Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[linux-2.6] / arch / i386 / kernel / setup.c
1 /*
2  *  linux/arch/i386/kernel/setup.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *
8  *  Memory region support
9  *      David Parsons <orc@pell.chi.il.us>, July-August 1999
10  *
11  *  Added E820 sanitization routine (removes overlapping memory regions);
12  *  Brian Moyle <bmoyle@mvista.com>, February 2001
13  *
14  * Moved CPU detection code to cpu/${cpu}.c
15  *    Patrick Mochel <mochel@osdl.org>, March 2002
16  *
17  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
18  *  Alex Achenbach <xela@slit.de>, December 2002.
19  *
20  */
21
22 /*
23  * This file handles the architecture-dependent parts of initialization
24  */
25
26 #include <linux/config.h>
27 #include <linux/sched.h>
28 #include <linux/mm.h>
29 #include <linux/mmzone.h>
30 #include <linux/tty.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/apm_bios.h>
34 #include <linux/initrd.h>
35 #include <linux/bootmem.h>
36 #include <linux/seq_file.h>
37 #include <linux/platform_device.h>
38 #include <linux/console.h>
39 #include <linux/mca.h>
40 #include <linux/root_dev.h>
41 #include <linux/highmem.h>
42 #include <linux/module.h>
43 #include <linux/efi.h>
44 #include <linux/init.h>
45 #include <linux/edd.h>
46 #include <linux/nodemask.h>
47 #include <linux/kexec.h>
48 #include <linux/crash_dump.h>
49 #include <linux/dmi.h>
50 #include <linux/pfn.h>
51 #include <linux/suspend.h>
52
53 #include <video/edid.h>
54
55 #include <asm/apic.h>
56 #include <asm/e820.h>
57 #include <asm/mpspec.h>
58 #include <asm/setup.h>
59 #include <asm/arch_hooks.h>
60 #include <asm/sections.h>
61 #include <asm/io_apic.h>
62 #include <asm/ist.h>
63 #include <asm/io.h>
64 #include "setup_arch_pre.h"
65 #include <bios_ebda.h>
66
67 /* Forward Declaration. */
68 void __init find_max_pfn(void);
69
70 /* This value is set up by the early boot code to point to the value
71    immediately after the boot time page tables.  It contains a *physical*
72    address, and must not be in the .bss segment! */
73 unsigned long init_pg_tables_end __initdata = ~0UL;
74
75 int disable_pse __devinitdata = 0;
76
77 /*
78  * Machine setup..
79  */
80
81 #ifdef CONFIG_EFI
82 int efi_enabled = 0;
83 EXPORT_SYMBOL(efi_enabled);
84 #endif
85
86 /* cpu data as detected by the assembly code in head.S */
87 struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
88 /* common cpu data for all cpus */
89 struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
90 EXPORT_SYMBOL(boot_cpu_data);
91
92 unsigned long mmu_cr4_features;
93
94 #ifdef  CONFIG_ACPI
95         int acpi_disabled = 0;
96 #else
97         int acpi_disabled = 1;
98 #endif
99 EXPORT_SYMBOL(acpi_disabled);
100
101 #ifdef  CONFIG_ACPI
102 int __initdata acpi_force = 0;
103 extern acpi_interrupt_flags     acpi_sci_flags;
104 #endif
105
106 /* for MCA, but anyone else can use it if they want */
107 unsigned int machine_id;
108 #ifdef CONFIG_MCA
109 EXPORT_SYMBOL(machine_id);
110 #endif
111 unsigned int machine_submodel_id;
112 unsigned int BIOS_revision;
113 unsigned int mca_pentium_flag;
114
115 /* For PCI or other memory-mapped resources */
116 unsigned long pci_mem_start = 0x10000000;
117 #ifdef CONFIG_PCI
118 EXPORT_SYMBOL(pci_mem_start);
119 #endif
120
121 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
122 int bootloader_type;
123
124 /* user-defined highmem size */
125 static unsigned int highmem_pages = -1;
126
127 /*
128  * Setup options
129  */
130 struct drive_info_struct { char dummy[32]; } drive_info;
131 #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_HD) || \
132     defined(CONFIG_BLK_DEV_IDE_MODULE) || defined(CONFIG_BLK_DEV_HD_MODULE)
133 EXPORT_SYMBOL(drive_info);
134 #endif
135 struct screen_info screen_info;
136 EXPORT_SYMBOL(screen_info);
137 struct apm_info apm_info;
138 EXPORT_SYMBOL(apm_info);
139 struct sys_desc_table_struct {
140         unsigned short length;
141         unsigned char table[0];
142 };
143 struct edid_info edid_info;
144 EXPORT_SYMBOL_GPL(edid_info);
145 struct ist_info ist_info;
146 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
147         defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
148 EXPORT_SYMBOL(ist_info);
149 #endif
150 struct e820map e820;
151
152 extern void early_cpu_init(void);
153 extern void generic_apic_probe(char *);
154 extern int root_mountflags;
155
156 unsigned long saved_videomode;
157
158 #define RAMDISK_IMAGE_START_MASK        0x07FF
159 #define RAMDISK_PROMPT_FLAG             0x8000
160 #define RAMDISK_LOAD_FLAG               0x4000  
161
162 static char command_line[COMMAND_LINE_SIZE];
163
164 unsigned char __initdata boot_params[PARAM_SIZE];
165
166 static struct resource data_resource = {
167         .name   = "Kernel data",
168         .start  = 0,
169         .end    = 0,
170         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
171 };
172
173 static struct resource code_resource = {
174         .name   = "Kernel code",
175         .start  = 0,
176         .end    = 0,
177         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
178 };
179
180 static struct resource system_rom_resource = {
181         .name   = "System ROM",
182         .start  = 0xf0000,
183         .end    = 0xfffff,
184         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
185 };
186
187 static struct resource extension_rom_resource = {
188         .name   = "Extension ROM",
189         .start  = 0xe0000,
190         .end    = 0xeffff,
191         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
192 };
193
194 static struct resource adapter_rom_resources[] = { {
195         .name   = "Adapter ROM",
196         .start  = 0xc8000,
197         .end    = 0,
198         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
199 }, {
200         .name   = "Adapter ROM",
201         .start  = 0,
202         .end    = 0,
203         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
204 }, {
205         .name   = "Adapter ROM",
206         .start  = 0,
207         .end    = 0,
208         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
209 }, {
210         .name   = "Adapter ROM",
211         .start  = 0,
212         .end    = 0,
213         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
214 }, {
215         .name   = "Adapter ROM",
216         .start  = 0,
217         .end    = 0,
218         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
219 }, {
220         .name   = "Adapter ROM",
221         .start  = 0,
222         .end    = 0,
223         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
224 } };
225
226 #define ADAPTER_ROM_RESOURCES \
227         (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
228
229 static struct resource video_rom_resource = {
230         .name   = "Video ROM",
231         .start  = 0xc0000,
232         .end    = 0xc7fff,
233         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
234 };
235
236 static struct resource video_ram_resource = {
237         .name   = "Video RAM area",
238         .start  = 0xa0000,
239         .end    = 0xbffff,
240         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
241 };
242
243 static struct resource standard_io_resources[] = { {
244         .name   = "dma1",
245         .start  = 0x0000,
246         .end    = 0x001f,
247         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
248 }, {
249         .name   = "pic1",
250         .start  = 0x0020,
251         .end    = 0x0021,
252         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
253 }, {
254         .name   = "timer0",
255         .start  = 0x0040,
256         .end    = 0x0043,
