4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
51 #include <asm/byteorder.h>
53 #include <asm/uaccess.h>
55 #include <asm/bitops.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
67 nr_bytes = rq->hard_nr_sectors << 9;
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82 add_disk_randomness(rq->rq_disk);
83 if (!list_empty(&rq->queuelist))
84 blkdev_dequeue_request(rq);
85 HWGROUP(drive)->rq = NULL;
86 end_that_request_last(rq, uptodate);
94 * ide_end_request - complete an IDE I/O
95 * @drive: IDE device for the I/O
97 * @nr_sectors: number of sectors completed
99 * This is our end_request wrapper function. We complete the I/O
100 * update random number input and dequeue the request, which if
101 * it was tagged may be out of order.
104 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 unsigned int nr_bytes = nr_sectors << 9;
112 * room for locking improvements here, the calls below don't
113 * need the queue lock held at all
115 spin_lock_irqsave(&ide_lock, flags);
116 rq = HWGROUP(drive)->rq;
119 if (blk_pc_request(rq))
120 nr_bytes = rq->data_len;
122 nr_bytes = rq->hard_cur_sectors << 9;
125 ret = __ide_end_request(drive, rq, uptodate, nr_bytes);
127 spin_unlock_irqrestore(&ide_lock, flags);
130 EXPORT_SYMBOL(ide_end_request);
133 * Power Management state machine. This one is rather trivial for now,
134 * we should probably add more, like switching back to PIO on suspend
135 * to help some BIOSes, re-do the door locking on resume, etc...
139 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_restore_pio = ide_pm_state_start_resume,
147 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 struct request_pm_state *pm = rq->data;
151 if (drive->media != ide_disk)
154 switch (pm->pm_step) {
155 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
156 if (pm->pm_state == PM_EVENT_FREEZE)
157 pm->pm_step = ide_pm_state_completed;
159 pm->pm_step = idedisk_pm_standby;
161 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
162 pm->pm_step = ide_pm_state_completed;
164 case idedisk_pm_restore_pio: /* Resume step 1 complete */
165 pm->pm_step = idedisk_pm_idle;
167 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
168 pm->pm_step = ide_pm_restore_dma;
173 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 struct request_pm_state *pm = rq->data;
176 ide_task_t *args = rq->special;
178 memset(args, 0, sizeof(*args));
180 switch (pm->pm_step) {
181 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
182 if (drive->media != ide_disk)
184 /* Not supported? Switch to next step now. */
185 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
186 ide_complete_power_step(drive, rq, 0, 0);
189 if (ide_id_has_flush_cache_ext(drive->id))
190 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
192 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
193 args->command_type = IDE_DRIVE_TASK_NO_DATA;
194 args->handler = &task_no_data_intr;
195 return do_rw_taskfile(drive, args);
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
198 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
199 args->command_type = IDE_DRIVE_TASK_NO_DATA;
200 args->handler = &task_no_data_intr;
201 return do_rw_taskfile(drive, args);
203 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
204 ide_set_max_pio(drive);
206 * skip idedisk_pm_idle for ATAPI devices
208 if (drive->media != ide_disk)
209 pm->pm_step = ide_pm_restore_dma;
211 ide_complete_power_step(drive, rq, 0, 0);
214 case idedisk_pm_idle: /* Resume step 2 (idle) */
215 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
216 args->command_type = IDE_DRIVE_TASK_NO_DATA;
217 args->handler = task_no_data_intr;
218 return do_rw_taskfile(drive, args);
220 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
222 * Right now, all we do is call hwif->ide_dma_check(drive),
223 * we could be smarter and check for current xfer_speed
224 * in struct drive etc...
226 if (drive->hwif->ide_dma_check == NULL)
228 drive->hwif->dma_off_quietly(drive);
230 * TODO: respect ->using_dma setting
235 pm->pm_step = ide_pm_state_completed;
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
243 * @nr_sectors: number of sectors completed
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
250 * NOTE: This path does not handle barrier, but barrier is not supported
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255 int uptodate, int nr_sectors)
260 spin_lock_irqsave(&ide_lock, flags);
262 BUG_ON(!blk_rq_started(rq));
265 * if failfast is set on a request, override number of sectors and
266 * complete the whole request right now
268 if (blk_noretry_request(rq) && end_io_error(uptodate))
269 nr_sectors = rq->hard_nr_sectors;
271 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
275 * decide whether to reenable DMA -- 3 is a random magic for now,
276 * if we DMA timeout more than 3 times, just stay in PIO
278 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
280 HWGROUP(drive)->hwif->ide_dma_on(drive);
283 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
284 add_disk_randomness(rq->rq_disk);
285 if (blk_rq_tagged(rq))
286 blk_queue_end_tag(drive->queue, rq);
287 end_that_request_last(rq, uptodate);
290 spin_unlock_irqrestore(&ide_lock, flags);
293 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
297 * ide_complete_pm_request - end the current Power Management request
298 * @drive: target drive
301 * This function cleans up the current PM request and stops the queue
304 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
309 printk("%s: completing PM request, %s\n", drive->name,
310 blk_pm_suspend_request(rq) ? "suspend" : "resume");
312 spin_lock_irqsave(&ide_lock, flags);
313 if (blk_pm_suspend_request(rq)) {
314 blk_stop_queue(drive->queue);
317 blk_start_queue(drive->queue);
319 blkdev_dequeue_request(rq);
320 HWGROUP(drive)->rq = NULL;
321 end_that_request_last(rq, 1);
322 spin_unlock_irqrestore(&ide_lock, flags);
326 * ide_end_drive_cmd - end an explicit drive command
331 * Clean up after success/failure of an explicit drive command.
