0;
779                 mac_control->rings[i].rx_curr_put_info.ring_len =
780                     config->rx_cfg[i].num_rxd - 1;
781                 mac_control->rings[i].nic = nic;
782                 mac_control->rings[i].ring_no = i;
783                 mac_control->rings[i].lro = lro_enable;
784
785                 blk_cnt = config->rx_cfg[i].num_rxd /
786                                 (rxd_count[nic->rxd_mode] + 1);
787                 /*  Allocating all the Rx blocks */
788                 for (j = 0; j < blk_cnt; j++) {
789                         struct rx_block_info *rx_blocks;
790                         int l;
791
792                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
793                         size = SIZE_OF_BLOCK; //size is always page size
794                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
795                                                           &tmp_p_addr);
796                         if (tmp_v_addr == NULL) {
797                                 /*
798                                  * In case of failure, free_shared_mem()
799                                  * is called, which should free any
800                                  * memory that was alloced till the
801                                  * failure happened.
802                                  */
803                                 rx_blocks->block_virt_addr = tmp_v_addr;
804                                 return -ENOMEM;
805                         }
806                         mem_allocated += size;
807                         memset(tmp_v_addr, 0, size);
808                         rx_blocks->block_virt_addr = tmp_v_addr;
809                         rx_blocks->block_dma_addr = tmp_p_addr;
810                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
811                                                   rxd_count[nic->rxd_mode],
812                                                   GFP_KERNEL);
813                         if (!rx_blocks->rxds)
814                                 return -ENOMEM;
815                         mem_allocated +=
816                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
817                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
818                                 rx_blocks->rxds[l].virt_addr =
819                                         rx_blocks->block_virt_addr +
820                                         (rxd_size[nic->rxd_mode] * l);
821                                 rx_blocks->rxds[l].dma_addr =
822                                         rx_blocks->block_dma_addr +
823                                         (rxd_size[nic->rxd_mode] * l);
824                         }
825                 }
826                 /* Interlinking all Rx Blocks */
827                 for (j = 0; j < blk_cnt; j++) {
828                         tmp_v_addr =
829                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
830                         tmp_v_addr_next =
831                                 mac_control->rings[i].rx_blocks[(j + 1) %
832                                               blk_cnt].block_virt_addr;
833                         tmp_p_addr =
834                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
835                         tmp_p_addr_next =
836                                 mac_control->rings[i].rx_blocks[(j + 1) %
837                                               blk_cnt].block_dma_addr;
838
839                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
840                         pre_rxd_blk->reserved_2_pNext_RxD_block =
841                             (unsigned long) tmp_v_addr_next;
842                         pre_rxd_blk->pNext_RxD_Blk_physical =
843                             (u64) tmp_p_addr_next;
844                 }
845         }
846         if (nic->rxd_mode == RXD_MODE_3B) {
847                 /*
848                  * Allocation of Storages for buffer addresses in 2BUFF mode
849                  * and the buffers as well.
850                  */
851                 for (i = 0; i < config->rx_ring_num; i++) {
852                         blk_cnt = config->rx_cfg[i].num_rxd /
853                            (rxd_count[nic->rxd_mode]+ 1);
854                         mac_control->rings[i].ba =
855                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
856                                      GFP_KERNEL);
857                         if (!mac_control->rings[i].ba)
858                                 return -ENOMEM;
859                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
860                         for (j = 0; j < blk_cnt; j++) {
861                                 int k = 0;
862                                 mac_control->rings[i].ba[j] =
863                                         kmalloc((sizeof(struct buffAdd) *
864                                                 (rxd_count[nic->rxd_mode] + 1)),
865                                                 GFP_KERNEL);
866                                 if (!mac_control->rings[i].ba[j])
867                                         return -ENOMEM;
868                                 mem_allocated += (sizeof(struct buffAdd) *  \
869                                         (rxd_count[nic->rxd_mode] + 1));
870                                 while (k != rxd_count[nic->rxd_mode]) {
871                                         ba = &mac_control->rings[i].ba[j][k];
872
873                                         ba->ba_0_org = (void *) kmalloc
874                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
875                                         if (!ba->ba_0_org)
876                                                 return -ENOMEM;
877                                         mem_allocated +=
878                                                 (BUF0_LEN + ALIGN_SIZE);
879                                         tmp = (unsigned long)ba->ba_0_org;
880                                         tmp += ALIGN_SIZE;
881                                         tmp &= ~((unsigned long) ALIGN_SIZE);
882                                         ba->ba_0 = (void *) tmp;
883
884                                         ba->ba_1_org = (void *) kmalloc
885                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
886                                         if (!ba->ba_1_org)
887                                                 return -ENOMEM;
888                                         mem_allocated
889                                                 += (BUF1_LEN + ALIGN_SIZE);
890                                         tmp = (unsigned long) ba->ba_1_org;
891                                         tmp += ALIGN_SIZE;
892                                         tmp &= ~((unsigned long) ALIGN_SIZE);
893                                         ba->ba_1 = (void *) tmp;
894                                         k++;
895                                 }
896                         }
897                 }
898         }
899
900         /* Allocation and initialization of Statistics block */
901         size = sizeof(struct stat_block);
902         mac_control->stats_mem = pci_alloc_consistent
903             (nic->pdev, size, &mac_control->stats_mem_phy);
904
905         if (!mac_control->stats_mem) {
906                 /*
907                  * In case of failure, free_shared_mem() is called, which
908                  * should free any memory that was alloced till the
909                  * failure happened.
910                  */
911                 return -ENOMEM;
912         }
913         mem_allocated += size;
914         mac_control->stats_mem_sz = size;
915
916         tmp_v_addr = mac_control->stats_mem;
917         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
918         memset(tmp_v_addr, 0, size);
919         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
920                   (unsigned long long) tmp_p_addr);
921         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
922         return SUCCESS;
923 }
924
925 /**
926  * free_shared_mem - Free the allocated Memory
927  * @nic:  Device private variable.
928  * Description: This function is to free all memory locations allocated by
929  * the init_shared_mem() function and return it to the kernel.
930  */
931
932 static void free_shared_mem(struct s2io_nic *nic)
933 {
934         int i, j, blk_cnt, size;
935         void *tmp_v_addr;
936         dma_addr_t tmp_p_addr;
937         struct mac_info *mac_control;
938         struct config_param *config;
939         int lst_size, lst_per_page;
940         struct net_device *dev;
941         int page_num = 0;
942
943         if (!nic)
944                 return;
945
946         dev = nic->dev;
947
948         mac_control = &nic->mac_control;
949         config = &nic->config;
950
951         lst_size = (sizeof(struct TxD) * config->max_txds);
952         lst_per_page = PAGE_SIZE / lst_size;
953
954         for (i = 0; i < config->tx_fifo_num; i++) {
955                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
956                                                         lst_per_page);
957                 for (j = 0; j < page_num; j++) {
958                         int mem_blks = (j * lst_per_page);
959                         if (!mac_control->fifos[i].list_info)
960                                 return;
961                         if (!mac_control->fifos[i].list_info[mem_blks].
962                                  list_virt_addr)
963                                 break;
964                         pci_free_consistent(nic->pdev, PAGE_SIZE,
965                                             mac_control->fifos[i].
966                                             list_info[mem_blks].
967                                             list_virt_addr,
968                                             mac_control->fifos[i].
969                                             list_info[mem_blks].
970                                             list_phy_addr);
971                         nic->mac_control.stats_info->sw_stat.mem_freed
972                                                 += PAGE_SIZE;
973                 }
974                 /* If we got a zero DMA address during allocation,
975                  * free the page now
976                  */
977                 if (mac_control->zerodma_virt_addr) {
978                         pci_free_consistent(nic->pdev, PAGE_SIZE,
979                                             mac_control->zerodma_virt_addr,
980                                             (dma_addr_t)0);
981                         DBG_PRINT(INIT_DBG,
982                                 "%s: Freeing TxDL with zero DMA addr. ",
983                                 dev->name);
984                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
985                                 mac_control->zerodma_virt_addr);
986                         nic->mac_control.stats_info->sw_stat.mem_freed
987                                                 += PAGE_SIZE;
988                 }
989                 kfree(mac_control->fifos[i].list_info);
990                 nic->mac_control.stats_info->sw_stat.mem_freed +=
991                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
992         }
993
994         size = SIZE_OF_BLOCK;
995         for (i = 0; i < config->rx_ring_num; i++) {
996                 blk_cnt = mac_control->rings[i].block_count;
997                 for (j = 0; j < blk_cnt; j++) {
998                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
999                                 block_virt_addr;
1000                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1001                                 block_dma_addr;
1002                         if (tmp_v_addr == NULL)
1003                                 break;
1004                         pci_free_consistent(nic->pdev, size,
1005                                             tmp_v_addr, tmp_p_addr);
1006                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
1007                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
1008                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1009                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1010                 }
1011         }
1012
1013         if (nic->rxd_mode == RXD_MODE_3B) {
1014                 /* Freeing buffer storage addresses in 2BUFF mode. */
1015                 for (i = 0; i < config->rx_ring_num; i++) {
1016                         blk_cnt = config->rx_cfg[i].num_rxd /
1017                             (rxd_count[nic->rxd_mode] + 1);
1018                         for (j = 0; j < blk_cnt; j++) {
1019                                 int k = 0;
1020                                 if (!mac_control->rings[i].ba[j])
1021                                         continue;
1022                                 while (k != rxd_count[nic->rxd_mode]) {
1023                                         struct buffAdd *ba =
1024                                                 &mac_control->rings[i].ba[j][k];
1025                                         kfree(ba->ba_0_org);
1026                                         nic->mac_control.stats_info->sw_stat.\
1027                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
1028                                         kfree(ba->ba_1_org);
1029                                         nic->mac_control.stats_info->sw_stat.\
1030                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
1031                                         k++;
1032                                 }
1033                                 kfree(mac_control->rings[i].ba[j]);
1034                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1035                                         (sizeof(struct buffAdd) *
1036                                         (rxd_count[nic->rxd_mode] + 1));
1037                         }
1038                         kfree(mac_control->rings[i].ba);
1039                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1040                         (sizeof(struct buffAdd *) * blk_cnt);
1041                 }
1042         }
1043
1044         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1045                 if (mac_control->fifos[i].ufo_in_band_v) {
1046                         nic->mac_control.stats_info->sw_stat.mem_freed
1047                                 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1048                         kfree(mac_control->fifos[i].ufo_in_band_v);
1049                 }
1050         }
1051
1052         if (mac_control->stats_mem) {
1053                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1054                         mac_control->stats_mem_sz;
1055                 pci_free_consistent(nic->pdev,
1056                                     mac_control->stats_mem_sz,
1057                                     mac_control->stats_mem,
1058                                     mac_control->stats_mem_phy);
1059         }
1060 }
1061
1062 /**
1063  * s2io_verify_pci_mode -
1064  */
1065
1066 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1067 {
1068         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1069         register u64 val64 = 0;
1070         int     mode;
1071
1072         val64 = readq(&bar0->pci_mode);
1073         mode = (u8)GET_PCI_MODE(val64);
1074
1075         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1076                 return -1;      /* Unknown PCI mode */
1077         return mode;
1078 }
1079
1080 #define NEC_VENID   0x1033
1081 #define NEC_DEVID   0x0125
1082 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1083 {
1084         struct pci_dev *tdev = NULL;
1085         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1086                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1087                         if (tdev->bus == s2io_pdev->bus->parent) {
1088                                 pci_dev_put(tdev);
1089                                 return 1;
1090                         }
1091                 }
1092         }
1093         return 0;
1094 }
1095
1096 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1097 /**
1098  * s2io_print_pci_mode -
1099  */
1100 static int s2io_print_pci_mode(struct s2io_nic *nic)
1101 {
1102         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1103         register u64 val64 = 0;
1104         int     mode;
1105         struct config_param *config = &nic->config;
1106
1107         val64 = readq(&bar0->pci_mode);
1108         mode = (u8)GET_PCI_MODE(val64);
1109
1110         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1111                 return -1;      /* Unknown PCI mode */
1112
1113         config->bus_speed = bus_speed[mode];
1114
1115         if (s2io_on_nec_bridge(nic->pdev)) {
1116                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1117                                                         nic->dev->name);
1118                 return mode;
1119         }
1120
1121         if (val64 & PCI_MODE_32_BITS) {
1122                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1123         } else {
1124                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1125         }
1126
1127         switch(mode) {
1128                 case PCI_MODE_PCI_33:
1129                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1130                         break;
1131                 case PCI_MODE_PCI_66:
1132                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1133                         break;
1134                 case PCI_MODE_PCIX_M1_66:
1135                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1136                         break;
1137                 case PCI_MODE_PCIX_M1_100:
1138                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1139                         break;
1140                 case PCI_MODE_PCIX_M1_133:
1141                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1142                         break;
1143                 case PCI_MODE_PCIX_M2_66:
1144                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1145                         break;
1146                 case PCI_MODE_PCIX_M2_100:
1147                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1148                         break;
1149                 case PCI_MODE_PCIX_M2_133:
1150                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1151                         break;
1152                 default:
1153                         return -1;      /* Unsupported bus speed */
1154         }
1155
1156         return mode;
1157 }
1158
1159 /**
1160  *  init_tti - Initialization transmit traffic interrupt scheme
1161  *  @nic: device private variable
1162  *  @link: link status (UP/DOWN) used to enable/disable continuous
1163  *  transmit interrupts
1164  *  Description: The function configures transmit traffic interrupts
1165  *  Return Value:  SUCCESS on success and
1166  *  '-1' on failure
1167  */
1168
1169 static int init_tti(struct s2io_nic *nic, int link)
1170 {
1171         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1172         register u64 val64 = 0;
1173         int i;
1174         struct config_param *config;
1175
1176         config = &nic->config;
1177
1178         for (i = 0; i < config->tx_fifo_num; i++) {
1179                 /*
1180                  * TTI Initialization. Default Tx timer gets us about
1181                  * 250 interrupts per sec. Continuous interrupts are enabled
1182                  * by default.
1183                  */
1184                 if (nic->device_type == XFRAME_II_DEVICE) {
1185                         int count = (nic->config.bus_speed * 125)/2;
1186                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1187                 } else
1188                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1189
1190                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1191                                 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1192                                 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1193                                 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1194                 if (i == 0)
1195                         if (use_continuous_tx_intrs && (link == LINK_UP))
1196                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1197                 writeq(val64, &bar0->tti_data1_mem);
1198
1199                 if (nic->config.intr_type == MSI_X) {
1200                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1201                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1202                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1203                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1204                 } else {
1205                         if ((nic->config.tx_steering_type ==
1206                                 TX_DEFAULT_STEERING) &&
1207                                 (config->tx_fifo_num > 1) &&
1208                                 (i >= nic->udp_fifo_idx) &&
1209                                 (i < (nic->udp_fifo_idx +
1210                                 nic->total_udp_fifos)))
1211                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1212                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1213                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1214                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1215                         else
1216                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1217                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1218                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1219                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1220                 }
1221
1222                 writeq(val64, &bar0->tti_data2_mem);
1223
1224                 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1225                                 TTI_CMD_MEM_OFFSET(i);
1226                 writeq(val64, &bar0->tti_command_mem);
1227
1228                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1229                         TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1230                         return FAILURE;
1231         }
1232
1233         return SUCCESS;
1234 }
1235
1236 /**
1237  *  init_nic - Initialization of hardware
1238  *  @nic: device private variable
1239  *  Description: The function sequentially configures every block
1240  *  of the H/W from their reset values.
1241  *  Return Value:  SUCCESS on success and
1242  *  '-1' on failure (endian settings incorrect).
1243  */
1244
1245 static int init_nic(struct s2io_nic *nic)
1246 {
1247         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1248         struct net_device *dev = nic->dev;
1249         register u64 val64 = 0;
1250         void __iomem *add;
1251         u32 time;
1252         int i, j;
1253         struct mac_info *mac_control;
1254         struct config_param *config;
1255         int dtx_cnt = 0;
1256         unsigned long long mem_share;
1257         int mem_size;
1258
1259         mac_control = &nic->mac_control;
1260         config = &nic->config;
1261
1262         /* to set the swapper controle on the card */
1263         if(s2io_set_swapper(nic)) {
1264                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1265                 return -EIO;
1266         }
1267
1268         /*
1269          * Herc requires EOI to be removed from reset before XGXS, so..
1270          */
1271         if (nic->device_type & XFRAME_II_DEVICE) {
1272                 val64 = 0xA500000000ULL;
1273                 writeq(val64, &bar0->sw_reset);
1274                 msleep(500);
1275                 val64 = readq(&bar0->sw_reset);
1276         }
1277
1278         /* Remove XGXS from reset state */
1279         val64 = 0;
1280         writeq(val64, &bar0->sw_reset);
1281         msleep(500);
1282         val64 = readq(&bar0->sw_reset);
1283
1284         /* Ensure that it's safe to access registers by checking
1285          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1286          */
1287         if (nic->device_type == XFRAME_II_DEVICE) {
1288                 for (i = 0; i < 50; i++) {
1289                         val64 = readq(&bar0->adapter_status);
1290                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1291                                 break;
1292                         msleep(10);
1293                 }
1294                 if (i == 50)
1295                         return -ENODEV;
1296         }
1297
1298         /*  Enable Receiving broadcasts */
1299         add = &bar0->mac_cfg;
1300         val64 = readq(&bar0->mac_cfg);
1301         val64 |= MAC_RMAC_BCAST_ENABLE;
1302         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1303         writel((u32) val64, add);
1304         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1305         writel((u32) (val64 >> 32), (add + 4));
1306
1307         /* Read registers in all blocks */
1308         val64 = readq(&bar0->mac_int_mask);
1309         val64 = readq(&bar0->mc_int_mask);
1310         val64 = readq(&bar0->xgxs_int_mask);
1311
1312         /*  Set MTU */
1313         val64 = dev->mtu;
1314         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1315
1316         if (nic->device_type & XFRAME_II_DEVICE) {
1317                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1318                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1319                                           &bar0->dtx_control, UF);
1320                         if (dtx_cnt & 0x1)
1321                                 msleep(1); /* Necessary!! */
1322                         dtx_cnt++;
1323                 }
1324         } else {
1325                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1326                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1327                                           &bar0->dtx_control, UF);
1328                         val64 = readq(&bar0->dtx_control);
1329                         dtx_cnt++;
1330                 }
1331         }
1332
1333         /*  Tx DMA Initialization */
1334         val64 = 0;
1335         writeq(val64, &bar0->tx_fifo_partition_0);
1336         writeq(val64, &bar0->tx_fifo_partition_1);
1337         writeq(val64, &bar0->tx_fifo_partition_2);
1338         writeq(val64, &bar0->tx_fifo_partition_3);
1339
1340
1341         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1342                 val64 |=
1343                     vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1344                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1345                                     ((j * 32) + 5), 3);
1346
1347                 if (i == (config->tx_fifo_num - 1)) {
1348                         if (i % 2 == 0)
1349                                 i++;
1350                 }
1351
1352                 switch (i) {
1353                 case 1:
1354                         writeq(val64, &bar0->tx_fifo_partition_0);
1355                         val64 = 0;
1356                         j = 0;
1357                         break;
1358                 case 3:
1359                         writeq(val64, &bar0->tx_fifo_partition_1);
1360                         val64 = 0;
1361                         j = 0;
1362                         break;
1363                 case 5:
1364                         writeq(val64, &bar0->tx_fifo_partition_2);
1365                         val64 = 0;
1366                         j = 0;
1367                         break;
1368                 case 7:
1369                         writeq(val64, &bar0->tx_fifo_partition_3);
1370                         val64 = 0;
1371                         j = 0;
1372                         break;
1373                 default:
1374                         j++;
1375                         break;
1376                 }
1377         }
1378
1379         /*
1380          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1381          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1382          */
1383         if ((nic->device_type == XFRAME_I_DEVICE) &&
1384                 (nic->pdev->revision < 4))
1385                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1386
1387         val64 = readq(&bar0->tx_fifo_partition_0);
1388         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1389                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1390
1391         /*
1392          * Initialization of Tx_PA_CONFIG register to ignore packet
1393          * integrity checking.
1394          */
1395         val64 = readq(&bar0->tx_pa_cfg);
1396         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1397             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1398         writeq(val64, &bar0->tx_pa_cfg);
1399
1400         /* Rx DMA intialization. */
1401         val64 = 0;
1402         for (i = 0; i < config->rx_ring_num; i++) {
1403                 val64 |=
1404                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1405                          3);
1406         }
1407         writeq(val64, &bar0->rx_queue_priority);
1408
1409         /*
1410          * Allocating equal share of memory to all the
1411          * configured Rings.
1412          */
1413         val64 = 0;
1414         if (nic->device_type & XFRAME_II_DEVICE)
1415                 mem_size = 32;
1416         else
1417                 mem_size = 64;
1418
1419         for (i = 0; i < config->rx_ring_num; i++) {
1420                 switch (i) {
1421                 case 0:
1422                         mem_share = (mem_size / config->rx_ring_num +
1423                                      mem_size % config->rx_ring_num);
1424                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1425                         continue;
1426                 case 1:
1427                         mem_share = (mem_size / config->rx_ring_num);
1428                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1429                         continue;
1430                 case 2:
1431                         mem_share = (mem_size / config->rx_ring_num);
1432                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1433                         continue;
1434                 case 3:
1435                         mem_share = (mem_size / config->rx_ring_num);
1436                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1437                         continue;
1438                 case 4:
1439                         mem_share = (mem_size / config->rx_ring_num);
1440                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1441                         continue;
1442                 case 5:
1443                         mem_share = (mem_size / config->rx_ring_num);
1444                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1445                         continue;
1446                 case 6:
1447                         mem_share = (mem_size / config->rx_ring_num);
1448                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1449                         continue;
1450                 case 7:
1451                         mem_share = (mem_size / config->rx_ring_num);
1452                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1453                         continue;
1454                 }
1455         }
1456         writeq(val64, &bar0->rx_queue_cfg);
1457
1458         /*
1459          * Filling Tx round robin registers
1460          * as per the number of FIFOs for equal scheduling priority
1461          */
1462         switch (config->tx_fifo_num) {
1463         case 1:
1464                 val64 = 0x0;
1465                 writeq(val64, &bar0->tx_w_round_robin_0);
1466                 writeq(val64, &bar0->tx_w_round_robin_1);
1467                 writeq(val64, &bar0->tx_w_round_robin_2);
1468                 writeq(val64, &bar0->tx_w_round_robin_3);
1469                 writeq(val64, &bar0->tx_w_round_robin_4);
1470                 break;
1471         case 2:
1472                 val64 = 0x0001000100010001ULL;
1473                 writeq(val64, &bar0->tx_w_round_robin_0);
1474                 writeq(val64, &bar0->tx_w_round_robin_1);
1475                 writeq(val64, &bar0->tx_w_round_robin_2);
1476                 writeq(val64, &bar0->tx_w_round_robin_3);
1477                 val64 = 0x0001000100000000ULL;
1478                 writeq(val64, &bar0->tx_w_round_robin_4);
1479                 break;
1480         case 3:
1481                 val64 = 0x0001020001020001ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_0);
1483                 val64 = 0x0200010200010200ULL;
1484                 writeq(val64, &bar0->tx_w_round_robin_1);
1485                 val64 = 0x0102000102000102ULL;
1486                 writeq(val64, &bar0->tx_w_round_robin_2);
1487                 val64 = 0x0001020001020001ULL;
1488                 writeq(val64, &bar0->tx_w_round_robin_3);
1489                 val64 = 0x0200010200000000ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_4);
1491                 break;
1492         case 4:
1493                 val64 = 0x0001020300010203ULL;
1494                 writeq(val64, &bar0->tx_w_round_robin_0);
1495                 writeq(val64, &bar0->tx_w_round_robin_1);
1496                 writeq(val64, &bar0->tx_w_round_robin_2);
1497                 writeq(val64, &bar0->tx_w_round_robin_3);
1498                 val64 = 0x0001020300000000ULL;
1499                 writeq(val64, &bar0->tx_w_round_robin_4);
1500                 break;
1501         case 5:
1502                 val64 = 0x0001020304000102ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_0);
1504                 val64 = 0x0304000102030400ULL;
1505                 writeq(val64, &bar0->tx_w_round_robin_1);
1506                 val64 = 0x0102030400010203ULL;
1507                 writeq(val64, &bar0->tx_w_round_robin_2);
1508                 val64 = 0x0400010203040001ULL;
1509                 writeq(val64, &bar0->tx_w_round_robin_3);
1510                 val64 = 0x0203040000000000ULL;
1511                 writeq(val64, &bar0->tx_w_round_robin_4);
1512                 break;
1513         case 6:
1514                 val64 = 0x0001020304050001ULL;
1515                 writeq(val64, &bar0->tx_w_round_robin_0);
1516                 val64 = 0x0203040500010203ULL;
1517                 writeq(val64, &bar0->tx_w_round_robin_1);
1518                 val64 = 0x0405000102030405ULL;
1519                 writeq(val64, &bar0->tx_w_round_robin_2);
1520                 val64 = 0x0001020304050001ULL;
1521                 writeq(val64, &bar0->tx_w_round_robin_3);
1522                 val64 = 0x0203040500000000ULL;
1523                 writeq(val64, &bar0->tx_w_round_robin_4);
1524                 break;
1525         case 7:
1526                 val64 = 0x0001020304050600ULL;
1527                 writeq(val64, &bar0->tx_w_round_robin_0);
1528                 val64 = 0x0102030405060001ULL;
1529                 writeq(val64, &bar0->tx_w_round_robin_1);
1530                 val64 = 0x0203040506000102ULL;
1531                 writeq(val64, &bar0->tx_w_round_robin_2);
1532                 val64 = 0x0304050600010203ULL;
1533                 writeq(val64, &bar0->tx_w_round_robin_3);
1534                 val64 = 0x0405060000000000ULL;
1535                 writeq(val64, &bar0->tx_w_round_robin_4);
1536                 break;
1537         case 8:
1538                 val64 = 0x0001020304050607ULL;
1539                 writeq(val64, &bar0->tx_w_round_robin_0);
1540                 writeq(val64, &bar0->tx_w_round_robin_1);
1541                 writeq(val64, &bar0->tx_w_round_robin_2);
1542                 writeq(val64, &bar0->tx_w_round_robin_3);
1543                 val64 = 0x0001020300000000ULL;
1544                 writeq(val64, &bar0->tx_w_round_robin_4);
1545                 break;
1546         }
1547
1548         /* Enable all configured Tx FIFO partitions */
1549         val64 = readq(&bar0->tx_fifo_partition_0);
1550         val64 |= (TX_FIFO_PARTITION_EN);
1551         writeq(val64, &bar0->tx_fifo_partition_0);
1552
1553         /* Filling the Rx round robin registers as per the
1554          * number of Rings and steering based on QoS with
1555          * equal priority.
1556          */
1557         switch (config->rx_ring_num) {
1558         case 1:
1559                 val64 = 0x0;
1560                 writeq(val64, &bar0->rx_w_round_robin_0);
1561                 writeq(val64, &bar0->rx_w_round_robin_1);
1562                 writeq(val64, &bar0->rx_w_round_robin_2);
1563                 writeq(val64, &bar0->rx_w_round_robin_3);
1564                 writeq(val64, &bar0->rx_w_round_robin_4);
1565
1566                 val64 = 0x8080808080808080ULL;
1567                 writeq(val64, &bar0->rts_qos_steering);
1568                 break;
1569         case 2:
1570                 val64 = 0x0001000100010001ULL;
1571                 writeq(val64, &bar0->rx_w_round_robin_0);
1572                 writeq(val64, &bar0->rx_w_round_robin_1);
1573                 writeq(val64, &bar0->rx_w_round_robin_2);
1574                 writeq(val64, &bar0->rx_w_round_robin_3);
1575                 val64 = 0x0001000100000000ULL;
1576                 writeq(val64, &bar0->rx_w_round_robin_4);
1577
1578                 val64 = 0x8080808040404040ULL;
1579                 writeq(val64, &bar0->rts_qos_steering);
1580                 break;
1581         case 3:
1582                 val64 = 0x0001020001020001ULL;
1583                 writeq(val64, &bar0->rx_w_round_robin_0);
1584                 val64 = 0x0200010200010200ULL;
1585                 writeq(val64, &bar0->rx_w_round_robin_1);
1586                 val64 = 0x0102000102000102ULL;
1587                 writeq(val64, &bar0->rx_w_round_robin_2);
1588                 val64 = 0x0001020001020001ULL;
1589                 writeq(val64, &bar0->rx_w_round_robin_3);
1590                 val64 = 0x0200010200000000ULL;
1591                 writeq(val64, &bar0->rx_w_round_robin_4);
1592
1593                 val64 = 0x8080804040402020ULL;
1594                 writeq(val64, &bar0->rts_qos_steering);
1595                 break;
1596         case 4:
1597                 val64 = 0x0001020300010203ULL;
1598                 writeq(val64, &bar0->rx_w_round_robin_0);
1599                 writeq(val64, &bar0->rx_w_round_robin_1);
1600                 writeq(val64, &bar0->rx_w_round_robin_2);
1601                 writeq(val64, &bar0->rx_w_round_robin_3);
1602                 val64 = 0x0001020300000000ULL;
1603                 writeq(val64, &bar0->rx_w_round_robin_4);
1604
1605                 val64 = 0x8080404020201010ULL;
1606                 writeq(val64, &bar0->rts_qos_steering);
1607                 break;
1608         case 5:
1609                 val64 = 0x0001020304000102ULL;
1610                 writeq(val64, &bar0->rx_w_round_robin_0);
1611                 val64 = 0x0304000102030400ULL;
1612                 writeq(val64, &bar0->rx_w_round_robin_1);
1613                 val64 = 0x0102030400010203ULL;
1614                 writeq(val64, &bar0->rx_w_round_robin_2);
1615                 val64 = 0x0400010203040001ULL;
1616                 writeq(val64, &bar0->rx_w_round_robin_3);
1617                 val64 = 0x0203040000000000ULL;
1618                 writeq(val64, &bar0->rx_w_round_robin_4);
1619
1620                 val64 = 0x8080404020201008ULL;
1621                 writeq(val64, &bar0->rts_qos_steering);
1622                 break;
1623         case 6:
1624                 val64 = 0x0001020304050001ULL;
1625                 writeq(val64, &bar0->rx_w_round_robin_0);
1626                 val64 = 0x0203040500010203ULL;
1627                 writeq(val64, &bar0->rx_w_round_robin_1);
1628                 val64 = 0x0405000102030405ULL;
1629                 writeq(val64, &bar0->rx_w_round_robin_2);
1630                 val64 = 0x0001020304050001ULL;
1631                 writeq(val64, &bar0->rx_w_round_robin_3);
1632                 val64 = 0x0203040500000000ULL;
1633                 writeq(val64, &bar0->rx_w_round_robin_4);
1634
1635                 val64 = 0x8080404020100804ULL;
1636                 writeq(val64, &bar0->rts_qos_steering);
1637                 break;
1638         case 7:
1639                 val64 = 0x0001020304050600ULL;
1640                 writeq(val64, &bar0->rx_w_round_robin_0);
1641                 val64 = 0x0102030405060001ULL;
1642                 writeq(val64, &bar0->rx_w_round_robin_1);
1643                 val64 = 0x0203040506000102ULL;
1644                 writeq(val64, &bar0->rx_w_round_robin_2);
1645                 val64 = 0x0304050600010203ULL;
1646                 writeq(val64, &bar0->rx_w_round_robin_3);
1647                 val64 = 0x0405060000000000ULL;
1648                 writeq(val64, &bar0->rx_w_round_robin_4);
1649
1650                 val64 = 0x8080402010080402ULL;
1651                 writeq(val64, &bar0->rts_qos_steering);
1652                 break;
1653         case 8:
1654                 val64 = 0x0001020304050607ULL;
1655                 writeq(val64, &bar0->rx_w_round_robin_0);
1656                 writeq(val64, &bar0->rx_w_round_robin_1);
1657                 writeq(val64, &bar0->rx_w_round_robin_2);
1658                 writeq(val64, &bar0->rx_w_round_robin_3);
1659                 val64 = 0x0001020300000000ULL;
1660                 writeq(val64, &bar0->rx_w_round_robin_4);
1661
1662                 val64 = 0x8040201008040201ULL;
1663                 writeq(val64, &bar0->rts_qos_steering);
1664                 break;
1665         }
1666
1667         /* UDP Fix */
1668         val64 = 0;
1669         for (i = 0; i < 8; i++)
1670                 writeq(val64, &bar0->rts_frm_len_n[i]);
1671
1672         /* Set the default rts frame length for the rings configured */
1673         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1674         for (i = 0 ; i < config->rx_ring_num ; i++)
1675                 writeq(val64, &bar0->rts_frm_len_n[i]);
1676
1677         /* Set the frame length for the configured rings
1678          * desired by the user
1679          */
1680         for (i = 0; i < config->rx_ring_num; i++) {
1681                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1682                  * specified frame length steering.