257         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
258 }, {
259         .name   = "timer1",
260         .start  = 0x0050,
261         .end    = 0x0053,
262         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
263 }, {
264         .name   = "keyboard",
265         .start  = 0x0060,
266         .end    = 0x006f,
267         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
268 }, {
269         .name   = "dma page reg",
270         .start  = 0x0080,
271         .end    = 0x008f,
272         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
273 }, {
274         .name   = "pic2",
275         .start  = 0x00a0,
276         .end    = 0x00a1,
277         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
278 }, {
279         .name   = "dma2",
280         .start  = 0x00c0,
281         .end    = 0x00df,
282         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
283 }, {
284         .name   = "fpu",
285         .start  = 0x00f0,
286         .end    = 0x00ff,
287         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
288 } };
289
290 #define STANDARD_IO_RESOURCES \
291         (sizeof standard_io_resources / sizeof standard_io_resources[0])
292
293 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
294
295 static int __init romchecksum(unsigned char *rom, unsigned long length)
296 {
297         unsigned char *p, sum = 0;
298
299         for (p = rom; p < rom + length; p++)
300                 sum += *p;
301         return sum == 0;
302 }
303
304 static void __init probe_roms(void)
305 {
306         unsigned long start, length, upper;
307         unsigned char *rom;
308         int           i;
309
310         /* video rom */
311         upper = adapter_rom_resources[0].start;
312         for (start = video_rom_resource.start; start < upper; start += 2048) {
313                 rom = isa_bus_to_virt(start);
314                 if (!romsignature(rom))
315                         continue;
316
317                 video_rom_resource.start = start;
318
319                 /* 0 < length <= 0x7f * 512, historically */
320                 length = rom[2] * 512;
321
322                 /* if checksum okay, trust length byte */
323                 if (length && romchecksum(rom, length))
324                         video_rom_resource.end = start + length - 1;
325
326                 request_resource(&iomem_resource, &video_rom_resource);
327                 break;
328         }
329
330         start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
331         if (start < upper)
332                 start = upper;
333
334         /* system rom */
335         request_resource(&iomem_resource, &system_rom_resource);
336         upper = system_rom_resource.start;
337
338         /* check for extension rom (ignore length byte!) */
339         rom = isa_bus_to_virt(extension_rom_resource.start);
340         if (romsignature(rom)) {
341                 length = extension_rom_resource.end - extension_rom_resource.start + 1;
342                 if (romchecksum(rom, length)) {
343                         request_resource(&iomem_resource, &extension_rom_resource);
344                         upper = extension_rom_resource.start;
345                 }
346         }
347
348         /* check for adapter roms on 2k boundaries */
349         for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
350                 rom = isa_bus_to_virt(start);
351                 if (!romsignature(rom))
352                         continue;
353
354                 /* 0 < length <= 0x7f * 512, historically */
355                 length = rom[2] * 512;
356
357                 /* but accept any length that fits if checksum okay */
358                 if (!length || start + length > upper || !romchecksum(rom, length))
359                         continue;
360
361                 adapter_rom_resources[i].start = start;
362                 adapter_rom_resources[i].end = start + length - 1;
363                 request_resource(&iomem_resource, &adapter_rom_resources[i]);
364
365                 start = adapter_rom_resources[i++].end & ~2047UL;
366         }
367 }
368
369 static void __init limit_regions(unsigned long long size)
370 {
371         unsigned long long current_addr = 0;
372         int i;
373
374         if (efi_enabled) {
375                 efi_memory_desc_t *md;
376                 void *p;
377
378                 for (p = memmap.map, i = 0; p < memmap.map_end;
379                         p += memmap.desc_size, i++) {
380                         md = p;
381                         current_addr = md->phys_addr + (md->num_pages << 12);
382                         if (md->type == EFI_CONVENTIONAL_MEMORY) {
383                                 if (current_addr >= size) {
384                                         md->num_pages -=
385                                                 (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT);
386                                         memmap.nr_map = i + 1;
387                                         return;
388                                 }
389                         }
390                 }
391         }
392         for (i = 0; i < e820.nr_map; i++) {
393                 current_addr = e820.map[i].addr + e820.map[i].size;
394                 if (current_addr < size)
395                         continue;
396
397                 if (e820.map[i].type != E820_RAM)
398                         continue;
399
400                 if (e820.map[i].addr >= size) {
401                         /*
402                          * This region starts past the end of the
403                          * requested size, skip it completely.
404                          */
405                         e820.nr_map = i;
406                 } else {
407                         e820.nr_map = i + 1;
408                         e820.map[i].size -= current_addr - size;
409                 }
410                 return;
411         }
412 }
413
414 static void __init add_memory_region(unsigned long long start,
415                                   unsigned long long size, int type)
416 {
417         int x;
418
419         if (!efi_enabled) {
420                 x = e820.nr_map;
421
422                 if (x == E820MAX) {
423                     printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
424                     return;
425                 }
426
427                 e820.map[x].addr = start;
428                 e820.map[x].size = size;
429                 e820.map[x].type = type;
430                 e820.nr_map++;
431         }
432 } /* add_memory_region */
433
434 #define E820_DEBUG      1
435
436 static void __init print_memory_map(char *who)
437 {
438         int i;
439
440         for (i = 0; i < e820.nr_map; i++) {
441                 printk(" %s: %016Lx - %016Lx ", who,
442                         e820.map[i].addr,
443                         e820.map[i].addr + e820.map[i].size);
444                 switch (e820.map[i].type) {
445                 case E820_RAM:  printk("(usable)\n");
446                                 break;
447                 case E820_RESERVED:
448                                 printk("(reserved)\n");
449                                 break;
450                 case E820_ACPI:
451                                 printk("(ACPI data)\n");
452                                 break;
453                 case E820_NVS:
454                                 printk("(ACPI NVS)\n");
455                                 break;
456                 default:        printk("type %lu\n", e820.map[i].type);
457                                 break;
458                 }
459         }
460 }
461
462 /*
463  * Sanitize the BIOS e820 map.