332 * These get thrown onto the queue so they are synchronized with
333 * real I/O operations on the drive.
335 * In LBA48 mode we have to read the register set twice to get
336 * all the extra information out.
339 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
341 ide_hwif_t *hwif = HWIF(drive);
345 spin_lock_irqsave(&ide_lock, flags);
346 rq = HWGROUP(drive)->rq;
347 spin_unlock_irqrestore(&ide_lock, flags);
349 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
350 u8 *args = (u8 *) rq->buffer;
352 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
357 args[2] = hwif->INB(IDE_NSECTOR_REG);
359 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
360 u8 *args = (u8 *) rq->buffer;
362 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
367 args[2] = hwif->INB(IDE_NSECTOR_REG);
368 args[3] = hwif->INB(IDE_SECTOR_REG);
369 args[4] = hwif->INB(IDE_LCYL_REG);
370 args[5] = hwif->INB(IDE_HCYL_REG);
371 args[6] = hwif->INB(IDE_SELECT_REG);
373 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
374 ide_task_t *args = (ide_task_t *) rq->special;
376 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
379 if (args->tf_in_flags.b.data) {
380 u16 data = hwif->INW(IDE_DATA_REG);
381 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
382 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
384 args->tfRegister[IDE_ERROR_OFFSET] = err;
385 /* be sure we're looking at the low order bits */
386 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
387 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
388 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
389 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
390 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
391 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
392 args->tfRegister[IDE_STATUS_OFFSET] = stat;
394 if (drive->addressing == 1) {
395 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
396 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
397 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
398 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
399 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
400 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
403 } else if (blk_pm_request(rq)) {
404 struct request_pm_state *pm = rq->data;
406 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
407 drive->name, rq->pm->pm_step, stat, err);
409 ide_complete_power_step(drive, rq, stat, err);
410 if (pm->pm_step == ide_pm_state_completed)
411 ide_complete_pm_request(drive, rq);
415 spin_lock_irqsave(&ide_lock, flags);
416 blkdev_dequeue_request(rq);
417 HWGROUP(drive)->rq = NULL;
419 end_that_request_last(rq, !rq->errors);
420 spin_unlock_irqrestore(&ide_lock, flags);
423 EXPORT_SYMBOL(ide_end_drive_cmd);
426 * try_to_flush_leftover_data - flush junk
427 * @drive: drive to flush
429 * try_to_flush_leftover_data() is invoked in response to a drive
430 * unexpectedly having its DRQ_STAT bit set. As an alternative to
431 * resetting the drive, this routine tries to clear the condition
432 * by read a sector's worth of data from the drive. Of course,
433 * this may not help if the drive is *waiting* for data from *us*.
435 static void try_to_flush_leftover_data (ide_drive_t *drive)
437 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
439 if (drive->media != ide_disk)
443 u32 wcount = (i > 16) ? 16 : i;
446 HWIF(drive)->ata_input_data(drive, buffer, wcount);
450 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
455 drv = *(ide_driver_t **)rq->rq_disk->private_data;
456 drv->end_request(drive, 0, 0);
458 ide_end_request(drive, 0, 0);
461 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
463 ide_hwif_t *hwif = drive->hwif;
465 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
466 /* other bits are useless when BUSY */
467 rq->errors |= ERROR_RESET;
468 } else if (stat & ERR_STAT) {
469 /* err has different meaning on cdrom and tape */
470 if (err == ABRT_ERR) {
471 if (drive->select.b.lba &&
472 /* some newer drives don't support WIN_SPECIFY */
473 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
475 } else if ((err & BAD_CRC) == BAD_CRC) {
476 /* UDMA crc error, just retry the operation */
478 } else if (err & (BBD_ERR | ECC_ERR)) {
479 /* retries won't help these */
480 rq->errors = ERROR_MAX;
481 } else if (err & TRK0_ERR) {
482 /* help it find track zero */
483 rq->errors |= ERROR_RECAL;
487 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
488 try_to_flush_leftover_data(drive);
490 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
491 ide_kill_rq(drive, rq);
495 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
496 rq->errors |= ERROR_RESET;
498 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
500 return ide_do_reset(drive);
503 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
504 drive->special.b.recalibrate = 1;
511 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
513 ide_hwif_t *hwif = drive->hwif;
515 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
516 /* other bits are useless when BUSY */
517 rq->errors |= ERROR_RESET;
519 /* add decoding error stuff */
522 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
524 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
526 if (rq->errors >= ERROR_MAX) {
527 ide_kill_rq(drive, rq);
529 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
531 return ide_do_reset(drive);
540 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
542 if (drive->media == ide_disk)
543 return ide_ata_error(drive, rq, stat, err);
544 return ide_atapi_error(drive, rq, stat, err);
547 EXPORT_SYMBOL_GPL(__ide_error);
550 * ide_error - handle an error on the IDE
551 * @drive: drive the error occurred on
552 * @msg: message to report
555 * ide_error() takes action based on the error returned by the drive.