1683                  * If the user provides the frame length then program
1684                  * the rts_frm_len register for those values or else
1685                  * leave it as it is.
1686                  */
1687                 if (rts_frm_len[i] != 0) {
1688                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1689                                 &bar0->rts_frm_len_n[i]);
1690                 }
1691         }
1692
1693         /* Disable differentiated services steering logic */
1694         for (i = 0; i < 64; i++) {
1695                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1696                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1697                                 dev->name);
1698                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1699                         return -ENODEV;
1700                 }
1701         }
1702
1703         /* Program statistics memory */
1704         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1705
1706         if (nic->device_type == XFRAME_II_DEVICE) {
1707                 val64 = STAT_BC(0x320);
1708                 writeq(val64, &bar0->stat_byte_cnt);
1709         }
1710
1711         /*
1712          * Initializing the sampling rate for the device to calculate the
1713          * bandwidth utilization.
1714          */
1715         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1716             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1717         writeq(val64, &bar0->mac_link_util);
1718
1719         /*
1720          * Initializing the Transmit and Receive Traffic Interrupt
1721          * Scheme.
1722          */
1723
1724         /* Initialize TTI */
1725         if (SUCCESS != init_tti(nic, nic->last_link_state))
1726                 return -ENODEV;
1727
1728         /* RTI Initialization */
1729         if (nic->device_type == XFRAME_II_DEVICE) {
1730                 /*
1731                  * Programmed to generate Apprx 500 Intrs per
1732                  * second
1733                  */
1734                 int count = (nic->config.bus_speed * 125)/4;
1735                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1736         } else
1737                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1738         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1739                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1740                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1741
1742         writeq(val64, &bar0->rti_data1_mem);
1743
1744         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1745                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1746         if (nic->config.intr_type == MSI_X)
1747             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1748                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1749         else
1750             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1751                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1752         writeq(val64, &bar0->rti_data2_mem);
1753
1754         for (i = 0; i < config->rx_ring_num; i++) {
1755                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1756                                 | RTI_CMD_MEM_OFFSET(i);
1757                 writeq(val64, &bar0->rti_command_mem);
1758
1759                 /*
1760                  * Once the operation completes, the Strobe bit of the
1761                  * command register will be reset. We poll for this
1762                  * particular condition. We wait for a maximum of 500ms
1763                  * for the operation to complete, if it's not complete
1764                  * by then we return error.
1765                  */
1766                 time = 0;
1767                 while (TRUE) {
1768                         val64 = readq(&bar0->rti_command_mem);
1769                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1770                                 break;
1771
1772                         if (time > 10) {
1773                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1774                                           dev->name);
1775                                 return -ENODEV;
1776                         }
1777                         time++;
1778                         msleep(50);
1779                 }
1780         }
1781
1782         /*
1783          * Initializing proper values as Pause threshold into all
1784          * the 8 Queues on Rx side.
1785          */
1786         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1787         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1788
1789         /* Disable RMAC PAD STRIPPING */
1790         add = &bar0->mac_cfg;
1791         val64 = readq(&bar0->mac_cfg);
1792         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1793         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1794         writel((u32) (val64), add);
1795         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1796         writel((u32) (val64 >> 32), (add + 4));
1797         val64 = readq(&bar0->mac_cfg);
1798
1799         /* Enable FCS stripping by adapter */
1800         add = &bar0->mac_cfg;
1801         val64 = readq(&bar0->mac_cfg);
1802         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1803         if (nic->device_type == XFRAME_II_DEVICE)
1804                 writeq(val64, &bar0->mac_cfg);
1805         else {
1806                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807                 writel((u32) (val64), add);
1808                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1809                 writel((u32) (val64 >> 32), (add + 4));
1810         }
1811
1812         /*
1813          * Set the time value to be inserted in the pause frame
1814          * generated by xena.
1815          */
1816         val64 = readq(&bar0->rmac_pause_cfg);
1817         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1818         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1819         writeq(val64, &bar0->rmac_pause_cfg);
1820
1821         /*
1822          * Set the Threshold Limit for Generating the pause frame
1823          * If the amount of data in any Queue exceeds ratio of
1824          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1825          * pause frame is generated
1826          */
1827         val64 = 0;
1828         for (i = 0; i < 4; i++) {
1829                 val64 |=
1830                     (((u64) 0xFF00 | nic->mac_control.
1831                       mc_pause_threshold_q0q3)
1832                      << (i * 2 * 8));
1833         }
1834         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1835
1836         val64 = 0;
1837         for (i = 0; i < 4; i++) {
1838                 val64 |=
1839                     (((u64) 0xFF00 | nic->mac_control.
1840                       mc_pause_threshold_q4q7)
1841                      << (i * 2 * 8));
1842         }
1843         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1844
1845         /*
1846          * TxDMA will stop Read request if the number of read split has
1847          * exceeded the limit pointed by shared_splits
1848          */
1849         val64 = readq(&bar0->pic_control);
1850         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1851         writeq(val64, &bar0->pic_control);
1852
1853         if (nic->config.bus_speed == 266) {
1854                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1855                 writeq(0x0, &bar0->read_retry_delay);
1856                 writeq(0x0, &bar0->write_retry_delay);
1857         }
1858
1859         /*
1860          * Programming the Herc to split every write transaction
1861          * that does not start on an ADB to reduce disconnects.
1862          */
1863         if (nic->device_type == XFRAME_II_DEVICE) {
1864                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1865                         MISC_LINK_STABILITY_PRD(3);
1866                 writeq(val64, &bar0->misc_control);
1867                 val64 = readq(&bar0->pic_control2);
1868                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1869                 writeq(val64, &bar0->pic_control2);
1870         }
1871         if (strstr(nic->product_name, "CX4")) {
1872                 val64 = TMAC_AVG_IPG(0x17);
1873                 writeq(val64, &bar0->tmac_avg_ipg);
1874         }
1875
1876         return SUCCESS;
1877 }
1878 #define LINK_UP_DOWN_INTERRUPT          1
1879 #define MAC_RMAC_ERR_TIMER              2
1880
1881 static int s2io_link_fault_indication(struct s2io_nic *nic)
1882 {
1883         if (nic->device_type == XFRAME_II_DEVICE)
1884                 return LINK_UP_DOWN_INTERRUPT;
1885         else
1886                 return MAC_RMAC_ERR_TIMER;
1887 }
1888
1889 /**
1890  *  do_s2io_write_bits -  update alarm bits in alarm register
1891  *  @value: alarm bits
1892  *  @flag: interrupt status
1893  *  @addr: address value
1894  *  Description: update alarm bits in alarm register
1895  *  Return Value:
1896  *  NONE.
1897  */
1898 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1899 {
1900         u64 temp64;
1901
1902         temp64 = readq(addr);
1903
1904         if(flag == ENABLE_INTRS)
1905                 temp64 &= ~((u64) value);
1906         else
1907                 temp64 |= ((u64) value);
1908         writeq(temp64, addr);
1909 }
1910
1911 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1912 {
1913         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1914         register u64 gen_int_mask = 0;
1915         u64 interruptible;
1916
1917         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1918         if (mask & TX_DMA_INTR) {
1919
1920                 gen_int_mask |= TXDMA_INT_M;
1921
1922                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1923                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1924                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1925                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1926
1927                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1928                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1929                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1930                                 &bar0->pfc_err_mask);
1931
1932                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1933                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1934                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1935
1936                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1937                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1938                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1939                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1940                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1941                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1942
1943                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1944                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1945
1946                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1947                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1948                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1949                                 flag, &bar0->lso_err_mask);
1950
1951                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1952                                 flag, &bar0->tpa_err_mask);
1953
1954                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1955
1956         }
1957
1958         if (mask & TX_MAC_INTR) {
1959                 gen_int_mask |= TXMAC_INT_M;
1960                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1961                                 &bar0->mac_int_mask);
1962                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1963                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1964                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1965                                 flag, &bar0->mac_tmac_err_mask);
1966         }
1967
1968         if (mask & TX_XGXS_INTR) {
1969                 gen_int_mask |= TXXGXS_INT_M;
1970                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1971                                 &bar0->xgxs_int_mask);
1972                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1973                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1974                                 flag, &bar0->xgxs_txgxs_err_mask);
1975         }
1976
1977         if (mask & RX_DMA_INTR) {
1978                 gen_int_mask |= RXDMA_INT_M;
1979                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1980                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1981                                 flag, &bar0->rxdma_int_mask);
1982                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1983                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1984                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1985                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1986                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1987                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1988                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1989                                 &bar0->prc_pcix_err_mask);
1990                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1991                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1992                                 &bar0->rpa_err_mask);
1993                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1994                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1995                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1996                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1997                                 flag, &bar0->rda_err_mask);
1998                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1999                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2000                                 flag, &bar0->rti_err_mask);
2001         }
2002
2003         if (mask & RX_MAC_INTR) {
2004                 gen_int_mask |= RXMAC_INT_M;
2005                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2006                                 &bar0->mac_int_mask);
2007                 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2008                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2009                                 RMAC_DOUBLE_ECC_ERR;
2010                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2011                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2012                 do_s2io_write_bits(interruptible,
2013                                 flag, &bar0->mac_rmac_err_mask);
2014         }
2015
2016         if (mask & RX_XGXS_INTR)
2017         {
2018                 gen_int_mask |= RXXGXS_INT_M;
2019                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2020                                 &bar0->xgxs_int_mask);
2021                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2022                                 &bar0->xgxs_rxgxs_err_mask);
2023         }
2024
2025         if (mask & MC_INTR) {
2026                 gen_int_mask |= MC_INT_M;
2027                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2028                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2029                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2030                                 &bar0->mc_err_mask);
2031         }
2032         nic->general_int_mask = gen_int_mask;
2033
2034         /* Remove this line when alarm interrupts are enabled */
2035         nic->general_int_mask = 0;
2036 }
2037 /**
2038  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2039  *  @nic: device private variable,
2040  *  @mask: A mask indicating which Intr block must be modified and,
2041  *  @flag: A flag indicating whether to enable or disable the Intrs.
2042  *  Description: This function will either disable or enable the interrupts
2043  *  depending on the flag argument. The mask argument can be used to
2044  *  enable/disable any Intr block.
2045  *  Return Value: NONE.
2046  */
2047
2048 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2049 {
2050         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2051         register u64 temp64 = 0, intr_mask = 0;
2052
2053         intr_mask = nic->general_int_mask;
2054
2055         /*  Top level interrupt classification */
2056         /*  PIC Interrupts */
2057         if (mask & TX_PIC_INTR) {
2058                 /*  Enable PIC Intrs in the general intr mask register */
2059                 intr_mask |= TXPIC_INT_M;
2060                 if (flag == ENABLE_INTRS) {
2061                         /*
2062                          * If Hercules adapter enable GPIO otherwise
2063                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2064                          * interrupts for now.
2065                          * TODO
2066                          */
2067                         if (s2io_link_fault_indication(nic) ==
2068                                         LINK_UP_DOWN_INTERRUPT ) {
2069                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2070                                                 &bar0->pic_int_mask);
2071                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2072                                                 &bar0->gpio_int_mask);
2073                         } else
2074                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2075                 } else if (flag == DISABLE_INTRS) {
2076                         /*
2077                          * Disable PIC Intrs in the general
2078                          * intr mask register
2079                          */
2080                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2081                 }
2082         }
2083
2084         /*  Tx traffic interrupts */
2085         if (mask & TX_TRAFFIC_INTR) {
2086                 intr_mask |= TXTRAFFIC_INT_M;
2087                 if (flag == ENABLE_INTRS) {
2088                         /*
2089                          * Enable all the Tx side interrupts
2090                          * writing 0 Enables all 64 TX interrupt levels
2091                          */
2092                         writeq(0x0, &bar0->tx_traffic_mask);
2093                 } else if (flag == DISABLE_INTRS) {
2094                         /*
2095                          * Disable Tx Traffic Intrs in the general intr mask
2096                          * register.
2097                          */
2098                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2099                 }
2100         }
2101
2102         /*  Rx traffic interrupts */
2103         if (mask & RX_TRAFFIC_INTR) {
2104                 intr_mask |= RXTRAFFIC_INT_M;
2105                 if (flag == ENABLE_INTRS) {
2106                         /* writing 0 Enables all 8 RX interrupt levels */
2107                         writeq(0x0, &bar0->rx_traffic_mask);
2108                 } else if (flag == DISABLE_INTRS) {
2109                         /*
2110                          * Disable Rx Traffic Intrs in the general intr mask
2111                          * register.
2112                          */
2113                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2114                 }
2115         }
2116
2117         temp64 = readq(&bar0->general_int_mask);
2118         if (flag == ENABLE_INTRS)
2119                 temp64 &= ~((u64) intr_mask);
2120         else
2121                 temp64 = DISABLE_ALL_INTRS;
2122         writeq(temp64, &bar0->general_int_mask);
2123
2124         nic->general_int_mask = readq(&bar0->general_int_mask);
2125 }
2126
2127 /**
2128  *  verify_pcc_quiescent- Checks for PCC quiescent state
2129  *  Return: 1 If PCC is quiescence
2130  *          0 If PCC is not quiescence
2131  */
2132 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2133 {
2134         int ret = 0, herc;
2135         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2136         u64 val64 = readq(&bar0->adapter_status);
2137
2138         herc = (sp->device_type == XFRAME_II_DEVICE);
2139
2140         if (flag == FALSE) {
2141                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2142                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2143                                 ret = 1;
2144                 } else {
2145                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2146                                 ret = 1;
2147                 }
2148         } else {
2149                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2151                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2152                                 ret = 1;
2153                 } else {
2154                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2155                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2156                                 ret = 1;
2157                 }
2158         }
2159
2160         return ret;
2161 }
2162 /**
2163  *  verify_xena_quiescence - Checks whether the H/W is ready
2164  *  Description: Returns whether the H/W is ready to go or not. Depending
2165  *  on whether adapter enable bit was written or not the comparison
2166  *  differs and the calling function passes the input argument flag to
2167  *  indicate this.
2168  *  Return: 1 If xena is quiescence
2169  *          0 If Xena is not quiescence
2170  */
2171
2172 static int verify_xena_quiescence(struct s2io_nic *sp)
2173 {
2174         int  mode;
2175         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2176         u64 val64 = readq(&bar0->adapter_status);
2177         mode = s2io_verify_pci_mode(sp);
2178
2179         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2180                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2181                 return 0;
2182         }
2183         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2184         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2185                 return 0;
2186         }
2187         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2188                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2189                 return 0;
2190         }
2191         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2192                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2193                 return 0;
2194         }
2195         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2196                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2197                 return 0;
2198         }
2199         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2200                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2201                 return 0;
2202         }
2203         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2204                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2205                 return 0;
2206         }
2207         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2208                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2209                 return 0;
2210         }
2211
2212         /*
2213          * In PCI 33 mode, the P_PLL is not used, and therefore,
2214          * the the P_PLL_LOCK bit in the adapter_status register will
2215          * not be asserted.
2216          */
2217         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2218                 sp->device_type == XFRAME_II_DEVICE && mode !=
2219                 PCI_MODE_PCI_33) {
2220                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2221                 return 0;
2222         }
2223         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2224                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2225                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2226                 return 0;
2227         }
2228         return 1;
2229 }
2230
2231 /**
2232  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2233  * @sp: Pointer to device specifc structure
2234  * Description :
2235  * New procedure to clear mac address reading  problems on Alpha platforms
2236  *
2237  */
2238
2239 static void fix_mac_address(struct s2io_nic * sp)
2240 {
2241         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2242         u64 val64;
2243         int i = 0;
2244
2245         while (fix_mac[i] != END_SIGN) {
2246                 writeq(fix_mac[i++], &bar0->gpio_control);
2247                 udelay(10);
2248                 val64 = readq(&bar0->gpio_control);
2249         }
2250 }
2251
2252 /**
2253  *  start_nic - Turns the device on
2254  *  @nic : device private variable.
2255  *  Description:
2256  *  This function actually turns the device on. Before this  function is
2257  *  called,all Registers are configured from their reset states
2258  *  and shared memory is allocated but the NIC is still quiescent. On
2259  *  calling this function, the device interrupts are cleared and the NIC is
2260  *  literally switched on by writing into the adapter control register.
2261  *  Return Value:
2262  *  SUCCESS on success and -1 on failure.
2263  */
2264
2265 static int start_nic(struct s2io_nic *nic)
2266 {
2267         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2268         struct net_device *dev = nic->dev;
2269         register u64 val64 = 0;
2270         u16 subid, i;
2271         struct mac_info *mac_control;
2272         struct config_param *config;
2273
2274         mac_control = &nic->mac_control;
2275         config = &nic->config;
2276
2277         /*  PRC Initialization and configuration */
2278         for (i = 0; i < config->rx_ring_num; i++) {
2279                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2280                        &bar0->prc_rxd0_n[i]);
2281
2282                 val64 = readq(&bar0->prc_ctrl_n[i]);
2283                 if (nic->rxd_mode == RXD_MODE_1)
2284                         val64 |= PRC_CTRL_RC_ENABLED;
2285                 else
2286                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2287                 if (nic->device_type == XFRAME_II_DEVICE)
2288                         val64 |= PRC_CTRL_GROUP_READS;
2289                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2290                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2291                 writeq(val64, &bar0->prc_ctrl_n[i]);
2292         }
2293
2294         if (nic->rxd_mode == RXD_MODE_3B) {
2295                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2296                 val64 = readq(&bar0->rx_pa_cfg);
2297                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2298                 writeq(val64, &bar0->rx_pa_cfg);
2299         }
2300
2301         if (vlan_tag_strip == 0) {
2302                 val64 = readq(&bar0->rx_pa_cfg);
2303                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2304                 writeq(val64, &bar0->rx_pa_cfg);
2305                 nic->vlan_strip_flag = 0;
2306         }
2307
2308         /*
2309          * Enabling MC-RLDRAM. After enabling the device, we timeout
2310          * for around 100ms, which is approximately the time required
2311          * for the device to be ready for operation.
2312          */
2313         val64 = readq(&bar0->mc_rldram_mrs);
2314         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2315         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2316         val64 = readq(&bar0->mc_rldram_mrs);
2317
2318         msleep(100);    /* Delay by around 100 ms. */
2319
2320         /* Enabling ECC Protection. */
2321         val64 = readq(&bar0->adapter_control);
2322         val64 &= ~ADAPTER_ECC_EN;
2323         writeq(val64, &bar0->adapter_control);
2324
2325         /*
2326          * Verify if the device is ready to be enabled, if so enable
2327          * it.
2328          */
2329         val64 = readq(&bar0->adapter_status);
2330         if (!verify_xena_quiescence(nic)) {
2331                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2332                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2333                           (unsigned long long) val64);
2334                 return FAILURE;
2335         }
2336
2337         /*
2338          * With some switches, link might be already up at this point.
2339          * Because of this weird behavior, when we enable laser,
2340          * we may not get link. We need to handle this. We cannot
2341          * figure out which switch is misbehaving. So we are forced to
2342          * make a global change.
2343          */
2344
2345         /* Enabling Laser. */
2346         val64 = readq(&bar0->adapter_control);
2347         val64 |= ADAPTER_EOI_TX_ON;
2348         writeq(val64, &bar0->adapter_control);
2349
2350         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2351                 /*
2352                  * Dont see link state interrupts initally on some switches,
2353                  * so directly scheduling the link state task here.
2354                  */
2355                 schedule_work(&nic->set_link_task);
2356         }
2357         /* SXE-002: Initialize link and activity LED */
2358         subid = nic->pdev->subsystem_device;
2359         if (((subid & 0xFF) >= 0x07) &&
2360             (nic->device_type == XFRAME_I_DEVICE)) {
2361                 val64 = readq(&bar0->gpio_control);
2362                 val64 |= 0x0000800000000000ULL;
2363                 writeq(val64, &bar0->gpio_control);
2364                 val64 = 0x0411040400000000ULL;
2365                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2366         }
2367
2368         return SUCCESS;
2369 }
2370 /**
2371  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2372  */
2373 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2374                                         TxD *txdlp, int get_off)
2375 {
2376         struct s2io_nic *nic = fifo_data->nic;
2377         struct sk_buff *skb;
2378         struct TxD *txds;
2379         u16 j, frg_cnt;
2380
2381         txds = txdlp;
2382         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2383                 pci_unmap_single(nic->pdev, (dma_addr_t)
2384                         txds->Buffer_Pointer, sizeof(u64),
2385                         PCI_DMA_TODEVICE);
2386                 txds++;
2387         }
2388
2389         skb = (struct sk_buff *) ((unsigned long)
2390                         txds->Host_Control);
2391         if (!skb) {
2392                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2393                 return NULL;
2394         }
2395         pci_unmap_single(nic->pdev, (dma_addr_t)
2396                          txds->Buffer_Pointer,
2397                          skb->len - skb->data_len,
2398                          PCI_DMA_TODEVICE);
2399         frg_cnt = skb_shinfo(skb)->nr_frags;
2400         if (frg_cnt) {
2401                 txds++;
2402                 for (j = 0; j < frg_cnt; j++, txds++) {
2403                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404                         if (!txds->Buffer_Pointer)
2405                                 break;
2406                         pci_unmap_page(nic->pdev, (dma_addr_t)
2407                                         txds->Buffer_Pointer,
2408                                        frag->size, PCI_DMA_TODEVICE);
2409                 }
2410         }
2411         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2412         return(skb);
2413 }
2414
2415 /**
2416  *  free_tx_buffers - Free all queued Tx buffers
2417  *  @nic : device private variable.
2418  *  Description:
2419  *  Free all queued Tx buffers.
2420  *  Return Value: void
2421 */
2422
2423 static void free_tx_buffers(struct s2io_nic *nic)
2424 {
2425         struct net_device *dev = nic->dev;
2426         struct sk_buff *skb;
2427         struct TxD *txdp;
2428         int i, j;
2429         struct mac_info *mac_control;
2430         struct config_param *config;
2431         int cnt = 0;
2432
2433         mac_control = &nic->mac_control;
2434         config = &nic->config;
2435
2436         for (i = 0; i < config->tx_fifo_num; i++) {
2437                 unsigned long flags;
2438                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2439                 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2440                         txdp = (struct TxD *) \
2441                         mac_control->fifos[i].list_info[j].list_virt_addr;
2442                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2443                         if (skb) {
2444                                 nic->mac_control.stats_info->sw_stat.mem_freed
2445                                         += skb->truesize;
2446                                 dev_kfree_skb(skb);
2447                                 cnt++;
2448                         }
2449                 }
2450                 DBG_PRINT(INTR_DBG,
2451                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2452                           dev->name, cnt, i);
2453                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2454                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2455                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2456         }
2457 }
2458
2459 /**
2460  *   stop_nic -  To stop the nic
2461  *   @nic ; device private variable.
2462  *   Description:
2463  *   This function does exactly the opposite of what the start_nic()
2464  *   function does. This function is called to stop the device.
2465  *   Return Value:
2466  *   void.
2467  */
2468
2469 static void stop_nic(struct s2io_nic *nic)
2470 {
2471         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472         register u64 val64 = 0;
2473         u16 interruptible;
2474         struct mac_info *mac_control;
2475         struct config_param *config;
2476
2477         mac_control = &nic->mac_control;
2478         config = &nic->config;
2479
2480         /*  Disable all interrupts */
2481         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483         interruptible |= TX_PIC_INTR;
2484         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2485
2486         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487         val64 = readq(&bar0->adapter_control);
2488         val64 &= ~(ADAPTER_CNTL_EN);
2489         writeq(val64, &bar0->adapter_control);
2490 }
2491
2492 /**
2493  *  fill_rx_buffers - Allocates the Rx side skbs
2494  *  @ring_info: per ring structure
2495  *  @from_card_up: If this is true, we will map the buffer to get
2496  *     the dma address for buf0 and buf1 to give it to the card.
2497  *     Else we will sync the already mapped buffer to give it to the card.
2498  *  Description:
2499  *  The function allocates Rx side skbs and puts the physical
2500  *  address of these buffers into the RxD buffer pointers, so that the NIC
2501  *  can DMA the received frame into these locations.
2502  *  The NIC supports 3 receive modes, viz
2503  *  1. single buffer,
2504  *  2. three buffer and
2505  *  3. Five buffer modes.
2506  *  Each mode defines how many fragments the received frame will be split
2507  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2508  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509  *  is split into 3 fragments. As of now only single buffer mode is
2510  *  supported.
2511  *   Return Value:
2512  *  SUCCESS on success or an appropriate -ve value on failure.
2513  */
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2515                                 int from_card_up)
2516 {
2517         struct sk_buff *skb;
2518         struct RxD_t *rxdp;
2519         int off, size, block_no, block_no1;
2520         u32 alloc_tab = 0;
2521         u32 alloc_cnt;
2522         u64 tmp;
2523         struct buffAdd *ba;
2524         struct RxD_t *first_rxdp = NULL;
2525         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2526         int rxd_index = 0;
2527         struct RxD1 *rxdp1;
2528         struct RxD3 *rxdp3;
2529         struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2530
2531         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2532
2533         block_no1 = ring->rx_curr_get_info.block_index;
2534         while (alloc_tab < alloc_cnt) {
2535                 block_no = ring->rx_curr_put_info.block_index;
2536
2537                 off = ring->rx_curr_put_info.offset;
2538
2539                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2540
2541                 rxd_index = off + 1;
2542                 if (block_no)
2543                         rxd_index += (block_no * ring->rxd_count);
2544
2545                 if ((block_no == block_no1) &&
2546                         (off == ring->rx_curr_get_info.offset) &&
2547                         (rxdp->Host_Control)) {
2548                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2549                                 ring->dev->name);
2550                         DBG_PRINT(INTR_DBG, " info equated\n");
2551                         goto end;
2552                 }
2553                 if (off && (off == ring->rxd_count)) {
2554                         ring->rx_curr_put_info.block_index++;
2555                         if (ring->rx_curr_put_info.block_index ==
2556                                                         ring->block_count)
2557                                 ring->rx_curr_put_info.block_index = 0;
2558                         block_no = ring->rx_curr_put_info.block_index;
2559                         off = 0;
2560                         ring->rx_curr_put_info.offset = off;
2561                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2562                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2563                                   ring->dev->name, rxdp);
2564
2565                 }
2566
2567                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2568                         ((ring->rxd_mode == RXD_MODE_3B) &&
2569                                 (rxdp->Control_2 & s2BIT(0)))) {
2570                         ring->rx_curr_put_info.offset = off;
2571                         goto end;
2572                 }
2573                 /* calculate size of skb based on ring mode */
2574                 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2575                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576                 if (ring->rxd_mode == RXD_MODE_1)
2577                         size += NET_IP_ALIGN;
2578                 else
2579                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2580
2581                 /* allocate skb */
2582                 skb = dev_alloc_skb(size);
2583                 if(!skb) {
2584                         DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2585                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2586                         if (first_rxdp) {
2587                                 wmb();
2588                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589                         }
2590                         stats->mem_alloc_fail_cnt++;
2591
2592                         return -ENOMEM ;
2593                 }
2594                 stats->mem_allocated += skb->truesize;
2595
2596                 if (ring->rxd_mode == RXD_MODE_1) {
2597                         /* 1 buffer mode - normal operation mode */
2598                         rxdp1 = (struct RxD1*)rxdp;
2599                         memset(rxdp, 0, sizeof(struct RxD1));
2600                         skb_reserve(skb, NET_IP_ALIGN);
2601                         rxdp1->Buffer0_ptr = pci_map_single
2602                             (ring->pdev, skb->data, size - NET_IP_ALIGN,
2603                                 PCI_DMA_FROMDEVICE);
2604                         if (pci_dma_mapping_error(nic->pdev,
2605                                                 rxdp1->Buffer0_ptr))
2606                                 goto pci_map_failed;
2607
2608                         rxdp->Control_2 =
2609                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610                         rxdp->Host_Control = (unsigned long) (skb);
2611                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2612                         /*
2613                          * 2 buffer mode -
2614                          * 2 buffer mode provides 128
2615                          * byte aligned receive buffers.