464  *
465  * Some e820 responses include overlapping entries.  The following 
466  * replaces the original e820 map with a new one, removing overlaps.
467  *
468  */
469 struct change_member {
470         struct e820entry *pbios; /* pointer to original bios entry */
471         unsigned long long addr; /* address for this change point */
472 };
473 static struct change_member change_point_list[2*E820MAX] __initdata;
474 static struct change_member *change_point[2*E820MAX] __initdata;
475 static struct e820entry *overlap_list[E820MAX] __initdata;
476 static struct e820entry new_bios[E820MAX] __initdata;
477
478 static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
479 {
480         struct change_member *change_tmp;
481         unsigned long current_type, last_type;
482         unsigned long long last_addr;
483         int chgidx, still_changing;
484         int overlap_entries;
485         int new_bios_entry;
486         int old_nr, new_nr, chg_nr;
487         int i;
488
489         /*
490                 Visually we're performing the following (1,2,3,4 = memory types)...
491
492                 Sample memory map (w/overlaps):
493                    ____22__________________
494                    ______________________4_
495                    ____1111________________
496                    _44_____________________
497                    11111111________________
498                    ____________________33__
499                    ___________44___________
500                    __________33333_________
501                    ______________22________
502                    ___________________2222_
503                    _________111111111______
504                    _____________________11_
505                    _________________4______
506
507                 Sanitized equivalent (no overlap):
508                    1_______________________
509                    _44_____________________
510                    ___1____________________
511                    ____22__________________
512                    ______11________________
513                    _________1______________
514                    __________3_____________
515                    ___________44___________
516                    _____________33_________
517                    _______________2________
518                    ________________1_______
519                    _________________4______
520                    ___________________2____
521                    ____________________33__
522                    ______________________4_
523         */
524
525         /* if there's only one memory region, don't bother */
526         if (*pnr_map < 2)
527                 return -1;
528
529         old_nr = *pnr_map;
530
531         /* bail out if we find any unreasonable addresses in bios map */
532         for (i=0; i<old_nr; i++)
533                 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
534                         return -1;
535
536         /* create pointers for initial change-point information (for sorting) */
537         for (i=0; i < 2*old_nr; i++)
538                 change_point[i] = &change_point_list[i];
539
540         /* record all known change-points (starting and ending addresses),
541            omitting those that are for empty memory regions */
542         chgidx = 0;
543         for (i=0; i < old_nr; i++)      {
544                 if (biosmap[i].size != 0) {
545                         change_point[chgidx]->addr = biosmap[i].addr;
546                         change_point[chgidx++]->pbios = &biosmap[i];
547                         change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
548                         change_point[chgidx++]->pbios = &biosmap[i];
549                 }
550         }
551         chg_nr = chgidx;        /* true number of change-points */
552
553         /* sort change-point list by memory addresses (low -> high) */
554         still_changing = 1;
555         while (still_changing)  {
556                 still_changing = 0;
557                 for (i=1; i < chg_nr; i++)  {
558                         /* if <current_addr> > <last_addr>, swap */
559                         /* or, if current=<start_addr> & last=<end_addr>, swap */
560                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
561                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
562                                  (change_point[i]->addr == change_point[i]->pbios->addr) &&
563                                  (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
564                            )
565                         {
566                                 change_tmp = change_point[i];
567                                 change_point[i] = change_point[i-1];
568                                 change_point[i-1] = change_tmp;
569                                 still_changing=1;
570                         }
571                 }
572         }
573
574         /* create a new bios memory map, removing overlaps */
575         overlap_entries=0;       /* number of entries in the overlap table */
576         new_bios_entry=0;        /* index for creating new bios map entries */
577         last_type = 0;           /* start with undefined memory type */
578         last_addr = 0;           /* start with 0 as last starting address */
579         /* loop through change-points, determining affect on the new bios map */
580         for (chgidx=0; chgidx < chg_nr; chgidx++)
581         {
582                 /* keep track of all overlapping bios entries */
583                 if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
584                 {
585                         /* add map entry to overlap list (> 1 entry implies an overlap) */
586                         overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
587                 }
588                 else
589                 {
590                         /* remove entry from list (order independent, so swap with last) */
591                         for (i=0; i<overlap_entries; i++)
592                         {
593                                 if (overlap_list[i] == change_point[chgidx]->pbios)
594                                         overlap_list[i] = overlap_list[overlap_entries-1];
595                         }
596                         overlap_entries--;
597                 }
598                 /* if there are overlapping entries, decide which "type" to use */
599                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
600                 current_type = 0;
601                 for (i=0; i<overlap_entries; i++)
602                         if (overlap_list[i]->type > current_type)
603                                 current_type = overlap_list[i]->type;
604                 /* continue building up new bios map based on this information */
605                 if (current_type != last_type)  {
606                         if (last_type != 0)      {
607                                 new_bios[new_bios_entry].size =
608                                         change_point[chgidx]->addr - last_addr;
609                                 /* move forward only if the new size was non-zero */
610                                 if (new_bios[new_bios_entry].size != 0)
611                                         if (++new_bios_entry >= E820MAX)
612                                                 break;  /* no more space left for new bios entries */
613                         }
614                         if (current_type != 0)  {
615                                 new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
616                                 new_bios[new_bios_entry].type = current_type;
617                                 last_addr=change_point[chgidx]->addr;
618                         }
619                         last_type = current_type;
620                 }
621         }
622         new_nr = new_bios_entry;   /* retain count for new bios entries */
623
624         /* copy new bios mapping into original location */
625         memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
626         *pnr_map = new_nr;
627
628         return 0;
629 }
630
631 /*
632  * Copy the BIOS e820 map into a safe place.
633  *
634  * Sanity-check it while we're at it..
635  *
636  * If we're lucky and live on a modern system, the setup code
637  * will have given us a memory map that we can use to properly
638  * set up memory.  If we aren't, we'll fake a memory map.
639  *
640  * We check to see that the memory map contains at least 2 elements
641  * before we'll use it, because the detection code in setup.S may
642  * not be perfect and most every PC known to man has two memory
643  * regions: one from 0 to 640k, and one from 1mb up.  (The IBM
644  * thinkpad 560x, for example, does not cooperate with the memory
645  * detection code.)
646  */
647 static int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
648 {
649         /* Only one memory region (or negative)? Ignore it */
650         if (nr_map < 2)
651                 return -1;
652
653         do {
654                 unsigned long long start = biosmap->addr;
655                 unsigned long long size = biosmap->size;
656                 unsigned long long end = start + size;
657                 unsigned long type = biosmap->type;
658
659                 /* Overflow in 64 bits? Ignore the memory map. */
660                 if (start > end)
661                         return -1;
662
663                 /*
664                  * Some BIOSes claim RAM in the 640k - 1M region.