556 * For normal I/O that may well include retries. We deal with
557 * both new-style (taskfile) and old style command handling here.
558 * In the case of taskfile command handling there is work left to
562 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
567 err = ide_dump_status(drive, msg, stat);
569 if ((rq = HWGROUP(drive)->rq) == NULL)
572 /* retry only "normal" I/O: */
573 if (!blk_fs_request(rq)) {
575 ide_end_drive_cmd(drive, stat, err);
582 drv = *(ide_driver_t **)rq->rq_disk->private_data;
583 return drv->error(drive, rq, stat, err);
585 return __ide_error(drive, rq, stat, err);
588 EXPORT_SYMBOL_GPL(ide_error);
590 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
592 if (drive->media != ide_disk)
593 rq->errors |= ERROR_RESET;
595 ide_kill_rq(drive, rq);
600 EXPORT_SYMBOL_GPL(__ide_abort);
603 * ide_abort - abort pending IDE operations
604 * @drive: drive the error occurred on
605 * @msg: message to report
607 * ide_abort kills and cleans up when we are about to do a
608 * host initiated reset on active commands. Longer term we
609 * want handlers to have sensible abort handling themselves
611 * This differs fundamentally from ide_error because in
612 * this case the command is doing just fine when we
616 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
620 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
623 /* retry only "normal" I/O: */
624 if (!blk_fs_request(rq)) {
626 ide_end_drive_cmd(drive, BUSY_STAT, 0);
633 drv = *(ide_driver_t **)rq->rq_disk->private_data;
634 return drv->abort(drive, rq);
636 return __ide_abort(drive, rq);
640 * ide_cmd - issue a simple drive command
641 * @drive: drive the command is for
643 * @nsect: sector byte
644 * @handler: handler for the command completion
646 * Issue a simple drive command with interrupts.
647 * The drive must be selected beforehand.
650 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
651 ide_handler_t *handler)
653 ide_hwif_t *hwif = HWIF(drive);
655 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
656 SELECT_MASK(drive,0);
657 hwif->OUTB(nsect,IDE_NSECTOR_REG);
658 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
662 * drive_cmd_intr - drive command completion interrupt
663 * @drive: drive the completion interrupt occurred on
665 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
666 * We do any necessary data reading and then wait for the drive to
667 * go non busy. At that point we may read the error data and complete
671 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
673 struct request *rq = HWGROUP(drive)->rq;
674 ide_hwif_t *hwif = HWIF(drive);
675 u8 *args = (u8 *) rq->buffer;
676 u8 stat = hwif->INB(IDE_STATUS_REG);
679 local_irq_enable_in_hardirq();
680 if ((stat & DRQ_STAT) && args && args[3]) {
681 u8 io_32bit = drive->io_32bit;
683 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
684 drive->io_32bit = io_32bit;
685 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
689 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
690 return ide_error(drive, "drive_cmd", stat);
691 /* calls ide_end_drive_cmd */
692 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
696 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
698 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
699 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
700 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
701 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
702 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
703 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
705 task->handler = &set_geometry_intr;
708 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
710 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
711 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
713 task->handler = &recal_intr;
716 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
718 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
719 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
721 task->handler = &set_multmode_intr;
724 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
726 special_t *s = &drive->special;
729 memset(&args, 0, sizeof(ide_task_t));
730 args.command_type = IDE_DRIVE_TASK_NO_DATA;
732 if (s->b.set_geometry) {
733 s->b.set_geometry = 0;
734 ide_init_specify_cmd(drive, &args);
735 } else if (s->b.recalibrate) {
736 s->b.recalibrate = 0;
737 ide_init_restore_cmd(drive, &args);
738 } else if (s->b.set_multmode) {
739 s->b.set_multmode = 0;
740 if (drive->mult_req > drive->id->max_multsect)
741 drive->mult_req = drive->id->max_multsect;
742 ide_init_setmult_cmd(drive, &args);
744 int special = s->all;
746 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
750 do_rw_taskfile(drive, &args);
756 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
758 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
767 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
770 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
773 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
780 * do_special - issue some special commands
781 * @drive: drive the command is for
783 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
784 * commands to a drive. It used to do much more, but has been scaled
788 static ide_startstop_t do_special (ide_drive_t *drive)
790 special_t *s = &drive->special;
793 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
796 ide_hwif_t *hwif = drive->hwif;
797 u8 req_pio = drive->tune_req;
801 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
802 if (hwif->set_pio_mode)
803 hwif->set_pio_mode(drive, req_pio);
805 int keep_dma = drive->using_dma;
807 ide_set_pio(drive, req_pio);
809 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