2616                          */
2617
2618                         rxdp3 = (struct RxD3*)rxdp;
2619                         /* save buffer pointers to avoid frequent dma mapping */
2620                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2621                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2622                         memset(rxdp, 0, sizeof(struct RxD3));
2623                         /* restore the buffer pointers for dma sync*/
2624                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2625                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2626
2627                         ba = &ring->ba[block_no][off];
2628                         skb_reserve(skb, BUF0_LEN);
2629                         tmp = (u64)(unsigned long) skb->data;
2630                         tmp += ALIGN_SIZE;
2631                         tmp &= ~ALIGN_SIZE;
2632                         skb->data = (void *) (unsigned long)tmp;
2633                         skb_reset_tail_pointer(skb);
2634
2635                         if (from_card_up) {
2636                                 rxdp3->Buffer0_ptr =
2637                                    pci_map_single(ring->pdev, ba->ba_0,
2638                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
2639                         if (pci_dma_mapping_error(nic->pdev,
2640                                                 rxdp3->Buffer0_ptr))
2641                                         goto pci_map_failed;
2642                         } else
2643                                 pci_dma_sync_single_for_device(ring->pdev,
2644                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2645                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2646
2647                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2648                         if (ring->rxd_mode == RXD_MODE_3B) {
2649                                 /* Two buffer mode */
2650
2651                                 /*
2652                                  * Buffer2 will have L3/L4 header plus
2653                                  * L4 payload
2654                                  */
2655                                 rxdp3->Buffer2_ptr = pci_map_single
2656                                 (ring->pdev, skb->data, ring->mtu + 4,
2657                                                 PCI_DMA_FROMDEVICE);
2658
2659                                 if (pci_dma_mapping_error(nic->pdev,
2660                                                         rxdp3->Buffer2_ptr))
2661                                         goto pci_map_failed;
2662
2663                                 if (from_card_up) {
2664                                         rxdp3->Buffer1_ptr =
2665                                                 pci_map_single(ring->pdev,
2666                                                 ba->ba_1, BUF1_LEN,
2667                                                 PCI_DMA_FROMDEVICE);
2668
2669                                         if (pci_dma_mapping_error(nic->pdev,
2670                                                 rxdp3->Buffer1_ptr)) {
2671                                                 pci_unmap_single
2672                                                         (ring->pdev,
2673                                                     (dma_addr_t)(unsigned long)
2674                                                         skb->data,
2675                                                         ring->mtu + 4,
2676                                                         PCI_DMA_FROMDEVICE);
2677                                                 goto pci_map_failed;
2678                                         }
2679                                 }
2680                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2681                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2682                                                                 (ring->mtu + 4);
2683                         }
2684                         rxdp->Control_2 |= s2BIT(0);
2685                         rxdp->Host_Control = (unsigned long) (skb);
2686                 }
2687                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2688                         rxdp->Control_1 |= RXD_OWN_XENA;
2689                 off++;
2690                 if (off == (ring->rxd_count + 1))
2691                         off = 0;
2692                 ring->rx_curr_put_info.offset = off;
2693
2694                 rxdp->Control_2 |= SET_RXD_MARKER;
2695                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2696                         if (first_rxdp) {
2697                                 wmb();
2698                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2699                         }
2700                         first_rxdp = rxdp;
2701                 }
2702                 ring->rx_bufs_left += 1;
2703                 alloc_tab++;
2704         }
2705
2706       end:
2707         /* Transfer ownership of first descriptor to adapter just before
2708          * exiting. Before that, use memory barrier so that ownership
2709          * and other fields are seen by adapter correctly.
2710          */
2711         if (first_rxdp) {
2712                 wmb();
2713                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2714         }
2715
2716         return SUCCESS;
2717 pci_map_failed:
2718         stats->pci_map_fail_cnt++;
2719         stats->mem_freed += skb->truesize;
2720         dev_kfree_skb_irq(skb);
2721         return -ENOMEM;
2722 }
2723
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725 {
2726         struct net_device *dev = sp->dev;
2727         int j;
2728         struct sk_buff *skb;
2729         struct RxD_t *rxdp;
2730         struct mac_info *mac_control;
2731         struct buffAdd *ba;
2732         struct RxD1 *rxdp1;
2733         struct RxD3 *rxdp3;
2734
2735         mac_control = &sp->mac_control;
2736         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2737                 rxdp = mac_control->rings[ring_no].
2738                                 rx_blocks[blk].rxds[j].virt_addr;
2739                 skb = (struct sk_buff *)
2740                         ((unsigned long) rxdp->Host_Control);
2741                 if (!skb) {
2742                         continue;
2743                 }
2744                 if (sp->rxd_mode == RXD_MODE_1) {
2745                         rxdp1 = (struct RxD1*)rxdp;
2746                         pci_unmap_single(sp->pdev, (dma_addr_t)
2747                                 rxdp1->Buffer0_ptr,
2748                                 dev->mtu +
2749                                 HEADER_ETHERNET_II_802_3_SIZE
2750                                 + HEADER_802_2_SIZE +
2751                                 HEADER_SNAP_SIZE,
2752                                 PCI_DMA_FROMDEVICE);
2753                         memset(rxdp, 0, sizeof(struct RxD1));
2754                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2755                         rxdp3 = (struct RxD3*)rxdp;
2756                         ba = &mac_control->rings[ring_no].
2757                                 ba[blk][j];
2758                         pci_unmap_single(sp->pdev, (dma_addr_t)
2759                                 rxdp3->Buffer0_ptr,
2760                                 BUF0_LEN,
2761                                 PCI_DMA_FROMDEVICE);
2762                         pci_unmap_single(sp->pdev, (dma_addr_t)
2763                                 rxdp3->Buffer1_ptr,
2764                                 BUF1_LEN,
2765                                 PCI_DMA_FROMDEVICE);
2766                         pci_unmap_single(sp->pdev, (dma_addr_t)
2767                                 rxdp3->Buffer2_ptr,
2768                                 dev->mtu + 4,
2769                                 PCI_DMA_FROMDEVICE);
2770                         memset(rxdp, 0, sizeof(struct RxD3));
2771                 }
2772                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2773                 dev_kfree_skb(skb);
2774                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2775         }
2776 }
2777
2778 /**
2779  *  free_rx_buffers - Frees all Rx buffers
2780  *  @sp: device private variable.
2781  *  Description:
2782  *  This function will free all Rx buffers allocated by host.
2783  *  Return Value:
2784  *  NONE.
2785  */
2786
2787 static void free_rx_buffers(struct s2io_nic *sp)
2788 {
2789         struct net_device *dev = sp->dev;
2790         int i, blk = 0, buf_cnt = 0;
2791         struct mac_info *mac_control;
2792         struct config_param *config;
2793
2794         mac_control = &sp->mac_control;
2795         config = &sp->config;
2796
2797         for (i = 0; i < config->rx_ring_num; i++) {
2798                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799                         free_rxd_blk(sp,i,blk);
2800
2801                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2802                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2803                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2804                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2805                 mac_control->rings[i].rx_bufs_left = 0;
2806                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2807                           dev->name, buf_cnt, i);
2808         }
2809 }
2810
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2812 {
2813         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814                 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2815                 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2816         }
2817         return 0;
2818 }
2819
2820 /**
2821  * s2io_poll - Rx interrupt handler for NAPI support
2822  * @napi : pointer to the napi structure.
2823  * @budget : The number of packets that were budgeted to be processed
2824  * during  one pass through the 'Poll" function.
2825  * Description:
2826  * Comes into picture only if NAPI support has been incorporated. It does
2827  * the same thing that rx_intr_handler does, but not in a interrupt context
2828  * also It will process only a given number of packets.
2829  * Return value:
2830  * 0 on success and 1 if there are No Rx packets to be processed.
2831  */
2832
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2834 {
2835         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836         struct net_device *dev = ring->dev;
2837         struct config_param *config;
2838         struct mac_info *mac_control;
2839         int pkts_processed = 0;
2840         u8 __iomem *addr = NULL;
2841         u8 val8 = 0;
2842         struct s2io_nic *nic = netdev_priv(dev);
2843         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2844         int budget_org = budget;
2845
2846         config = &nic->config;
2847         mac_control = &nic->mac_control;
2848
2849         if (unlikely(!is_s2io_card_up(nic)))
2850                 return 0;
2851
2852         pkts_processed = rx_intr_handler(ring, budget);
2853         s2io_chk_rx_buffers(nic, ring);
2854
2855         if (pkts_processed < budget_org) {
2856                 napi_complete(napi);
2857                 /*Re Enable MSI-Rx Vector*/
2858                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2859                 addr += 7 - ring->ring_no;
2860                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2861                 writeb(val8, addr);
2862                 val8 = readb(addr);
2863         }
2864         return pkts_processed;
2865 }
2866 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2867 {
2868         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2869         struct ring_info *ring;
2870         struct config_param *config;
2871         struct mac_info *mac_control;
2872         int pkts_processed = 0;
2873         int ring_pkts_processed, i;
2874         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2875         int budget_org = budget;
2876
2877         config = &nic->config;
2878         mac_control = &nic->mac_control;
2879
2880         if (unlikely(!is_s2io_card_up(nic)))
2881                 return 0;
2882
2883         for (i = 0; i < config->rx_ring_num; i++) {
2884                 ring = &mac_control->rings[i];
2885                 ring_pkts_processed = rx_intr_handler(ring, budget);
2886                 s2io_chk_rx_buffers(nic, ring);
2887                 pkts_processed += ring_pkts_processed;
2888                 budget -= ring_pkts_processed;
2889                 if (budget <= 0)
2890                         break;
2891         }
2892         if (pkts_processed < budget_org) {
2893                 napi_complete(napi);
2894                 /* Re enable the Rx interrupts for the ring */
2895                 writeq(0, &bar0->rx_traffic_mask);
2896                 readl(&bar0->rx_traffic_mask);
2897         }
2898         return pkts_processed;
2899 }
2900
2901 #ifdef CONFIG_NET_POLL_CONTROLLER
2902 /**
2903  * s2io_netpoll - netpoll event handler entry point
2904  * @dev : pointer to the device structure.
2905  * Description:
2906  *      This function will be called by upper layer to check for events on the
2907  * interface in situations where interrupts are disabled. It is used for
2908  * specific in-kernel networking tasks, such as remote consoles and kernel
2909  * debugging over the network (example netdump in RedHat).
2910  */
2911 static void s2io_netpoll(struct net_device *dev)
2912 {
2913         struct s2io_nic *nic = netdev_priv(dev);
2914         struct mac_info *mac_control;
2915         struct config_param *config;
2916         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2917         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2918         int i;
2919
2920         if (pci_channel_offline(nic->pdev))
2921                 return;
2922
2923         disable_irq(dev->irq);
2924
2925         mac_control = &nic->mac_control;
2926         config = &nic->config;
2927
2928         writeq(val64, &bar0->rx_traffic_int);
2929         writeq(val64, &bar0->tx_traffic_int);
2930
2931         /* we need to free up the transmitted skbufs or else netpoll will
2932          * run out of skbs and will fail and eventually netpoll application such
2933          * as netdump will fail.
2934          */
2935         for (i = 0; i < config->tx_fifo_num; i++)
2936                 tx_intr_handler(&mac_control->fifos[i]);
2937
2938         /* check for received packet and indicate up to network */
2939         for (i = 0; i < config->rx_ring_num; i++)
2940                 rx_intr_handler(&mac_control->rings[i], 0);
2941
2942         for (i = 0; i < config->rx_ring_num; i++) {
2943                 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2944                                 -ENOMEM) {
2945                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2946                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2947                         break;
2948                 }
2949         }
2950         enable_irq(dev->irq);
2951         return;
2952 }
2953 #endif
2954
2955 /**
2956  *  rx_intr_handler - Rx interrupt handler
2957  *  @ring_info: per ring structure.
2958  *  @budget: budget for napi processing.
2959  *  Description:
2960  *  If the interrupt is because of a received frame or if the
2961  *  receive ring contains fresh as yet un-processed frames,this function is
2962  *  called. It picks out the RxD at which place the last Rx processing had
2963  *  stopped and sends the skb to the OSM's Rx handler and then increments
2964  *  the offset.
2965  *  Return Value:
2966  *  No. of napi packets processed.
2967  */
2968 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2969 {
2970         int get_block, put_block;
2971         struct rx_curr_get_info get_info, put_info;
2972         struct RxD_t *rxdp;
2973         struct sk_buff *skb;
2974         int pkt_cnt = 0, napi_pkts = 0;
2975         int i;
2976         struct RxD1* rxdp1;
2977         struct RxD3* rxdp3;
2978
2979         get_info = ring_data->rx_curr_get_info;
2980         get_block = get_info.block_index;
2981         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2982         put_block = put_info.block_index;
2983         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2984
2985         while (RXD_IS_UP2DT(rxdp)) {
2986                 /*
2987                  * If your are next to put index then it's
2988                  * FIFO full condition
2989                  */
2990                 if ((get_block == put_block) &&
2991                     (get_info.offset + 1) == put_info.offset) {
2992                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2993                                 ring_data->dev->name);
2994                         break;
2995                 }
2996                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2997                 if (skb == NULL) {
2998                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2999                                   ring_data->dev->name);
3000                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3001                         return 0;
3002                 }
3003                 if (ring_data->rxd_mode == RXD_MODE_1) {
3004                         rxdp1 = (struct RxD1*)rxdp;
3005                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3006                                 rxdp1->Buffer0_ptr,
3007                                 ring_data->mtu +
3008                                 HEADER_ETHERNET_II_802_3_SIZE +
3009                                 HEADER_802_2_SIZE +
3010                                 HEADER_SNAP_SIZE,
3011                                 PCI_DMA_FROMDEVICE);
3012                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3013                         rxdp3 = (struct RxD3*)rxdp;
3014                         pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3015                                 rxdp3->Buffer0_ptr,
3016                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
3017                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3018                                 rxdp3->Buffer2_ptr,
3019                                 ring_data->mtu + 4,
3020                                 PCI_DMA_FROMDEVICE);
3021                 }
3022                 prefetch(skb->data);
3023                 rx_osm_handler(ring_data, rxdp);
3024                 get_info.offset++;
3025                 ring_data->rx_curr_get_info.offset = get_info.offset;
3026                 rxdp = ring_data->rx_blocks[get_block].
3027                                 rxds[get_info.offset].virt_addr;
3028                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3029                         get_info.offset = 0;
3030                         ring_data->rx_curr_get_info.offset = get_info.offset;
3031                         get_block++;
3032                         if (get_block == ring_data->block_count)
3033                                 get_block = 0;
3034                         ring_data->rx_curr_get_info.block_index = get_block;
3035                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3036                 }
3037
3038                 if (ring_data->nic->config.napi) {
3039                         budget--;
3040                         napi_pkts++;
3041                         if (!budget)
3042                                 break;
3043                 }
3044                 pkt_cnt++;
3045                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3046                         break;
3047         }
3048         if (ring_data->lro) {
3049                 /* Clear all LRO sessions before exiting */
3050                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3051                         struct lro *lro = &ring_data->lro0_n[i];
3052                         if (lro->in_use) {
3053                                 update_L3L4_header(ring_data->nic, lro);
3054                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3055                                 clear_lro_session(lro);
3056                         }
3057                 }
3058         }
3059         return(napi_pkts);
3060 }
3061
3062 /**
3063  *  tx_intr_handler - Transmit interrupt handler
3064  *  @nic : device private variable
3065  *  Description:
3066  *  If an interrupt was raised to indicate DMA complete of the
3067  *  Tx packet, this function is called. It identifies the last TxD
3068  *  whose buffer was freed and frees all skbs whose data have already
3069  *  DMA'ed into the NICs internal memory.
3070  *  Return Value:
3071  *  NONE
3072  */
3073
3074 static void tx_intr_handler(struct fifo_info *fifo_data)
3075 {
3076         struct s2io_nic *nic = fifo_data->nic;
3077         struct tx_curr_get_info get_info, put_info;
3078         struct sk_buff *skb = NULL;
3079         struct TxD *txdlp;
3080         int pkt_cnt = 0;
3081         unsigned long flags = 0;
3082         u8 err_mask;
3083
3084         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3085                         return;
3086
3087         get_info = fifo_data->tx_curr_get_info;
3088         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3089         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3090             list_virt_addr;
3091         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3092                (get_info.offset != put_info.offset) &&
3093                (txdlp->Host_Control)) {
3094                 /* Check for TxD errors */
3095                 if (txdlp->Control_1 & TXD_T_CODE) {
3096                         unsigned long long err;
3097                         err = txdlp->Control_1 & TXD_T_CODE;
3098                         if (err & 0x1) {
3099                                 nic->mac_control.stats_info->sw_stat.
3100                                                 parity_err_cnt++;
3101                         }
3102
3103                         /* update t_code statistics */
3104                         err_mask = err >> 48;
3105                         switch(err_mask) {
3106                                 case 2:
3107                                         nic->mac_control.stats_info->sw_stat.
3108                                                         tx_buf_abort_cnt++;
3109                                 break;
3110
3111                                 case 3:
3112                                         nic->mac_control.stats_info->sw_stat.
3113                                                         tx_desc_abort_cnt++;
3114                                 break;
3115
3116                                 case 7:
3117                                         nic->mac_control.stats_info->sw_stat.
3118                                                         tx_parity_err_cnt++;
3119                                 break;
3120
3121                                 case 10:
3122                                         nic->mac_control.stats_info->sw_stat.
3123                                                         tx_link_loss_cnt++;
3124                                 break;
3125
3126                                 case 15:
3127                                         nic->mac_control.stats_info->sw_stat.
3128                                                         tx_list_proc_err_cnt++;
3129                                 break;
3130                         }
3131                 }
3132
3133                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3134                 if (skb == NULL) {
3135                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3136                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
3137                         __func__);
3138                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3139                         return;
3140                 }
3141                 pkt_cnt++;
3142
3143                 /* Updating the statistics block */
3144                 nic->dev->stats.tx_bytes += skb->len;
3145                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3146                 dev_kfree_skb_irq(skb);
3147
3148                 get_info.offset++;
3149                 if (get_info.offset == get_info.fifo_len + 1)
3150                         get_info.offset = 0;
3151                 txdlp = (struct TxD *) fifo_data->list_info
3152                     [get_info.offset].list_virt_addr;
3153                 fifo_data->tx_curr_get_info.offset =
3154                     get_info.offset;
3155         }
3156
3157         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3158
3159         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3160 }
3161
3162 /**
3163  *  s2io_mdio_write - Function to write in to MDIO registers
3164  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3165  *  @addr     : address value
3166  *  @value    : data value
3167  *  @dev      : pointer to net_device structure
3168  *  Description:
3169  *  This function is used to write values to the MDIO registers
3170  *  NONE
3171  */
3172 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3173 {
3174         u64 val64 = 0x0;
3175         struct s2io_nic *sp = netdev_priv(dev);
3176         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3177
3178         //address transaction
3179         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3180                         | MDIO_MMD_DEV_ADDR(mmd_type)
3181                         | MDIO_MMS_PRT_ADDR(0x0);
3182         writeq(val64, &bar0->mdio_control);
3183         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184         writeq(val64, &bar0->mdio_control);
3185         udelay(100);
3186
3187         //Data transaction
3188         val64 = 0x0;
3189         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3190                         | MDIO_MMD_DEV_ADDR(mmd_type)
3191                         | MDIO_MMS_PRT_ADDR(0x0)
3192                         | MDIO_MDIO_DATA(value)
3193                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3194         writeq(val64, &bar0->mdio_control);
3195         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3196         writeq(val64, &bar0->mdio_control);
3197         udelay(100);
3198
3199         val64 = 0x0;
3200         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3201         | MDIO_MMD_DEV_ADDR(mmd_type)
3202         | MDIO_MMS_PRT_ADDR(0x0)
3203         | MDIO_OP(MDIO_OP_READ_TRANS);
3204         writeq(val64, &bar0->mdio_control);
3205         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3206         writeq(val64, &bar0->mdio_control);
3207         udelay(100);
3208
3209 }
3210
3211 /**
3212  *  s2io_mdio_read - Function to write in to MDIO registers
3213  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3214  *  @addr     : address value
3215  *  @dev      : pointer to net_device structure
3216  *  Description:
3217  *  This function is used to read values to the MDIO registers
3218  *  NONE
3219  */
3220 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3221 {
3222         u64 val64 = 0x0;
3223         u64 rval64 = 0x0;
3224         struct s2io_nic *sp = netdev_priv(dev);
3225         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3226
3227         /* address transaction */
3228         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3229                         | MDIO_MMD_DEV_ADDR(mmd_type)
3230                         | MDIO_MMS_PRT_ADDR(0x0);
3231         writeq(val64, &bar0->mdio_control);
3232         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233         writeq(val64, &bar0->mdio_control);
3234         udelay(100);
3235
3236         /* Data transaction */
3237         val64 = 0x0;
3238         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3239                         | MDIO_MMD_DEV_ADDR(mmd_type)
3240                         | MDIO_MMS_PRT_ADDR(0x0)
3241                         | MDIO_OP(MDIO_OP_READ_TRANS);
3242         writeq(val64, &bar0->mdio_control);
3243         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3244         writeq(val64, &bar0->mdio_control);
3245         udelay(100);
3246
3247         /* Read the value from regs */
3248         rval64 = readq(&bar0->mdio_control);
3249         rval64 = rval64 & 0xFFFF0000;
3250         rval64 = rval64 >> 16;
3251         return rval64;
3252 }
3253 /**
3254  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3255  *  @counter      : couter value to be updated
3256  *  @flag         : flag to indicate the status
3257  *  @type         : counter type
3258  *  Description:
3259  *  This function is to check the status of the xpak counters value
3260  *  NONE
3261  */
3262
3263 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3264 {
3265         u64 mask = 0x3;
3266         u64 val64;
3267         int i;
3268         for(i = 0; i <index; i++)
3269                 mask = mask << 0x2;
3270
3271         if(flag > 0)
3272         {
3273                 *counter = *counter + 1;
3274                 val64 = *regs_stat & mask;
3275                 val64 = val64 >> (index * 0x2);
3276                 val64 = val64 + 1;
3277                 if(val64 == 3)
3278                 {
3279                         switch(type)
3280                         {
3281                         case 1:
3282                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3283                                           "service. Excessive temperatures may "
3284                                           "result in premature transceiver "
3285                                           "failure \n");
3286                         break;
3287                         case 2:
3288                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3289                                           "service Excessive bias currents may "
3290                                           "indicate imminent laser diode "
3291                                           "failure \n");
3292                         break;
3293                         case 3:
3294                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3295                                           "service Excessive laser output "
3296                                           "power may saturate far-end "
3297                                           "receiver\n");
3298                         break;
3299                         default:
3300                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3301                                           "type \n");
3302                         }
3303                         val64 = 0x0;
3304                 }
3305                 val64 = val64 << (index * 0x2);
3306                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3307
3308         } else {
3309                 *regs_stat = *regs_stat & (~mask);
3310         }
3311 }
3312
3313 /**
3314  *  s2io_updt_xpak_counter - Function to update the xpak counters
3315  *  @dev         : pointer to net_device struct
3316  *  Description:
3317  *  This function is to upate the status of the xpak counters value
3318  *  NONE
3319  */
3320 static void s2io_updt_xpak_counter(struct net_device *dev)
3321 {
3322         u16 flag  = 0x0;
3323         u16 type  = 0x0;
3324         u16 val16 = 0x0;
3325         u64 val64 = 0x0;
3326         u64 addr  = 0x0;
3327
3328         struct s2io_nic *sp = netdev_priv(dev);
3329         struct stat_block *stat_info = sp->mac_control.stats_info;
3330
3331         /* Check the communication with the MDIO slave */
3332         addr = MDIO_CTRL1;
3333         val64 = 0x0;
3334         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3335         if((val64 == 0xFFFF) || (val64 == 0x0000))
3336         {
3337                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3338                           "Returned %llx\n", (unsigned long long)val64);
3339                 return;
3340         }
3341
3342         /* Check for the expected value of control reg 1 */
3343         if(val64 != MDIO_CTRL1_SPEED10G)
3344         {
3345                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3346                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
3347                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3348                 return;
3349         }
3350
3351         /* Loading the DOM register to MDIO register */
3352         addr = 0xA100;
3353         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3354         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3355
3356         /* Reading the Alarm flags */
3357         addr = 0xA070;
3358         val64 = 0x0;
3359         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3360
3361         flag = CHECKBIT(val64, 0x7);
3362         type = 1;
3363         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3364                                 &stat_info->xpak_stat.xpak_regs_stat,
3365                                 0x0, flag, type);
3366
3367         if(CHECKBIT(val64, 0x6))
3368                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3369
3370         flag = CHECKBIT(val64, 0x3);
3371         type = 2;
3372         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3373                                 &stat_info->xpak_stat.xpak_regs_stat,
3374                                 0x2, flag, type);
3375
3376         if(CHECKBIT(val64, 0x2))
3377                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3378
3379         flag = CHECKBIT(val64, 0x1);
3380         type = 3;
3381         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3382                                 &stat_info->xpak_stat.xpak_regs_stat,
3383                                 0x4, flag, type);
3384
3385         if(CHECKBIT(val64, 0x0))
3386                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3387
3388         /* Reading the Warning flags */
3389         addr = 0xA074;
3390         val64 = 0x0;
3391         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3392
3393         if(CHECKBIT(val64, 0x7))
3394                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3395
3396         if(CHECKBIT(val64, 0x6))
3397                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3398
3399         if(CHECKBIT(val64, 0x3))
3400                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3401
3402         if(CHECKBIT(val64, 0x2))
3403                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3404
3405         if(CHECKBIT(val64, 0x1))
3406                 stat_info->xpak_stat.warn_laser_output_power_high++;
3407
3408         if(CHECKBIT(val64, 0x0))
3409                 stat_info->xpak_stat.warn_laser_output_power_low++;
3410 }
3411
3412 /**
3413  *  wait_for_cmd_complete - waits for a command to complete.
3414  *  @sp : private member of the device structure, which is a pointer to the
3415  *  s2io_nic structure.
3416  *  Description: Function that waits for a command to Write into RMAC
3417  *  ADDR DATA registers to be completed and returns either success or
3418  *  error depending on whether the command was complete or not.
3419  *  Return value:
3420  *   SUCCESS on success and FAILURE on failure.
3421  */
3422
3423 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3424                                 int bit_state)
3425 {
3426         int ret = FAILURE, cnt = 0, delay = 1;
3427         u64 val64;
3428
3429         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3430                 return FAILURE;
3431
3432         do {
3433                 val64 = readq(addr);
3434                 if (bit_state == S2IO_BIT_RESET) {
3435                         if (!(val64 & busy_bit)) {
3436                                 ret = SUCCESS;
3437                                 break;
3438                         }
3439                 } else {
3440                         if (!(val64 & busy_bit)) {
3441                                 ret = SUCCESS;
3442                                 break;
3443                         }
3444                 }
3445
3446                 if(in_interrupt())
3447                         mdelay(delay);
3448                 else
3449                         msleep(delay);
3450
3451                 if (++cnt >= 10)
3452                         delay = 50;
3453         } while (cnt < 20);
3454         return ret;
3455 }
3456 /*
3457  * check_pci_device_id - Checks if the device id is supported
3458  * @id : device id
3459  * Description: Function to check if the pci device id is supported by driver.
3460  * Return value: Actual device id if supported else PCI_ANY_ID
3461  */
3462 static u16 check_pci_device_id(u16 id)
3463 {
3464         switch (id) {
3465         case PCI_DEVICE_ID_HERC_WIN:
3466         case PCI_DEVICE_ID_HERC_UNI:
3467                 return XFRAME_II_DEVICE;
3468         case PCI_DEVICE_ID_S2IO_UNI:
3469         case PCI_DEVICE_ID_S2IO_WIN:
3470                 return XFRAME_I_DEVICE;
3471         default:
3472                 return PCI_ANY_ID;
3473         }
3474 }
3475
3476 /**
3477  *  s2io_reset - Resets the card.
3478  *  @sp : private member of the device structure.
3479  *  Description: Function to Reset the card. This function then also
3480  *  restores the previously saved PCI configuration space registers as
3481  *  the card reset also resets the configuration space.
3482  *  Return value:
3483  *  void.
3484  */
3485
3486 static void s2io_reset(struct s2io_nic * sp)
3487 {
3488         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3489         u64 val64;
3490         u16 subid, pci_cmd;
3491         int i;
3492         u16 val16;
3493         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3494         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3495
3496         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3497                         __func__, sp->dev->name);
3498
3499         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3500         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3501
3502         val64 = SW_RESET_ALL;
3503         writeq(val64, &bar0->sw_reset);
3504         if (strstr(sp->product_name, "CX4")) {
3505                 msleep(750);
3506         }
3507         msleep(250);
3508         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3509
3510                 /* Restore the PCI state saved during initialization. */
3511                 pci_restore_state(sp->pdev);
3512                 pci_read_config_word(sp->pdev, 0x2, &val16);
3513                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3514                         break;
3515                 msleep(200);
3516         }
3517
3518         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3519                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3520         }
3521
3522         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3523
3524         s2io_init_pci(sp);
3525
3526         /* Set swapper to enable I/O register access */
3527         s2io_set_swapper(sp);
3528
3529         /* restore mac_addr entries */
3530         do_s2io_restore_unicast_mc(sp);
3531
3532         /* Restore the MSIX table entries from local variables */
3533         restore_xmsi_data(sp);
3534
3535         /* Clear certain PCI/PCI-X fields after reset */
3536         if (sp->device_type == XFRAME_II_DEVICE) {
3537                 /* Clear "detected parity error" bit */
3538                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3539
3540                 /* Clearing PCIX Ecc status register */
3541                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3542
3543                 /* Clearing PCI_STATUS error reflected here */
3544                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3545         }
3546
3547         /* Reset device statistics maintained by OS */
3548         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3549
3550         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3551         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3552         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3553         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3554         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3555         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3556         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3557         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3558         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3559         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3560         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3561         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3562         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3563         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3564         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3565         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3566         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3567         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3568         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3569
3570         /* SXE-002: Configure link and activity LED to turn it off */
3571         subid = sp->pdev->subsystem_device;
3572         if (((subid & 0xFF) >= 0x07) &&
3573             (sp->device_type == XFRAME_I_DEVICE)) {
3574                 val64 = readq(&bar0->gpio_control);
3575                 val64 |= 0x0000800000000000ULL;
3576                 writeq(val64, &bar0->gpio_control);
3577                 val64 = 0x0411040400000000ULL;
3578                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3579         }
3580
3581         /*
3582          * Clear spurious ECC interrupts that would have occured on
3583          * XFRAME II cards after reset.
3584          */
3585         if (sp->device_type == XFRAME_II_DEVICE) {
3586                 val64 = readq(&bar0->pcc_err_reg);
3587                 writeq(val64, &bar0->pcc_err_reg);
3588         }
3589
3590         sp->device_enabled_once = FALSE;
3591 }
3592
3593 /**
3594  *  s2io_set_swapper - to set the swapper controle on the card
3595  *  @sp : private member of the device structure,
3596  *  pointer to the s2io_nic structure.
3597  *  Description: Function to set the swapper control on the card
3598  *  correctly depending on the 'endianness' of the system.
3599  *  Return value:
3600  *  SUCCESS on success and FAILURE on failure.
3601  */
3602
3603 static int s2io_set_swapper(struct s2io_nic * sp)
3604 {
3605         struct net_device *dev = sp->dev;
3606         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3607         u64 val64, valt, valr;
3608
3609         /*
3610          * Set proper endian settings and verify the same by reading
3611          * the PIF Feed-back register.
