4 #include <linux/kernel.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <linux/bitops.h> /* for LOCK_PREFIX */
11 struct task_struct; /* one of the stranger aspects of C forward declarations.. */
12 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
15 * Saving eflags is important. It switches not only IOPL between tasks,
16 * it also protects other tasks from NT leaking through sysenter etc.
18 #define switch_to(prev,next,last) do { \
19 unsigned long esi,edi; \
20 asm volatile("pushfl\n\t" /* Save flags */ \
22 "movl %%esp,%0\n\t" /* save ESP */ \
23 "movl %5,%%esp\n\t" /* restore ESP */ \
24 "movl $1f,%1\n\t" /* save EIP */ \
25 "pushl %6\n\t" /* restore EIP */ \
30 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
31 "=a" (last),"=S" (esi),"=D" (edi) \
32 :"m" (next->thread.esp),"m" (next->thread.eip), \
33 "2" (prev), "d" (next)); \
36 #define _set_base(addr,base) do { unsigned long __pr; \
37 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
38 "rorl $16,%%edx\n\t" \
48 #define _set_limit(addr,limit) do { unsigned long __lr; \
49 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
50 "rorl $16,%%edx\n\t" \
52 "andb $0xf0,%%dh\n\t" \
61 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
62 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
65 * Load a segment. Fall back on loading the zero
66 * segment if something goes wrong..
68 #define loadsegment(seg,value) \
71 "mov %0,%%" #seg "\n" \
73 ".section .fixup,\"ax\"\n" \
76 "popl %%" #seg "\n\t" \
79 ".section __ex_table,\"a\"\n\t" \
86 * Save a segment register away
88 #define savesegment(seg, value) \
89 asm volatile("mov %%" #seg ",%0":"=rm" (value))
91 #ifdef CONFIG_PARAVIRT
92 #include <asm/paravirt.h>
94 #define read_cr0() ({ \
95 unsigned int __dummy; \
96 __asm__ __volatile__( \
101 #define write_cr0(x) \
102 __asm__ __volatile__("movl %0,%%cr0": :"r" (x))
104 #define read_cr2() ({ \
105 unsigned int __dummy; \
106 __asm__ __volatile__( \
107 "movl %%cr2,%0\n\t" \
111 #define write_cr2(x) \
112 __asm__ __volatile__("movl %0,%%cr2": :"r" (x))
114 #define read_cr3() ({ \
115 unsigned int __dummy; \
117 "movl %%cr3,%0\n\t" \
121 #define write_cr3(x) \
122 __asm__ __volatile__("movl %0,%%cr3": :"r" (x))
124 #define read_cr4() ({ \
125 unsigned int __dummy; \
127 "movl %%cr4,%0\n\t" \
131 #define read_cr4_safe() ({ \
132 unsigned int __dummy; \
133 /* This could fault if %cr4 does not exist */ \
134 __asm__("1: movl %%cr4, %0 \n" \
136 ".section __ex_table,\"a\" \n" \
139 : "=r" (__dummy): "0" (0)); \
142 #define write_cr4(x) \
143 __asm__ __volatile__("movl %0,%%cr4": :"r" (x))
146 __asm__ __volatile__ ("wbinvd": : :"memory")
148 /* Clear the 'TS' bit */
149 #define clts() __asm__ __volatile__ ("clts")
150 #endif/* CONFIG_PARAVIRT */
152 /* Set the 'TS' bit */
153 #define stts() write_cr0(8 | read_cr0())
155 #endif /* __KERNEL__ */
157 static inline unsigned long get_limit(unsigned long segment)
159 unsigned long __limit;
161 :"=r" (__limit):"r" (segment));
165 #define nop() __asm__ __volatile__ ("nop")
167 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
169 #define tas(ptr) (xchg((ptr),1))
171 struct __xchg_dummy { unsigned long a[100]; };
172 #define __xg(x) ((struct __xchg_dummy *)(x))
175 #ifdef CONFIG_X86_CMPXCHG64
178 * The semantics of XCHGCMP8B are a bit strange, this is why
179 * there is a loop and the loading of %%eax and %%edx has to
180 * be inside. This inlines well in most cases, the cached
181 * cost is around ~38 cycles. (in the future we might want
182 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
183 * might have an implicit FPU-save as a cost, so it's not
184 * clear which path to go.)