811 hwif->ide_dma_on(drive);
817 if (drive->media == ide_disk)
818 return ide_disk_special(drive);
826 void ide_map_sg(ide_drive_t *drive, struct request *rq)
828 ide_hwif_t *hwif = drive->hwif;
829 struct scatterlist *sg = hwif->sg_table;
831 if (hwif->sg_mapped) /* needed by ide-scsi */
834 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
835 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
837 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
842 EXPORT_SYMBOL_GPL(ide_map_sg);
844 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
846 ide_hwif_t *hwif = drive->hwif;
848 hwif->nsect = hwif->nleft = rq->nr_sectors;
849 hwif->cursg = hwif->cursg_ofs = 0;
852 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
855 * execute_drive_command - issue special drive command
856 * @drive: the drive to issue the command on
857 * @rq: the request structure holding the command
859 * execute_drive_cmd() issues a special drive command, usually
860 * initiated by ioctl() from the external hdparm program. The
861 * command can be a drive command, drive task or taskfile
862 * operation. Weirdly you can call it with NULL to wait for
863 * all commands to finish. Don't do this as that is due to change
866 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
869 ide_hwif_t *hwif = HWIF(drive);
870 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
871 ide_task_t *args = rq->special;
876 hwif->data_phase = args->data_phase;
878 switch (hwif->data_phase) {
879 case TASKFILE_MULTI_OUT:
881 case TASKFILE_MULTI_IN:
883 ide_init_sg_cmd(drive, rq);
884 ide_map_sg(drive, rq);
889 if (args->tf_out_flags.all != 0)
890 return flagged_taskfile(drive, args);
891 return do_rw_taskfile(drive, args);
892 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
893 u8 *args = rq->buffer;
899 printk("%s: DRIVE_TASK_CMD ", drive->name);
900 printk("cmd=0x%02x ", args[0]);
901 printk("fr=0x%02x ", args[1]);
902 printk("ns=0x%02x ", args[2]);
903 printk("sc=0x%02x ", args[3]);
904 printk("lcyl=0x%02x ", args[4]);
905 printk("hcyl=0x%02x ", args[5]);
906 printk("sel=0x%02x\n", args[6]);
908 hwif->OUTB(args[1], IDE_FEATURE_REG);
909 hwif->OUTB(args[3], IDE_SECTOR_REG);
910 hwif->OUTB(args[4], IDE_LCYL_REG);
911 hwif->OUTB(args[5], IDE_HCYL_REG);
912 sel = (args[6] & ~0x10);
913 if (drive->select.b.unit)
915 hwif->OUTB(sel, IDE_SELECT_REG);
916 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
918 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
919 u8 *args = rq->buffer;
924 printk("%s: DRIVE_CMD ", drive->name);
925 printk("cmd=0x%02x ", args[0]);
926 printk("sc=0x%02x ", args[1]);
927 printk("fr=0x%02x ", args[2]);
928 printk("xx=0x%02x\n", args[3]);
930 if (args[0] == WIN_SMART) {
931 hwif->OUTB(0x4f, IDE_LCYL_REG);
932 hwif->OUTB(0xc2, IDE_HCYL_REG);
933 hwif->OUTB(args[2],IDE_FEATURE_REG);
934 hwif->OUTB(args[1],IDE_SECTOR_REG);
935 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
938 hwif->OUTB(args[2],IDE_FEATURE_REG);
939 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
945 * NULL is actually a valid way of waiting for
946 * all current requests to be flushed from the queue.
949 printk("%s: DRIVE_CMD (null)\n", drive->name);
951 ide_end_drive_cmd(drive,
952 hwif->INB(IDE_STATUS_REG),
953 hwif->INB(IDE_ERROR_REG));
957 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
959 struct request_pm_state *pm = rq->data;
961 if (blk_pm_suspend_request(rq) &&
962 pm->pm_step == ide_pm_state_start_suspend)
963 /* Mark drive blocked when starting the suspend sequence. */
965 else if (blk_pm_resume_request(rq) &&
966 pm->pm_step == ide_pm_state_start_resume) {
968 * The first thing we do on wakeup is to wait for BSY bit to
969 * go away (with a looong timeout) as a drive on this hwif may
970 * just be POSTing itself.
971 * We do that before even selecting as the "other" device on
972 * the bus may be broken enough to walk on our toes at this
977 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
979 rc = ide_wait_not_busy(HWIF(drive), 35000);
981 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
983 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
984 rc = ide_wait_not_busy(HWIF(drive), 100000);
986 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
991 * start_request - start of I/O and command issuing for IDE
993 * start_request() initiates handling of a new I/O request. It
994 * accepts commands and I/O (read/write) requests. It also does
995 * the final remapping for weird stuff like EZDrive. Once
996 * device mapper can work sector level the EZDrive stuff can go away
998 * FIXME: this function needs a rename
1001 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
1003 ide_startstop_t startstop;
1006 BUG_ON(!blk_rq_started(rq));
1009 printk("%s: start_request: current=0x%08lx\n",
1010 HWIF(drive)->name, (unsigned long) rq);
1013 /* bail early if we've exceeded max_failures */
1014 if (drive->max_failures && (drive->failures > drive->max_failures)) {
1019 if (blk_fs_request(rq) &&
1020 (drive->media == ide_disk || drive->media == ide_floppy)) {
1021 block += drive->sect0;
1023 /* Yecch - this will shift the entire interval,
1024 possibly killing some innocent following sector */
1025 if (block == 0 && drive->remap_0_to_1 == 1)
1026 block = 1; /* redirect MBR access to EZ-Drive partn table */
1028 if (blk_pm_request(rq))
1029 ide_check_pm_state(drive, rq);
1031 SELECT_DRIVE(drive);
1032 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1033 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1036 if (!drive->special.all) {
1040 * We reset the drive so we need to issue a SETFEATURES.
1041 * Do it _after_ do_special() restored device parameters.