3612          */
3613
3614         val64 = readq(&bar0->pif_rd_swapper_fb);
3615         if (val64 != 0x0123456789ABCDEFULL) {
3616                 int i = 0;
3617                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3618                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3619                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3620                                 0};                     /* FE=0, SE=0 */
3621
3622                 while(i<4) {
3623                         writeq(value[i], &bar0->swapper_ctrl);
3624                         val64 = readq(&bar0->pif_rd_swapper_fb);
3625                         if (val64 == 0x0123456789ABCDEFULL)
3626                                 break;
3627                         i++;
3628                 }
3629                 if (i == 4) {
3630                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3631                                 dev->name);
3632                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3633                                 (unsigned long long) val64);
3634                         return FAILURE;
3635                 }
3636                 valr = value[i];
3637         } else {
3638                 valr = readq(&bar0->swapper_ctrl);
3639         }
3640
3641         valt = 0x0123456789ABCDEFULL;
3642         writeq(valt, &bar0->xmsi_address);
3643         val64 = readq(&bar0->xmsi_address);
3644
3645         if(val64 != valt) {
3646                 int i = 0;
3647                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3648                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3649                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3650                                 0};                     /* FE=0, SE=0 */
3651
3652                 while(i<4) {
3653                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3654                         writeq(valt, &bar0->xmsi_address);
3655                         val64 = readq(&bar0->xmsi_address);
3656                         if(val64 == valt)
3657                                 break;
3658                         i++;
3659                 }
3660                 if(i == 4) {
3661                         unsigned long long x = val64;
3662                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3663                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3664                         return FAILURE;
3665                 }
3666         }
3667         val64 = readq(&bar0->swapper_ctrl);
3668         val64 &= 0xFFFF000000000000ULL;
3669
3670 #ifdef  __BIG_ENDIAN
3671         /*
3672          * The device by default set to a big endian format, so a
3673          * big endian driver need not set anything.
3674          */
3675         val64 |= (SWAPPER_CTRL_TXP_FE |
3676                  SWAPPER_CTRL_TXP_SE |
3677                  SWAPPER_CTRL_TXD_R_FE |
3678                  SWAPPER_CTRL_TXD_W_FE |
3679                  SWAPPER_CTRL_TXF_R_FE |
3680                  SWAPPER_CTRL_RXD_R_FE |
3681                  SWAPPER_CTRL_RXD_W_FE |
3682                  SWAPPER_CTRL_RXF_W_FE |
3683                  SWAPPER_CTRL_XMSI_FE |
3684                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3685         if (sp->config.intr_type == INTA)
3686                 val64 |= SWAPPER_CTRL_XMSI_SE;
3687         writeq(val64, &bar0->swapper_ctrl);
3688 #else
3689         /*
3690          * Initially we enable all bits to make it accessible by the
3691          * driver, then we selectively enable only those bits that
3692          * we want to set.
3693          */
3694         val64 |= (SWAPPER_CTRL_TXP_FE |
3695                  SWAPPER_CTRL_TXP_SE |
3696                  SWAPPER_CTRL_TXD_R_FE |
3697                  SWAPPER_CTRL_TXD_R_SE |
3698                  SWAPPER_CTRL_TXD_W_FE |
3699                  SWAPPER_CTRL_TXD_W_SE |
3700                  SWAPPER_CTRL_TXF_R_FE |
3701                  SWAPPER_CTRL_RXD_R_FE |
3702                  SWAPPER_CTRL_RXD_R_SE |
3703                  SWAPPER_CTRL_RXD_W_FE |
3704                  SWAPPER_CTRL_RXD_W_SE |
3705                  SWAPPER_CTRL_RXF_W_FE |
3706                  SWAPPER_CTRL_XMSI_FE |
3707                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3708         if (sp->config.intr_type == INTA)
3709                 val64 |= SWAPPER_CTRL_XMSI_SE;
3710         writeq(val64, &bar0->swapper_ctrl);
3711 #endif
3712         val64 = readq(&bar0->swapper_ctrl);
3713
3714         /*
3715          * Verifying if endian settings are accurate by reading a
3716          * feedback register.
3717          */
3718         val64 = readq(&bar0->pif_rd_swapper_fb);
3719         if (val64 != 0x0123456789ABCDEFULL) {
3720                 /* Endian settings are incorrect, calls for another dekko. */
3721                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3722                           dev->name);
3723                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3724                           (unsigned long long) val64);
3725                 return FAILURE;
3726         }
3727
3728         return SUCCESS;
3729 }
3730
3731 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3732 {
3733         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3734         u64 val64;
3735         int ret = 0, cnt = 0;
3736
3737         do {
3738                 val64 = readq(&bar0->xmsi_access);
3739                 if (!(val64 & s2BIT(15)))
3740                         break;
3741                 mdelay(1);
3742                 cnt++;
3743         } while(cnt < 5);
3744         if (cnt == 5) {
3745                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3746                 ret = 1;
3747         }
3748
3749         return ret;
3750 }
3751
3752 static void restore_xmsi_data(struct s2io_nic *nic)
3753 {
3754         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3755         u64 val64;
3756         int i, msix_index;
3757
3758
3759         if (nic->device_type == XFRAME_I_DEVICE)
3760                 return;
3761
3762         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3763                 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3764                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3765                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3766                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3767                 writeq(val64, &bar0->xmsi_access);
3768                 if (wait_for_msix_trans(nic, msix_index)) {
3769                         DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3770                         continue;
3771                 }
3772         }
3773 }
3774
3775 static void store_xmsi_data(struct s2io_nic *nic)
3776 {
3777         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3778         u64 val64, addr, data;
3779         int i, msix_index;
3780
3781         if (nic->device_type == XFRAME_I_DEVICE)
3782                 return;
3783
3784         /* Store and display */
3785         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3786                 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3787                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3788                 writeq(val64, &bar0->xmsi_access);
3789                 if (wait_for_msix_trans(nic, msix_index)) {
3790                         DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3791                         continue;
3792                 }
3793                 addr = readq(&bar0->xmsi_address);
3794                 data = readq(&bar0->xmsi_data);
3795                 if (addr && data) {
3796                         nic->msix_info[i].addr = addr;
3797                         nic->msix_info[i].data = data;
3798                 }
3799         }
3800 }
3801
3802 static int s2io_enable_msi_x(struct s2io_nic *nic)
3803 {
3804         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3805         u64 rx_mat;
3806         u16 msi_control; /* Temp variable */
3807         int ret, i, j, msix_indx = 1;
3808
3809         nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3810                                GFP_KERNEL);
3811         if (!nic->entries) {
3812                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3813                         __func__);
3814                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3815                 return -ENOMEM;
3816         }
3817         nic->mac_control.stats_info->sw_stat.mem_allocated
3818                 += (nic->num_entries * sizeof(struct msix_entry));
3819
3820         memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3821
3822         nic->s2io_entries =
3823                 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3824                                    GFP_KERNEL);
3825         if (!nic->s2io_entries) {
3826                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3827                         __func__);
3828                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3829                 kfree(nic->entries);
3830                 nic->mac_control.stats_info->sw_stat.mem_freed
3831                         += (nic->num_entries * sizeof(struct msix_entry));
3832                 return -ENOMEM;
3833         }
3834          nic->mac_control.stats_info->sw_stat.mem_allocated
3835                 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3836         memset(nic->s2io_entries, 0,
3837                 nic->num_entries * sizeof(struct s2io_msix_entry));
3838
3839         nic->entries[0].entry = 0;
3840         nic->s2io_entries[0].entry = 0;
3841         nic->s2io_entries[0].in_use = MSIX_FLG;
3842         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3843         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3844
3845         for (i = 1; i < nic->num_entries; i++) {
3846                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3847                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3848                 nic->s2io_entries[i].arg = NULL;
3849                 nic->s2io_entries[i].in_use = 0;
3850         }
3851
3852         rx_mat = readq(&bar0->rx_mat);
3853         for (j = 0; j < nic->config.rx_ring_num; j++) {
3854                 rx_mat |= RX_MAT_SET(j, msix_indx);
3855                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3856                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3857                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3858                 msix_indx += 8;
3859         }
3860         writeq(rx_mat, &bar0->rx_mat);
3861         readq(&bar0->rx_mat);
3862
3863         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3864         /* We fail init if error or we get less vectors than min required */
3865         if (ret) {
3866                 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
3867                 kfree(nic->entries);
3868                 nic->mac_control.stats_info->sw_stat.mem_freed
3869                         += (nic->num_entries * sizeof(struct msix_entry));
3870                 kfree(nic->s2io_entries);
3871                 nic->mac_control.stats_info->sw_stat.mem_freed
3872                         += (nic->num_entries * sizeof(struct s2io_msix_entry));
3873                 nic->entries = NULL;
3874                 nic->s2io_entries = NULL;
3875                 return -ENOMEM;
3876         }
3877
3878         /*
3879          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3880          * in the herc NIC. (Temp change, needs to be removed later)
3881          */
3882         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3883         msi_control |= 0x1; /* Enable MSI */
3884         pci_write_config_word(nic->pdev, 0x42, msi_control);
3885
3886         return 0;
3887 }
3888
3889 /* Handle software interrupt used during MSI(X) test */
3890 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3891 {
3892         struct s2io_nic *sp = dev_id;
3893
3894         sp->msi_detected = 1;
3895         wake_up(&sp->msi_wait);
3896
3897         return IRQ_HANDLED;
3898 }
3899
3900 /* Test interrupt path by forcing a a software IRQ */
3901 static int s2io_test_msi(struct s2io_nic *sp)
3902 {
3903         struct pci_dev *pdev = sp->pdev;
3904         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3905         int err;
3906         u64 val64, saved64;
3907
3908         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3909                         sp->name, sp);
3910         if (err) {
3911                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3912                        sp->dev->name, pci_name(pdev), pdev->irq);
3913                 return err;
3914         }
3915
3916         init_waitqueue_head (&sp->msi_wait);
3917         sp->msi_detected = 0;
3918
3919         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3920         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3921         val64 |= SCHED_INT_CTRL_TIMER_EN;
3922         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3923         writeq(val64, &bar0->scheduled_int_ctrl);
3924
3925         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3926
3927         if (!sp->msi_detected) {
3928                 /* MSI(X) test failed, go back to INTx mode */
3929                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3930                         "using MSI(X) during test\n", sp->dev->name,
3931                         pci_name(pdev));
3932
3933                 err = -EOPNOTSUPP;
3934         }
3935
3936         free_irq(sp->entries[1].vector, sp);
3937
3938         writeq(saved64, &bar0->scheduled_int_ctrl);
3939
3940         return err;
3941 }
3942
3943 static void remove_msix_isr(struct s2io_nic *sp)
3944 {
3945         int i;
3946         u16 msi_control;
3947
3948         for (i = 0; i < sp->num_entries; i++) {
3949                 if (sp->s2io_entries[i].in_use ==
3950                         MSIX_REGISTERED_SUCCESS) {
3951                         int vector = sp->entries[i].vector;
3952                         void *arg = sp->s2io_entries[i].arg;
3953                         free_irq(vector, arg);
3954                 }
3955         }
3956
3957         kfree(sp->entries);
3958         kfree(sp->s2io_entries);
3959         sp->entries = NULL;
3960         sp->s2io_entries = NULL;
3961
3962         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3963         msi_control &= 0xFFFE; /* Disable MSI */
3964         pci_write_config_word(sp->pdev, 0x42, msi_control);
3965
3966         pci_disable_msix(sp->pdev);
3967 }
3968
3969 static void remove_inta_isr(struct s2io_nic *sp)
3970 {
3971         struct net_device *dev = sp->dev;
3972
3973         free_irq(sp->pdev->irq, dev);
3974 }
3975
3976 /* ********************************************************* *
3977  * Functions defined below concern the OS part of the driver *
3978  * ********************************************************* */
3979
3980 /**
3981  *  s2io_open - open entry point of the driver
3982  *  @dev : pointer to the device structure.
3983  *  Description:
3984  *  This function is the open entry point of the driver. It mainly calls a
3985  *  function to allocate Rx buffers and inserts them into the buffer
3986  *  descriptors and then enables the Rx part of the NIC.
3987  *  Return value:
3988  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3989  *   file on failure.
3990  */
3991
3992 static int s2io_open(struct net_device *dev)
3993 {
3994         struct s2io_nic *sp = netdev_priv(dev);
3995         int err = 0;
3996
3997         /*
3998          * Make sure you have link off by default every time
3999          * Nic is initialized
4000          */
4001         netif_carrier_off(dev);
4002         sp->last_link_state = 0;
4003
4004         /* Initialize H/W and enable interrupts */
4005         err = s2io_card_up(sp);
4006         if (err) {
4007                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4008                           dev->name);
4009                 goto hw_init_failed;
4010         }
4011
4012         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4013                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4014                 s2io_card_down(sp);
4015                 err = -ENODEV;
4016                 goto hw_init_failed;
4017         }
4018         s2io_start_all_tx_queue(sp);
4019         return 0;
4020
4021 hw_init_failed:
4022         if (sp->config.intr_type == MSI_X) {
4023                 if (sp->entries) {
4024                         kfree(sp->entries);
4025                         sp->mac_control.stats_info->sw_stat.mem_freed
4026                         += (sp->num_entries * sizeof(struct msix_entry));
4027                 }
4028                 if (sp->s2io_entries) {
4029                         kfree(sp->s2io_entries);
4030                         sp->mac_control.stats_info->sw_stat.mem_freed
4031                         += (sp->num_entries * sizeof(struct s2io_msix_entry));
4032                 }
4033         }
4034         return err;
4035 }
4036
4037 /**
4038  *  s2io_close -close entry point of the driver
4039  *  @dev : device pointer.
4040  *  Description:
4041  *  This is the stop entry point of the driver. It needs to undo exactly
4042  *  whatever was done by the open entry point,thus it's usually referred to
4043  *  as the close function.Among other things this function mainly stops the
4044  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4045  *  Return value:
4046  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4047  *  file on failure.
4048  */
4049
4050 static int s2io_close(struct net_device *dev)
4051 {
4052         struct s2io_nic *sp = netdev_priv(dev);
4053         struct config_param *config = &sp->config;
4054         u64 tmp64;
4055         int offset;
4056
4057         /* Return if the device is already closed               *
4058         *  Can happen when s2io_card_up failed in change_mtu    *
4059         */
4060         if (!is_s2io_card_up(sp))
4061                 return 0;
4062
4063         s2io_stop_all_tx_queue(sp);
4064         /* delete all populated mac entries */
4065         for (offset = 1; offset < config->max_mc_addr; offset++) {
4066                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4067                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4068                         do_s2io_delete_unicast_mc(sp, tmp64);
4069         }
4070
4071         s2io_card_down(sp);
4072
4073         return 0;
4074 }
4075
4076 /**
4077  *  s2io_xmit - Tx entry point of te driver
4078  *  @skb : the socket buffer containing the Tx data.
4079  *  @dev : device pointer.
4080  *  Description :
4081  *  This function is the Tx entry point of the driver. S2IO NIC supports
4082  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4083  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4084  *  not be upadted.
4085  *  Return value:
4086  *  0 on success & 1 on failure.
4087  */
4088
4089 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4090 {
4091         struct s2io_nic *sp = netdev_priv(dev);
4092         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4093         register u64 val64;
4094         struct TxD *txdp;
4095         struct TxFIFO_element __iomem *tx_fifo;
4096         unsigned long flags = 0;
4097         u16 vlan_tag = 0;
4098         struct fifo_info *fifo = NULL;
4099         struct mac_info *mac_control;
4100         struct config_param *config;
4101         int do_spin_lock = 1;
4102         int offload_type;
4103         int enable_per_list_interrupt = 0;
4104         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4105
4106         mac_control = &sp->mac_control;
4107         config = &sp->config;
4108
4109         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4110
4111         if (unlikely(skb->len <= 0)) {
4112                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4113                 dev_kfree_skb_any(skb);
4114                 return 0;
4115         }
4116
4117         if (!is_s2io_card_up(sp)) {
4118                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4119                           dev->name);
4120                 dev_kfree_skb(skb);
4121                 return 0;
4122         }
4123
4124         queue = 0;
4125         if (sp->vlgrp && vlan_tx_tag_present(skb))
4126                 vlan_tag = vlan_tx_tag_get(skb);
4127         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4128                 if (skb->protocol == htons(ETH_P_IP)) {
4129                         struct iphdr *ip;
4130                         struct tcphdr *th;
4131                         ip = ip_hdr(skb);
4132
4133                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4134                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4135                                                 ip->ihl*4);
4136
4137                                 if (ip->protocol == IPPROTO_TCP) {
4138                                         queue_len = sp->total_tcp_fifos;
4139                                         queue = (ntohs(th->source) +
4140                                                         ntohs(th->dest)) &
4141                                             sp->fifo_selector[queue_len - 1];
4142                                         if (queue >= queue_len)
4143                                                 queue = queue_len - 1;
4144                                 } else if (ip->protocol == IPPROTO_UDP) {
4145                                         queue_len = sp->total_udp_fifos;
4146                                         queue = (ntohs(th->source) +
4147                                                         ntohs(th->dest)) &
4148                                             sp->fifo_selector[queue_len - 1];
4149                                         if (queue >= queue_len)
4150                                                 queue = queue_len - 1;
4151                                         queue += sp->udp_fifo_idx;
4152                                         if (skb->len > 1024)
4153                                                 enable_per_list_interrupt = 1;
4154                                         do_spin_lock = 0;
4155                                 }
4156                         }
4157                 }
4158         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4159                 /* get fifo number based on skb->priority value */
4160                 queue = config->fifo_mapping
4161                                         [skb->priority & (MAX_TX_FIFOS - 1)];
4162         fifo = &mac_control->fifos[queue];
4163
4164         if (do_spin_lock)
4165                 spin_lock_irqsave(&fifo->tx_lock, flags);
4166         else {
4167                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4168                         return NETDEV_TX_LOCKED;
4169         }
4170
4171         if (sp->config.multiq) {
4172                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4173                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174                         return NETDEV_TX_BUSY;
4175                 }
4176         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4177                 if (netif_queue_stopped(dev)) {
4178                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179                         return NETDEV_TX_BUSY;
4180                 }
4181         }
4182
4183         put_off = (u16) fifo->tx_curr_put_info.offset;
4184         get_off = (u16) fifo->tx_curr_get_info.offset;
4185         txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4186
4187         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4188         /* Avoid "put" pointer going beyond "get" pointer */
4189         if (txdp->Host_Control ||
4190                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4191                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4192                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4193                 dev_kfree_skb(skb);
4194                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4195                 return 0;
4196         }
4197
4198         offload_type = s2io_offload_type(skb);
4199         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4200                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4201                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4202         }
4203         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4204                 txdp->Control_2 |=
4205                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4206                      TXD_TX_CKO_UDP_EN);
4207         }
4208         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4210         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4211         if (enable_per_list_interrupt)
4212                 if (put_off & (queue_len >> 5))
4213                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4214         if (vlan_tag) {
4215                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4217         }
4218
4219         frg_len = skb->len - skb->data_len;
4220         if (offload_type == SKB_GSO_UDP) {
4221                 int ufo_size;
4222
4223                 ufo_size = s2io_udp_mss(skb);
4224                 ufo_size &= ~7;
4225                 txdp->Control_1 |= TXD_UFO_EN;
4226                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4228 #ifdef __BIG_ENDIAN
4229                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230                 fifo->ufo_in_band_v[put_off] =
4231                                 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4232 #else
4233                 fifo->ufo_in_band_v[put_off] =
4234                                 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4235 #endif
4236                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4237                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4238                                         fifo->ufo_in_band_v,
4239                                         sizeof(u64), PCI_DMA_TODEVICE);
4240                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4241                         goto pci_map_failed;
4242                 txdp++;
4243         }
4244
4245         txdp->Buffer_Pointer = pci_map_single
4246             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4247         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4248                 goto pci_map_failed;
4249
4250         txdp->Host_Control = (unsigned long) skb;
4251         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4252         if (offload_type == SKB_GSO_UDP)
4253                 txdp->Control_1 |= TXD_UFO_EN;
4254
4255         frg_cnt = skb_shinfo(skb)->nr_frags;
4256         /* For fragmented SKB. */
4257         for (i = 0; i < frg_cnt; i++) {
4258                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4259                 /* A '0' length fragment will be ignored */
4260                 if (!frag->size)
4261                         continue;
4262                 txdp++;
4263                 txdp->Buffer_Pointer = (u64) pci_map_page
4264                     (sp->pdev, frag->page, frag->page_offset,
4265                      frag->size, PCI_DMA_TODEVICE);
4266                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4267                 if (offload_type == SKB_GSO_UDP)
4268                         txdp->Control_1 |= TXD_UFO_EN;
4269         }
4270         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4271
4272         if (offload_type == SKB_GSO_UDP)
4273                 frg_cnt++; /* as Txd0 was used for inband header */
4274
4275         tx_fifo = mac_control->tx_FIFO_start[queue];
4276         val64 = fifo->list_info[put_off].list_phy_addr;
4277         writeq(val64, &tx_fifo->TxDL_Pointer);
4278
4279         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4280                  TX_FIFO_LAST_LIST);
4281         if (offload_type)
4282                 val64 |= TX_FIFO_SPECIAL_FUNC;
4283
4284         writeq(val64, &tx_fifo->List_Control);
4285
4286         mmiowb();
4287
4288         put_off++;
4289         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4290                 put_off = 0;
4291         fifo->tx_curr_put_info.offset = put_off;
4292
4293         /* Avoid "put" pointer going beyond "get" pointer */
4294         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4295                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4296                 DBG_PRINT(TX_DBG,
4297                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4298                           put_off, get_off);
4299                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4300         }
4301         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4302         dev->trans_start = jiffies;
4303         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4304
4305         if (sp->config.intr_type == MSI_X)
4306                 tx_intr_handler(fifo);
4307
4308         return 0;
4309 pci_map_failed:
4310         stats->pci_map_fail_cnt++;
4311         s2io_stop_tx_queue(sp, fifo->fifo_no);
4312         stats->mem_freed += skb->truesize;
4313         dev_kfree_skb(skb);
4314         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4315         return 0;
4316 }
4317
4318 static void
4319 s2io_alarm_handle(unsigned long data)
4320 {
4321         struct s2io_nic *sp = (struct s2io_nic *)data;
4322         struct net_device *dev = sp->dev;
4323
4324         s2io_handle_errors(dev);
4325         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4326 }
4327
4328 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4329 {
4330         struct ring_info *ring = (struct ring_info *)dev_id;
4331         struct s2io_nic *sp = ring->nic;
4332         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4333
4334         if (unlikely(!is_s2io_card_up(sp)))
4335                 return IRQ_HANDLED;
4336
4337         if (sp->config.napi) {
4338                 u8 __iomem *addr = NULL;
4339                 u8 val8 = 0;
4340
4341                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4342                 addr += (7 - ring->ring_no);
4343                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4344                 writeb(val8, addr);
4345                 val8 = readb(addr);
4346                 napi_schedule(&ring->napi);
4347         } else {
4348                 rx_intr_handler(ring, 0);
4349                 s2io_chk_rx_buffers(sp, ring);
4350         }
4351
4352         return IRQ_HANDLED;
4353 }
4354
4355 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4356 {
4357         int i;
4358         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4359         struct s2io_nic *sp = fifos->nic;
4360         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4361         struct config_param *config  = &sp->config;
4362         u64 reason;
4363
4364         if (unlikely(!is_s2io_card_up(sp)))
4365                 return IRQ_NONE;
4366
4367         reason = readq(&bar0->general_int_status);
4368         if (unlikely(reason == S2IO_MINUS_ONE))
4369                 /* Nothing much can be done. Get out */
4370                 return IRQ_HANDLED;
4371
4372         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4373                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4374
4375                 if (reason & GEN_INTR_TXPIC)
4376                         s2io_txpic_intr_handle(sp);
4377
4378                 if (reason & GEN_INTR_TXTRAFFIC)
4379                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4380
4381                 for (i = 0; i < config->tx_fifo_num; i++)
4382                         tx_intr_handler(&fifos[i]);
4383
4384                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4385                 readl(&bar0->general_int_status);
4386                 return IRQ_HANDLED;
4387         }
4388         /* The interrupt was not raised by us */
4389         return IRQ_NONE;
4390 }
4391
4392 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4393 {
4394         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4395         u64 val64;
4396
4397         val64 = readq(&bar0->pic_int_status);
4398         if (val64 & PIC_INT_GPIO) {
4399                 val64 = readq(&bar0->gpio_int_reg);
4400                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4401                     (val64 & GPIO_INT_REG_LINK_UP)) {
4402                         /*
4403                          * This is unstable state so clear both up/down
4404                          * interrupt and adapter to re-evaluate the link state.
4405                          */
4406                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4407                         val64 |= GPIO_INT_REG_LINK_UP;
4408                         writeq(val64, &bar0->gpio_int_reg);
4409                         val64 = readq(&bar0->gpio_int_mask);
4410                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4411                                    GPIO_INT_MASK_LINK_DOWN);
4412                         writeq(val64, &bar0->gpio_int_mask);
4413                 }
4414                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4415                         val64 = readq(&bar0->adapter_status);
4416                                 /* Enable Adapter */
4417                         val64 = readq(&bar0->adapter_control);
4418                         val64 |= ADAPTER_CNTL_EN;
4419                         writeq(val64, &bar0->adapter_control);
4420                         val64 |= ADAPTER_LED_ON;
4421                         writeq(val64, &bar0->adapter_control);
4422                         if (!sp->device_enabled_once)
4423                                 sp->device_enabled_once = 1;
4424
4425                         s2io_link(sp, LINK_UP);
4426                         /*
4427                          * unmask link down interrupt and mask link-up
4428                          * intr
4429                          */
4430                         val64 = readq(&bar0->gpio_int_mask);
4431                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4432                         val64 |= GPIO_INT_MASK_LINK_UP;
4433                         writeq(val64, &bar0->gpio_int_mask);
4434
4435                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4436                         val64 = readq(&bar0->adapter_status);
4437                         s2io_link(sp, LINK_DOWN);
4438                         /* Link is down so unmaks link up interrupt */
4439                         val64 = readq(&bar0->gpio_int_mask);
4440                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4441                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4442                         writeq(val64, &bar0->gpio_int_mask);
4443
4444                         /* turn off LED */
4445                         val64 = readq(&bar0->adapter_control);
4446                         val64 = val64 &(~ADAPTER_LED_ON);
4447                         writeq(val64, &bar0->adapter_control);
4448                 }
4449         }
4450         val64 = readq(&bar0->gpio_int_mask);
4451 }
4452
4453 /**
4454  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4455  *  @value: alarm bits
4456  *  @addr: address value
4457  *  @cnt: counter variable
4458  *  Description: Check for alarm and increment the counter
4459  *  Return Value:
4460  *  1 - if alarm bit set
4461  *  0 - if alarm bit is not set
4462  */
4463 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4464                           unsigned long long *cnt)
4465 {
4466         u64 val64;
4467         val64 = readq(addr);
4468         if ( val64 & value ) {
4469                 writeq(val64, addr);
4470                 (*cnt)++;
4471                 return 1;
4472         }
4473         return 0;
4474
4475 }
4476
4477 /**
4478  *  s2io_handle_errors - Xframe error indication handler
4479  *  @nic: device private variable
4480  *  Description: Handle alarms such as loss of link, single or
4481  *  double ECC errors, critical and serious errors.
