Merge branch 'hwmon-for-linus' of git://jdelvare.pck.nerim.net/jdelvare-2.6
[linux-2.6] / include / asm-i386 / system.h
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
3
4 #include <linux/kernel.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <linux/bitops.h> /* for LOCK_PREFIX */
8
9 #ifdef __KERNEL__
10
11 struct task_struct;     /* one of the stranger aspects of C forward declarations.. */
12 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
13
14 /*
15  * Saving eflags is important. It switches not only IOPL between tasks,
16  * it also protects other tasks from NT leaking through sysenter etc.
17  */
18 #define switch_to(prev,next,last) do {                                  \
19         unsigned long esi,edi;                                          \
20         asm volatile("pushfl\n\t"               /* Save flags */        \
21                      "pushl %%ebp\n\t"                                  \
22                      "movl %%esp,%0\n\t"        /* save ESP */          \
23                      "movl %5,%%esp\n\t"        /* restore ESP */       \
24                      "movl $1f,%1\n\t"          /* save EIP */          \
25                      "pushl %6\n\t"             /* restore EIP */       \
26                      "jmp __switch_to\n"                                \
27                      "1:\t"                                             \
28                      "popl %%ebp\n\t"                                   \
29                      "popfl"                                            \
30                      :"=m" (prev->thread.esp),"=m" (prev->thread.eip),  \
31                       "=a" (last),"=S" (esi),"=D" (edi)                 \
32                      :"m" (next->thread.esp),"m" (next->thread.eip),    \
33                       "2" (prev), "d" (next));                          \
34 } while (0)
35
36 #define _set_base(addr,base) do { unsigned long __pr; \
37 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
38         "rorl $16,%%edx\n\t" \
39         "movb %%dl,%2\n\t" \
40         "movb %%dh,%3" \
41         :"=&d" (__pr) \
42         :"m" (*((addr)+2)), \
43          "m" (*((addr)+4)), \
44          "m" (*((addr)+7)), \
45          "0" (base) \
46         ); } while(0)
47
48 #define _set_limit(addr,limit) do { unsigned long __lr; \
49 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
50         "rorl $16,%%edx\n\t" \
51         "movb %2,%%dh\n\t" \
52         "andb $0xf0,%%dh\n\t" \
53         "orb %%dh,%%dl\n\t" \
54         "movb %%dl,%2" \
55         :"=&d" (__lr) \
56         :"m" (*(addr)), \
57          "m" (*((addr)+6)), \
58          "0" (limit) \
59         ); } while(0)
60
61 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
62 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
63
64 /*
65  * Load a segment. Fall back on loading the zero
66  * segment if something goes wrong..
67  */
68 #define loadsegment(seg,value)                  \
69         asm volatile("\n"                       \
70                 "1:\t"                          \
71                 "mov %0,%%" #seg "\n"           \
72                 "2:\n"                          \
73                 ".section .fixup,\"ax\"\n"      \
74                 "3:\t"                          \
75                 "pushl $0\n\t"                  \
76                 "popl %%" #seg "\n\t"           \
77                 "jmp 2b\n"                      \
78                 ".previous\n"                   \
79                 ".section __ex_table,\"a\"\n\t" \
80                 ".align 4\n\t"                  \
81                 ".long 1b,3b\n"                 \
82                 ".previous"                     \
83                 : :"rm" (value))
84
85 /*
86  * Save a segment register away
87  */
88 #define savesegment(seg, value) \
89         asm volatile("mov %%" #seg ",%0":"=rm" (value))
90
91 #ifdef CONFIG_PARAVIRT
92 #include <asm/paravirt.h>
93 #else
94 #define read_cr0() ({ \
95         unsigned int __dummy; \
96         __asm__ __volatile__( \
97                 "movl %%cr0,%0\n\t" \
98                 :"=r" (__dummy)); \
99         __dummy; \
100 })
101 #define write_cr0(x) \
102         __asm__ __volatile__("movl %0,%%cr0": :"r" (x))
103
104 #define read_cr2() ({ \
105         unsigned int __dummy; \
106         __asm__ __volatile__( \
107                 "movl %%cr2,%0\n\t" \
108                 :"=r" (__dummy)); \
109         __dummy; \
110 })
111 #define write_cr2(x) \
112         __asm__ __volatile__("movl %0,%%cr2": :"r" (x))
113
114 #define read_cr3() ({ \
115         unsigned int __dummy; \
116         __asm__ ( \
117                 "movl %%cr3,%0\n\t" \
118                 :"=r" (__dummy)); \
119         __dummy; \
120 })
121 #define write_cr3(x) \
122         __asm__ __volatile__("movl %0,%%cr3": :"r" (x))
123
124 #define read_cr4() ({ \
125         unsigned int __dummy; \
126         __asm__( \
127                 "movl %%cr4,%0\n\t" \
128                 :"=r" (__dummy)); \
129         __dummy; \
130 })