1043 if (drive->current_speed == 0xff)
1044 ide_config_drive_speed(drive, drive->desired_speed);
1046 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1047 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1048 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1049 return execute_drive_cmd(drive, rq);
1050 else if (blk_pm_request(rq)) {
1051 struct request_pm_state *pm = rq->data;
1053 printk("%s: start_power_step(step: %d)\n",
1054 drive->name, rq->pm->pm_step);
1056 startstop = ide_start_power_step(drive, rq);
1057 if (startstop == ide_stopped &&
1058 pm->pm_step == ide_pm_state_completed)
1059 ide_complete_pm_request(drive, rq);
1063 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1064 return drv->do_request(drive, rq, block);
1066 return do_special(drive);
1068 ide_kill_rq(drive, rq);
1073 * ide_stall_queue - pause an IDE device
1074 * @drive: drive to stall
1075 * @timeout: time to stall for (jiffies)
1077 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1078 * to the hwgroup by sleeping for timeout jiffies.
1081 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1083 if (timeout > WAIT_WORSTCASE)
1084 timeout = WAIT_WORSTCASE;
1085 drive->sleep = timeout + jiffies;
1086 drive->sleeping = 1;
1089 EXPORT_SYMBOL(ide_stall_queue);
1091 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1094 * choose_drive - select a drive to service
1095 * @hwgroup: hardware group to select on
1097 * choose_drive() selects the next drive which will be serviced.
1098 * This is necessary because the IDE layer can't issue commands
1099 * to both drives on the same cable, unlike SCSI.
1102 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1104 ide_drive_t *drive, *best;
1108 drive = hwgroup->drive;
1111 * drive is doing pre-flush, ordered write, post-flush sequence. even
1112 * though that is 3 requests, it must be seen as a single transaction.
1113 * we must not preempt this drive until that is complete
1115 if (blk_queue_flushing(drive->queue)) {
1117 * small race where queue could get replugged during
1118 * the 3-request flush cycle, just yank the plug since
1119 * we want it to finish asap
1121 blk_remove_plug(drive->queue);
1126 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1127 && !elv_queue_empty(drive->queue)) {
1129 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1130 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1132 if (!blk_queue_plugged(drive->queue))
1136 } while ((drive = drive->next) != hwgroup->drive);
1137 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1138 long t = (signed long)(WAKEUP(best) - jiffies);
1139 if (t >= WAIT_MIN_SLEEP) {
1141 * We *may* have some time to spare, but first let's see if
1142 * someone can potentially benefit from our nice mood today..
1146 if (!drive->sleeping
1147 && time_before(jiffies - best->service_time, WAKEUP(drive))
1148 && time_before(WAKEUP(drive), jiffies + t))
1150 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1153 } while ((drive = drive->next) != best);
1160 * Issue a new request to a drive from hwgroup
1161 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1163 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1164 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1165 * may have both interfaces in a single hwgroup to "serialize" access.
1166 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1167 * together into one hwgroup for serialized access.
1169 * Note also that several hwgroups can end up sharing a single IRQ,
1170 * possibly along with many other devices. This is especially common in
1171 * PCI-based systems with off-board IDE controller cards.
1173 * The IDE driver uses the single global ide_lock spinlock to protect
1174 * access to the request queues, and to protect the hwgroup->busy flag.
1176 * The first thread into the driver for a particular hwgroup sets the
1177 * hwgroup->busy flag to indicate that this hwgroup is now active,
1178 * and then initiates processing of the top request from the request queue.
1180 * Other threads attempting entry notice the busy setting, and will simply
1181 * queue their new requests and exit immediately. Note that hwgroup->busy
1182 * remains set even when the driver is merely awaiting the next interrupt.
1183 * Thus, the meaning is "this hwgroup is busy processing a request".
1185 * When processing of a request completes, the completing thread or IRQ-handler
1186 * will start the next request from the queue. If no more work remains,
1187 * the driver will clear the hwgroup->busy flag and exit.
1189 * The ide_lock (spinlock) is used to protect all access to the
1190 * hwgroup->busy flag, but is otherwise not needed for most processing in
1191 * the driver. This makes the driver much more friendlier to shared IRQs
1192 * than previous designs, while remaining 100% (?) SMP safe and capable.
1194 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1199 ide_startstop_t startstop;
1202 /* for atari only: POSSIBLY BROKEN HERE(?) */
1203 ide_get_lock(ide_intr, hwgroup);
1205 /* caller must own ide_lock */
1206 BUG_ON(!irqs_disabled());
1208 while (!hwgroup->busy) {
1210 drive = choose_drive(hwgroup);
1211 if (drive == NULL) {
1213 unsigned long sleep = 0; /* shut up, gcc */
1215 drive = hwgroup->drive;
1217 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1219 sleep = drive->sleep;
1221 } while ((drive = drive->next) != hwgroup->drive);
1224 * Take a short snooze, and then wake up this hwgroup again.
1225 * This gives other hwgroups on the same a chance to
1226 * play fairly with us, just in case there are big differences
1227 * in relative throughputs.. don't want to hog the cpu too much.
1229 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1230 sleep = jiffies + WAIT_MIN_SLEEP;
1232 if (timer_pending(&hwgroup->timer))
1233 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1235 /* so that ide_timer_expiry knows what to do */
1236 hwgroup->sleeping = 1;
1237 hwgroup->req_gen_timer = hwgroup->req_gen;
1238 mod_timer(&hwgroup->timer, sleep);
1239 /* we purposely leave hwgroup->busy==1
1242 /* Ugly, but how can we sleep for the lock
1243 * otherwise? perhaps from tq_disk?