4482  *  Return Value:
4483  *  NONE
4484  */
4485 static void s2io_handle_errors(void * dev_id)
4486 {
4487         struct net_device *dev = (struct net_device *) dev_id;
4488         struct s2io_nic *sp = netdev_priv(dev);
4489         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4490         u64 temp64 = 0,val64=0;
4491         int i = 0;
4492
4493         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4494         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4495
4496         if (!is_s2io_card_up(sp))
4497                 return;
4498
4499         if (pci_channel_offline(sp->pdev))
4500                 return;
4501
4502         memset(&sw_stat->ring_full_cnt, 0,
4503                 sizeof(sw_stat->ring_full_cnt));
4504
4505         /* Handling the XPAK counters update */
4506         if(stats->xpak_timer_count < 72000) {
4507                 /* waiting for an hour */
4508                 stats->xpak_timer_count++;
4509         } else {
4510                 s2io_updt_xpak_counter(dev);
4511                 /* reset the count to zero */
4512                 stats->xpak_timer_count = 0;
4513         }
4514
4515         /* Handling link status change error Intr */
4516         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4517                 val64 = readq(&bar0->mac_rmac_err_reg);
4518                 writeq(val64, &bar0->mac_rmac_err_reg);
4519                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4520                         schedule_work(&sp->set_link_task);
4521         }
4522
4523         /* In case of a serious error, the device will be Reset. */
4524         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4525                                 &sw_stat->serious_err_cnt))
4526                 goto reset;
4527
4528         /* Check for data parity error */
4529         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4530                                 &sw_stat->parity_err_cnt))
4531                 goto reset;
4532
4533         /* Check for ring full counter */
4534         if (sp->device_type == XFRAME_II_DEVICE) {
4535                 val64 = readq(&bar0->ring_bump_counter1);
4536                 for (i=0; i<4; i++) {
4537                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4538                         temp64 >>= 64 - ((i+1)*16);
4539                         sw_stat->ring_full_cnt[i] += temp64;
4540                 }
4541
4542                 val64 = readq(&bar0->ring_bump_counter2);
4543                 for (i=0; i<4; i++) {
4544                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4545                         temp64 >>= 64 - ((i+1)*16);
4546                          sw_stat->ring_full_cnt[i+4] += temp64;
4547                 }
4548         }
4549
4550         val64 = readq(&bar0->txdma_int_status);
4551         /*check for pfc_err*/
4552         if (val64 & TXDMA_PFC_INT) {
4553                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4554                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4555                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4556                                 &sw_stat->pfc_err_cnt))
4557                         goto reset;
4558                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4559                                 &sw_stat->pfc_err_cnt);
4560         }
4561
4562         /*check for tda_err*/
4563         if (val64 & TXDMA_TDA_INT) {
4564                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4565                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4566                                 &sw_stat->tda_err_cnt))
4567                         goto reset;
4568                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4569                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4570         }
4571         /*check for pcc_err*/
4572         if (val64 & TXDMA_PCC_INT) {
4573                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4574                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4575                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4576                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4577                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4578                                 &sw_stat->pcc_err_cnt))
4579                         goto reset;
4580                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4581                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4582         }
4583
4584         /*check for tti_err*/
4585         if (val64 & TXDMA_TTI_INT) {
4586                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4587                                 &sw_stat->tti_err_cnt))
4588                         goto reset;
4589                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4590                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4591         }
4592
4593         /*check for lso_err*/
4594         if (val64 & TXDMA_LSO_INT) {
4595                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4596                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4597                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4598                         goto reset;
4599                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4600                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4601         }
4602
4603         /*check for tpa_err*/
4604         if (val64 & TXDMA_TPA_INT) {
4605                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4606                         &sw_stat->tpa_err_cnt))
4607                         goto reset;
4608                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4609                         &sw_stat->tpa_err_cnt);
4610         }
4611
4612         /*check for sm_err*/
4613         if (val64 & TXDMA_SM_INT) {
4614                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4615                         &sw_stat->sm_err_cnt))
4616                         goto reset;
4617         }
4618
4619         val64 = readq(&bar0->mac_int_status);
4620         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4622                                 &bar0->mac_tmac_err_reg,
4623                                 &sw_stat->mac_tmac_err_cnt))
4624                         goto reset;
4625                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4626                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4627                                 &bar0->mac_tmac_err_reg,
4628                                 &sw_stat->mac_tmac_err_cnt);
4629         }
4630
4631         val64 = readq(&bar0->xgxs_int_status);
4632         if (val64 & XGXS_INT_STATUS_TXGXS) {
4633                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634                                 &bar0->xgxs_txgxs_err_reg,
4635                                 &sw_stat->xgxs_txgxs_err_cnt))
4636                         goto reset;
4637                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638                                 &bar0->xgxs_txgxs_err_reg,
4639                                 &sw_stat->xgxs_txgxs_err_cnt);
4640         }
4641
4642         val64 = readq(&bar0->rxdma_int_status);
4643         if (val64 & RXDMA_INT_RC_INT_M) {
4644                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4645                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4646                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4647                         goto reset;
4648                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4649                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4650                                 &sw_stat->rc_err_cnt);
4651                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4652                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4653                                 &sw_stat->prc_pcix_err_cnt))
4654                         goto reset;
4655                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4656                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4657                                 &sw_stat->prc_pcix_err_cnt);
4658         }
4659
4660         if (val64 & RXDMA_INT_RPA_INT_M) {
4661                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4662                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4663                         goto reset;
4664                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4665                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4666         }
4667
4668         if (val64 & RXDMA_INT_RDA_INT_M) {
4669                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4670                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4671                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4672                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4673                         goto reset;
4674                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4675                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4676                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4677         }
4678
4679         if (val64 & RXDMA_INT_RTI_INT_M) {
4680                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4681                                 &sw_stat->rti_err_cnt))
4682                         goto reset;
4683                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4684                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4685         }
4686
4687         val64 = readq(&bar0->mac_int_status);
4688         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4689                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4690                                 &bar0->mac_rmac_err_reg,
4691                                 &sw_stat->mac_rmac_err_cnt))
4692                         goto reset;
4693                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4694                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4695                                 &sw_stat->mac_rmac_err_cnt);
4696         }
4697
4698         val64 = readq(&bar0->xgxs_int_status);
4699         if (val64 & XGXS_INT_STATUS_RXGXS) {
4700                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4701                                 &bar0->xgxs_rxgxs_err_reg,
4702                                 &sw_stat->xgxs_rxgxs_err_cnt))
4703                         goto reset;
4704         }
4705
4706         val64 = readq(&bar0->mc_int_status);
4707         if(val64 & MC_INT_STATUS_MC_INT) {
4708                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4709                                 &sw_stat->mc_err_cnt))
4710                         goto reset;
4711
4712                 /* Handling Ecc errors */
4713                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4714                         writeq(val64, &bar0->mc_err_reg);
4715                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4716                                 sw_stat->double_ecc_errs++;
4717                                 if (sp->device_type != XFRAME_II_DEVICE) {
4718                                         /*
4719                                          * Reset XframeI only if critical error
4720                                          */
4721                                         if (val64 &
4722                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4723                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4724                                                                 goto reset;
4725                                         }
4726                         } else
4727                                 sw_stat->single_ecc_errs++;
4728                 }
4729         }
4730         return;
4731
4732 reset:
4733         s2io_stop_all_tx_queue(sp);
4734         schedule_work(&sp->rst_timer_task);
4735         sw_stat->soft_reset_cnt++;
4736         return;
4737 }
4738
4739 /**
4740  *  s2io_isr - ISR handler of the device .
4741  *  @irq: the irq of the device.
4742  *  @dev_id: a void pointer to the dev structure of the NIC.
4743  *  Description:  This function is the ISR handler of the device. It
4744  *  identifies the reason for the interrupt and calls the relevant
4745  *  service routines. As a contongency measure, this ISR allocates the
4746  *  recv buffers, if their numbers are below the panic value which is
4747  *  presently set to 25% of the original number of rcv buffers allocated.
4748  *  Return value:
4749  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4750  *   IRQ_NONE: will be returned if interrupt is not from our device
4751  */
4752 static irqreturn_t s2io_isr(int irq, void *dev_id)
4753 {
4754         struct net_device *dev = (struct net_device *) dev_id;
4755         struct s2io_nic *sp = netdev_priv(dev);
4756         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4757         int i;
4758         u64 reason = 0;
4759         struct mac_info *mac_control;
4760         struct config_param *config;
4761
4762         /* Pretend we handled any irq's from a disconnected card */
4763         if (pci_channel_offline(sp->pdev))
4764                 return IRQ_NONE;
4765
4766         if (!is_s2io_card_up(sp))
4767                 return IRQ_NONE;
4768
4769         mac_control = &sp->mac_control;
4770         config = &sp->config;
4771
4772         /*
4773          * Identify the cause for interrupt and call the appropriate
4774          * interrupt handler. Causes for the interrupt could be;
4775          * 1. Rx of packet.
4776          * 2. Tx complete.
4777          * 3. Link down.
4778          */
4779         reason = readq(&bar0->general_int_status);
4780
4781         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4782                 /* Nothing much can be done. Get out */
4783                 return IRQ_HANDLED;
4784         }
4785
4786         if (reason & (GEN_INTR_RXTRAFFIC |
4787                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4788         {
4789                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4790
4791                 if (config->napi) {
4792                         if (reason & GEN_INTR_RXTRAFFIC) {
4793                                 napi_schedule(&sp->napi);
4794                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4795                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4796                                 readl(&bar0->rx_traffic_int);
4797                         }
4798                 } else {
4799                         /*
4800                          * rx_traffic_int reg is an R1 register, writing all 1's
4801                          * will ensure that the actual interrupt causing bit
4802                          * get's cleared and hence a read can be avoided.
4803                          */
4804                         if (reason & GEN_INTR_RXTRAFFIC)
4805                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4806
4807                         for (i = 0; i < config->rx_ring_num; i++)
4808                                 rx_intr_handler(&mac_control->rings[i], 0);
4809                 }
4810
4811                 /*
4812                  * tx_traffic_int reg is an R1 register, writing all 1's
4813                  * will ensure that the actual interrupt causing bit get's
4814                  * cleared and hence a read can be avoided.
4815                  */
4816                 if (reason & GEN_INTR_TXTRAFFIC)
4817                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4818
4819                 for (i = 0; i < config->tx_fifo_num; i++)
4820                         tx_intr_handler(&mac_control->fifos[i]);
4821
4822                 if (reason & GEN_INTR_TXPIC)
4823                         s2io_txpic_intr_handle(sp);
4824
4825                 /*
4826                  * Reallocate the buffers from the interrupt handler itself.
4827                  */
4828                 if (!config->napi) {
4829                         for (i = 0; i < config->rx_ring_num; i++)
4830                                 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4831                 }
4832                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4833                 readl(&bar0->general_int_status);
4834
4835                 return IRQ_HANDLED;
4836
4837         }
4838         else if (!reason) {
4839                 /* The interrupt was not raised by us */
4840                 return IRQ_NONE;
4841         }
4842
4843         return IRQ_HANDLED;
4844 }
4845
4846 /**
4847  * s2io_updt_stats -
4848  */
4849 static void s2io_updt_stats(struct s2io_nic *sp)
4850 {
4851         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4852         u64 val64;
4853         int cnt = 0;
4854
4855         if (is_s2io_card_up(sp)) {
4856                 /* Apprx 30us on a 133 MHz bus */
4857                 val64 = SET_UPDT_CLICKS(10) |
4858                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4859                 writeq(val64, &bar0->stat_cfg);
4860                 do {
4861                         udelay(100);
4862                         val64 = readq(&bar0->stat_cfg);
4863                         if (!(val64 & s2BIT(0)))
4864                                 break;
4865                         cnt++;
4866                         if (cnt == 5)
4867                                 break; /* Updt failed */
4868                 } while(1);
4869         }
4870 }
4871
4872 /**
4873  *  s2io_get_stats - Updates the device statistics structure.
4874  *  @dev : pointer to the device structure.
4875  *  Description:
4876  *  This function updates the device statistics structure in the s2io_nic
4877  *  structure and returns a pointer to the same.
4878  *  Return value:
4879  *  pointer to the updated net_device_stats structure.
4880  */
4881
4882 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4883 {
4884         struct s2io_nic *sp = netdev_priv(dev);
4885         struct mac_info *mac_control;
4886         struct config_param *config;
4887         int i;
4888
4889
4890         mac_control = &sp->mac_control;
4891         config = &sp->config;
4892
4893         /* Configure Stats for immediate updt */
4894         s2io_updt_stats(sp);
4895
4896         /* Using sp->stats as a staging area, because reset (due to mtu
4897            change, for example) will clear some hardware counters */
4898         dev->stats.tx_packets +=
4899                 le32_to_cpu(mac_control->stats_info->tmac_frms) - 
4900                 sp->stats.tx_packets;
4901         sp->stats.tx_packets =
4902                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4903         dev->stats.tx_errors +=
4904                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4905                 sp->stats.tx_errors;
4906         sp->stats.tx_errors =
4907                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4908         dev->stats.rx_errors +=
4909                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4910                 sp->stats.rx_errors;
4911         sp->stats.rx_errors =
4912                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4913         dev->stats.multicast =
4914                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) - 
4915                 sp->stats.multicast;
4916         sp->stats.multicast =
4917                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4918         dev->stats.rx_length_errors =
4919                 le64_to_cpu(mac_control->stats_info->rmac_long_frms) - 
4920                 sp->stats.rx_length_errors;
4921         sp->stats.rx_length_errors =
4922                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4923
4924         /* collect per-ring rx_packets and rx_bytes */
4925         dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4926         for (i = 0; i < config->rx_ring_num; i++) {
4927                 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4928                 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4929         }
4930
4931         return (&dev->stats);
4932 }
4933
4934 /**
4935  *  s2io_set_multicast - entry point for multicast address enable/disable.
4936  *  @dev : pointer to the device structure
4937  *  Description:
4938  *  This function is a driver entry point which gets called by the kernel
4939  *  whenever multicast addresses must be enabled/disabled. This also gets
4940  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4941  *  determine, if multicast address must be enabled or if promiscuous mode
4942  *  is to be disabled etc.
4943  *  Return value:
4944  *  void.
4945  */
4946
4947 static void s2io_set_multicast(struct net_device *dev)
4948 {
4949         int i, j, prev_cnt;
4950         struct dev_mc_list *mclist;
4951         struct s2io_nic *sp = netdev_priv(dev);
4952         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4953         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4954             0xfeffffffffffULL;
4955         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4956         void __iomem *add;
4957         struct config_param *config = &sp->config;
4958
4959         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4960                 /*  Enable all Multicast addresses */
4961                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4962                        &bar0->rmac_addr_data0_mem);
4963                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4964                        &bar0->rmac_addr_data1_mem);
4965                 val64 = RMAC_ADDR_CMD_MEM_WE |
4966                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4967                     RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4968                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4969                 /* Wait till command completes */
4970                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4971                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4972                                         S2IO_BIT_RESET);
4973
4974                 sp->m_cast_flg = 1;
4975                 sp->all_multi_pos = config->max_mc_addr - 1;
4976         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4977                 /*  Disable all Multicast addresses */
4978                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4979                        &bar0->rmac_addr_data0_mem);
4980                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4981                        &bar0->rmac_addr_data1_mem);
4982                 val64 = RMAC_ADDR_CMD_MEM_WE |
4983                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4984                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4985                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4986                 /* Wait till command completes */
4987                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4988                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4989                                         S2IO_BIT_RESET);
4990
4991                 sp->m_cast_flg = 0;
4992                 sp->all_multi_pos = 0;
4993         }
4994
4995         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4996                 /*  Put the NIC into promiscuous mode */
4997                 add = &bar0->mac_cfg;
4998                 val64 = readq(&bar0->mac_cfg);
4999                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5000
5001                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5002                 writel((u32) val64, add);
5003                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5004                 writel((u32) (val64 >> 32), (add + 4));
5005
5006                 if (vlan_tag_strip != 1) {
5007                         val64 = readq(&bar0->rx_pa_cfg);
5008                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5009                         writeq(val64, &bar0->rx_pa_cfg);
5010                         sp->vlan_strip_flag = 0;
5011                 }
5012
5013                 val64 = readq(&bar0->mac_cfg);
5014                 sp->promisc_flg = 1;
5015                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5016                           dev->name);
5017         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5018                 /*  Remove the NIC from promiscuous mode */
5019                 add = &bar0->mac_cfg;
5020                 val64 = readq(&bar0->mac_cfg);
5021                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5022
5023                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5024                 writel((u32) val64, add);
5025                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5026                 writel((u32) (val64 >> 32), (add + 4));
5027
5028                 if (vlan_tag_strip != 0) {
5029                         val64 = readq(&bar0->rx_pa_cfg);
5030                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5031                         writeq(val64, &bar0->rx_pa_cfg);
5032                         sp->vlan_strip_flag = 1;
5033                 }
5034
5035                 val64 = readq(&bar0->mac_cfg);
5036                 sp->promisc_flg = 0;
5037                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5038                           dev->name);
5039         }
5040
5041         /*  Update individual M_CAST address list */
5042         if ((!sp->m_cast_flg) && dev->mc_count) {
5043                 if (dev->mc_count >
5044                     (config->max_mc_addr - config->max_mac_addr)) {
5045                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5046                                   dev->name);
5047                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
5048                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5049                         return;
5050                 }
5051
5052                 prev_cnt = sp->mc_addr_count;
5053                 sp->mc_addr_count = dev->mc_count;
5054
5055                 /* Clear out the previous list of Mc in the H/W. */
5056                 for (i = 0; i < prev_cnt; i++) {
5057                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5058                                &bar0->rmac_addr_data0_mem);
5059                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5060                                 &bar0->rmac_addr_data1_mem);
5061                         val64 = RMAC_ADDR_CMD_MEM_WE |
5062                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5063                             RMAC_ADDR_CMD_MEM_OFFSET
5064                             (config->mc_start_offset + i);
5065                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5066
5067                         /* Wait for command completes */
5068                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5069                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5070                                         S2IO_BIT_RESET)) {
5071                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5072                                           dev->name);
5073                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5074                                 return;
5075                         }
5076                 }
5077
5078                 /* Create the new Rx filter list and update the same in H/W. */
5079                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5080                      i++, mclist = mclist->next) {
5081                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5082                                ETH_ALEN);
5083                         mac_addr = 0;
5084                         for (j = 0; j < ETH_ALEN; j++) {
5085                                 mac_addr |= mclist->dmi_addr[j];
5086                                 mac_addr <<= 8;
5087                         }
5088                         mac_addr >>= 8;
5089                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5090                                &bar0->rmac_addr_data0_mem);
5091                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5092                                 &bar0->rmac_addr_data1_mem);
5093                         val64 = RMAC_ADDR_CMD_MEM_WE |
5094                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5095                             RMAC_ADDR_CMD_MEM_OFFSET
5096                             (i + config->mc_start_offset);
5097                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5098
5099                         /* Wait for command completes */
5100                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5101                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5102                                         S2IO_BIT_RESET)) {
5103                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5104                                           dev->name);
5105                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5106                                 return;
5107                         }
5108                 }
5109         }
5110 }
5111
5112 /* read from CAM unicast & multicast addresses and store it in
5113  * def_mac_addr structure
5114  */
5115 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5116 {
5117         int offset;
5118         u64 mac_addr = 0x0;
5119         struct config_param *config = &sp->config;
5120
5121         /* store unicast & multicast mac addresses */
5122         for (offset = 0; offset < config->max_mc_addr; offset++) {
5123                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5124                 /* if read fails disable the entry */
5125                 if (mac_addr == FAILURE)
5126                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5127                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5128         }
5129 }
5130
5131 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5132 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5133 {
5134         int offset;
5135         struct config_param *config = &sp->config;
5136         /* restore unicast mac address */
5137         for (offset = 0; offset < config->max_mac_addr; offset++)
5138                 do_s2io_prog_unicast(sp->dev,
5139                         sp->def_mac_addr[offset].mac_addr);
5140
5141         /* restore multicast mac address */
5142         for (offset = config->mc_start_offset;
5143                 offset < config->max_mc_addr; offset++)
5144                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5145 }
5146
5147 /* add a multicast MAC address to CAM */
5148 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5149 {
5150         int i;
5151         u64 mac_addr = 0;
5152         struct config_param *config = &sp->config;
5153
5154         for (i = 0; i < ETH_ALEN; i++) {
5155                 mac_addr <<= 8;
5156                 mac_addr |= addr[i];
5157         }
5158         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5159                 return SUCCESS;
5160
5161         /* check if the multicast mac already preset in CAM */
5162         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5163                 u64 tmp64;
5164                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5165                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5166                         break;
5167
5168                 if (tmp64 == mac_addr)
5169                         return SUCCESS;
5170         }
5171         if (i == config->max_mc_addr) {
5172                 DBG_PRINT(ERR_DBG,
5173                         "CAM full no space left for multicast MAC\n");
5174                 return FAILURE;
5175         }
5176         /* Update the internal structure with this new mac address */
5177         do_s2io_copy_mac_addr(sp, i, mac_addr);
5178
5179         return (do_s2io_add_mac(sp, mac_addr, i));
5180 }
5181
5182 /* add MAC address to CAM */
5183 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5184 {
5185         u64 val64;
5186         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5187
5188         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5189                 &bar0->rmac_addr_data0_mem);
5190
5191         val64 =
5192                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5193                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5194         writeq(val64, &bar0->rmac_addr_cmd_mem);
5195
5196         /* Wait till command completes */
5197         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5198                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5199                 S2IO_BIT_RESET)) {
5200                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5201                 return FAILURE;
5202         }
5203         return SUCCESS;
5204 }
5205 /* deletes a specified unicast/multicast mac entry from CAM */
5206 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5207 {
5208         int offset;
5209         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5210         struct config_param *config = &sp->config;
5211
5212         for (offset = 1;
5213                 offset < config->max_mc_addr; offset++) {
5214                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5215                 if (tmp64 == addr) {
5216                         /* disable the entry by writing  0xffffffffffffULL */
5217                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5218                                 return FAILURE;
5219                         /* store the new mac list from CAM */
5220                         do_s2io_store_unicast_mc(sp);
5221                         return SUCCESS;
5222                 }
5223         }
5224         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5225                         (unsigned long long)addr);
5226         return FAILURE;
5227 }
5228
5229 /* read mac entries from CAM */
5230 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5231 {
5232         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5233         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5234
5235         /* read mac addr */
5236         val64 =
5237                 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5238                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5239         writeq(val64, &bar0->rmac_addr_cmd_mem);
5240
5241         /* Wait till command completes */
5242         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5243                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5244                 S2IO_BIT_RESET)) {
5245                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5246                 return FAILURE;
5247         }
5248         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5249         return (tmp64 >> 16);
5250 }
5251
5252 /**
5253  * s2io_set_mac_addr driver entry point
5254  */
5255
5256 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5257 {
5258         struct sockaddr *addr = p;
5259
5260         if (!is_valid_ether_addr(addr->sa_data))
5261                 return -EINVAL;
5262
5263         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5264
5265         /* store the MAC address in CAM */
5266         return (do_s2io_prog_unicast(dev, dev->dev_addr));
5267 }
5268 /**
5269  *  do_s2io_prog_unicast - Programs the Xframe mac address
5270  *  @dev : pointer to the device structure.
5271  *  @addr: a uchar pointer to the new mac address which is to be set.
5272  *  Description : This procedure will program the Xframe to receive
5273  *  frames with new Mac Address
5274  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5275  *  as defined in errno.h file on failure.
5276  */
5277
5278 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5279 {
5280         struct s2io_nic *sp = netdev_priv(dev);
5281         register u64 mac_addr = 0, perm_addr = 0;
5282         int i;
5283         u64 tmp64;
5284         struct config_param *config = &sp->config;
5285
5286         /*
5287         * Set the new MAC address as the new unicast filter and reflect this
5288         * change on the device address registered with the OS. It will be
5289         * at offset 0.
5290         */
5291         for (i = 0; i < ETH_ALEN; i++) {
5292                 mac_addr <<= 8;
5293                 mac_addr |= addr[i];
5294                 perm_addr <<= 8;
5295                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5296         }
5297
5298         /* check if the dev_addr is different than perm_addr */
5299         if (mac_addr == perm_addr)
5300                 return SUCCESS;
5301
5302         /* check if the mac already preset in CAM */
5303         for (i = 1; i < config->max_mac_addr; i++) {
5304                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5305                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5306                         break;
5307
5308                 if (tmp64 == mac_addr) {
5309                         DBG_PRINT(INFO_DBG,
5310                         "MAC addr:0x%llx already present in CAM\n",
5311                         (unsigned long long)mac_addr);
5312                         return SUCCESS;
5313                 }
5314         }
5315         if (i == config->max_mac_addr) {
5316                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5317                 return FAILURE;
5318         }
5319         /* Update the internal structure with this new mac address */
5320         do_s2io_copy_mac_addr(sp, i, mac_addr);
5321         return (do_s2io_add_mac(sp, mac_addr, i));
5322 }
5323
5324 /**
5325  * s2io_ethtool_sset - Sets different link parameters.
5326  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5327  * @info: pointer to the structure with parameters given by ethtool to set
5328  * link information.
5329  * Description:
5330  * The function sets different link parameters provided by the user onto
5331  * the NIC.
5332  * Return value:
5333  * 0 on success.
5334 */
5335
5336 static int s2io_ethtool_sset(struct net_device *dev,
5337                              struct ethtool_cmd *info)
5338 {
5339         struct s2io_nic *sp = netdev_priv(dev);
5340         if ((info->autoneg == AUTONEG_ENABLE) ||
5341             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5342                 return -EINVAL;
5343         else {
5344                 s2io_close(sp->dev);
5345                 s2io_open(sp->dev);
5346         }
5347
5348         return 0;
5349 }
5350
5351 /**
5352  * s2io_ethtol_gset - Return link specific information.
5353  * @sp : private member of the device structure, pointer to the
5354  *      s2io_nic structure.
5355  * @info : pointer to the structure with parameters given by ethtool
5356  * to return link information.
5357  * Description:
5358  * Returns link specific information like speed, duplex etc.. to ethtool.
5359  * Return value :
5360  * return 0 on success.
5361  */
5362
5363 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5364 {
5365         struct s2io_nic *sp = netdev_priv(dev);
5366         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5368         info->port = PORT_FIBRE;
5369
5370         /* info->transceiver */
5371         info->transceiver = XCVR_EXTERNAL;
5372
5373         if (netif_carrier_ok(sp->dev)) {
5374                 info->speed = 10000;
5375                 info->duplex = DUPLEX_FULL;
5376         } else {
5377                 info->speed = -1;
5378                 info->duplex = -1;
5379         }
5380
5381         info->autoneg = AUTONEG_DISABLE;
5382         return 0;
5383 }
5384
5385 /**
5386  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5387  * @sp : private member of the device structure, which is a pointer to the
5388  * s2io_nic structure.
5389  * @info : pointer to the structure with parameters given by ethtool to
5390  * return driver information.
5391  * Description:
5392  * Returns driver specefic information like name, version etc.. to ethtool.
5393  * Return value:
5394  *  void
5395  */
5396
5397 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5398                                   struct ethtool_drvinfo *info)
5399 {
5400         struct s2io_nic *sp = netdev_priv(dev);
5401
5402         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5403         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5404         strncpy(info->fw_version, "", sizeof(info->fw_version));
5405         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5406         info->regdump_len = XENA_REG_SPACE;
5407         info->eedump_len = XENA_EEPROM_SPACE;
5408 }
5409
5410 /**
5411  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5412  *  @sp: private member of the device structure, which is a pointer to the
5413  *  s2io_nic structure.
5414  *  @regs : pointer to the structure with parameters given by ethtool for
5415  *  dumping the registers.
5416  *  @reg_space: The input argumnet into which all the registers are dumped.
5417  *  Description:
5418  *  Dumps the entire register space of xFrame NIC into the user given
5419  *  buffer area.
5420  * Return value :
5421  * void .
5422 */
5423
5424 static void s2io_ethtool_gregs(struct net_device *dev,
5425                                struct ethtool_regs *regs, void *space)
5426 {
5427         int i;
5428         u64 reg;
5429         u8 *reg_space = (u8 *) space;
5430         struct s2io_nic *sp = netdev_priv(dev);
5431
5432         regs->len = XENA_REG_SPACE;
5433         regs->version = sp->pdev->subsystem_device;
5434
5435         for (i = 0; i < regs->len; i += 8) {
5436                 reg = readq(sp->bar0 + i);
5437                 memcpy((reg_space + i), &reg, 8);
5438         }
5439 }
5440
5441 /**
5442  *  s2io_phy_id  - timer function that alternates adapter LED.
5443  *  @data : address of the private member of the device structure, which
5444  *  is a pointer to the s2io_nic structure, provided as an u32.
5445  * Description: This is actually the timer function that alternates the
5446  * adapter LED bit of the adapter control bit to set/reset every time on
5447  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5448  *  once every second.
5449 */
5450 static void s2io_phy_id(unsigned long data)
5451 {
5452         struct s2io_nic *sp = (struct s2io_nic *) data;
5453         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5454         u64 val64 = 0;
5455         u16 subid;
5456
5457         subid = sp->pdev->subsystem_device;
5458         if ((sp->device_type == XFRAME_II_DEVICE) ||
5459                    ((subid & 0xFF) >= 0x07)) {
5460                 val64 = readq(&bar0->gpio_control);
5461                 val64 ^= GPIO_CTRL_GPIO_0;
5462                 writeq(val64, &bar0->gpio_control);
5463         } else {
5464                 val64 = readq(&bar0->adapter_control);
5465                 val64 ^= ADAPTER_LED_ON;
5466                 writeq(val64, &bar0->adapter_control);
5467         }
5468
5469         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5470 }
5471
5472 /**
5473  * s2io_ethtool_idnic - To physically identify the nic on the system.
5474  * @sp : private member of the device structure, which is a pointer to the
5475  * s2io_nic structure.
5476  * @id : pointer to the structure with identification parameters given by
5477  * ethtool.
5478  * Description: Used to physically identify the NIC on the system.
5479  * The Link LED will blink for a time specified by the user for
5480  * identification.
5481  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5482  * identification is possible only if it's link is up.
5483  * Return value:
5484  * int , returns 0 on success
5485  */
5486
5487 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5488 {
5489         u64 val64 = 0, last_gpio_ctrl_val;
5490         struct s2io_nic *sp = netdev_priv(dev);
5491         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5492         u16 subid;
5493
5494         subid = sp->pdev->subsystem_device;
5495         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5496         if ((sp->device_type == XFRAME_I_DEVICE) &&
5497                 ((subid & 0xFF) < 0x07)) {
5498                 val64 = readq(&bar0->adapter_control);
5499                 if (!(val64 & ADAPTER_CNTL_EN)) {
5500                         printk(KERN_ERR
5501                                "Adapter Link down, cannot blink LED\n");
5502                         return -EFAULT;
5503                 }
5504         }
5505         if (sp->id_timer.function == NULL) {
5506                 init_timer(&sp->id_timer);
5507                 sp->id_timer.function = s2io_phy_id;
5508                 sp->id_timer.data = (unsigned long) sp;
5509         }
5510         mod_timer(&sp->id_timer, jiffies);
5511         if (data)
5512                 msleep_interruptible(data * HZ);
5513         else
5514                 msleep_interruptible(MAX_FLICKER_TIME);
5515         del_timer_sync(&sp->id_timer);
5516
5517         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5518                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5519                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5520         }
5521
5522         return 0;
5523 }
5524
5525 static void s2io_ethtool_gringparam(struct net_device *dev,
5526                                     struct ethtool_ringparam *ering)
5527 {
5528         struct s2io_nic *sp = netdev_priv(dev);
5529         int i,tx_desc_count=0,rx_desc_count=0;
5530
5531         if (sp->rxd_mode == RXD_MODE_1)
5532                 ering->rx_max_pending = MAX_RX_DESC_1;
5533         else if (sp->rxd_mode == RXD_MODE_3B)
5534                 ering->rx_max_pending = MAX_RX_DESC_2;
5535
5536         ering->tx_max_pending = MAX_TX_DESC;
5537         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5538                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5539
5540         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5541         ering->tx_pending = tx_desc_count;
5542         rx_desc_count = 0;
5543         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5544                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5545
5546         ering->rx_pending = rx_desc_count;
5547
5548         ering->rx_mini_max_pending = 0;
5549         ering->rx_mini_pending = 0;
5550         if(sp->rxd_mode == RXD_MODE_1)
5551                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5552         else if (sp->rxd_mode == RXD_MODE_3B)
5553                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5554         ering->rx_jumbo_pending = rx_desc_count;
5555 }
5556
5557 /**
5558  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5559  * @sp : private member of the device structure, which is a pointer to the
5560  *      s2io_nic structure.
5561  * @ep : pointer to the structure with pause parameters given by ethtool.
5562  * Description:
5563  * Returns the Pause frame generation and reception capability of the NIC.
5564  * Return value:
5565  *  void
5566  */
5567 static void s2io_ethtool_getpause_data(struct net_device *dev,
5568                                        struct ethtool_pauseparam *ep)
5569 {
5570         u64 val64;
5571         struct s2io_nic *sp = netdev_priv(dev);
5572         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5573
5574         val64 = readq(&bar0->rmac_pause_cfg);
5575         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5576                 ep->tx_pause = TRUE;
5577         if (val64 & RMAC_PAUSE_RX_ENABLE)
5578                 ep->rx_pause = TRUE;
5579         ep->autoneg = FALSE;
5580 }
5581
5582 /**
5583  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5584  * @sp : private member of the device structure, which is a pointer to the
5585  *      s2io_nic structure.
5586  * @ep : pointer to the structure with pause parameters given by ethtool.
5587  * Description:
5588  * It can be used to set or reset Pause frame generation or reception
5589  * support of the NIC.
5590  * Return value:
5591  * int, returns 0 on Success
5592  */
5593
5594 static int s2io_ethtool_setpause_data(struct net_device *dev,
5595                                struct ethtool_pauseparam *ep)
5596 {
5597         u64 val64;
5598         struct s2io_nic *sp = netdev_priv(dev);
5599         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5600
5601         val64 = readq(&bar0->rmac_pause_cfg);
5602         if (ep->tx_pause)
5603                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5604         else
5605                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5606         if (ep->rx_pause)
5607                 val64 |= RMAC_PAUSE_RX_ENABLE;
5608         else
5609                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5610         writeq(val64, &bar0->rmac_pause_cfg);
5611         return 0;
5612 }
5613
5614 /**
5615  * read_eeprom - reads 4 bytes of data from user given offset.