131 #define read_cr4_safe() ({                            \
132         unsigned int __dummy;                         \
133         /* This could fault if %cr4 does not exist */ \
134         __asm__("1: movl %%cr4, %0              \n"   \
135                 "2:                             \n"   \
136                 ".section __ex_table,\"a\"      \n"   \
137                 ".long 1b,2b                    \n"   \
138                 ".previous                      \n"   \
139                 : "=r" (__dummy): "0" (0));           \
140         __dummy;                                      \
141 })
142 #define write_cr4(x) \
143         __asm__ __volatile__("movl %0,%%cr4": :"r" (x))
144
145 #define wbinvd() \
146         __asm__ __volatile__ ("wbinvd": : :"memory")
147
148 /* Clear the 'TS' bit */
149 #define clts() __asm__ __volatile__ ("clts")
150 #endif/* CONFIG_PARAVIRT */
151
152 /* Set the 'TS' bit */
153 #define stts() write_cr0(8 | read_cr0())
154
155 #endif  /* __KERNEL__ */
156
157 static inline unsigned long get_limit(unsigned long segment)
158 {
159         unsigned long __limit;
160         __asm__("lsll %1,%0"
161                 :"=r" (__limit):"r" (segment));
162         return __limit+1;
163 }
164
165 #define nop() __asm__ __volatile__ ("nop")
166
167 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
168
169 #define tas(ptr) (xchg((ptr),1))
170
171 struct __xchg_dummy { unsigned long a[100]; };
172 #define __xg(x) ((struct __xchg_dummy *)(x))
173
174
175 #ifdef CONFIG_X86_CMPXCHG64
176
177 /*
178  * The semantics of XCHGCMP8B are a bit strange, this is why
179  * there is a loop and the loading of %%eax and %%edx has to
180  * be inside. This inlines well in most cases, the cached
181  * cost is around ~38 cycles. (in the future we might want
182  * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
183  * might have an implicit FPU-save as a cost, so it's not
184  * clear which path to go.)
185  *
186  * cmpxchg8b must be used with the lock prefix here to allow
187  * the instruction to be executed atomically, see page 3-102
188  * of the instruction set reference 24319102.pdf. We need
189  * the reader side to see the coherent 64bit value.
190  */
191 static inline void __set_64bit (unsigned long long * ptr,
192                 unsigned int low, unsigned int high)
193 {
194         __asm__ __volatile__ (
195                 "\n1:\t"
196                 "movl (%0), %%eax\n\t"
197                 "movl 4(%0), %%edx\n\t"
198                 "lock cmpxchg8b (%0)\n\t"
199                 "jnz 1b"
200                 : /* no outputs */
201                 :       "D"(ptr),
202                         "b"(low),
203                         "c"(high)
204                 :       "ax","dx","memory");
205 }
206
207 static inline void __set_64bit_constant (unsigned long long *ptr,
208                                                  unsigned long long value)
209 {
210         __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
211 }
212 #define ll_low(x)       *(((unsigned int*)&(x))+0)
213 #define ll_high(x)      *(((unsigned int*)&(x))+1)
214
215 static inline void __set_64bit_var (unsigned long long *ptr,
216                          unsigned long long value)
217 {
218         __set_64bit(ptr,ll_low(value), ll_high(value));
219 }
220
221 #define set_64bit(ptr,value) \
222 (__builtin_constant_p(value) ? \
223  __set_64bit_constant(ptr, value) : \
224  __set_64bit_var(ptr, value) )
225
226 #define _set_64bit(ptr,value) \
227 (__builtin_constant_p(value) ? \
228  __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
229  __set_64bit(ptr, ll_low(value), ll_high(value)) )
230
231 #endif
232
233 /*
234  * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
235  * Note 2: xchg has side effect, so that attribute volatile is necessary,
236  *        but generally the primitive is invalid, *ptr is output argument. --ANK
237  */
238 static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
239 {
240         switch (size) {
241                 case 1:
242                         __asm__ __volatile__("xchgb %b0,%1"
243                                 :"=q" (x)
244                                 :"m" (*__xg(ptr)), "0" (x)
245                                 :"memory");
246                         break;
247                 case 2:
248                         __asm__ __volatile__("xchgw %w0,%1"
249                                 :"=r" (x)
250                                 :"m" (*__xg(ptr)), "0" (x)
251                                 :"memory");
252                         break;
253                 case 4:
254                         __asm__ __volatile__("xchgl %0,%1"
255                                 :"=r" (x)
256                                 :"m" (*__xg(ptr)), "0" (x)
257                                 :"memory");
258                         break;
259         }
260         return x;
261 }
262
263 /*
264  * Atomic compare and exchange.  Compare OLD with MEM, if identical,
265  * store NEW in MEM.  Return the initial value in MEM.  Success is
266  * indicated by comparing RETURN with OLD.