1246 /* for atari only */
1251 /* no more work for this hwgroup (for now) */
1256 if (hwgroup->hwif->sharing_irq &&
1257 hwif != hwgroup->hwif &&
1258 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1259 /* set nIEN for previous hwif */
1260 SELECT_INTERRUPT(drive);
1262 hwgroup->hwif = hwif;
1263 hwgroup->drive = drive;
1264 drive->sleeping = 0;
1265 drive->service_start = jiffies;
1267 if (blk_queue_plugged(drive->queue)) {
1268 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1273 * we know that the queue isn't empty, but this can happen
1274 * if the q->prep_rq_fn() decides to kill a request
1276 rq = elv_next_request(drive->queue);
1283 * Sanity: don't accept a request that isn't a PM request
1284 * if we are currently power managed. This is very important as
1285 * blk_stop_queue() doesn't prevent the elv_next_request()
1286 * above to return us whatever is in the queue. Since we call
1287 * ide_do_request() ourselves, we end up taking requests while
1288 * the queue is blocked...
1290 * We let requests forced at head of queue with ide-preempt
1291 * though. I hope that doesn't happen too much, hopefully not
1292 * unless the subdriver triggers such a thing in its own PM
1295 * We count how many times we loop here to make sure we service
1296 * all drives in the hwgroup without looping for ever
1298 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1299 drive = drive->next ? drive->next : hwgroup->drive;
1300 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1302 /* We clear busy, there should be no pending ATA command at this point. */
1310 * Some systems have trouble with IDE IRQs arriving while
1311 * the driver is still setting things up. So, here we disable
1312 * the IRQ used by this interface while the request is being started.
1313 * This may look bad at first, but pretty much the same thing
1314 * happens anyway when any interrupt comes in, IDE or otherwise
1315 * -- the kernel masks the IRQ while it is being handled.
1317 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1318 disable_irq_nosync(hwif->irq);
1319 spin_unlock(&ide_lock);
1320 local_irq_enable_in_hardirq();
1321 /* allow other IRQs while we start this request */
1322 startstop = start_request(drive, rq);
1323 spin_lock_irq(&ide_lock);
1324 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1325 enable_irq(hwif->irq);
1326 if (startstop == ide_stopped)
1332 * Passes the stuff to ide_do_request
1334 void do_ide_request(struct request_queue *q)
1336 ide_drive_t *drive = q->queuedata;
1338 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1342 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1343 * retry the current request in pio mode instead of risking tossing it
1346 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1348 ide_hwif_t *hwif = HWIF(drive);
1350 ide_startstop_t ret = ide_stopped;
1353 * end current dma transaction
1357 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1358 (void)HWIF(drive)->ide_dma_end(drive);
1359 ret = ide_error(drive, "dma timeout error",
1360 hwif->INB(IDE_STATUS_REG));
1362 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1363 hwif->dma_timeout(drive);
1367 * disable dma for now, but remember that we did so because of
1368 * a timeout -- we'll reenable after we finish this next request
1369 * (or rather the first chunk of it) in pio.
1372 drive->state = DMA_PIO_RETRY;
1373 hwif->dma_off_quietly(drive);
1376 * un-busy drive etc (hwgroup->busy is cleared on return) and
1377 * make sure request is sane
1379 rq = HWGROUP(drive)->rq;
1384 HWGROUP(drive)->rq = NULL;
1391 rq->sector = rq->bio->bi_sector;
1392 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1393 rq->hard_cur_sectors = rq->current_nr_sectors;
1394 rq->buffer = bio_data(rq->bio);
1400 * ide_timer_expiry - handle lack of an IDE interrupt
1401 * @data: timer callback magic (hwgroup)
1403 * An IDE command has timed out before the expected drive return
1404 * occurred. At this point we attempt to clean up the current
1405 * mess. If the current handler includes an expiry handler then
1406 * we invoke the expiry handler, and providing it is happy the
1407 * work is done. If that fails we apply generic recovery rules
1408 * invoking the handler and checking the drive DMA status. We
1409 * have an excessively incestuous relationship with the DMA
1410 * logic that wants cleaning up.
1413 void ide_timer_expiry (unsigned long data)
1415 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1416 ide_handler_t *handler;
1417 ide_expiry_t *expiry;
1418 unsigned long flags;
1419 unsigned long wait = -1;
1421 spin_lock_irqsave(&ide_lock, flags);
1423 if (((handler = hwgroup->handler) == NULL) ||
1424 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1426 * Either a marginal timeout occurred
1427 * (got the interrupt just as timer expired),
1428 * or we were "sleeping" to give other devices a chance.
1429 * Either way, we don't really want to complain about anything.