5616  * @sp : private member of the device structure, which is a pointer to the
5617  *      s2io_nic structure.
5618  * @off : offset at which the data must be written
5619  * @data : Its an output parameter where the data read at the given
5620  *      offset is stored.
5621  * Description:
5622  * Will read 4 bytes of data from the user given offset and return the
5623  * read data.
5624  * NOTE: Will allow to read only part of the EEPROM visible through the
5625  *   I2C bus.
5626  * Return value:
5627  *  -1 on failure and 0 on success.
5628  */
5629
5630 #define S2IO_DEV_ID             5
5631 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5632 {
5633         int ret = -1;
5634         u32 exit_cnt = 0;
5635         u64 val64;
5636         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5637
5638         if (sp->device_type == XFRAME_I_DEVICE) {
5639                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5640                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5641                     I2C_CONTROL_CNTL_START;
5642                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5643
5644                 while (exit_cnt < 5) {
5645                         val64 = readq(&bar0->i2c_control);
5646                         if (I2C_CONTROL_CNTL_END(val64)) {
5647                                 *data = I2C_CONTROL_GET_DATA(val64);
5648                                 ret = 0;
5649                                 break;
5650                         }
5651                         msleep(50);
5652                         exit_cnt++;
5653                 }
5654         }
5655
5656         if (sp->device_type == XFRAME_II_DEVICE) {
5657                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5658                         SPI_CONTROL_BYTECNT(0x3) |
5659                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5660                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5661                 val64 |= SPI_CONTROL_REQ;
5662                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5663                 while (exit_cnt < 5) {
5664                         val64 = readq(&bar0->spi_control);
5665                         if (val64 & SPI_CONTROL_NACK) {
5666                                 ret = 1;
5667                                 break;
5668                         } else if (val64 & SPI_CONTROL_DONE) {
5669                                 *data = readq(&bar0->spi_data);
5670                                 *data &= 0xffffff;
5671                                 ret = 0;
5672                                 break;
5673                         }
5674                         msleep(50);
5675                         exit_cnt++;
5676                 }
5677         }
5678         return ret;
5679 }
5680
5681 /**
5682  *  write_eeprom - actually writes the relevant part of the data value.
5683  *  @sp : private member of the device structure, which is a pointer to the
5684  *       s2io_nic structure.
5685  *  @off : offset at which the data must be written
5686  *  @data : The data that is to be written
5687  *  @cnt : Number of bytes of the data that are actually to be written into
5688  *  the Eeprom. (max of 3)
5689  * Description:
5690  *  Actually writes the relevant part of the data value into the Eeprom
5691  *  through the I2C bus.
5692  * Return value:
5693  *  0 on success, -1 on failure.
5694  */
5695
5696 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5697 {
5698         int exit_cnt = 0, ret = -1;
5699         u64 val64;
5700         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5701
5702         if (sp->device_type == XFRAME_I_DEVICE) {
5703                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5704                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5705                     I2C_CONTROL_CNTL_START;
5706                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5707
5708                 while (exit_cnt < 5) {
5709                         val64 = readq(&bar0->i2c_control);
5710                         if (I2C_CONTROL_CNTL_END(val64)) {
5711                                 if (!(val64 & I2C_CONTROL_NACK))
5712                                         ret = 0;
5713                                 break;
5714                         }
5715                         msleep(50);
5716                         exit_cnt++;
5717                 }
5718         }
5719
5720         if (sp->device_type == XFRAME_II_DEVICE) {
5721                 int write_cnt = (cnt == 8) ? 0 : cnt;
5722                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5723
5724                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5725                         SPI_CONTROL_BYTECNT(write_cnt) |
5726                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5727                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5728                 val64 |= SPI_CONTROL_REQ;
5729                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5730                 while (exit_cnt < 5) {
5731                         val64 = readq(&bar0->spi_control);
5732                         if (val64 & SPI_CONTROL_NACK) {
5733                                 ret = 1;
5734                                 break;
5735                         } else if (val64 & SPI_CONTROL_DONE) {
5736                                 ret = 0;
5737                                 break;
5738                         }
5739                         msleep(50);
5740                         exit_cnt++;
5741                 }
5742         }
5743         return ret;
5744 }
5745 static void s2io_vpd_read(struct s2io_nic *nic)
5746 {
5747         u8 *vpd_data;
5748         u8 data;
5749         int i=0, cnt, fail = 0;
5750         int vpd_addr = 0x80;
5751
5752         if (nic->device_type == XFRAME_II_DEVICE) {
5753                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5754                 vpd_addr = 0x80;
5755         }
5756         else {
5757                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5758                 vpd_addr = 0x50;
5759         }
5760         strcpy(nic->serial_num, "NOT AVAILABLE");
5761
5762         vpd_data = kmalloc(256, GFP_KERNEL);
5763         if (!vpd_data) {
5764                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5765                 return;
5766         }
5767         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5768
5769         for (i = 0; i < 256; i +=4 ) {
5770                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5771                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5772                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5773                 for (cnt = 0; cnt <5; cnt++) {
5774                         msleep(2);
5775                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5776                         if (data == 0x80)
5777                                 break;
5778                 }
5779                 if (cnt >= 5) {
5780                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5781                         fail = 1;
5782                         break;
5783                 }
5784                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5785                                       (u32 *)&vpd_data[i]);
5786         }
5787
5788         if(!fail) {
5789                 /* read serial number of adapter */
5790                 for (cnt = 0; cnt < 256; cnt++) {
5791                 if ((vpd_data[cnt] == 'S') &&
5792                         (vpd_data[cnt+1] == 'N') &&
5793                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5794                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5795                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5796                                         vpd_data[cnt+2]);
5797                                 break;
5798                         }
5799                 }
5800         }
5801
5802         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5803                 memset(nic->product_name, 0, vpd_data[1]);
5804                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5805         }
5806         kfree(vpd_data);
5807         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5808 }
5809
5810 /**
5811  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5812  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5813  *  @eeprom : pointer to the user level structure provided by ethtool,
5814  *  containing all relevant information.
5815  *  @data_buf : user defined value to be written into Eeprom.
5816  *  Description: Reads the values stored in the Eeprom at given offset
5817  *  for a given length. Stores these values int the input argument data
5818  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5819  *  Return value:
5820  *  int  0 on success
5821  */
5822
5823 static int s2io_ethtool_geeprom(struct net_device *dev,
5824                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5825 {
5826         u32 i, valid;
5827         u64 data;
5828         struct s2io_nic *sp = netdev_priv(dev);
5829
5830         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5831
5832         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5833                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5834
5835         for (i = 0; i < eeprom->len; i += 4) {
5836                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5837                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5838                         return -EFAULT;
5839                 }
5840                 valid = INV(data);
5841                 memcpy((data_buf + i), &valid, 4);
5842         }
5843         return 0;
5844 }
5845
5846 /**
5847  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5848  *  @sp : private member of the device structure, which is a pointer to the
5849  *  s2io_nic structure.
5850  *  @eeprom : pointer to the user level structure provided by ethtool,
5851  *  containing all relevant information.
5852  *  @data_buf ; user defined value to be written into Eeprom.
5853  *  Description:
5854  *  Tries to write the user provided value in the Eeprom, at the offset
5855  *  given by the user.
5856  *  Return value:
5857  *  0 on success, -EFAULT on failure.
5858  */
5859
5860 static int s2io_ethtool_seeprom(struct net_device *dev,
5861                                 struct ethtool_eeprom *eeprom,
5862                                 u8 * data_buf)
5863 {
5864         int len = eeprom->len, cnt = 0;
5865         u64 valid = 0, data;
5866         struct s2io_nic *sp = netdev_priv(dev);
5867
5868         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5869                 DBG_PRINT(ERR_DBG,
5870                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5871                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5872                           eeprom->magic);
5873                 return -EFAULT;
5874         }
5875
5876         while (len) {
5877                 data = (u32) data_buf[cnt] & 0x000000FF;
5878                 if (data) {
5879                         valid = (u32) (data << 24);
5880                 } else
5881                         valid = data;
5882
5883                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5884                         DBG_PRINT(ERR_DBG,
5885                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5886                         DBG_PRINT(ERR_DBG,
5887                                   "write into the specified offset\n");
5888                         return -EFAULT;
5889                 }
5890                 cnt++;
5891                 len--;
5892         }
5893
5894         return 0;
5895 }
5896
5897 /**
5898  * s2io_register_test - reads and writes into all clock domains.
5899  * @sp : private member of the device structure, which is a pointer to the
5900  * s2io_nic structure.
5901  * @data : variable that returns the result of each of the test conducted b
5902  * by the driver.
5903  * Description:
5904  * Read and write into all clock domains. The NIC has 3 clock domains,
5905  * see that registers in all the three regions are accessible.
5906  * Return value:
5907  * 0 on success.
5908  */
5909
5910 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5911 {
5912         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5913         u64 val64 = 0, exp_val;
5914         int fail = 0;
5915
5916         val64 = readq(&bar0->pif_rd_swapper_fb);
5917         if (val64 != 0x123456789abcdefULL) {
5918                 fail = 1;
5919                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5920         }
5921
5922         val64 = readq(&bar0->rmac_pause_cfg);
5923         if (val64 != 0xc000ffff00000000ULL) {
5924                 fail = 1;
5925                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5926         }
5927
5928         val64 = readq(&bar0->rx_queue_cfg);
5929         if (sp->device_type == XFRAME_II_DEVICE)
5930                 exp_val = 0x0404040404040404ULL;
5931         else
5932                 exp_val = 0x0808080808080808ULL;
5933         if (val64 != exp_val) {
5934                 fail = 1;
5935                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5936         }
5937
5938         val64 = readq(&bar0->xgxs_efifo_cfg);
5939         if (val64 != 0x000000001923141EULL) {
5940                 fail = 1;
5941                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5942         }
5943
5944         val64 = 0x5A5A5A5A5A5A5A5AULL;
5945         writeq(val64, &bar0->xmsi_data);
5946         val64 = readq(&bar0->xmsi_data);
5947         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5948                 fail = 1;
5949                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5950         }
5951
5952         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5953         writeq(val64, &bar0->xmsi_data);
5954         val64 = readq(&bar0->xmsi_data);
5955         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5956                 fail = 1;
5957                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5958         }
5959
5960         *data = fail;
5961         return fail;
5962 }
5963
5964 /**
5965  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5966  * @sp : private member of the device structure, which is a pointer to the
5967  * s2io_nic structure.
5968  * @data:variable that returns the result of each of the test conducted by
5969  * the driver.
5970  * Description:
5971  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5972  * register.
5973  * Return value:
5974  * 0 on success.
5975  */
5976
5977 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5978 {
5979         int fail = 0;
5980         u64 ret_data, org_4F0, org_7F0;
5981         u8 saved_4F0 = 0, saved_7F0 = 0;
5982         struct net_device *dev = sp->dev;
5983
5984         /* Test Write Error at offset 0 */
5985         /* Note that SPI interface allows write access to all areas
5986          * of EEPROM. Hence doing all negative testing only for Xframe I.
5987          */
5988         if (sp->device_type == XFRAME_I_DEVICE)
5989                 if (!write_eeprom(sp, 0, 0, 3))
5990                         fail = 1;
5991
5992         /* Save current values at offsets 0x4F0 and 0x7F0 */
5993         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5994                 saved_4F0 = 1;
5995         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5996                 saved_7F0 = 1;
5997
5998         /* Test Write at offset 4f0 */
5999         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6000                 fail = 1;
6001         if (read_eeprom(sp, 0x4F0, &ret_data))
6002                 fail = 1;
6003
6004         if (ret_data != 0x012345) {
6005                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6006                         "Data written %llx Data read %llx\n",
6007                         dev->name, (unsigned long long)0x12345,
6008                         (unsigned long long)ret_data);
6009                 fail = 1;
6010         }
6011
6012         /* Reset the EEPROM data go FFFF */
6013         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6014
6015         /* Test Write Request Error at offset 0x7c */
6016         if (sp->device_type == XFRAME_I_DEVICE)
6017                 if (!write_eeprom(sp, 0x07C, 0, 3))
6018                         fail = 1;
6019
6020         /* Test Write Request at offset 0x7f0 */
6021         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6022                 fail = 1;
6023         if (read_eeprom(sp, 0x7F0, &ret_data))
6024                 fail = 1;
6025
6026         if (ret_data != 0x012345) {
6027                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6028                         "Data written %llx Data read %llx\n",
6029                         dev->name, (unsigned long long)0x12345,
6030                         (unsigned long long)ret_data);
6031                 fail = 1;
6032         }
6033
6034         /* Reset the EEPROM data go FFFF */
6035         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6036
6037         if (sp->device_type == XFRAME_I_DEVICE) {
6038                 /* Test Write Error at offset 0x80 */
6039                 if (!write_eeprom(sp, 0x080, 0, 3))
6040                         fail = 1;
6041
6042                 /* Test Write Error at offset 0xfc */
6043                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6044                         fail = 1;
6045
6046                 /* Test Write Error at offset 0x100 */
6047                 if (!write_eeprom(sp, 0x100, 0, 3))
6048                         fail = 1;
6049
6050                 /* Test Write Error at offset 4ec */
6051                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6052                         fail = 1;
6053         }
6054
6055         /* Restore values at offsets 0x4F0 and 0x7F0 */
6056         if (saved_4F0)
6057                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6058         if (saved_7F0)
6059                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6060
6061         *data = fail;
6062         return fail;
6063 }
6064
6065 /**
6066  * s2io_bist_test - invokes the MemBist test of the card .
6067  * @sp : private member of the device structure, which is a pointer to the
6068  * s2io_nic structure.
6069  * @data:variable that returns the result of each of the test conducted by
6070  * the driver.
6071  * Description:
6072  * This invokes the MemBist test of the card. We give around
6073  * 2 secs time for the Test to complete. If it's still not complete
6074  * within this peiod, we consider that the test failed.
6075  * Return value:
6076  * 0 on success and -1 on failure.
6077  */
6078
6079 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6080 {
6081         u8 bist = 0;
6082         int cnt = 0, ret = -1;
6083
6084         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6085         bist |= PCI_BIST_START;
6086         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6087
6088         while (cnt < 20) {
6089                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6090                 if (!(bist & PCI_BIST_START)) {
6091                         *data = (bist & PCI_BIST_CODE_MASK);
6092                         ret = 0;
6093                         break;
6094                 }
6095                 msleep(100);
6096                 cnt++;
6097         }
6098
6099         return ret;
6100 }
6101
6102 /**
6103  * s2io-link_test - verifies the link state of the nic
6104  * @sp ; private member of the device structure, which is a pointer to the
6105  * s2io_nic structure.
6106  * @data: variable that returns the result of each of the test conducted by
6107  * the driver.
6108  * Description:
6109  * The function verifies the link state of the NIC and updates the input
6110  * argument 'data' appropriately.
6111  * Return value:
6112  * 0 on success.
6113  */
6114
6115 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6116 {
6117         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6118         u64 val64;
6119
6120         val64 = readq(&bar0->adapter_status);
6121         if(!(LINK_IS_UP(val64)))
6122                 *data = 1;
6123         else
6124                 *data = 0;
6125
6126         return *data;
6127 }
6128
6129 /**
6130  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6131  * @sp - private member of the device structure, which is a pointer to the
6132  * s2io_nic structure.
6133  * @data - variable that returns the result of each of the test
6134  * conducted by the driver.
6135  * Description:
6136  *  This is one of the offline test that tests the read and write
6137  *  access to the RldRam chip on the NIC.
6138  * Return value:
6139  *  0 on success.
6140  */
6141
6142 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6143 {
6144         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6145         u64 val64;
6146         int cnt, iteration = 0, test_fail = 0;
6147
6148         val64 = readq(&bar0->adapter_control);
6149         val64 &= ~ADAPTER_ECC_EN;
6150         writeq(val64, &bar0->adapter_control);
6151
6152         val64 = readq(&bar0->mc_rldram_test_ctrl);
6153         val64 |= MC_RLDRAM_TEST_MODE;
6154         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6155
6156         val64 = readq(&bar0->mc_rldram_mrs);
6157         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6158         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6159
6160         val64 |= MC_RLDRAM_MRS_ENABLE;
6161         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6162
6163         while (iteration < 2) {
6164                 val64 = 0x55555555aaaa0000ULL;
6165                 if (iteration == 1) {
6166                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6167                 }
6168                 writeq(val64, &bar0->mc_rldram_test_d0);
6169
6170                 val64 = 0xaaaa5a5555550000ULL;
6171                 if (iteration == 1) {
6172                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6173                 }
6174                 writeq(val64, &bar0->mc_rldram_test_d1);
6175
6176                 val64 = 0x55aaaaaaaa5a0000ULL;
6177                 if (iteration == 1) {
6178                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6179                 }
6180                 writeq(val64, &bar0->mc_rldram_test_d2);
6181
6182                 val64 = (u64) (0x0000003ffffe0100ULL);
6183                 writeq(val64, &bar0->mc_rldram_test_add);
6184
6185                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6186                         MC_RLDRAM_TEST_GO;
6187                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6188
6189                 for (cnt = 0; cnt < 5; cnt++) {
6190                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6191                         if (val64 & MC_RLDRAM_TEST_DONE)
6192                                 break;
6193                         msleep(200);
6194                 }
6195
6196                 if (cnt == 5)
6197                         break;
6198
6199                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6200                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6201
6202                 for (cnt = 0; cnt < 5; cnt++) {
6203                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6204                         if (val64 & MC_RLDRAM_TEST_DONE)
6205                                 break;
6206                         msleep(500);
6207                 }
6208
6209                 if (cnt == 5)
6210                         break;
6211
6212                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6213                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6214                         test_fail = 1;
6215
6216                 iteration++;
6217         }
6218
6219         *data = test_fail;
6220
6221         /* Bring the adapter out of test mode */
6222         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6223
6224         return test_fail;
6225 }
6226
6227 /**
6228  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6229  *  @sp : private member of the device structure, which is a pointer to the
6230  *  s2io_nic structure.
6231  *  @ethtest : pointer to a ethtool command specific structure that will be
6232  *  returned to the user.
6233  *  @data : variable that returns the result of each of the test
6234  * conducted by the driver.
6235  * Description:
6236  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6237  *  the health of the card.
6238  * Return value:
6239  *  void
6240  */
6241
6242 static void s2io_ethtool_test(struct net_device *dev,
6243                               struct ethtool_test *ethtest,
6244                               uint64_t * data)
6245 {
6246         struct s2io_nic *sp = netdev_priv(dev);
6247         int orig_state = netif_running(sp->dev);
6248
6249         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6250                 /* Offline Tests. */
6251                 if (orig_state)
6252                         s2io_close(sp->dev);
6253
6254                 if (s2io_register_test(sp, &data[0]))
6255                         ethtest->flags |= ETH_TEST_FL_FAILED;
6256
6257                 s2io_reset(sp);
6258
6259                 if (s2io_rldram_test(sp, &data[3]))
6260                         ethtest->flags |= ETH_TEST_FL_FAILED;
6261
6262                 s2io_reset(sp);
6263
6264                 if (s2io_eeprom_test(sp, &data[1]))
6265                         ethtest->flags |= ETH_TEST_FL_FAILED;
6266
6267                 if (s2io_bist_test(sp, &data[4]))
6268                         ethtest->flags |= ETH_TEST_FL_FAILED;
6269
6270                 if (orig_state)
6271                         s2io_open(sp->dev);
6272
6273                 data[2] = 0;
6274         } else {
6275                 /* Online Tests. */
6276                 if (!orig_state) {
6277                         DBG_PRINT(ERR_DBG,
6278                                   "%s: is not up, cannot run test\n",
6279                                   dev->name);
6280                         data[0] = -1;
6281                         data[1] = -1;
6282                         data[2] = -1;
6283                         data[3] = -1;
6284                         data[4] = -1;
6285                 }
6286
6287                 if (s2io_link_test(sp, &data[2]))
6288                         ethtest->flags |= ETH_TEST_FL_FAILED;
6289
6290                 data[0] = 0;
6291                 data[1] = 0;
6292                 data[3] = 0;
6293                 data[4] = 0;
6294         }
6295 }
6296
6297 static void s2io_get_ethtool_stats(struct net_device *dev,
6298                                    struct ethtool_stats *estats,
6299                                    u64 * tmp_stats)
6300 {
6301         int i = 0, k;
6302         struct s2io_nic *sp = netdev_priv(dev);
6303         struct stat_block *stat_info = sp->mac_control.stats_info;
6304
6305         s2io_updt_stats(sp);
6306         tmp_stats[i++] =
6307                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
6308                 le32_to_cpu(stat_info->tmac_frms);
6309         tmp_stats[i++] =
6310                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6311                 le32_to_cpu(stat_info->tmac_data_octets);
6312         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6313         tmp_stats[i++] =
6314                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6315                 le32_to_cpu(stat_info->tmac_mcst_frms);
6316         tmp_stats[i++] =
6317                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6318                 le32_to_cpu(stat_info->tmac_bcst_frms);
6319         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6320         tmp_stats[i++] =
6321                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6322                 le32_to_cpu(stat_info->tmac_ttl_octets);
6323         tmp_stats[i++] =
6324                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6325                 le32_to_cpu(stat_info->tmac_ucst_frms);
6326         tmp_stats[i++] =
6327                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6328                 le32_to_cpu(stat_info->tmac_nucst_frms);
6329         tmp_stats[i++] =
6330                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6331                 le32_to_cpu(stat_info->tmac_any_err_frms);
6332         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6333         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6334         tmp_stats[i++] =
6335                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6336                 le32_to_cpu(stat_info->tmac_vld_ip);
6337         tmp_stats[i++] =
6338                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6339                 le32_to_cpu(stat_info->tmac_drop_ip);
6340         tmp_stats[i++] =
6341                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6342                 le32_to_cpu(stat_info->tmac_icmp);
6343         tmp_stats[i++] =
6344                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6345                 le32_to_cpu(stat_info->tmac_rst_tcp);
6346         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6347         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6348                 le32_to_cpu(stat_info->tmac_udp);
6349         tmp_stats[i++] =
6350                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6351                 le32_to_cpu(stat_info->rmac_vld_frms);
6352         tmp_stats[i++] =
6353                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6354                 le32_to_cpu(stat_info->rmac_data_octets);
6355         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6356         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6357         tmp_stats[i++] =
6358                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6359                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6360         tmp_stats[i++] =
6361                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6362                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6363         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6364         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6365         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6366         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6367         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6368         tmp_stats[i++] =
6369                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6370                 le32_to_cpu(stat_info->rmac_ttl_octets);
6371         tmp_stats[i++] =
6372                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6373                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6374         tmp_stats[i++] =
6375                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6376                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6377         tmp_stats[i++] =
6378                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6379                 le32_to_cpu(stat_info->rmac_discarded_frms);
6380         tmp_stats[i++] =
6381                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6382                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6383         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6384         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6385         tmp_stats[i++] =
6386                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6387                 le32_to_cpu(stat_info->rmac_usized_frms);
6388         tmp_stats[i++] =
6389                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6390                 le32_to_cpu(stat_info->rmac_osized_frms);
6391         tmp_stats[i++] =
6392                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6393                 le32_to_cpu(stat_info->rmac_frag_frms);
6394         tmp_stats[i++] =
6395                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6396                 le32_to_cpu(stat_info->rmac_jabber_frms);
6397         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6398         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6399         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6400         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6401         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6402         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6403         tmp_stats[i++] =
6404                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6405                 le32_to_cpu(stat_info->rmac_ip);
6406         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6407         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6408         tmp_stats[i++] =
6409                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6410                 le32_to_cpu(stat_info->rmac_drop_ip);
6411         tmp_stats[i++] =
6412                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6413                 le32_to_cpu(stat_info->rmac_icmp);
6414         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6415         tmp_stats[i++] =
6416                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6417                 le32_to_cpu(stat_info->rmac_udp);
6418         tmp_stats[i++] =
6419                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6420                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6421         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6422         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6423         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6424         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6425         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6426         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6427         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6428         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6429         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6430         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6431         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6432         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6433         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6434         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6435         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6436         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6437         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6438         tmp_stats[i++] =
6439                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6440                 le32_to_cpu(stat_info->rmac_pause_cnt);
6441         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6442         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6443         tmp_stats[i++] =
6444                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6445                 le32_to_cpu(stat_info->rmac_accepted_ip);
6446         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6447         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6448         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6449         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6450         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6451         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6452         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6453         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6454         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6455         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6456         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6457         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6458         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6459         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6460         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6461         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6462         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6463         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6464         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6465
6466         /* Enhanced statistics exist only for Hercules */
6467         if(sp->device_type == XFRAME_II_DEVICE) {
6468                 tmp_stats[i++] =
6469                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6470                 tmp_stats[i++] =
6471                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6472                 tmp_stats[i++] =
6473                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6474                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6475                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6476                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6477                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6478                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6479                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6480                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6481                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6482                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6483                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6484                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6485                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6486                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6487         }
6488
6489         tmp_stats[i++] = 0;
6490         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6491         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6492         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6493         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6494         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6495         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6496         for (k = 0; k < MAX_RX_RINGS; k++)
6497                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6498         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6499         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6500         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6501         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6502         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6503         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6504         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6505         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6506         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6507         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6508         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6509         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6510         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6511         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6512         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6513         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6514         if (stat_info->sw_stat.num_aggregations) {
6515                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6516                 int count = 0;
6517                 /*
6518                  * Since 64-bit divide does not work on all platforms,
6519                  * do repeated subtraction.
6520                  */
6521                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6522                         tmp -= stat_info->sw_stat.num_aggregations;
6523                         count++;
6524                 }
6525                 tmp_stats[i++] = count;
6526         }
6527         else
6528                 tmp_stats[i++] = 0;
6529         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6530         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6531         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6532         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6533         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6534         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6535         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6536         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6537         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6538
6539         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6540         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6541         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6542         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6543         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6544
6545         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6546         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6547         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6548         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6549         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6550         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6551         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6552         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6553         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6554         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6555         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6556         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6557         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6558         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6559         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6560         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6561         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6562         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6563         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6564         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6565         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6566         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6567         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6568         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6569         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6570         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6571 }
6572
6573 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6574 {
6575         return (XENA_REG_SPACE);
6576 }
6577
6578
6579 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6580 {
6581         struct s2io_nic *sp = netdev_priv(dev);
6582
6583         return (sp->rx_csum);
6584 }
6585
6586 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6587 {
6588         struct s2io_nic *sp = netdev_priv(dev);
6589
6590         if (data)
6591                 sp->rx_csum = 1;
6592         else
6593                 sp->rx_csum = 0;
6594
6595         return 0;
6596 }
6597
6598 static int s2io_get_eeprom_len(struct net_device *dev)
6599 {
6600         return (XENA_EEPROM_SPACE);
6601 }
6602
6603 static int s2io_get_sset_count(struct net_device *dev, int sset)
6604 {
6605         struct s2io_nic *sp = netdev_priv(dev);
6606
6607         switch (sset) {
6608         case ETH_SS_TEST:
6609                 return S2IO_TEST_LEN;
6610         case ETH_SS_STATS:
6611                 switch(sp->device_type) {
6612                 case XFRAME_I_DEVICE:
6613                         return XFRAME_I_STAT_LEN;
6614                 case XFRAME_II_DEVICE:
6615                         return XFRAME_II_STAT_LEN;
6616                 default:
6617                         return 0;
6618                 }
6619         default:
6620                 return -EOPNOTSUPP;
6621         }
6622 }
6623
6624 static void s2io_ethtool_get_strings(struct net_device *dev,
6625                                      u32 stringset, u8 * data)
6626 {
6627         int stat_size = 0;
6628         struct s2io_nic *sp = netdev_priv(dev);
6629
6630         switch (stringset) {
6631         case ETH_SS_TEST:
6632                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6633                 break;
6634         case ETH_SS_STATS:
6635                 stat_size = sizeof(ethtool_xena_stats_keys);
6636                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6637                 if(sp->device_type == XFRAME_II_DEVICE) {
6638                         memcpy(data + stat_size,
6639                                 &ethtool_enhanced_stats_keys,
6640                                 sizeof(ethtool_enhanced_stats_keys));
6641                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6642                 }
6643
6644                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6645                         sizeof(ethtool_driver_stats_keys));
6646         }
6647 }
6648
6649 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6650 {
6651         if (data)
6652                 dev->features |= NETIF_F_IP_CSUM;
6653         else
6654                 dev->features &= ~NETIF_F_IP_CSUM;
6655
6656         return 0;
6657 }
6658
6659 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6660 {
6661         return (dev->features & NETIF_F_TSO) != 0;
6662 }
6663 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6664 {
6665         if (data)
6666                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6667         else
6668                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6669
6670         return 0;
6671 }
6672
6673 static const struct ethtool_ops netdev_ethtool_ops = {
6674         .get_settings = s2io_ethtool_gset,
6675         .set_settings = s2io_ethtool_sset,
6676         .get_drvinfo = s2io_ethtool_gdrvinfo,
6677         .get_regs_len = s2io_ethtool_get_regs_len,
6678         .get_regs = s2io_ethtool_gregs,
6679         .get_link = ethtool_op_get_link,
6680         .get_eeprom_len = s2io_get_eeprom_len,
6681         .get_eeprom = s2io_ethtool_geeprom,
6682         .set_eeprom = s2io_ethtool_seeprom,
6683         .get_ringparam = s2io_ethtool_gringparam,
6684         .get_pauseparam = s2io_ethtool_getpause_data,
6685         .set_pauseparam = s2io_ethtool_setpause_data,
6686         .get_rx_csum = s2io_ethtool_get_rx_csum,
6687         .set_rx_csum = s2io_ethtool_set_rx_csum,
6688         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6689         .set_sg = ethtool_op_set_sg,
6690         .get_tso = s2io_ethtool_op_get_tso,
6691         .set_tso = s2io_ethtool_op_set_tso,
6692         .set_ufo = ethtool_op_set_ufo,
6693         .self_test = s2io_ethtool_test,
6694         .get_strings = s2io_ethtool_get_strings,
6695         .phys_id = s2io_ethtool_idnic,
6696         .get_ethtool_stats = s2io_get_ethtool_stats,
6697         .get_sset_count = s2io_get_sset_count,
6698 };
6699
6700 /**
6701  *  s2io_ioctl - Entry point for the Ioctl
6702  *  @dev :  Device pointer.
6703  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6704  *  a proprietary structure used to pass information to the driver.
6705  *  @cmd :  This is used to distinguish between the different commands that
6706  *  can be passed to the IOCTL functions.
6707  *  Description:
6708  *  Currently there are no special functionality supported in IOCTL, hence
6709  *  function always return EOPNOTSUPPORTED
6710  */
6711
6712 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6713 {
6714         return -EOPNOTSUPP;
6715 }
6716
6717 /**
6718  *  s2io_change_mtu - entry point to change MTU size for the device.