186 * cmpxchg8b must be used with the lock prefix here to allow
187 * the instruction to be executed atomically, see page 3-102
188 * of the instruction set reference 24319102.pdf. We need
189 * the reader side to see the coherent 64bit value.
191 static inline void __set_64bit (unsigned long long * ptr,
192 unsigned int low, unsigned int high)
194 __asm__ __volatile__ (
196 "movl (%0), %%eax\n\t"
197 "movl 4(%0), %%edx\n\t"
198 "lock cmpxchg8b (%0)\n\t"
204 : "ax","dx","memory");
207 static inline void __set_64bit_constant (unsigned long long *ptr,
208 unsigned long long value)
210 __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
212 #define ll_low(x) *(((unsigned int*)&(x))+0)
213 #define ll_high(x) *(((unsigned int*)&(x))+1)
215 static inline void __set_64bit_var (unsigned long long *ptr,
216 unsigned long long value)
218 __set_64bit(ptr,ll_low(value), ll_high(value));
221 #define set_64bit(ptr,value) \
222 (__builtin_constant_p(value) ? \
223 __set_64bit_constant(ptr, value) : \
224 __set_64bit_var(ptr, value) )
226 #define _set_64bit(ptr,value) \
227 (__builtin_constant_p(value) ? \
228 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
229 __set_64bit(ptr, ll_low(value), ll_high(value)) )
234 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
235 * Note 2: xchg has side effect, so that attribute volatile is necessary,
236 * but generally the primitive is invalid, *ptr is output argument. --ANK
238 static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
242 __asm__ __volatile__("xchgb %b0,%1"
244 :"m" (*__xg(ptr)), "0" (x)
248 __asm__ __volatile__("xchgw %w0,%1"
250 :"m" (*__xg(ptr)), "0" (x)
254 __asm__ __volatile__("xchgl %0,%1"
256 :"m" (*__xg(ptr)), "0" (x)
264 * Atomic compare and exchange. Compare OLD with MEM, if identical,
265 * store NEW in MEM. Return the initial value in MEM. Success is
266 * indicated by comparing RETURN with OLD.
269 #ifdef CONFIG_X86_CMPXCHG
270 #define __HAVE_ARCH_CMPXCHG 1
271 #define cmpxchg(ptr,o,n)\
272 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
273 (unsigned long)(n),sizeof(*(ptr))))
274 #define sync_cmpxchg(ptr,o,n)\
275 ((__typeof__(*(ptr)))__sync_cmpxchg((ptr),(unsigned long)(o),\
276 (unsigned long)(n),sizeof(*(ptr))))
279 static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
280 unsigned long new, int size)
285 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
287 : "q"(new), "m"(*__xg(ptr)), "0"(old)
291 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
293 : "r"(new), "m"(*__xg(ptr)), "0"(old)
297 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
299 : "r"(new), "m"(*__xg(ptr)), "0"(old)
307 * Always use locked operations when touching memory shared with a
308 * hypervisor, since the system may be SMP even if the guest kernel
311 static inline unsigned long __sync_cmpxchg(volatile void *ptr,
313 unsigned long new, int size)
318 __asm__ __volatile__("lock; cmpxchgb %b1,%2"
320 : "q"(new), "m"(*__xg(ptr)), "0"(old)
324 __asm__ __volatile__("lock; cmpxchgw %w1,%2"
326 : "r"(new), "m"(*__xg(ptr)), "0"(old)
330 __asm__ __volatile__("lock; cmpxchgl %1,%2"
332 : "r"(new), "m"(*__xg(ptr)), "0"(old)
339 #ifndef CONFIG_X86_CMPXCHG
341 * Building a kernel capable running on 80386. It may be necessary to
342 * simulate the cmpxchg on the 80386 CPU. For that purpose we define
343 * a function for each of the sizes we support.