267  */
268
269 #ifdef CONFIG_X86_CMPXCHG
270 #define __HAVE_ARCH_CMPXCHG 1
271 #define cmpxchg(ptr,o,n)\
272         ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
273                                         (unsigned long)(n),sizeof(*(ptr))))
274 #define sync_cmpxchg(ptr,o,n)\
275         ((__typeof__(*(ptr)))__sync_cmpxchg((ptr),(unsigned long)(o),\
276                                         (unsigned long)(n),sizeof(*(ptr))))
277 #endif
278
279 static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
280                                       unsigned long new, int size)
281 {
282         unsigned long prev;
283         switch (size) {
284         case 1:
285                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
286                                      : "=a"(prev)
287                                      : "q"(new), "m"(*__xg(ptr)), "0"(old)
288                                      : "memory");
289                 return prev;
290         case 2:
291                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
292                                      : "=a"(prev)
293                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
294                                      : "memory");
295                 return prev;
296         case 4:
297                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
298                                      : "=a"(prev)
299                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
300                                      : "memory");
301                 return prev;
302         }
303         return old;
304 }
305
306 /*
307  * Always use locked operations when touching memory shared with a
308  * hypervisor, since the system may be SMP even if the guest kernel
309  * isn't.
310  */
311 static inline unsigned long __sync_cmpxchg(volatile void *ptr,
312                                             unsigned long old,
313                                             unsigned long new, int size)
314 {
315         unsigned long prev;
316         switch (size) {
317         case 1:
318                 __asm__ __volatile__("lock; cmpxchgb %b1,%2"
319                                      : "=a"(prev)
320                                      : "q"(new), "m"(*__xg(ptr)), "0"(old)
321                                      : "memory");
322                 return prev;
323         case 2:
324                 __asm__ __volatile__("lock; cmpxchgw %w1,%2"
325                                      : "=a"(prev)
326                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
327                                      : "memory");
328                 return prev;
329         case 4:
330                 __asm__ __volatile__("lock; cmpxchgl %1,%2"
331                                      : "=a"(prev)
332                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
333                                      : "memory");
334                 return prev;
335         }
336         return old;
337 }
338
339 #ifndef CONFIG_X86_CMPXCHG
340 /*
341  * Building a kernel capable running on 80386. It may be necessary to
342  * simulate the cmpxchg on the 80386 CPU. For that purpose we define
343  * a function for each of the sizes we support.
344  */
345
346 extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
347 extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
348 extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
349
350 static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
351                                       unsigned long new, int size)
352 {
353         switch (size) {
354         case 1:
355                 return cmpxchg_386_u8(ptr, old, new);
356         case 2:
357                 return cmpxchg_386_u16(ptr, old, new);
358         case 4:
359                 return cmpxchg_386_u32(ptr, old, new);
360         }
361         return old;
362 }
363
364 #define cmpxchg(ptr,o,n)                                                \
365 ({                                                                      \
366         __typeof__(*(ptr)) __ret;                                       \
367         if (likely(boot_cpu_data.x86 > 3))                              \
368                 __ret = __cmpxchg((ptr), (unsigned long)(o),            \
369                                         (unsigned long)(n), sizeof(*(ptr))); \
370         else                                                            \
371                 __ret = cmpxchg_386((ptr), (unsigned long)(o),          \
372                                         (unsigned long)(n), sizeof(*(ptr))); \
373         __ret;                                                          \
374 })
375 #endif
376
377 #ifdef CONFIG_X86_CMPXCHG64
378
379 static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
380                                       unsigned long long new)
381 {
382         unsigned long long prev;
383         __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
384                              : "=A"(prev)
385                              : "b"((unsigned long)new),
386                                "c"((unsigned long)(new >> 32)),
387                                "m"(*__xg(ptr)),
388                                "0"(old)
389                              : "memory");
390         return prev;
391 }
392
393 #define cmpxchg64(ptr,o,n)\
394         ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
395                                         (unsigned long long)(n)))
396
397 #endif
398     
399 /*
400  * Force strict CPU ordering.