1431 if (hwgroup->sleeping) {
1432 hwgroup->sleeping = 0;
1436 ide_drive_t *drive = hwgroup->drive;
1438 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1439 hwgroup->handler = NULL;
1442 ide_startstop_t startstop = ide_stopped;
1443 if (!hwgroup->busy) {
1444 hwgroup->busy = 1; /* paranoia */
1445 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1447 if ((expiry = hwgroup->expiry) != NULL) {
1449 if ((wait = expiry(drive)) > 0) {
1451 hwgroup->timer.expires = jiffies + wait;
1452 hwgroup->req_gen_timer = hwgroup->req_gen;
1453 add_timer(&hwgroup->timer);
1454 spin_unlock_irqrestore(&ide_lock, flags);
1458 hwgroup->handler = NULL;
1460 * We need to simulate a real interrupt when invoking
1461 * the handler() function, which means we need to
1462 * globally mask the specific IRQ:
1464 spin_unlock(&ide_lock);
1466 #if DISABLE_IRQ_NOSYNC
1467 disable_irq_nosync(hwif->irq);
1469 /* disable_irq_nosync ?? */
1470 disable_irq(hwif->irq);
1471 #endif /* DISABLE_IRQ_NOSYNC */
1473 * as if we were handling an interrupt */
1474 local_irq_disable();
1475 if (hwgroup->polling) {
1476 startstop = handler(drive);
1477 } else if (drive_is_ready(drive)) {
1478 if (drive->waiting_for_dma)
1479 hwgroup->hwif->dma_lost_irq(drive);
1480 (void)ide_ack_intr(hwif);
1481 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1482 startstop = handler(drive);
1484 if (drive->waiting_for_dma) {
1485 startstop = ide_dma_timeout_retry(drive, wait);
1488 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1490 drive->service_time = jiffies - drive->service_start;
1491 spin_lock_irq(&ide_lock);
1492 enable_irq(hwif->irq);
1493 if (startstop == ide_stopped)
1497 ide_do_request(hwgroup, IDE_NO_IRQ);
1498 spin_unlock_irqrestore(&ide_lock, flags);
1502 * unexpected_intr - handle an unexpected IDE interrupt
1503 * @irq: interrupt line
1504 * @hwgroup: hwgroup being processed
1506 * There's nothing really useful we can do with an unexpected interrupt,
1507 * other than reading the status register (to clear it), and logging it.
1508 * There should be no way that an irq can happen before we're ready for it,
1509 * so we needn't worry much about losing an "important" interrupt here.
1511 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1512 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1513 * looks "good", we just ignore the interrupt completely.
1515 * This routine assumes __cli() is in effect when called.
1517 * If an unexpected interrupt happens on irq15 while we are handling irq14
1518 * and if the two interfaces are "serialized" (CMD640), then it looks like
1519 * we could screw up by interfering with a new request being set up for
1522 * In reality, this is a non-issue. The new command is not sent unless
1523 * the drive is ready to accept one, in which case we know the drive is
1524 * not trying to interrupt us. And ide_set_handler() is always invoked
1525 * before completing the issuance of any new drive command, so we will not
1526 * be accidentally invoked as a result of any valid command completion
1529 * Note that we must walk the entire hwgroup here. We know which hwif
1530 * is doing the current command, but we don't know which hwif burped
1534 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1537 ide_hwif_t *hwif = hwgroup->hwif;
1540 * handle the unexpected interrupt
1543 if (hwif->irq == irq) {
1544 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1545 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1546 /* Try to not flood the console with msgs */
1547 static unsigned long last_msgtime, count;
1549 if (time_after(jiffies, last_msgtime + HZ)) {
1550 last_msgtime = jiffies;
1551 printk(KERN_ERR "%s%s: unexpected interrupt, "
1552 "status=0x%02x, count=%ld\n",
1554 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1558 } while ((hwif = hwif->next) != hwgroup->hwif);
1562 * ide_intr - default IDE interrupt handler
1563 * @irq: interrupt number
1564 * @dev_id: hwif group
1565 * @regs: unused weirdness from the kernel irq layer
1567 * This is the default IRQ handler for the IDE layer. You should
1568 * not need to override it. If you do be aware it is subtle in
1571 * hwgroup->hwif is the interface in the group currently performing
1572 * a command. hwgroup->drive is the drive and hwgroup->handler is
1573 * the IRQ handler to call. As we issue a command the handlers
1574 * step through multiple states, reassigning the handler to the
1575 * next step in the process. Unlike a smart SCSI controller IDE
1576 * expects the main processor to sequence the various transfer
1577 * stages. We also manage a poll timer to catch up with most
1578 * timeout situations. There are still a few where the handlers
1579 * don't ever decide to give up.
1581 * The handler eventually returns ide_stopped to indicate the
1582 * request completed. At this point we issue the next request
1583 * on the hwgroup and the process begins again.
1586 irqreturn_t ide_intr (int irq, void *dev_id)
1588 unsigned long flags;
1589 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1592 ide_handler_t *handler;
1593 ide_startstop_t startstop;
1595 spin_lock_irqsave(&ide_lock, flags);
1596 hwif = hwgroup->hwif;
1598 if (!ide_ack_intr(hwif)) {
1599 spin_unlock_irqrestore(&ide_lock, flags);
1603 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1605 * Not expecting an interrupt from this drive.
1606 * That means this could be:
1607 * (1) an interrupt from another PCI device
1608 * sharing the same PCI INT# as us.
1609 * or (2) a drive just entered sleep or standby mode,
1610 * and is interrupting to let us know.
1611 * or (3) a spurious interrupt of unknown origin.
1613 * For PCI, we cannot tell the difference,
1614 * so in that case we just ignore it and hope it goes away.