665                  * Not right. Fix it up.
666                  */
667                 if (type == E820_RAM) {
668                         if (start < 0x100000ULL && end > 0xA0000ULL) {
669                                 if (start < 0xA0000ULL)
670                                         add_memory_region(start, 0xA0000ULL-start, type);
671                                 if (end <= 0x100000ULL)
672                                         continue;
673                                 start = 0x100000ULL;
674                                 size = end - start;
675                         }
676                 }
677                 add_memory_region(start, size, type);
678         } while (biosmap++,--nr_map);
679         return 0;
680 }
681
682 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
683 struct edd edd;
684 #ifdef CONFIG_EDD_MODULE
685 EXPORT_SYMBOL(edd);
686 #endif
687 /**
688  * copy_edd() - Copy the BIOS EDD information
689  *              from boot_params into a safe place.
690  *
691  */
692 static inline void copy_edd(void)
693 {
694      memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
695      memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
696      edd.mbr_signature_nr = EDD_MBR_SIG_NR;
697      edd.edd_info_nr = EDD_NR;
698 }
699 #else
700 static inline void copy_edd(void)
701 {
702 }
703 #endif
704
705 /*
706  * Do NOT EVER look at the BIOS memory size location.
707  * It does not work on many machines.
708  */
709 #define LOWMEMSIZE()    (0x9f000)
710
711 static void __init parse_cmdline_early (char ** cmdline_p)
712 {
713         char c = ' ', *to = command_line, *from = saved_command_line;
714         int len = 0;
715         int userdef = 0;
716
717         /* Save unparsed command line copy for /proc/cmdline */
718         saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
719
720         for (;;) {
721                 if (c != ' ')
722                         goto next_char;
723                 /*
724                  * "mem=nopentium" disables the 4MB page tables.
725                  * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM
726                  * to <mem>, overriding the bios size.
727                  * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from
728                  * <start> to <start>+<mem>, overriding the bios size.
729                  *
730                  * HPA tells me bootloaders need to parse mem=, so no new
731                  * option should be mem=  [also see Documentation/i386/boot.txt]
732                  */
733                 if (!memcmp(from, "mem=", 4)) {
734                         if (to != command_line)
735                                 to--;
736                         if (!memcmp(from+4, "nopentium", 9)) {
737                                 from += 9+4;
738                                 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
739                                 disable_pse = 1;
740                         } else {
741                                 /* If the user specifies memory size, we
742                                  * limit the BIOS-provided memory map to
743                                  * that size. exactmap can be used to specify
744                                  * the exact map. mem=number can be used to
745                                  * trim the existing memory map.
746                                  */
747                                 unsigned long long mem_size;
748  
749                                 mem_size = memparse(from+4, &from);
750                                 limit_regions(mem_size);
751                                 userdef=1;
752                         }
753                 }
754
755                 else if (!memcmp(from, "memmap=", 7)) {
756                         if (to != command_line)
757                                 to--;
758                         if (!memcmp(from+7, "exactmap", 8)) {
759 #ifdef CONFIG_CRASH_DUMP
760                                 /* If we are doing a crash dump, we
761                                  * still need to know the real mem
762                                  * size before original memory map is
763                                  * reset.
764                                  */
765                                 find_max_pfn();
766                                 saved_max_pfn = max_pfn;
767 #endif
768                                 from += 8+7;
769                                 e820.nr_map = 0;
770                                 userdef = 1;
771                         } else {
772                                 /* If the user specifies memory size, we
773                                  * limit the BIOS-provided memory map to
774                                  * that size. exactmap can be used to specify
775                                  * the exact map. mem=number can be used to
776                                  * trim the existing memory map.
777                                  */
778                                 unsigned long long start_at, mem_size;
779  
780                                 mem_size = memparse(from+7, &from);
781                                 if (*from == '@') {
782                                         start_at = memparse(from+1, &from);
783                                         add_memory_region(start_at, mem_size, E820_RAM);
784                                 } else if (*from == '#') {
785                                         start_at = memparse(from+1, &from);
786                                         add_memory_region(start_at, mem_size, E820_ACPI);
787                                 } else if (*from == '$') {
788                                         start_at = memparse(from+1, &from);
789                                         add_memory_region(start_at, mem_size, E820_RESERVED);
790                                 } else {
791                                         limit_regions(mem_size);
792                                         userdef=1;
793                                 }
794                         }
795                 }
796
797                 else if (!memcmp(from, "noexec=", 7))
798                         noexec_setup(from + 7);
799
800
801 #ifdef  CONFIG_X86_SMP
802                 /*
803                  * If the BIOS enumerates physical processors before logical,
804                  * maxcpus=N at enumeration-time can be used to disable HT.
805                  */
806                 else if (!memcmp(from, "maxcpus=", 8)) {
807                         extern unsigned int maxcpus;
808
809                         maxcpus = simple_strtoul(from + 8, NULL, 0);
810                 }
811 #endif
812
813 #ifdef CONFIG_ACPI
814                 /* "acpi=off" disables both ACPI table parsing and interpreter */
815                 else if (!memcmp(from, "acpi=off", 8)) {
816                         disable_acpi();
817                 }
818
819                 /* acpi=force to over-ride black-list */
820                 else if (!memcmp(from, "acpi=force", 10)) {
821                         acpi_force = 1;
822                         acpi_ht = 1;
823                         acpi_disabled = 0;
824                 }
825
826                 /* acpi=strict disables out-of-spec workarounds */
827                 else if (!memcmp(from, "acpi=strict", 11)) {
828                         acpi_strict = 1;
829                 }
830
831                 /* Limit ACPI just to boot-time to enable HT */
832                 else if (!memcmp(from, "acpi=ht", 7)) {
833                         if (!acpi_force)
834                                 disable_acpi();
835                         acpi_ht = 1;
836                 }
837                 
838                 /* "pci=noacpi" disable ACPI IRQ routing and PCI scan */
839                 else if (!memcmp(from, "pci=noacpi", 10)) {
840                         acpi_disable_pci();
841                 }
842                 /* "acpi=noirq" disables ACPI interrupt routing */
843                 else if (!memcmp(from, "acpi=noirq", 10)) {
844                         acpi_noirq_set();
845                 }
846
847                 else if (!memcmp(from, "acpi_sci=edge", 13))
848                         acpi_sci_flags.trigger =  1;
849
850                 else if (!memcmp(from, "acpi_sci=level", 14))
851                         acpi_sci_flags.trigger = 3;
852
853                 else if (!memcmp(from, "acpi_sci=high", 13))
854                         acpi_sci_flags.polarity = 1;
855
856                 else if (!memcmp(from, "acpi_sci=low", 12))
857                         acpi_sci_flags.polarity = 3;
858
859 #ifdef CONFIG_X86_IO_APIC
860                 else if (!memcmp(from, "acpi_skip_timer_override", 24))
861                         acpi_skip_timer_override = 1;
862
863                 if (!memcmp(from, "disable_timer_pin_1", 19))
864                         disable_timer_pin_1 = 1;
865                 if (!memcmp(from, "enable_timer_pin_1", 18))
866                         disable_timer_pin_1 = -1;
867
868                 /* disable IO-APIC */
869                 else if (!memcmp(from, "noapic", 6))
870                         disable_ioapic_setup();
871 #endif /* CONFIG_X86_IO_APIC */
872 #endif /* CONFIG_ACPI */
873
874 #ifdef CONFIG_X86_LOCAL_APIC
875                 /* enable local APIC */
876                 else if (!memcmp(from, "lapic", 5))
877                         lapic_enable();
878
879                 /* disable local APIC */
880                 else if (!memcmp(from, "nolapic", 6))
881                         lapic_disable();
882 #endif /* CONFIG_X86_LOCAL_APIC */
883
884 #ifdef CONFIG_KEXEC
885                 /* crashkernel=size@addr specifies the location to reserve for
886                  * a crash kernel.  By reserving this memory we guarantee
887                  * that linux never set's it up as a DMA target.