401  * And yes, this is required on UP too when we're talking
402  * to devices.
403  *
404  * For now, "wmb()" doesn't actually do anything, as all
405  * Intel CPU's follow what Intel calls a *Processor Order*,
406  * in which all writes are seen in the program order even
407  * outside the CPU.
408  *
409  * I expect future Intel CPU's to have a weaker ordering,
410  * but I'd also expect them to finally get their act together
411  * and add some real memory barriers if so.
412  *
413  * Some non intel clones support out of order store. wmb() ceases to be a
414  * nop for these.
415  */
416  
417
418 /* 
419  * Actually only lfence would be needed for mb() because all stores done 
420  * by the kernel should be already ordered. But keep a full barrier for now. 
421  */
422
423 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
424 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
425
426 /**
427  * read_barrier_depends - Flush all pending reads that subsequents reads
428  * depend on.
429  *
430  * No data-dependent reads from memory-like regions are ever reordered
431  * over this barrier.  All reads preceding this primitive are guaranteed
432  * to access memory (but not necessarily other CPUs' caches) before any
433  * reads following this primitive that depend on the data return by
434  * any of the preceding reads.  This primitive is much lighter weight than
435  * rmb() on most CPUs, and is never heavier weight than is
436  * rmb().
437  *
438  * These ordering constraints are respected by both the local CPU
439  * and the compiler.
440  *
441  * Ordering is not guaranteed by anything other than these primitives,
442  * not even by data dependencies.  See the documentation for
443  * memory_barrier() for examples and URLs to more information.
444  *
445  * For example, the following code would force ordering (the initial
446  * value of "a" is zero, "b" is one, and "p" is "&a"):
447  *
448  * <programlisting>
449  *      CPU 0                           CPU 1
450  *
451  *      b = 2;
452  *      memory_barrier();
453  *      p = &b;                         q = p;
454  *                                      read_barrier_depends();
455  *                                      d = *q;
456  * </programlisting>
457  *
458  * because the read of "*q" depends on the read of "p" and these
459  * two reads are separated by a read_barrier_depends().  However,
460  * the following code, with the same initial values for "a" and "b":
461  *
462  * <programlisting>
463  *      CPU 0                           CPU 1
464  *
465  *      a = 2;
466  *      memory_barrier();
467  *      b = 3;                          y = b;
468  *                                      read_barrier_depends();
469  *                                      x = a;
470  * </programlisting>
471  *
472  * does not enforce ordering, since there is no data dependency between
473  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
474  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
475  * in cases like this where there are no data dependencies.
476  **/
477
478 #define read_barrier_depends()  do { } while(0)
479
480 #ifdef CONFIG_X86_OOSTORE
481 /* Actually there are no OOO store capable CPUs for now that do SSE, 
482    but make it already an possibility. */
483 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
484 #else
485 #define wmb()   __asm__ __volatile__ ("": : :"memory")
486 #endif
487
488 #ifdef CONFIG_SMP
489 #define smp_mb()        mb()
490 #define smp_rmb()       rmb()
491 #define smp_wmb()       wmb()
492 #define smp_read_barrier_depends()      read_barrier_depends()
493 #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
494 #else
495 #define smp_mb()        barrier()
496 #define smp_rmb()       barrier()
497 #define smp_wmb()       barrier()
498 #define smp_read_barrier_depends()      do { } while(0)
499 #define set_mb(var, value) do { var = value; barrier(); } while (0)
500 #endif
501
502 #include <linux/irqflags.h>
503
504 /*
505  * disable hlt during certain critical i/o operations
506  */
507 #define HAVE_DISABLE_HLT
508 void disable_hlt(void);
509 void enable_hlt(void);
510
511 extern int es7000_plat;
512 void cpu_idle_wait(void);
513
514 /*
515  * On SMP systems, when the scheduler does migration-cost autodetection,
516  * it needs a way to flush as much of the CPU's caches as possible:
517  */
518 static inline void sched_cacheflush(void)
519 {
520         wbinvd();
521 }
522
523 extern unsigned long arch_align_stack(unsigned long sp);
524 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
525
526 void default_idle(void);
527
528 #endif