346 extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
347 extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
348 extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
350 static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
351 unsigned long new, int size)
355 return cmpxchg_386_u8(ptr, old, new);
357 return cmpxchg_386_u16(ptr, old, new);
359 return cmpxchg_386_u32(ptr, old, new);
364 #define cmpxchg(ptr,o,n) \
366 __typeof__(*(ptr)) __ret; \
367 if (likely(boot_cpu_data.x86 > 3)) \
368 __ret = __cmpxchg((ptr), (unsigned long)(o), \
369 (unsigned long)(n), sizeof(*(ptr))); \
371 __ret = cmpxchg_386((ptr), (unsigned long)(o), \
372 (unsigned long)(n), sizeof(*(ptr))); \
377 #ifdef CONFIG_X86_CMPXCHG64
379 static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
380 unsigned long long new)
382 unsigned long long prev;
383 __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
385 : "b"((unsigned long)new),
386 "c"((unsigned long)(new >> 32)),
393 #define cmpxchg64(ptr,o,n)\
394 ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
395 (unsigned long long)(n)))
400 * Force strict CPU ordering.
401 * And yes, this is required on UP too when we're talking
404 * For now, "wmb()" doesn't actually do anything, as all
405 * Intel CPU's follow what Intel calls a *Processor Order*,
406 * in which all writes are seen in the program order even
409 * I expect future Intel CPU's to have a weaker ordering,
410 * but I'd also expect them to finally get their act together
411 * and add some real memory barriers if so.
413 * Some non intel clones support out of order store. wmb() ceases to be a
419 * Actually only lfence would be needed for mb() because all stores done
420 * by the kernel should be already ordered. But keep a full barrier for now.
423 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
424 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
427 * read_barrier_depends - Flush all pending reads that subsequents reads
430 * No data-dependent reads from memory-like regions are ever reordered
431 * over this barrier. All reads preceding this primitive are guaranteed
432 * to access memory (but not necessarily other CPUs' caches) before any
433 * reads following this primitive that depend on the data return by
434 * any of the preceding reads. This primitive is much lighter weight than
435 * rmb() on most CPUs, and is never heavier weight than is
438 * These ordering constraints are respected by both the local CPU
441 * Ordering is not guaranteed by anything other than these primitives,
442 * not even by data dependencies. See the documentation for
443 * memory_barrier() for examples and URLs to more information.
445 * For example, the following code would force ordering (the initial
446 * value of "a" is zero, "b" is one, and "p" is "&a"):
454 * read_barrier_depends();
458 * because the read of "*q" depends on the read of "p" and these
459 * two reads are separated by a read_barrier_depends(). However,
460 * the following code, with the same initial values for "a" and "b":
468 * read_barrier_depends();
472 * does not enforce ordering, since there is no data dependency between
473 * the read of "a" and the read of "b". Therefore, on some CPUs, such
474 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
475 * in cases like this where there are no data dependencies.
478 #define read_barrier_depends() do { } while(0)
480 #ifdef CONFIG_X86_OOSTORE
481 /* Actually there are no OOO store capable CPUs for now that do SSE,
482 but make it already an possibility. */
483 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
485 #define wmb() __asm__ __volatile__ ("": : :"memory")
489 #define smp_mb() mb()
490 #define smp_rmb() rmb()
491 #define smp_wmb() wmb()
492 #define smp_read_barrier_depends() read_barrier_depends()
493 #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
495 #define smp_mb() barrier()
496 #define smp_rmb() barrier()
497 #define smp_wmb() barrier()
498 #define smp_read_barrier_depends() do { } while(0)
499 #define set_mb(var, value) do { var = value; barrier(); } while (0)
502 #include <linux/irqflags.h>
505 * disable hlt during certain critical i/o operations
507 #define HAVE_DISABLE_HLT
508 void disable_hlt(void);
509 void enable_hlt(void);
511 extern int es7000_plat;
512 void cpu_idle_wait(void);
515 * On SMP systems, when the scheduler does migration-cost autodetection,
516 * it needs a way to flush as much of the CPU's caches as possible:
518 static inline void sched_cacheflush(void)
523 extern unsigned long arch_align_stack(unsigned long sp);
524 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
526 void default_idle(void);