888                  * Useful for holding code to do something appropriate
889                  * after a kernel panic.
890                  */
891                 else if (!memcmp(from, "crashkernel=", 12)) {
892                         unsigned long size, base;
893                         size = memparse(from+12, &from);
894                         if (*from == '@') {
895                                 base = memparse(from+1, &from);
896                                 /* FIXME: Do I want a sanity check
897                                  * to validate the memory range?
898                                  */
899                                 crashk_res.start = base;
900                                 crashk_res.end   = base + size - 1;
901                         }
902                 }
903 #endif
904 #ifdef CONFIG_PROC_VMCORE
905                 /* elfcorehdr= specifies the location of elf core header
906                  * stored by the crashed kernel.
907                  */
908                 else if (!memcmp(from, "elfcorehdr=", 11))
909                         elfcorehdr_addr = memparse(from+11, &from);
910 #endif
911
912                 /*
913                  * highmem=size forces highmem to be exactly 'size' bytes.
914                  * This works even on boxes that have no highmem otherwise.
915                  * This also works to reduce highmem size on bigger boxes.
916                  */
917                 else if (!memcmp(from, "highmem=", 8))
918                         highmem_pages = memparse(from+8, &from) >> PAGE_SHIFT;
919         
920                 /*
921                  * vmalloc=size forces the vmalloc area to be exactly 'size'
922                  * bytes. This can be used to increase (or decrease) the
923                  * vmalloc area - the default is 128m.
924                  */
925                 else if (!memcmp(from, "vmalloc=", 8))
926                         __VMALLOC_RESERVE = memparse(from+8, &from);
927
928         next_char:
929                 c = *(from++);
930                 if (!c)
931                         break;
932                 if (COMMAND_LINE_SIZE <= ++len)
933                         break;
934                 *(to++) = c;
935         }
936         *to = '\0';
937         *cmdline_p = command_line;
938         if (userdef) {
939                 printk(KERN_INFO "user-defined physical RAM map:\n");
940                 print_memory_map("user");
941         }
942 }
943
944 /*
945  * Callback for efi_memory_walk.
946  */
947 static int __init
948 efi_find_max_pfn(unsigned long start, unsigned long end, void *arg)
949 {
950         unsigned long *max_pfn = arg, pfn;
951
952         if (start < end) {
953                 pfn = PFN_UP(end -1);
954                 if (pfn > *max_pfn)
955                         *max_pfn = pfn;
956         }
957         return 0;
958 }
959
960 static int __init
961 efi_memory_present_wrapper(unsigned long start, unsigned long end, void *arg)
962 {
963         memory_present(0, start, end);
964         return 0;
965 }
966
967  /*
968   * This function checks if the entire range <start,end> is mapped with type.
969   *
970   * Note: this function only works correct if the e820 table is sorted and
971   * not-overlapping, which is the case
972   */
973 int __init
974 e820_all_mapped(unsigned long s, unsigned long e, unsigned type)
975 {
976         u64 start = s;
977         u64 end = e;
978         int i;
979         for (i = 0; i < e820.nr_map; i++) {
980                 struct e820entry *ei = &e820.map[i];
981                 if (type && ei->type != type)
982                         continue;
983                 /* is the region (part) in overlap with the current region ?*/
984                 if (ei->addr >= end || ei->addr + ei->size <= start)
985                         continue;
986                 /* if the region is at the beginning of <start,end> we move
987                  * start to the end of the region since it's ok until there
988                  */
989                 if (ei->addr <= start)
990                         start = ei->addr + ei->size;
991                 /* if start is now at or beyond end, we're done, full
992                  * coverage */
993                 if (start >= end)
994                         return 1; /* we're done */
995         }
996         return 0;
997 }
998
999 /*
1000  * Find the highest page frame number we have available
1001  */
1002 void __init find_max_pfn(void)
1003 {
1004         int i;
1005
1006         max_pfn = 0;
1007         if (efi_enabled) {
1008                 efi_memmap_walk(efi_find_max_pfn, &max_pfn);
1009                 efi_memmap_walk(efi_memory_present_wrapper, NULL);
1010                 return;
1011         }
1012
1013         for (i = 0; i < e820.nr_map; i++) {
1014                 unsigned long start, end;
1015                 /* RAM? */
1016                 if (e820.map[i].type != E820_RAM)
1017                         continue;
1018                 start = PFN_UP(e820.map[i].addr);
1019                 end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
1020                 if (start >= end)
1021                         continue;
1022                 if (end > max_pfn)
1023                         max_pfn = end;
1024                 memory_present(0, start, end);
1025         }
1026 }
1027
1028 /*
1029  * Determine low and high memory ranges:
1030  */
1031 unsigned long __init find_max_low_pfn(void)
1032 {
1033         unsigned long max_low_pfn;
1034
1035         max_low_pfn = max_pfn;
1036         if (max_low_pfn > MAXMEM_PFN) {
1037                 if (highmem_pages == -1)
1038                         highmem_pages = max_pfn - MAXMEM_PFN;
1039                 if (highmem_pages + MAXMEM_PFN < max_pfn)
1040                         max_pfn = MAXMEM_PFN + highmem_pages;
1041                 if (highmem_pages + MAXMEM_PFN > max_pfn) {
1042                         printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages));
1043                         highmem_pages = 0;
1044                 }
1045                 max_low_pfn = MAXMEM_PFN;
1046 #ifndef CONFIG_HIGHMEM
1047                 /* Maximum memory usable is what is directly addressable */
1048                 printk(KERN_WARNING "Warning only %ldMB will be used.\n",
1049                                         MAXMEM>>20);
1050                 if (max_pfn > MAX_NONPAE_PFN)
1051                         printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1052                 else
1053                         printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
1054                 max_pfn = MAXMEM_PFN;
1055 #else /* !CONFIG_HIGHMEM */