6719  *   @dev : device pointer.
6720  *   @new_mtu : the new MTU size for the device.
6721  *   Description: A driver entry point to change MTU size for the device.
6722  *   Before changing the MTU the device must be stopped.
6723  *  Return value:
6724  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6725  *   file on failure.
6726  */
6727
6728 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6729 {
6730         struct s2io_nic *sp = netdev_priv(dev);
6731         int ret = 0;
6732
6733         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6734                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6735                           dev->name);
6736                 return -EPERM;
6737         }
6738
6739         dev->mtu = new_mtu;
6740         if (netif_running(dev)) {
6741                 s2io_stop_all_tx_queue(sp);
6742                 s2io_card_down(sp);
6743                 ret = s2io_card_up(sp);
6744                 if (ret) {
6745                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6746                                   __func__);
6747                         return ret;
6748                 }
6749                 s2io_wake_all_tx_queue(sp);
6750         } else { /* Device is down */
6751                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6752                 u64 val64 = new_mtu;
6753
6754                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6755         }
6756
6757         return ret;
6758 }
6759
6760 /**
6761  * s2io_set_link - Set the LInk status
6762  * @data: long pointer to device private structue
6763  * Description: Sets the link status for the adapter
6764  */
6765
6766 static void s2io_set_link(struct work_struct *work)
6767 {
6768         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6769         struct net_device *dev = nic->dev;
6770         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6771         register u64 val64;
6772         u16 subid;
6773
6774         rtnl_lock();
6775
6776         if (!netif_running(dev))
6777                 goto out_unlock;
6778
6779         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6780                 /* The card is being reset, no point doing anything */
6781                 goto out_unlock;
6782         }
6783
6784         subid = nic->pdev->subsystem_device;
6785         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6786                 /*
6787                  * Allow a small delay for the NICs self initiated
6788                  * cleanup to complete.
6789                  */
6790                 msleep(100);
6791         }
6792
6793         val64 = readq(&bar0->adapter_status);
6794         if (LINK_IS_UP(val64)) {
6795                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6796                         if (verify_xena_quiescence(nic)) {
6797                                 val64 = readq(&bar0->adapter_control);
6798                                 val64 |= ADAPTER_CNTL_EN;
6799                                 writeq(val64, &bar0->adapter_control);
6800                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6801                                         nic->device_type, subid)) {
6802                                         val64 = readq(&bar0->gpio_control);
6803                                         val64 |= GPIO_CTRL_GPIO_0;
6804                                         writeq(val64, &bar0->gpio_control);
6805                                         val64 = readq(&bar0->gpio_control);
6806                                 } else {
6807                                         val64 |= ADAPTER_LED_ON;
6808                                         writeq(val64, &bar0->adapter_control);
6809                                 }
6810                                 nic->device_enabled_once = TRUE;
6811                         } else {
6812                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6813                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6814                                 s2io_stop_all_tx_queue(nic);
6815                         }
6816                 }
6817                 val64 = readq(&bar0->adapter_control);
6818                 val64 |= ADAPTER_LED_ON;
6819                 writeq(val64, &bar0->adapter_control);
6820                 s2io_link(nic, LINK_UP);
6821         } else {
6822                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6823                                                       subid)) {
6824                         val64 = readq(&bar0->gpio_control);
6825                         val64 &= ~GPIO_CTRL_GPIO_0;
6826                         writeq(val64, &bar0->gpio_control);
6827                         val64 = readq(&bar0->gpio_control);
6828                 }
6829                 /* turn off LED */
6830                 val64 = readq(&bar0->adapter_control);
6831                 val64 = val64 &(~ADAPTER_LED_ON);
6832                 writeq(val64, &bar0->adapter_control);
6833                 s2io_link(nic, LINK_DOWN);
6834         }
6835         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6836
6837 out_unlock:
6838         rtnl_unlock();
6839 }
6840
6841 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6842                                 struct buffAdd *ba,
6843                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6844                                 u64 *temp2, int size)
6845 {
6846         struct net_device *dev = sp->dev;
6847         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6848
6849         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6850                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6851                 /* allocate skb */
6852                 if (*skb) {
6853                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6854                         /*
6855                          * As Rx frame are not going to be processed,
6856                          * using same mapped address for the Rxd
6857                          * buffer pointer
6858                          */
6859                         rxdp1->Buffer0_ptr = *temp0;
6860                 } else {
6861                         *skb = dev_alloc_skb(size);
6862                         if (!(*skb)) {
6863                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6864                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6865                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6866                                 sp->mac_control.stats_info->sw_stat. \
6867                                         mem_alloc_fail_cnt++;
6868                                 return -ENOMEM ;
6869                         }
6870                         sp->mac_control.stats_info->sw_stat.mem_allocated
6871                                 += (*skb)->truesize;
6872                         /* storing the mapped addr in a temp variable
6873                          * such it will be used for next rxd whose
6874                          * Host Control is NULL
6875                          */
6876                         rxdp1->Buffer0_ptr = *temp0 =
6877                                 pci_map_single( sp->pdev, (*skb)->data,
6878                                         size - NET_IP_ALIGN,
6879                                         PCI_DMA_FROMDEVICE);
6880                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6881                                 goto memalloc_failed;
6882                         rxdp->Host_Control = (unsigned long) (*skb);
6883                 }
6884         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6885                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6886                 /* Two buffer Mode */
6887                 if (*skb) {
6888                         rxdp3->Buffer2_ptr = *temp2;
6889                         rxdp3->Buffer0_ptr = *temp0;
6890                         rxdp3->Buffer1_ptr = *temp1;
6891                 } else {
6892                         *skb = dev_alloc_skb(size);
6893                         if (!(*skb)) {
6894                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6895                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6896                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6897                                 sp->mac_control.stats_info->sw_stat. \
6898                                         mem_alloc_fail_cnt++;
6899                                 return -ENOMEM;
6900                         }
6901                         sp->mac_control.stats_info->sw_stat.mem_allocated
6902                                 += (*skb)->truesize;
6903                         rxdp3->Buffer2_ptr = *temp2 =
6904                                 pci_map_single(sp->pdev, (*skb)->data,
6905                                                dev->mtu + 4,
6906                                                PCI_DMA_FROMDEVICE);
6907                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6908                                 goto memalloc_failed;
6909                         rxdp3->Buffer0_ptr = *temp0 =
6910                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6911                                                 PCI_DMA_FROMDEVICE);
6912                         if (pci_dma_mapping_error(sp->pdev,
6913                                                 rxdp3->Buffer0_ptr)) {
6914                                 pci_unmap_single (sp->pdev,
6915                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6916                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6917                                 goto memalloc_failed;
6918                         }
6919                         rxdp->Host_Control = (unsigned long) (*skb);
6920
6921                         /* Buffer-1 will be dummy buffer not used */
6922                         rxdp3->Buffer1_ptr = *temp1 =
6923                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6924                                                 PCI_DMA_FROMDEVICE);
6925                         if (pci_dma_mapping_error(sp->pdev,
6926                                                 rxdp3->Buffer1_ptr)) {
6927                                 pci_unmap_single (sp->pdev,
6928                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6929                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6930                                 pci_unmap_single (sp->pdev,
6931                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6932                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6933                                 goto memalloc_failed;
6934                         }
6935                 }
6936         }
6937         return 0;
6938         memalloc_failed:
6939                 stats->pci_map_fail_cnt++;
6940                 stats->mem_freed += (*skb)->truesize;
6941                 dev_kfree_skb(*skb);
6942                 return -ENOMEM;
6943 }
6944
6945 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6946                                 int size)
6947 {
6948         struct net_device *dev = sp->dev;
6949         if (sp->rxd_mode == RXD_MODE_1) {
6950                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6951         } else if (sp->rxd_mode == RXD_MODE_3B) {
6952                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6953                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6954                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6955         }
6956 }
6957
6958 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6959 {
6960         int i, j, k, blk_cnt = 0, size;
6961         struct mac_info * mac_control = &sp->mac_control;
6962         struct config_param *config = &sp->config;
6963         struct net_device *dev = sp->dev;
6964         struct RxD_t *rxdp = NULL;
6965         struct sk_buff *skb = NULL;
6966         struct buffAdd *ba = NULL;
6967         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6968
6969         /* Calculate the size based on ring mode */
6970         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6971                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6972         if (sp->rxd_mode == RXD_MODE_1)
6973                 size += NET_IP_ALIGN;
6974         else if (sp->rxd_mode == RXD_MODE_3B)
6975                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6976
6977         for (i = 0; i < config->rx_ring_num; i++) {
6978                 blk_cnt = config->rx_cfg[i].num_rxd /
6979                         (rxd_count[sp->rxd_mode] +1);
6980
6981                 for (j = 0; j < blk_cnt; j++) {
6982                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6983                                 rxdp = mac_control->rings[i].
6984                                         rx_blocks[j].rxds[k].virt_addr;
6985                                 if(sp->rxd_mode == RXD_MODE_3B)
6986                                         ba = &mac_control->rings[i].ba[j][k];
6987                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6988                                                        &skb,(u64 *)&temp0_64,
6989                                                        (u64 *)&temp1_64,
6990                                                        (u64 *)&temp2_64,
6991                                                         size) == -ENOMEM) {
6992                                         return 0;
6993                                 }
6994
6995                                 set_rxd_buffer_size(sp, rxdp, size);
6996                                 wmb();
6997                                 /* flip the Ownership bit to Hardware */
6998                                 rxdp->Control_1 |= RXD_OWN_XENA;
6999                         }
7000                 }
7001         }
7002         return 0;
7003
7004 }
7005
7006 static int s2io_add_isr(struct s2io_nic * sp)
7007 {
7008         int ret = 0;
7009         struct net_device *dev = sp->dev;
7010         int err = 0;
7011
7012         if (sp->config.intr_type == MSI_X)
7013                 ret = s2io_enable_msi_x(sp);
7014         if (ret) {
7015                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7016                 sp->config.intr_type = INTA;
7017         }
7018
7019         /* Store the values of the MSIX table in the struct s2io_nic structure */
7020         store_xmsi_data(sp);
7021
7022         /* After proper initialization of H/W, register ISR */
7023         if (sp->config.intr_type == MSI_X) {
7024                 int i, msix_rx_cnt = 0;
7025
7026                 for (i = 0; i < sp->num_entries; i++) {
7027                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7028                                 if (sp->s2io_entries[i].type ==
7029                                         MSIX_RING_TYPE) {
7030                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7031                                                 dev->name, i);
7032                                         err = request_irq(sp->entries[i].vector,
7033                                                 s2io_msix_ring_handle, 0,
7034                                                 sp->desc[i],
7035                                                 sp->s2io_entries[i].arg);
7036                                 } else if (sp->s2io_entries[i].type ==
7037                                         MSIX_ALARM_TYPE) {
7038                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7039                                         dev->name, i);
7040                                         err = request_irq(sp->entries[i].vector,
7041                                                 s2io_msix_fifo_handle, 0,
7042                                                 sp->desc[i],
7043                                                 sp->s2io_entries[i].arg);
7044
7045                                 }
7046                                 /* if either data or addr is zero print it. */
7047                                 if (!(sp->msix_info[i].addr &&
7048                                         sp->msix_info[i].data)) {
7049                                         DBG_PRINT(ERR_DBG,
7050                                                 "%s @Addr:0x%llx Data:0x%llx\n",
7051                                                 sp->desc[i],
7052                                                 (unsigned long long)
7053                                                 sp->msix_info[i].addr,
7054                                                 (unsigned long long)
7055                                                 ntohl(sp->msix_info[i].data));
7056                                 } else
7057                                         msix_rx_cnt++;
7058                                 if (err) {
7059                                         remove_msix_isr(sp);
7060
7061                                         DBG_PRINT(ERR_DBG,
7062                                                 "%s:MSI-X-%d registration "
7063                                                 "failed\n", dev->name, i);
7064
7065                                         DBG_PRINT(ERR_DBG,
7066                                                 "%s: Defaulting to INTA\n",
7067                                                 dev->name);
7068                                         sp->config.intr_type = INTA;
7069                                         break;
7070                                 }
7071                                 sp->s2io_entries[i].in_use =
7072                                         MSIX_REGISTERED_SUCCESS;
7073                         }
7074                 }
7075                 if (!err) {
7076                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7077                                 --msix_rx_cnt);
7078                         DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7079                                                 " through alarm vector\n");
7080                 }
7081         }
7082         if (sp->config.intr_type == INTA) {
7083                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7084                                 sp->name, dev);
7085                 if (err) {
7086                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7087                                   dev->name);
7088                         return -1;
7089                 }
7090         }
7091         return 0;
7092 }
7093 static void s2io_rem_isr(struct s2io_nic * sp)
7094 {
7095         if (sp->config.intr_type == MSI_X)
7096                 remove_msix_isr(sp);
7097         else
7098                 remove_inta_isr(sp);
7099 }
7100
7101 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7102 {
7103         int cnt = 0;
7104         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7105         register u64 val64 = 0;
7106         struct config_param *config;
7107         config = &sp->config;
7108
7109         if (!is_s2io_card_up(sp))
7110                 return;
7111
7112         del_timer_sync(&sp->alarm_timer);
7113         /* If s2io_set_link task is executing, wait till it completes. */
7114         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7115                 msleep(50);
7116         }
7117         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7118
7119         /* Disable napi */
7120         if (sp->config.napi) {
7121                 int off = 0;
7122                 if (config->intr_type ==  MSI_X) {
7123                         for (; off < sp->config.rx_ring_num; off++)
7124                                 napi_disable(&sp->mac_control.rings[off].napi);
7125                         }
7126                 else
7127                         napi_disable(&sp->napi);
7128         }
7129
7130         /* disable Tx and Rx traffic on the NIC */
7131         if (do_io)
7132                 stop_nic(sp);
7133
7134         s2io_rem_isr(sp);
7135
7136         /* stop the tx queue, indicate link down */
7137         s2io_link(sp, LINK_DOWN);
7138
7139         /* Check if the device is Quiescent and then Reset the NIC */
7140         while(do_io) {
7141                 /* As per the HW requirement we need to replenish the
7142                  * receive buffer to avoid the ring bump. Since there is
7143                  * no intention of processing the Rx frame at this pointwe are
7144                  * just settting the ownership bit of rxd in Each Rx
7145                  * ring to HW and set the appropriate buffer size
7146                  * based on the ring mode
7147                  */
7148                 rxd_owner_bit_reset(sp);
7149
7150                 val64 = readq(&bar0->adapter_status);
7151                 if (verify_xena_quiescence(sp)) {
7152                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7153                         break;
7154                 }
7155
7156                 msleep(50);
7157                 cnt++;
7158                 if (cnt == 10) {
7159                         DBG_PRINT(ERR_DBG,
7160                                   "s2io_close:Device not Quiescent ");
7161                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7162                                   (unsigned long long) val64);
7163                         break;
7164                 }
7165         }
7166         if (do_io)
7167                 s2io_reset(sp);
7168
7169         /* Free all Tx buffers */
7170         free_tx_buffers(sp);
7171
7172         /* Free all Rx buffers */
7173         free_rx_buffers(sp);
7174
7175         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7176 }
7177
7178 static void s2io_card_down(struct s2io_nic * sp)
7179 {
7180         do_s2io_card_down(sp, 1);
7181 }
7182
7183 static int s2io_card_up(struct s2io_nic * sp)
7184 {
7185         int i, ret = 0;
7186         struct mac_info *mac_control;
7187         struct config_param *config;
7188         struct net_device *dev = (struct net_device *) sp->dev;
7189         u16 interruptible;
7190
7191         /* Initialize the H/W I/O registers */
7192         ret = init_nic(sp);
7193         if (ret != 0) {
7194                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7195                           dev->name);
7196                 if (ret != -EIO)
7197                         s2io_reset(sp);
7198                 return ret;
7199         }
7200
7201         /*
7202          * Initializing the Rx buffers. For now we are considering only 1
7203          * Rx ring and initializing buffers into 30 Rx blocks
7204          */
7205         mac_control = &sp->mac_control;
7206         config = &sp->config;
7207
7208         for (i = 0; i < config->rx_ring_num; i++) {
7209                 mac_control->rings[i].mtu = dev->mtu;
7210                 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7211                 if (ret) {
7212                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7213                                   dev->name);
7214                         s2io_reset(sp);
7215                         free_rx_buffers(sp);
7216                         return -ENOMEM;
7217                 }
7218                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7219                           mac_control->rings[i].rx_bufs_left);
7220         }
7221
7222         /* Initialise napi */
7223         if (config->napi) {
7224                 if (config->intr_type ==  MSI_X) {
7225                         for (i = 0; i < sp->config.rx_ring_num; i++)
7226                                 napi_enable(&sp->mac_control.rings[i].napi);
7227                 } else {
7228                         napi_enable(&sp->napi);
7229                 }
7230         }
7231
7232         /* Maintain the state prior to the open */
7233         if (sp->promisc_flg)
7234                 sp->promisc_flg = 0;
7235         if (sp->m_cast_flg) {
7236                 sp->m_cast_flg = 0;
7237                 sp->all_multi_pos= 0;
7238         }
7239
7240         /* Setting its receive mode */
7241         s2io_set_multicast(dev);
7242
7243         if (sp->lro) {
7244                 /* Initialize max aggregatable pkts per session based on MTU */
7245                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7246                 /* Check if we can use(if specified) user provided value */
7247                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7248                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7249         }
7250
7251         /* Enable Rx Traffic and interrupts on the NIC */
7252         if (start_nic(sp)) {
7253                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7254                 s2io_reset(sp);
7255                 free_rx_buffers(sp);
7256                 return -ENODEV;
7257         }
7258
7259         /* Add interrupt service routine */
7260         if (s2io_add_isr(sp) != 0) {
7261                 if (sp->config.intr_type == MSI_X)
7262                         s2io_rem_isr(sp);
7263                 s2io_reset(sp);
7264                 free_rx_buffers(sp);
7265                 return -ENODEV;
7266         }
7267
7268         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7269
7270         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7271
7272         /*  Enable select interrupts */
7273         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7274         if (sp->config.intr_type != INTA) {
7275                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7276                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7277         } else {
7278                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7279                 interruptible |= TX_PIC_INTR;
7280                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7281         }
7282
7283         return 0;
7284 }
7285
7286 /**
7287  * s2io_restart_nic - Resets the NIC.
7288  * @data : long pointer to the device private structure
7289  * Description:
7290  * This function is scheduled to be run by the s2io_tx_watchdog
7291  * function after 0.5 secs to reset the NIC. The idea is to reduce
7292  * the run time of the watch dog routine which is run holding a
7293  * spin lock.
7294  */
7295
7296 static void s2io_restart_nic(struct work_struct *work)
7297 {
7298         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7299         struct net_device *dev = sp->dev;
7300
7301         rtnl_lock();
7302
7303         if (!netif_running(dev))
7304                 goto out_unlock;
7305
7306         s2io_card_down(sp);
7307         if (s2io_card_up(sp)) {
7308                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7309                           dev->name);
7310         }
7311         s2io_wake_all_tx_queue(sp);
7312         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7313                   dev->name);
7314 out_unlock:
7315         rtnl_unlock();
7316 }
7317
7318 /**
7319  *  s2io_tx_watchdog - Watchdog for transmit side.
7320  *  @dev : Pointer to net device structure
7321  *  Description:
7322  *  This function is triggered if the Tx Queue is stopped
7323  *  for a pre-defined amount of time when the Interface is still up.
7324  *  If the Interface is jammed in such a situation, the hardware is
7325  *  reset (by s2io_close) and restarted again (by s2io_open) to
7326  *  overcome any problem that might have been caused in the hardware.
7327  *  Return value:
7328  *  void
7329  */
7330
7331 static void s2io_tx_watchdog(struct net_device *dev)
7332 {
7333         struct s2io_nic *sp = netdev_priv(dev);
7334
7335         if (netif_carrier_ok(dev)) {
7336                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7337                 schedule_work(&sp->rst_timer_task);
7338                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7339         }
7340 }
7341
7342 /**
7343  *   rx_osm_handler - To perform some OS related operations on SKB.
7344  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7345  *   @skb : the socket buffer pointer.
7346  *   @len : length of the packet
7347  *   @cksum : FCS checksum of the frame.
7348  *   @ring_no : the ring from which this RxD was extracted.
7349  *   Description:
7350  *   This function is called by the Rx interrupt serivce routine to perform
7351  *   some OS related operations on the SKB before passing it to the upper
7352  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7353  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7354  *   to the upper layer. If the checksum is wrong, it increments the Rx
7355  *   packet error count, frees the SKB and returns error.
7356  *   Return value:
7357  *   SUCCESS on success and -1 on failure.
7358  */
7359 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7360 {
7361         struct s2io_nic *sp = ring_data->nic;
7362         struct net_device *dev = (struct net_device *) ring_data->dev;
7363         struct sk_buff *skb = (struct sk_buff *)
7364                 ((unsigned long) rxdp->Host_Control);
7365         int ring_no = ring_data->ring_no;
7366         u16 l3_csum, l4_csum;
7367         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7368         struct lro *uninitialized_var(lro);
7369         u8 err_mask;
7370
7371         skb->dev = dev;
7372
7373         if (err) {
7374                 /* Check for parity error */
7375                 if (err & 0x1) {
7376                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7377                 }
7378                 err_mask = err >> 48;
7379                 switch(err_mask) {
7380                         case 1:
7381                                 sp->mac_control.stats_info->sw_stat.
7382                                 rx_parity_err_cnt++;
7383                         break;
7384
7385                         case 2:
7386                                 sp->mac_control.stats_info->sw_stat.
7387                                 rx_abort_cnt++;
7388                         break;
7389
7390                         case 3:
7391                                 sp->mac_control.stats_info->sw_stat.
7392                                 rx_parity_abort_cnt++;
7393                         break;
7394
7395                         case 4:
7396                                 sp->mac_control.stats_info->sw_stat.
7397                                 rx_rda_fail_cnt++;
7398                         break;
7399
7400                         case 5:
7401                                 sp->mac_control.stats_info->sw_stat.
7402                                 rx_unkn_prot_cnt++;
7403                         break;
7404
7405                         case 6:
7406                                 sp->mac_control.stats_info->sw_stat.
7407                                 rx_fcs_err_cnt++;
7408                         break;
7409
7410                         case 7:
7411                                 sp->mac_control.stats_info->sw_stat.
7412                                 rx_buf_size_err_cnt++;
7413                         break;
7414
7415                         case 8:
7416                                 sp->mac_control.stats_info->sw_stat.
7417                                 rx_rxd_corrupt_cnt++;
7418                         break;
7419
7420                         case 15:
7421                                 sp->mac_control.stats_info->sw_stat.
7422                                 rx_unkn_err_cnt++;
7423                         break;
7424                 }
7425                 /*
7426                 * Drop the packet if bad transfer code. Exception being
7427                 * 0x5, which could be due to unsupported IPv6 extension header.
7428                 * In this case, we let stack handle the packet.
7429                 * Note that in this case, since checksum will be incorrect,
7430                 * stack will validate the same.
7431                 */
7432                 if (err_mask != 0x5) {
7433                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7434                                 dev->name, err_mask);
7435                         dev->stats.rx_crc_errors++;
7436                         sp->mac_control.stats_info->sw_stat.mem_freed
7437                                 += skb->truesize;
7438                         dev_kfree_skb(skb);
7439                         ring_data->rx_bufs_left -= 1;
7440                         rxdp->Host_Control = 0;
7441                         return 0;
7442                 }
7443         }
7444
7445         /* Updating statistics */
7446         ring_data->rx_packets++;
7447         rxdp->Host_Control = 0;
7448         if (sp->rxd_mode == RXD_MODE_1) {
7449                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7450
7451                 ring_data->rx_bytes += len;
7452                 skb_put(skb, len);
7453
7454         } else if (sp->rxd_mode == RXD_MODE_3B) {
7455                 int get_block = ring_data->rx_curr_get_info.block_index;
7456                 int get_off = ring_data->rx_curr_get_info.offset;
7457                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7458                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7459                 unsigned char *buff = skb_push(skb, buf0_len);
7460
7461                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7462                 ring_data->rx_bytes += buf0_len + buf2_len;
7463                 memcpy(buff, ba->ba_0, buf0_len);
7464                 skb_put(skb, buf2_len);
7465         }
7466
7467         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7468             (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7469             (sp->rx_csum)) {
7470                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7471                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7472                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7473                         /*
7474                          * NIC verifies if the Checksum of the received
7475                          * frame is Ok or not and accordingly returns
7476                          * a flag in the RxD.
7477                          */
7478                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7479                         if (ring_data->lro) {
7480                                 u32 tcp_len;
7481                                 u8 *tcp;
7482                                 int ret = 0;
7483
7484                                 ret = s2io_club_tcp_session(ring_data,
7485                                         skb->data, &tcp, &tcp_len, &lro,
7486                                         rxdp, sp);
7487                                 switch (ret) {
7488                                         case 3: /* Begin anew */
7489                                                 lro->parent = skb;
7490                                                 goto aggregate;
7491                                         case 1: /* Aggregate */
7492                                         {
7493                                                 lro_append_pkt(sp, lro,
7494                                                         skb, tcp_len);
7495                                                 goto aggregate;
7496                                         }
7497                                         case 4: /* Flush session */
7498                                         {
7499                                                 lro_append_pkt(sp, lro,
7500                                                         skb, tcp_len);
7501                                                 queue_rx_frame(lro->parent,
7502                                                         lro->vlan_tag);
7503                                                 clear_lro_session(lro);
7504                                                 sp->mac_control.stats_info->
7505                                                     sw_stat.flush_max_pkts++;
7506                                                 goto aggregate;
7507                                         }
7508                                         case 2: /* Flush both */
7509                                                 lro->parent->data_len =
7510                                                         lro->frags_len;
7511                                                 sp->mac_control.stats_info->
7512                                                      sw_stat.sending_both++;
7513                                                 queue_rx_frame(lro->parent,
7514                                                         lro->vlan_tag);
7515                                                 clear_lro_session(lro);
7516                                                 goto send_up;
7517                                         case 0: /* sessions exceeded */
7518                                         case -1: /* non-TCP or not
7519                                                   * L2 aggregatable
7520                                                   */
7521                                         case 5: /*
7522                                                  * First pkt in session not
7523                                                  * L3/L4 aggregatable
7524                                                  */
7525                                                 break;
7526                                         default:
7527                                                 DBG_PRINT(ERR_DBG,
7528                                                         "%s: Samadhana!!\n",
7529                                                          __func__);
7530                                                 BUG();
7531                                 }
7532                         }
7533                 } else {
7534                         /*
7535                          * Packet with erroneous checksum, let the
7536                          * upper layers deal with it.
7537                          */
7538                         skb->ip_summed = CHECKSUM_NONE;
7539                 }
7540         } else
7541                 skb->ip_summed = CHECKSUM_NONE;
7542
7543         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7544 send_up:
7545         skb_record_rx_queue(skb, ring_no);
7546         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7547 aggregate:
7548         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7549         return SUCCESS;
7550 }
7551
7552 /**
7553  *  s2io_link - stops/starts the Tx queue.
7554  *  @sp : private member of the device structure, which is a pointer to the
7555  *  s2io_nic structure.
7556  *  @link : inidicates whether link is UP/DOWN.
7557  *  Description:
7558  *  This function stops/starts the Tx queue depending on whether the link
7559  *  status of the NIC is is down or up. This is called by the Alarm
7560  *  interrupt handler whenever a link change interrupt comes up.
7561  *  Return value:
7562  *  void.
7563  */
7564
7565 static void s2io_link(struct s2io_nic * sp, int link)
7566 {
7567         struct net_device *dev = (struct net_device *) sp->dev;
7568
7569         if (link != sp->last_link_state) {
7570                 init_tti(sp, link);
7571                 if (link == LINK_DOWN) {
7572                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7573                         s2io_stop_all_tx_queue(sp);
7574                         netif_carrier_off(dev);
7575                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7576                         sp->mac_control.stats_info->sw_stat.link_up_time =
7577                                 jiffies - sp->start_time;
7578                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7579                 } else {
7580                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7581                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7582                         sp->mac_control.stats_info->sw_stat.link_down_time =
7583                                 jiffies - sp->start_time;
7584                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7585                         netif_carrier_on(dev);
7586                         s2io_wake_all_tx_queue(sp);
7587                 }
7588         }
7589         sp->last_link_state = link;
7590         sp->start_time = jiffies;
7591 }
7592
7593 /**
7594  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7595  *  @sp : private member of the device structure, which is a pointer to the
7596  *  s2io_nic structure.
7597  *  Description:
7598  *  This function initializes a few of the PCI and PCI-X configuration registers
7599  *  with recommended values.
7600  *  Return value:
7601  *  void
7602  */
7603
7604 static void s2io_init_pci(struct s2io_nic * sp)
7605 {
7606         u16 pci_cmd = 0, pcix_cmd = 0;
7607
7608         /* Enable Data Parity Error Recovery in PCI-X command register. */
7609         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7610                              &(pcix_cmd));
7611         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7612                               (pcix_cmd | 1));
7613         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7614                              &(pcix_cmd));
7615
7616         /* Set the PErr Response bit in PCI command register. */
7617         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7618         pci_write_config_word(sp->pdev, PCI_COMMAND,
7619                               (pci_cmd | PCI_COMMAND_PARITY));
7620         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7621 }
7622
7623 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7624         u8 *dev_multiq)
7625 {
7626         if ((tx_fifo_num > MAX_TX_FIFOS) ||
7627                 (tx_fifo_num < 1)) {
7628                 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7629                         "(%d) not supported\n", tx_fifo_num);
7630
7631                 if (tx_fifo_num < 1)
7632                         tx_fifo_num = 1;
7633                 else
7634                         tx_fifo_num = MAX_TX_FIFOS;
7635
7636                 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7637                 DBG_PRINT(ERR_DBG, "tx fifos\n");
7638         }
7639
7640         if (multiq)
7641                 *dev_multiq = multiq;
7642
7643         if (tx_steering_type && (1 == tx_fifo_num)) {
7644                 if (tx_steering_type != TX_DEFAULT_STEERING)
7645                         DBG_PRINT(ERR_DBG,
7646                                 "s2io: Tx steering is not supported with "
7647                                 "one fifo. Disabling Tx steering.\n");
7648                 tx_steering_type = NO_STEERING;
7649         }
7650
7651         if ((tx_steering_type < NO_STEERING) ||
7652                 (tx_steering_type > TX_DEFAULT_STEERING)) {
7653                 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7654                          "supported\n");
7655                 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7656                 tx_steering_type = NO_STEERING;
7657         }
7658
7659         if (rx_ring_num > MAX_RX_RINGS) {
7660                 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7661                          "supported\n");
7662                 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7663                         MAX_RX_RINGS);
7664                 rx_ring_num = MAX_RX_RINGS;
7665         }
7666
7667         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7668                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7669                           "Defaulting to INTA\n");
7670                 *dev_intr_type = INTA;
7671         }
7672
7673         if ((*dev_intr_type == MSI_X) &&
7674                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7675                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7676                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7677                                         "Defaulting to INTA\n");
7678                 *dev_intr_type = INTA;
7679         }
7680
7681         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7682                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7683                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7684                 rx_ring_mode = 1;
7685         }
7686         return SUCCESS;
7687 }
7688
7689 /**
7690  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7691  * or Traffic class respectively.