1616 * FIXME: unexpected_intr should be hwif-> then we can
1617 * remove all the ifdef PCI crap
1619 #ifdef CONFIG_BLK_DEV_IDEPCI
1620 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1621 #endif /* CONFIG_BLK_DEV_IDEPCI */
1624 * Probably not a shared PCI interrupt,
1625 * so we can safely try to do something about it:
1627 unexpected_intr(irq, hwgroup);
1628 #ifdef CONFIG_BLK_DEV_IDEPCI
1631 * Whack the status register, just in case
1632 * we have a leftover pending IRQ.
1634 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1635 #endif /* CONFIG_BLK_DEV_IDEPCI */
1637 spin_unlock_irqrestore(&ide_lock, flags);
1640 drive = hwgroup->drive;
1643 * This should NEVER happen, and there isn't much
1644 * we could do about it here.
1646 * [Note - this can occur if the drive is hot unplugged]
1648 spin_unlock_irqrestore(&ide_lock, flags);
1651 if (!drive_is_ready(drive)) {
1653 * This happens regularly when we share a PCI IRQ with
1654 * another device. Unfortunately, it can also happen
1655 * with some buggy drives that trigger the IRQ before
1656 * their status register is up to date. Hopefully we have
1657 * enough advance overhead that the latter isn't a problem.
1659 spin_unlock_irqrestore(&ide_lock, flags);
1662 if (!hwgroup->busy) {
1663 hwgroup->busy = 1; /* paranoia */
1664 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1666 hwgroup->handler = NULL;
1668 del_timer(&hwgroup->timer);
1669 spin_unlock(&ide_lock);
1671 /* Some controllers might set DMA INTR no matter DMA or PIO;
1672 * bmdma status might need to be cleared even for
1673 * PIO interrupts to prevent spurious/lost irq.
1675 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1676 /* ide_dma_end() needs bmdma status for error checking.
1677 * So, skip clearing bmdma status here and leave it
1678 * to ide_dma_end() if this is dma interrupt.
1680 hwif->ide_dma_clear_irq(drive);
1683 local_irq_enable_in_hardirq();
1684 /* service this interrupt, may set handler for next interrupt */
1685 startstop = handler(drive);
1686 spin_lock_irq(&ide_lock);
1689 * Note that handler() may have set things up for another
1690 * interrupt to occur soon, but it cannot happen until
1691 * we exit from this routine, because it will be the
1692 * same irq as is currently being serviced here, and Linux
1693 * won't allow another of the same (on any CPU) until we return.
1695 drive->service_time = jiffies - drive->service_start;
1696 if (startstop == ide_stopped) {
1697 if (hwgroup->handler == NULL) { /* paranoia */
1699 ide_do_request(hwgroup, hwif->irq);
1701 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1702 "on exit\n", drive->name);
1705 spin_unlock_irqrestore(&ide_lock, flags);
1710 * ide_init_drive_cmd - initialize a drive command request
1711 * @rq: request object
1713 * Initialize a request before we fill it in and send it down to
1714 * ide_do_drive_cmd. Commands must be set up by this function. Right
1715 * now it doesn't do a lot, but if that changes abusers will have a
1719 void ide_init_drive_cmd (struct request *rq)
1721 memset(rq, 0, sizeof(*rq));
1722 rq->cmd_type = REQ_TYPE_ATA_CMD;
1726 EXPORT_SYMBOL(ide_init_drive_cmd);
1729 * ide_do_drive_cmd - issue IDE special command
1730 * @drive: device to issue command
1731 * @rq: request to issue
1732 * @action: action for processing
1734 * This function issues a special IDE device request
1735 * onto the request queue.
1737 * If action is ide_wait, then the rq is queued at the end of the
1738 * request queue, and the function sleeps until it has been processed.
1739 * This is for use when invoked from an ioctl handler.
1741 * If action is ide_preempt, then the rq is queued at the head of
1742 * the request queue, displacing the currently-being-processed
1743 * request and this function returns immediately without waiting
1744 * for the new rq to be completed. This is VERY DANGEROUS, and is
1745 * intended for careful use by the ATAPI tape/cdrom driver code.
1747 * If action is ide_end, then the rq is queued at the end of the
1748 * request queue, and the function returns immediately without waiting
1749 * for the new rq to be completed. This is again intended for careful
1750 * use by the ATAPI tape/cdrom driver code.
1753 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1755 unsigned long flags;
1756 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1757 DECLARE_COMPLETION_ONSTACK(wait);
1758 int where = ELEVATOR_INSERT_BACK, err;
1759 int must_wait = (action == ide_wait || action == ide_head_wait);
1764 * we need to hold an extra reference to request for safe inspection
1769 rq->end_io_data = &wait;
1770 rq->end_io = blk_end_sync_rq;
1773 spin_lock_irqsave(&ide_lock, flags);
1774 if (action == ide_preempt)
1776 if (action == ide_preempt || action == ide_head_wait) {
1777 where = ELEVATOR_INSERT_FRONT;
1778 rq->cmd_flags |= REQ_PREEMPT;
1780 __elv_add_request(drive->queue, rq, where, 0);
1781 ide_do_request(hwgroup, IDE_NO_IRQ);
1782 spin_unlock_irqrestore(&ide_lock, flags);
1786 wait_for_completion(&wait);
1790 blk_put_request(rq);
1796 EXPORT_SYMBOL(ide_do_drive_cmd);