1056 #ifndef CONFIG_X86_PAE
1057                 if (max_pfn > MAX_NONPAE_PFN) {
1058                         max_pfn = MAX_NONPAE_PFN;
1059                         printk(KERN_WARNING "Warning only 4GB will be used.\n");
1060                         printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1061                 }
1062 #endif /* !CONFIG_X86_PAE */
1063 #endif /* !CONFIG_HIGHMEM */
1064         } else {
1065                 if (highmem_pages == -1)
1066                         highmem_pages = 0;
1067 #ifdef CONFIG_HIGHMEM
1068                 if (highmem_pages >= max_pfn) {
1069                         printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
1070                         highmem_pages = 0;
1071                 }
1072                 if (highmem_pages) {
1073                         if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){
1074                                 printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages));
1075                                 highmem_pages = 0;
1076                         }
1077                         max_low_pfn -= highmem_pages;
1078                 }
1079 #else
1080                 if (highmem_pages)
1081                         printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
1082 #endif
1083         }
1084         return max_low_pfn;
1085 }
1086
1087 /*
1088  * Free all available memory for boot time allocation.  Used
1089  * as a callback function by efi_memory_walk()
1090  */
1091
1092 static int __init
1093 free_available_memory(unsigned long start, unsigned long end, void *arg)
1094 {
1095         /* check max_low_pfn */
1096         if (start >= (max_low_pfn << PAGE_SHIFT))
1097                 return 0;
1098         if (end >= (max_low_pfn << PAGE_SHIFT))
1099                 end = max_low_pfn << PAGE_SHIFT;
1100         if (start < end)
1101                 free_bootmem(start, end - start);
1102
1103         return 0;
1104 }
1105 /*
1106  * Register fully available low RAM pages with the bootmem allocator.
1107  */
1108 static void __init register_bootmem_low_pages(unsigned long max_low_pfn)
1109 {
1110         int i;
1111
1112         if (efi_enabled) {
1113                 efi_memmap_walk(free_available_memory, NULL);
1114                 return;
1115         }
1116         for (i = 0; i < e820.nr_map; i++) {
1117                 unsigned long curr_pfn, last_pfn, size;
1118                 /*
1119                  * Reserve usable low memory
1120                  */
1121                 if (e820.map[i].type != E820_RAM)
1122                         continue;
1123                 /*
1124                  * We are rounding up the start address of usable memory:
1125                  */
1126                 curr_pfn = PFN_UP(e820.map[i].addr);
1127                 if (curr_pfn >= max_low_pfn)
1128                         continue;
1129                 /*
1130                  * ... and at the end of the usable range downwards:
1131                  */
1132                 last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
1133
1134                 if (last_pfn > max_low_pfn)
1135                         last_pfn = max_low_pfn;
1136
1137                 /*
1138                  * .. finally, did all the rounding and playing
1139                  * around just make the area go away?
1140                  */
1141                 if (last_pfn <= curr_pfn)
1142                         continue;
1143
1144                 size = last_pfn - curr_pfn;
1145                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
1146         }
1147 }
1148
1149 /*
1150  * workaround for Dell systems that neglect to reserve EBDA
1151  */
1152 static void __init reserve_ebda_region(void)
1153 {
1154         unsigned int addr;
1155         addr = get_bios_ebda();
1156         if (addr)
1157                 reserve_bootmem(addr, PAGE_SIZE);       
1158 }
1159
1160 #ifndef CONFIG_NEED_MULTIPLE_NODES
1161 void __init setup_bootmem_allocator(void);
1162 static unsigned long __init setup_memory(void)
1163 {
1164         /*
1165          * partially used pages are not usable - thus
1166          * we are rounding upwards:
1167          */
1168         min_low_pfn = PFN_UP(init_pg_tables_end);
1169
1170         find_max_pfn();
1171
1172         max_low_pfn = find_max_low_pfn();
1173
1174 #ifdef CONFIG_HIGHMEM
1175         highstart_pfn = highend_pfn = max_pfn;
1176         if (max_pfn > max_low_pfn) {
1177                 highstart_pfn = max_low_pfn;
1178         }
1179         printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
1180                 pages_to_mb(highend_pfn - highstart_pfn));
1181 #endif
1182         printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
1183                         pages_to_mb(max_low_pfn));
1184
1185         setup_bootmem_allocator();
1186
1187         return max_low_pfn;
1188 }
1189
1190 void __init zone_sizes_init(void)
1191 {
1192         unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
1193         unsigned int max_dma, low;
1194
1195         max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
1196         low = max_low_pfn;
1197
1198         if (low < max_dma)
1199                 zones_size[ZONE_DMA] = low;
1200         else {
1201                 zones_size[ZONE_DMA] = max_dma;
1202                 zones_size[ZONE_NORMAL] = low - max_dma;
1203 #ifdef CONFIG_HIGHMEM
1204                 zones_size[ZONE_HIGHMEM] = highend_pfn - low;
1205 #endif
1206         }
1207         free_area_init(zones_size);
1208 }
1209 #else
1210 extern unsigned long __init setup_memory(void);
1211 extern void zone_sizes_init(void);
1212 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1213
1214 void __init setup_bootmem_allocator(void)
1215 {
1216         unsigned long bootmap_size;
1217         /*
1218          * Initialize the boot-time allocator (with low memory only):
1219          */
1220         bootmap_size = init_bootmem(min_low_pfn, max_low_pfn);
1221
1222         register_bootmem_low_pages(max_low_pfn);
1223
1224         /*
1225          * Reserve the bootmem bitmap itself as well. We do this in two
1226          * steps (first step was init_bootmem()) because this catches
1227          * the (very unlikely) case of us accidentally initializing the
1228          * bootmem allocator with an invalid RAM area.
1229          */
1230         reserve_bootmem(__PHYSICAL_START, (PFN_PHYS(min_low_pfn) +
1231                          bootmap_size + PAGE_SIZE-1) - (__PHYSICAL_START));
1232
1233         /*
1234          * reserve physical page 0 - it's a special BIOS page on many boxes,
1235          * enabling clean reboots, SMP operation, laptop functions.