7692  * @nic: device private variable
7693  * Description: The function configures the receive steering to
7694  * desired receive ring.
7695  * Return Value:  SUCCESS on success and
7696  * '-1' on failure (endian settings incorrect).
7697  */
7698 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7699 {
7700         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7701         register u64 val64 = 0;
7702
7703         if (ds_codepoint > 63)
7704                 return FAILURE;
7705
7706         val64 = RTS_DS_MEM_DATA(ring);
7707         writeq(val64, &bar0->rts_ds_mem_data);
7708
7709         val64 = RTS_DS_MEM_CTRL_WE |
7710                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7711                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7712
7713         writeq(val64, &bar0->rts_ds_mem_ctrl);
7714
7715         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7716                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7717                                 S2IO_BIT_RESET);
7718 }
7719
7720 static const struct net_device_ops s2io_netdev_ops = {
7721         .ndo_open               = s2io_open,
7722         .ndo_stop               = s2io_close,
7723         .ndo_get_stats          = s2io_get_stats,
7724         .ndo_start_xmit         = s2io_xmit,
7725         .ndo_validate_addr      = eth_validate_addr,
7726         .ndo_set_multicast_list = s2io_set_multicast,
7727         .ndo_do_ioctl           = s2io_ioctl,
7728         .ndo_set_mac_address    = s2io_set_mac_addr,
7729         .ndo_change_mtu         = s2io_change_mtu,
7730         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7731         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7732         .ndo_tx_timeout         = s2io_tx_watchdog,
7733 #ifdef CONFIG_NET_POLL_CONTROLLER
7734         .ndo_poll_controller    = s2io_netpoll,
7735 #endif
7736 };
7737
7738 /**
7739  *  s2io_init_nic - Initialization of the adapter .
7740  *  @pdev : structure containing the PCI related information of the device.
7741  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7742  *  Description:
7743  *  The function initializes an adapter identified by the pci_dec structure.
7744  *  All OS related initialization including memory and device structure and
7745  *  initlaization of the device private variable is done. Also the swapper
7746  *  control register is initialized to enable read and write into the I/O
7747  *  registers of the device.
7748  *  Return value:
7749  *  returns 0 on success and negative on failure.
7750  */
7751
7752 static int __devinit
7753 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7754 {
7755         struct s2io_nic *sp;
7756         struct net_device *dev;
7757         int i, j, ret;
7758         int dma_flag = FALSE;
7759         u32 mac_up, mac_down;
7760         u64 val64 = 0, tmp64 = 0;
7761         struct XENA_dev_config __iomem *bar0 = NULL;
7762         u16 subid;
7763         struct mac_info *mac_control;
7764         struct config_param *config;
7765         int mode;
7766         u8 dev_intr_type = intr_type;
7767         u8 dev_multiq = 0;
7768
7769         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7770         if (ret)
7771                 return ret;
7772
7773         if ((ret = pci_enable_device(pdev))) {
7774                 DBG_PRINT(ERR_DBG,
7775                           "s2io_init_nic: pci_enable_device failed\n");
7776                 return ret;
7777         }
7778
7779         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7780                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7781                 dma_flag = TRUE;
7782                 if (pci_set_consistent_dma_mask
7783                     (pdev, DMA_BIT_MASK(64))) {
7784                         DBG_PRINT(ERR_DBG,
7785                                   "Unable to obtain 64bit DMA for \
7786                                         consistent allocations\n");
7787                         pci_disable_device(pdev);
7788                         return -ENOMEM;
7789                 }
7790         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7791                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7792         } else {
7793                 pci_disable_device(pdev);
7794                 return -ENOMEM;
7795         }
7796         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7797                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7798                 pci_disable_device(pdev);
7799                 return -ENODEV;
7800         }
7801         if (dev_multiq)
7802                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7803         else
7804                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7805         if (dev == NULL) {
7806                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7807                 pci_disable_device(pdev);
7808                 pci_release_regions(pdev);
7809                 return -ENODEV;
7810         }
7811
7812         pci_set_master(pdev);
7813         pci_set_drvdata(pdev, dev);
7814         SET_NETDEV_DEV(dev, &pdev->dev);
7815
7816         /*  Private member variable initialized to s2io NIC structure */
7817         sp = netdev_priv(dev);
7818         memset(sp, 0, sizeof(struct s2io_nic));
7819         sp->dev = dev;
7820         sp->pdev = pdev;
7821         sp->high_dma_flag = dma_flag;
7822         sp->device_enabled_once = FALSE;
7823         if (rx_ring_mode == 1)
7824                 sp->rxd_mode = RXD_MODE_1;
7825         if (rx_ring_mode == 2)
7826                 sp->rxd_mode = RXD_MODE_3B;
7827
7828         sp->config.intr_type = dev_intr_type;
7829
7830         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7831                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7832                 sp->device_type = XFRAME_II_DEVICE;
7833         else
7834                 sp->device_type = XFRAME_I_DEVICE;
7835
7836         sp->lro = lro_enable;
7837
7838         /* Initialize some PCI/PCI-X fields of the NIC. */
7839         s2io_init_pci(sp);
7840
7841         /*
7842          * Setting the device configuration parameters.
7843          * Most of these parameters can be specified by the user during
7844          * module insertion as they are module loadable parameters. If
7845          * these parameters are not not specified during load time, they
7846          * are initialized with default values.
7847          */
7848         mac_control = &sp->mac_control;
7849         config = &sp->config;
7850
7851         config->napi = napi;
7852         config->tx_steering_type = tx_steering_type;
7853
7854         /* Tx side parameters. */
7855         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7856                 config->tx_fifo_num = MAX_TX_FIFOS;
7857         else
7858                 config->tx_fifo_num = tx_fifo_num;
7859
7860         /* Initialize the fifos used for tx steering */
7861         if (config->tx_fifo_num < 5) {
7862                         if (config->tx_fifo_num  == 1)
7863                                 sp->total_tcp_fifos = 1;
7864                         else
7865                                 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7866                         sp->udp_fifo_idx = config->tx_fifo_num - 1;
7867                         sp->total_udp_fifos = 1;
7868                         sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7869         } else {
7870                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7871                                                 FIFO_OTHER_MAX_NUM);
7872                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7873                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7874                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7875         }
7876
7877         config->multiq = dev_multiq;
7878         for (i = 0; i < config->tx_fifo_num; i++) {
7879                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7880                 config->tx_cfg[i].fifo_priority = i;
7881         }
7882
7883         /* mapping the QoS priority to the configured fifos */
7884         for (i = 0; i < MAX_TX_FIFOS; i++)
7885                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7886
7887         /* map the hashing selector table to the configured fifos */
7888         for (i = 0; i < config->tx_fifo_num; i++)
7889                 sp->fifo_selector[i] = fifo_selector[i];
7890
7891
7892         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7893         for (i = 0; i < config->tx_fifo_num; i++) {
7894                 config->tx_cfg[i].f_no_snoop =
7895                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7896                 if (config->tx_cfg[i].fifo_len < 65) {
7897                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7898                         break;
7899                 }
7900         }
7901         /* + 2 because one Txd for skb->data and one Txd for UFO */
7902         config->max_txds = MAX_SKB_FRAGS + 2;
7903
7904         /* Rx side parameters. */
7905         config->rx_ring_num = rx_ring_num;
7906         for (i = 0; i < config->rx_ring_num; i++) {
7907                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7908                     (rxd_count[sp->rxd_mode] + 1);
7909                 config->rx_cfg[i].ring_priority = i;
7910                 mac_control->rings[i].rx_bufs_left = 0;
7911                 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7912                 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7913                 mac_control->rings[i].pdev = sp->pdev;
7914                 mac_control->rings[i].dev = sp->dev;
7915         }
7916
7917         for (i = 0; i < rx_ring_num; i++) {
7918                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7919                 config->rx_cfg[i].f_no_snoop =
7920                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7921         }
7922
7923         /*  Setting Mac Control parameters */
7924         mac_control->rmac_pause_time = rmac_pause_time;
7925         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7926         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7927
7928
7929         /*  initialize the shared memory used by the NIC and the host */
7930         if (init_shared_mem(sp)) {
7931                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7932                           dev->name);
7933                 ret = -ENOMEM;
7934                 goto mem_alloc_failed;
7935         }
7936
7937         sp->bar0 = pci_ioremap_bar(pdev, 0);
7938         if (!sp->bar0) {
7939                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7940                           dev->name);
7941                 ret = -ENOMEM;
7942                 goto bar0_remap_failed;
7943         }
7944
7945         sp->bar1 = pci_ioremap_bar(pdev, 2);
7946         if (!sp->bar1) {
7947                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7948                           dev->name);
7949                 ret = -ENOMEM;
7950                 goto bar1_remap_failed;
7951         }
7952
7953         dev->irq = pdev->irq;
7954         dev->base_addr = (unsigned long) sp->bar0;
7955
7956         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7957         for (j = 0; j < MAX_TX_FIFOS; j++) {
7958                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7959                     (sp->bar1 + (j * 0x00020000));
7960         }
7961
7962         /*  Driver entry points */
7963         dev->netdev_ops = &s2io_netdev_ops;
7964         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7965         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7966
7967         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7968         if (sp->high_dma_flag == TRUE)
7969                 dev->features |= NETIF_F_HIGHDMA;
7970         dev->features |= NETIF_F_TSO;
7971         dev->features |= NETIF_F_TSO6;
7972         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7973                 dev->features |= NETIF_F_UFO;
7974                 dev->features |= NETIF_F_HW_CSUM;
7975         }
7976         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7977         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7978         INIT_WORK(&sp->set_link_task, s2io_set_link);
7979
7980         pci_save_state(sp->pdev);
7981
7982         /* Setting swapper control on the NIC, for proper reset operation */
7983         if (s2io_set_swapper(sp)) {
7984                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7985                           dev->name);
7986                 ret = -EAGAIN;
7987                 goto set_swap_failed;
7988         }
7989
7990         /* Verify if the Herc works on the slot its placed into */
7991         if (sp->device_type & XFRAME_II_DEVICE) {
7992                 mode = s2io_verify_pci_mode(sp);
7993                 if (mode < 0) {
7994                         DBG_PRINT(ERR_DBG, "%s: ", __func__);
7995                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7996                         ret = -EBADSLT;
7997                         goto set_swap_failed;
7998                 }
7999         }
8000
8001         if (sp->config.intr_type == MSI_X) {
8002                 sp->num_entries = config->rx_ring_num + 1;
8003                 ret = s2io_enable_msi_x(sp);
8004
8005                 if (!ret) {
8006                         ret = s2io_test_msi(sp);
8007                         /* rollback MSI-X, will re-enable during add_isr() */
8008                         remove_msix_isr(sp);
8009                 }
8010                 if (ret) {
8011
8012                         DBG_PRINT(ERR_DBG,
8013                           "s2io: MSI-X requested but failed to enable\n");
8014                         sp->config.intr_type = INTA;
8015                 }
8016         }
8017
8018         if (config->intr_type ==  MSI_X) {
8019                 for (i = 0; i < config->rx_ring_num ; i++)
8020                         netif_napi_add(dev, &mac_control->rings[i].napi,
8021                                 s2io_poll_msix, 64);
8022         } else {
8023                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8024         }
8025
8026         /* Not needed for Herc */
8027         if (sp->device_type & XFRAME_I_DEVICE) {
8028                 /*
8029                  * Fix for all "FFs" MAC address problems observed on
8030                  * Alpha platforms
8031                  */
8032                 fix_mac_address(sp);
8033                 s2io_reset(sp);
8034         }
8035
8036         /*
8037          * MAC address initialization.
8038          * For now only one mac address will be read and used.
8039          */
8040         bar0 = sp->bar0;
8041         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8042             RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8043         writeq(val64, &bar0->rmac_addr_cmd_mem);
8044         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8045                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8046         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8047         mac_down = (u32) tmp64;
8048         mac_up = (u32) (tmp64 >> 32);
8049
8050         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8051         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8052         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8053         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8054         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8055         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8056
8057         /*  Set the factory defined MAC address initially   */
8058         dev->addr_len = ETH_ALEN;
8059         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8060         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8061
8062         /* initialize number of multicast & unicast MAC entries variables */
8063         if (sp->device_type == XFRAME_I_DEVICE) {
8064                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8065                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8066                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8067         } else if (sp->device_type == XFRAME_II_DEVICE) {
8068                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8069                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8070                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8071         }
8072
8073         /* store mac addresses from CAM to s2io_nic structure */
8074         do_s2io_store_unicast_mc(sp);
8075
8076         /* Configure MSIX vector for number of rings configured plus one */
8077         if ((sp->device_type == XFRAME_II_DEVICE) &&
8078                 (config->intr_type == MSI_X))
8079                 sp->num_entries = config->rx_ring_num + 1;
8080
8081          /* Store the values of the MSIX table in the s2io_nic structure */
8082         store_xmsi_data(sp);
8083         /* reset Nic and bring it to known state */
8084         s2io_reset(sp);
8085
8086         /*
8087          * Initialize link state flags
8088          * and the card state parameter
8089          */
8090         sp->state = 0;
8091
8092         /* Initialize spinlocks */
8093         for (i = 0; i < sp->config.tx_fifo_num; i++)
8094                 spin_lock_init(&mac_control->fifos[i].tx_lock);
8095
8096         /*
8097          * SXE-002: Configure link and activity LED to init state
8098          * on driver load.
8099          */
8100         subid = sp->pdev->subsystem_device;
8101         if ((subid & 0xFF) >= 0x07) {
8102                 val64 = readq(&bar0->gpio_control);
8103                 val64 |= 0x0000800000000000ULL;
8104                 writeq(val64, &bar0->gpio_control);
8105                 val64 = 0x0411040400000000ULL;
8106                 writeq(val64, (void __iomem *) bar0 + 0x2700);
8107                 val64 = readq(&bar0->gpio_control);
8108         }
8109
8110         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8111
8112         if (register_netdev(dev)) {
8113                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8114                 ret = -ENODEV;
8115                 goto register_failed;
8116         }
8117         s2io_vpd_read(sp);
8118         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8119         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8120                   sp->product_name, pdev->revision);
8121         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8122                   s2io_driver_version);
8123         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8124         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8125         if (sp->device_type & XFRAME_II_DEVICE) {
8126                 mode = s2io_print_pci_mode(sp);
8127                 if (mode < 0) {
8128                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8129                         ret = -EBADSLT;
8130                         unregister_netdev(dev);
8131                         goto set_swap_failed;
8132                 }
8133         }
8134         switch(sp->rxd_mode) {
8135                 case RXD_MODE_1:
8136                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8137                                                 dev->name);
8138                     break;
8139                 case RXD_MODE_3B:
8140                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8141                                                 dev->name);
8142                     break;
8143         }
8144
8145         switch (sp->config.napi) {
8146         case 0:
8147                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8148                 break;
8149         case 1:
8150                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8151                 break;
8152         }
8153
8154         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8155                 sp->config.tx_fifo_num);
8156
8157         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8158                   sp->config.rx_ring_num);
8159
8160         switch(sp->config.intr_type) {
8161                 case INTA:
8162                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8163                     break;
8164                 case MSI_X:
8165                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8166                     break;
8167         }
8168         if (sp->config.multiq) {
8169                 for (i = 0; i < sp->config.tx_fifo_num; i++)
8170                         mac_control->fifos[i].multiq = config->multiq;
8171                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8172                         dev->name);
8173         } else
8174                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8175                         dev->name);
8176
8177         switch (sp->config.tx_steering_type) {
8178         case NO_STEERING:
8179                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8180                         " transmit\n", dev->name);
8181                         break;
8182         case TX_PRIORITY_STEERING:
8183                 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8184                         " transmit\n", dev->name);
8185                 break;
8186         case TX_DEFAULT_STEERING:
8187                 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8188                         " transmit\n", dev->name);
8189         }
8190
8191         if (sp->lro)
8192                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8193                           dev->name);
8194         if (ufo)
8195                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8196                                         " enabled\n", dev->name);
8197         /* Initialize device name */
8198         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8199
8200         if (vlan_tag_strip)
8201                 sp->vlan_strip_flag = 1;
8202         else
8203                 sp->vlan_strip_flag = 0;
8204
8205         /*
8206          * Make Link state as off at this point, when the Link change
8207          * interrupt comes the state will be automatically changed to
8208          * the right state.
8209          */
8210         netif_carrier_off(dev);
8211
8212         return 0;
8213
8214       register_failed:
8215       set_swap_failed:
8216         iounmap(sp->bar1);
8217       bar1_remap_failed:
8218         iounmap(sp->bar0);
8219       bar0_remap_failed:
8220       mem_alloc_failed:
8221         free_shared_mem(sp);
8222         pci_disable_device(pdev);
8223         pci_release_regions(pdev);
8224         pci_set_drvdata(pdev, NULL);
8225         free_netdev(dev);
8226
8227         return ret;
8228 }
8229
8230 /**
8231  * s2io_rem_nic - Free the PCI device
8232  * @pdev: structure containing the PCI related information of the device.
8233  * Description: This function is called by the Pci subsystem to release a
8234  * PCI device and free up all resource held up by the device. This could
8235  * be in response to a Hot plug event or when the driver is to be removed
8236  * from memory.
8237  */
8238
8239 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8240 {
8241         struct net_device *dev =
8242             (struct net_device *) pci_get_drvdata(pdev);
8243         struct s2io_nic *sp;
8244
8245         if (dev == NULL) {
8246                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8247                 return;
8248         }
8249
8250         flush_scheduled_work();
8251
8252         sp = netdev_priv(dev);
8253         unregister_netdev(dev);
8254
8255         free_shared_mem(sp);
8256         iounmap(sp->bar0);
8257         iounmap(sp->bar1);
8258         pci_release_regions(pdev);
8259         pci_set_drvdata(pdev, NULL);
8260         free_netdev(dev);
8261         pci_disable_device(pdev);
8262 }
8263
8264 /**
8265  * s2io_starter - Entry point for the driver
8266  * Description: This function is the entry point for the driver. It verifies
8267  * the module loadable parameters and initializes PCI configuration space.
8268  */
8269
8270 static int __init s2io_starter(void)
8271 {
8272         return pci_register_driver(&s2io_driver);
8273 }
8274
8275 /**
8276  * s2io_closer - Cleanup routine for the driver
8277  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8278  */
8279
8280 static __exit void s2io_closer(void)
8281 {
8282         pci_unregister_driver(&s2io_driver);
8283         DBG_PRINT(INIT_DBG, "cleanup done\n");
8284 }
8285
8286 module_init(s2io_starter);
8287 module_exit(s2io_closer);
8288
8289 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8290                 struct tcphdr **tcp, struct RxD_t *rxdp,
8291                 struct s2io_nic *sp)
8292 {
8293         int ip_off;
8294         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8295
8296         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8297                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8298                           __func__);
8299                 return -1;
8300         }
8301
8302         /* Checking for DIX type or DIX type with VLAN */
8303         if ((l2_type == 0)
8304                 || (l2_type == 4)) {
8305                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8306                 /*
8307                  * If vlan stripping is disabled and the frame is VLAN tagged,
8308                  * shift the offset by the VLAN header size bytes.
8309                  */
8310                 if ((!sp->vlan_strip_flag) &&
8311                         (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8312                         ip_off += HEADER_VLAN_SIZE;
8313         } else {
8314                 /* LLC, SNAP etc are considered non-mergeable */
8315                 return -1;
8316         }
8317
8318         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8319         ip_len = (u8)((*ip)->ihl);
8320         ip_len <<= 2;
8321         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8322
8323         return 0;
8324 }
8325
8326 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8327                                   struct tcphdr *tcp)
8328 {
8329         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8330         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8331            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8332                 return -1;
8333         return 0;
8334 }
8335
8336 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8337 {
8338         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8339 }
8340
8341 static void initiate_new_session(struct lro *lro, u8 *l2h,
8342         struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8343 {
8344         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8345         lro->l2h = l2h;
8346         lro->iph = ip;
8347         lro->tcph = tcp;
8348         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8349         lro->tcp_ack = tcp->ack_seq;
8350         lro->sg_num = 1;
8351         lro->total_len = ntohs(ip->tot_len);
8352         lro->frags_len = 0;
8353         lro->vlan_tag = vlan_tag;
8354         /*
8355          * check if we saw TCP timestamp. Other consistency checks have
8356          * already been done.
8357          */
8358         if (tcp->doff == 8) {
8359                 __be32 *ptr;
8360                 ptr = (__be32 *)(tcp+1);
8361                 lro->saw_ts = 1;
8362                 lro->cur_tsval = ntohl(*(ptr+1));
8363                 lro->cur_tsecr = *(ptr+2);
8364         }
8365         lro->in_use = 1;
8366 }
8367
8368 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8369 {
8370         struct iphdr *ip = lro->iph;
8371         struct tcphdr *tcp = lro->tcph;
8372         __sum16 nchk;
8373         struct stat_block *statinfo = sp->mac_control.stats_info;
8374         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8375
8376         /* Update L3 header */
8377         ip->tot_len = htons(lro->total_len);
8378         ip->check = 0;
8379         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8380         ip->check = nchk;
8381
8382         /* Update L4 header */
8383         tcp->ack_seq = lro->tcp_ack;
8384         tcp->window = lro->window;
8385
8386         /* Update tsecr field if this session has timestamps enabled */
8387         if (lro->saw_ts) {
8388                 __be32 *ptr = (__be32 *)(tcp + 1);
8389                 *(ptr+2) = lro->cur_tsecr;
8390         }
8391
8392         /* Update counters required for calculation of
8393          * average no. of packets aggregated.
8394          */
8395         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8396         statinfo->sw_stat.num_aggregations++;
8397 }
8398
8399 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8400                 struct tcphdr *tcp, u32 l4_pyld)
8401 {
8402         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8403         lro->total_len += l4_pyld;
8404         lro->frags_len += l4_pyld;
8405         lro->tcp_next_seq += l4_pyld;
8406         lro->sg_num++;
8407
8408         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8409         lro->tcp_ack = tcp->ack_seq;
8410         lro->window = tcp->window;
8411
8412         if (lro->saw_ts) {
8413                 __be32 *ptr;
8414                 /* Update tsecr and tsval from this packet */
8415                 ptr = (__be32 *)(tcp+1);
8416                 lro->cur_tsval = ntohl(*(ptr+1));
8417                 lro->cur_tsecr = *(ptr + 2);
8418         }
8419 }
8420
8421 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8422                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8423 {
8424         u8 *ptr;
8425
8426         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8427
8428         if (!tcp_pyld_len) {
8429                 /* Runt frame or a pure ack */
8430                 return -1;
8431         }
8432
8433         if (ip->ihl != 5) /* IP has options */
8434                 return -1;
8435
8436         /* If we see CE codepoint in IP header, packet is not mergeable */
8437         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8438                 return -1;
8439
8440         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8441         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8442                                     tcp->ece || tcp->cwr || !tcp->ack) {
8443                 /*
8444                  * Currently recognize only the ack control word and
8445                  * any other control field being set would result in
8446                  * flushing the LRO session
8447                  */
8448                 return -1;
8449         }
8450
8451         /*
8452          * Allow only one TCP timestamp option. Don't aggregate if
8453          * any other options are detected.
8454          */
8455         if (tcp->doff != 5 && tcp->doff != 8)
8456                 return -1;
8457
8458         if (tcp->doff == 8) {
8459                 ptr = (u8 *)(tcp + 1);
8460                 while (*ptr == TCPOPT_NOP)
8461                         ptr++;
8462                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8463                         return -1;
8464
8465                 /* Ensure timestamp value increases monotonically */
8466                 if (l_lro)
8467                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8468                                 return -1;
8469
8470                 /* timestamp echo reply should be non-zero */
8471                 if (*((__be32 *)(ptr+6)) == 0)
8472                         return -1;
8473         }
8474
8475         return 0;
8476 }
8477
8478 static int
8479 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8480         u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8481         struct s2io_nic *sp)
8482 {
8483         struct iphdr *ip;
8484         struct tcphdr *tcph;
8485         int ret = 0, i;
8486         u16 vlan_tag = 0;
8487
8488         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8489                                          rxdp, sp))) {
8490                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8491                           ip->saddr, ip->daddr);
8492         } else
8493                 return ret;
8494
8495         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8496         tcph = (struct tcphdr *)*tcp;
8497         *tcp_len = get_l4_pyld_length(ip, tcph);
8498         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8499                 struct lro *l_lro = &ring_data->lro0_n[i];
8500                 if (l_lro->in_use) {
8501                         if (check_for_socket_match(l_lro, ip, tcph))
8502                                 continue;
8503                         /* Sock pair matched */
8504                         *lro = l_lro;
8505
8506                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8507                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8508                                           "0x%x, actual 0x%x\n", __func__,
8509                                           (*lro)->tcp_next_seq,
8510                                           ntohl(tcph->seq));
8511
8512                                 sp->mac_control.stats_info->
8513                                    sw_stat.outof_sequence_pkts++;
8514                                 ret = 2;
8515                                 break;
8516                         }
8517
8518                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8519                                 ret = 1; /* Aggregate */
8520                         else
8521                                 ret = 2; /* Flush both */
8522                         break;
8523                 }
8524         }
8525
8526         if (ret == 0) {
8527                 /* Before searching for available LRO objects,
8528                  * check if the pkt is L3/L4 aggregatable. If not
8529                  * don't create new LRO session. Just send this
8530                  * packet up.
8531                  */
8532                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8533                         return 5;
8534                 }
8535
8536                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8537                         struct lro *l_lro = &ring_data->lro0_n[i];
8538                         if (!(l_lro->in_use)) {
8539                                 *lro = l_lro;
8540                                 ret = 3; /* Begin anew */
8541                                 break;
8542                         }
8543                 }
8544         }
8545
8546         if (ret == 0) { /* sessions exceeded */
8547                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8548                           __func__);
8549                 *lro = NULL;
8550                 return ret;
8551         }
8552
8553         switch (ret) {
8554                 case 3:
8555                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8556                                                                 vlan_tag);
8557                         break;
8558                 case 2:
8559                         update_L3L4_header(sp, *lro);
8560                         break;
8561                 case 1:
8562                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8563                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8564                                 update_L3L4_header(sp, *lro);
8565                                 ret = 4; /* Flush the LRO */
8566                         }
8567                         break;
8568                 default:
8569                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8570                                 __func__);
8571                         break;
8572         }
8573
8574         return ret;
8575 }
8576
8577 static void clear_lro_session(struct lro *lro)
8578 {
8579         static u16 lro_struct_size = sizeof(struct lro);
8580
8581         memset(lro, 0, lro_struct_size);
8582 }
8583
8584 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8585 {
8586         struct net_device *dev = skb->dev;
8587         struct s2io_nic *sp = netdev_priv(dev);
8588
8589         skb->protocol = eth_type_trans(skb, dev);
8590         if (sp->vlgrp && vlan_tag
8591                 && (sp->vlan_strip_flag)) {
8592                 /* Queueing the vlan frame to the upper layer */
8593                 if (sp->config.napi)
8594                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8595                 else
8596                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8597         } else {
8598                 if (sp->config.napi)
8599                         netif_receive_skb(skb);
8600                 else
8601                         netif_rx(skb);
8602         }
8603 }
8604
8605 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8606                            struct sk_buff *skb,
8607                            u32 tcp_len)
8608 {
8609         struct sk_buff *first = lro->parent;
8610
8611         first->len += tcp_len;
8612         first->data_len = lro->frags_len;
8613         skb_pull(skb, (skb->len - tcp_len));
8614         if (skb_shinfo(first)->frag_list)
8615                 lro->last_frag->next = skb;
8616         else
8617                 skb_shinfo(first)->frag_list = skb;
8618         first->truesize += skb->truesize;
8619         lro->last_frag = skb;
8620         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8621         return;
8622 }
8623
8624 /**
8625  * s2io_io_error_detected - called when PCI error is detected
8626  * @pdev: Pointer to PCI device
8627  * @state: The current pci connection state
8628  *
8629  * This function is called after a PCI bus error affecting
8630  * this device has been detected.
8631  */
8632 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8633                                                pci_channel_state_t state)
8634 {
8635         struct net_device *netdev = pci_get_drvdata(pdev);
8636         struct s2io_nic *sp = netdev_priv(netdev);
8637
8638         netif_device_detach(netdev);
8639
8640         if (netif_running(netdev)) {
8641                 /* Bring down the card, while avoiding PCI I/O */
8642                 do_s2io_card_down(sp, 0);
8643         }
8644         pci_disable_device(pdev);
8645
8646         return PCI_ERS_RESULT_NEED_RESET;
8647 }
8648
8649 /**
8650  * s2io_io_slot_reset - called after the pci bus has been reset.
8651  * @pdev: Pointer to PCI device
8652  *
8653  * Restart the card from scratch, as if from a cold-boot.
8654  * At this point, the card has exprienced a hard reset,
8655  * followed by fixups by BIOS, and has its config space
8656  * set up identically to what it was at cold boot.
8657  */
8658 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8659 {
8660         struct net_device *netdev = pci_get_drvdata(pdev);
8661         struct s2io_nic *sp = netdev_priv(netdev);
8662
8663         if (pci_enable_device(pdev)) {
8664                 printk(KERN_ERR "s2io: "
8665                        "Cannot re-enable PCI device after reset.\n");
8666                 return PCI_ERS_RESULT_DISCONNECT;
8667         }
8668
8669         pci_set_master(pdev);
8670         s2io_reset(sp);
8671
8672         return PCI_ERS_RESULT_RECOVERED;
8673 }
8674
8675 /**
8676  * s2io_io_resume - called when traffic can start flowing again.
8677  * @pdev: Pointer to PCI device
8678  *
8679  * This callback is called when the error recovery driver tells
8680  * us that its OK to resume normal operation.
8681  */
8682 static void s2io_io_resume(struct pci_dev *pdev)
8683 {
8684         struct net_device *netdev = pci_get_drvdata(pdev);
8685         struct s2io_nic *sp = netdev_priv(netdev);
8686
8687         if (netif_running(netdev)) {
8688                 if (s2io_card_up(sp)) {
8689                         printk(KERN_ERR "s2io: "
8690                                "Can't bring device back up after reset.\n");
8691                         return;
8692                 }
8693
8694                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8695                         s2io_card_down(sp);
8696                         printk(KERN_ERR "s2io: "
8697                                "Can't resetore mac addr after reset.\n");
8698                         return;
8699                 }
8700         }
8701
8702         netif_device_attach(netdev);
8703         netif_tx_wake_all_queues(netdev);
8704 }