1236          */
1237         reserve_bootmem(0, PAGE_SIZE);
1238
1239         /* reserve EBDA region, it's a 4K region */
1240         reserve_ebda_region();
1241
1242     /* could be an AMD 768MPX chipset. Reserve a page  before VGA to prevent
1243        PCI prefetch into it (errata #56). Usually the page is reserved anyways,
1244        unless you have no PS/2 mouse plugged in. */
1245         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
1246             boot_cpu_data.x86 == 6)
1247              reserve_bootmem(0xa0000 - 4096, 4096);
1248
1249 #ifdef CONFIG_SMP
1250         /*
1251          * But first pinch a few for the stack/trampoline stuff
1252          * FIXME: Don't need the extra page at 4K, but need to fix
1253          * trampoline before removing it. (see the GDT stuff)
1254          */
1255         reserve_bootmem(PAGE_SIZE, PAGE_SIZE);
1256 #endif
1257 #ifdef CONFIG_ACPI_SLEEP
1258         /*
1259          * Reserve low memory region for sleep support.
1260          */
1261         acpi_reserve_bootmem();
1262 #endif
1263 #ifdef CONFIG_X86_FIND_SMP_CONFIG
1264         /*
1265          * Find and reserve possible boot-time SMP configuration:
1266          */
1267         find_smp_config();
1268 #endif
1269
1270 #ifdef CONFIG_BLK_DEV_INITRD
1271         if (LOADER_TYPE && INITRD_START) {
1272                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
1273                         reserve_bootmem(INITRD_START, INITRD_SIZE);
1274                         initrd_start =
1275                                 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
1276                         initrd_end = initrd_start+INITRD_SIZE;
1277                 }
1278                 else {
1279                         printk(KERN_ERR "initrd extends beyond end of memory "
1280                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
1281                             INITRD_START + INITRD_SIZE,
1282                             max_low_pfn << PAGE_SHIFT);
1283                         initrd_start = 0;
1284                 }
1285         }
1286 #endif
1287 #ifdef CONFIG_KEXEC
1288         if (crashk_res.start != crashk_res.end)
1289                 reserve_bootmem(crashk_res.start,
1290                         crashk_res.end - crashk_res.start + 1);
1291 #endif
1292 }
1293
1294 /*
1295  * The node 0 pgdat is initialized before all of these because
1296  * it's needed for bootmem.  node>0 pgdats have their virtual
1297  * space allocated before the pagetables are in place to access
1298  * them, so they can't be cleared then.
1299  *
1300  * This should all compile down to nothing when NUMA is off.
1301  */
1302 void __init remapped_pgdat_init(void)
1303 {
1304         int nid;
1305
1306         for_each_online_node(nid) {
1307                 if (nid != 0)
1308                         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1309         }
1310 }
1311
1312 /*
1313  * Request address space for all standard RAM and ROM resources
1314  * and also for regions reported as reserved by the e820.
1315  */
1316 static void __init
1317 legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource)
1318 {
1319         int i;
1320
1321         probe_roms();
1322         for (i = 0; i < e820.nr_map; i++) {
1323                 struct resource *res;
1324                 if (e820.map[i].addr + e820.map[i].size > 0x100000000ULL)
1325                         continue;
1326                 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1327                 switch (e820.map[i].type) {
1328                 case E820_RAM:  res->name = "System RAM"; break;
1329                 case E820_ACPI: res->name = "ACPI Tables"; break;
1330                 case E820_NVS:  res->name = "ACPI Non-volatile Storage"; break;
1331                 default:        res->name = "reserved";
1332                 }
1333                 res->start = e820.map[i].addr;
1334                 res->end = res->start + e820.map[i].size - 1;
1335                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1336                 request_resource(&iomem_resource, res);
1337                 if (e820.map[i].type == E820_RAM) {
1338                         /*
1339                          *  We don't know which RAM region contains kernel data,
1340                          *  so we try it repeatedly and let the resource manager
1341                          *  test it.
1342                          */
1343                         request_resource(res, code_resource);
1344                         request_resource(res, data_resource);
1345 #ifdef CONFIG_KEXEC
1346                         request_resource(res, &crashk_res);
1347 #endif
1348                 }
1349         }
1350 }
1351
1352 /*
1353  * Request address space for all standard resources
1354  *
1355  * This is called just before pcibios_init(), which is also a
1356  * subsys_initcall, but is linked in later (in arch/i386/pci/common.c).
1357  */
1358 static int __init request_standard_resources(void)
1359 {
1360         int i;
1361
1362         printk("Setting up standard PCI resources\n");
1363         if (efi_enabled)
1364                 efi_initialize_iomem_resources(&code_resource, &data_resource);
1365         else
1366                 legacy_init_iomem_resources(&code_resource, &data_resource);
1367
1368         /* EFI systems may still have VGA */
1369         request_resource(&iomem_resource, &video_ram_resource);
1370
1371         /* request I/O space for devices used on all i[345]86 PCs */
1372         for (i = 0; i < STANDARD_IO_RESOURCES; i++)
1373                 request_resource(&ioport_resource, &standard_io_resources[i]);
1374         return 0;
1375 }
1376
1377 subsys_initcall(request_standard_resources);
1378
1379 static void __init register_memory(void)
1380 {
1381         unsigned long gapstart, gapsize, round;
1382         unsigned long long last;
1383         int i;
1384
1385         /*
1386          * Search for the bigest gap in the low 32 bits of the e820
1387          * memory space.
1388          */
1389         last = 0x100000000ull;
1390         gapstart = 0x10000000;
1391         gapsize = 0x400000;
1392         i = e820.nr_map;
1393         while (--i >= 0) {
1394                 unsigned long long start = e820.map[i].addr;
1395                 unsigned long long end = start + e820.map[i].size;
1396
1397                 /*
1398                  * Since "last" is at most 4GB, we know we'll
1399                  * fit in 32 bits if this condition is true
1400                  */
1401                 if (last > end) {
1402                         unsigned long gap = last - end;
1403
1404                         if (gap > gapsize) {
1405                                 gapsize = gap;
1406                                 gapstart = end;
1407                         }
1408                 }
1409                 if (start < last)
1410                         last = start;
1411         }
1412
1413         /*
1414          * See how much we want to round up: start off with
1415          * rounding to the next 1MB area.
1416          */
1417         round = 0x100000;
1418         while ((gapsize >> 4) > round)
1419                 round += round;
1420         /* Fun with two's complement */
1421         pci_mem_start = (gapstart + round) & -round;
1422
1423         printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n",
1424                 pci_mem_start, gapstart, gapsize);
1425 }
1426
1427 static char * __init machine_specific_memory_setup(void);
1428
1429 #ifdef CONFIG_MCA
1430 static void set_mca_bus(int x)
1431 {
1432         MCA_bus = x;
1433 }
1434 #else
1435 static void set_mca_bus(int x) { }
1436 #endif
1437
1438 #ifdef CONFIG_SOFTWARE_SUSPEND
1439 static void __init mark_nosave_page_range(unsigned long start, unsigned long end)
1440 {
1441         struct page *page;
1442         while (start <= end) {
1443                 page = pfn_to_page(start);
1444                 SetPageNosave(page);
1445                 start++;
1446         }
1447 }
1448
1449 static void __init e820_nosave_reserved_pages(void)
1450 {
1451         int i;
1452         unsigned long r_start = 0, r_end = 0;
1453
1454         /* Assume e820 map is sorted */
1455         for (i = 0; i < e820.nr_map; i++) {
1456                 struct e820entry *ei = &e820.map[i];
1457                 unsigned long start, end;
1458
1459                 start = PFN_DOWN(ei->addr);
1460                 end = PFN_UP(ei->addr + ei->size);
1461                 if (start >= end)
1462                         continue;
1463                 if (ei->type == E820_RESERVED)
1464                         continue;
1465                 r_end = start;
1466                 /*
1467                  * Highmem 'Reserved' pages are marked as reserved, swsusp
1468                  * will not save/restore them, so we ignore these pages here.
1469                  */
1470                 if (r_end > max_low_pfn)
1471                         r_end = max_low_pfn;
1472                 if (r_end > r_start)
1473                         mark_nosave_page_range(r_start, r_end-1);
1474                 if (r_end >= max_low_pfn)
1475                         break;
1476                 r_start = end;
1477         }
1478 }
1479
1480 static void __init e820_save_acpi_pages(void)
1481 {
1482         int i;
1483
1484         /* Assume e820 map is sorted */
1485         for (i = 0; i < e820.nr_map; i++) {
1486                 struct e820entry *ei = &e820.map[i];
1487                 unsigned long start, end;
1488
1489                 start = ei->addr;
1490                 end = ei->addr + ei->size;
1491                 if (start >= end)
1492                         continue;
1493                 if (ei->type != E820_ACPI && ei->type != E820_NVS)
1494                         continue;
1495                 /*
1496                  * If the region is below max_low_pfn, it will be
1497                  * saved/restored by swsusp follow 'RAM' type.
1498                  */
1499                 if (start < (max_low_pfn << PAGE_SHIFT))
1500                         start = max_low_pfn << PAGE_SHIFT;
1501                 /*
1502                  * Highmem pages (ACPI NVS/Data) are reserved, but swsusp
1503                  * highmem save/restore will not save/restore them. We marked
1504                  * them as arch saveable pages here
1505                  */
1506                 if (end > start)
1507                         swsusp_add_arch_pages(start, end);
1508         }
1509 }
1510
1511 extern char __start_rodata, __end_rodata;
1512 /*
1513  * BIOS reserved region/hole - no save/restore
1514  * ACPI NVS - save/restore
1515  * ACPI Data - this is a little tricky, the mem could be used by OS after OS
1516  * reads tables from the region, but anyway save/restore the memory hasn't any
1517  * side effect and Linux runtime module load/unload might use it.
1518  * kernel rodata - no save/restore (kernel rodata isn't changed)
1519  */
1520 static int __init mark_nosave_pages(void)
1521 {
1522         unsigned long pfn_start, pfn_end;
1523
1524         /* FIXME: provide a version for efi BIOS */
1525         if (efi_enabled)
1526                 return 0;
1527         /* BIOS reserved regions & holes */
1528         e820_nosave_reserved_pages();
1529
1530         /* kernel rodata */
1531         pfn_start = PFN_UP(virt_to_phys(&__start_rodata));
1532         pfn_end = PFN_DOWN(virt_to_phys(&__end_rodata));
1533         mark_nosave_page_range(pfn_start, pfn_end-1);
1534
1535         /* record ACPI Data/NVS as saveable */
1536         e820_save_acpi_pages();
1537
1538         return 0;
1539 }
1540 core_initcall(mark_nosave_pages);
1541 #endif
1542
1543 /*
1544  * Determine if we were loaded by an EFI loader.  If so, then we have also been
1545  * passed the efi memmap, systab, etc., so we should use these data structures
1546  * for initialization.  Note, the efi init code path is determined by the
1547  * global efi_enabled. This allows the same kernel image to be used on existing
1548  * systems (with a traditional BIOS) as well as on EFI systems.
1549  */
1550 void __init setup_arch(char **cmdline_p)
1551 {
1552         unsigned long max_low_pfn;
1553
1554         memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
1555         pre_setup_arch_hook();
1556         early_cpu_init();
1557
1558         /*
1559          * FIXME: This isn't an official loader_type right
1560          * now but does currently work with elilo.
1561          * If we were configured as an EFI kernel, check to make
1562          * sure that we were loaded correctly from elilo and that
1563          * the system table is valid.  If not, then initialize normally.
1564          */
1565 #ifdef CONFIG_EFI
1566         if ((LOADER_TYPE == 0x50) && EFI_SYSTAB)
1567                 efi_enabled = 1;
1568 #endif
1569
1570         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
1571         drive_info = DRIVE_INFO;
1572         screen_info = SCREEN_INFO;
1573         edid_info = EDID_INFO;
1574         apm_info.bios = APM_BIOS_INFO;
1575         ist_info = IST_INFO;
1576         saved_videomode = VIDEO_MODE;
1577         if( SYS_DESC_TABLE.length != 0 ) {
1578                 set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2);
1579                 machine_id = SYS_DESC_TABLE.table[0];
1580                 machine_submodel_id = SYS_DESC_TABLE.table[1];
1581                 BIOS_revision = SYS_DESC_TABLE.table[2];
1582         }
1583         bootloader_type = LOADER_TYPE;
1584
1585 #ifdef CONFIG_BLK_DEV_RAM
1586         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
1587         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
1588         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
1589 #endif
1590         ARCH_SETUP
1591         if (efi_enabled)
1592                 efi_init();
1593         else {
1594                 printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1595                 print_memory_map(machine_specific_memory_setup());
1596         }
1597
1598         copy_edd();
1599
1600         if (!MOUNT_ROOT_RDONLY)
1601                 root_mountflags &= ~MS_RDONLY;
1602         init_mm.start_code = (unsigned long) _text;
1603         init_mm.end_code = (unsigned long) _etext;
1604         init_mm.end_data = (unsigned long) _edata;
1605         init_mm.brk = init_pg_tables_end + PAGE_OFFSET;
1606
1607         code_resource.start = virt_to_phys(_text);
1608         code_resource.end = virt_to_phys(_etext)-1;
1609         data_resource.start = virt_to_phys(_etext);
1610         data_resource.end = virt_to_phys(_edata)-1;
1611
1612         parse_cmdline_early(cmdline_p);
1613
1614 #ifdef CONFIG_EARLY_PRINTK
1615         {
1616                 char *s = strstr(*cmdline_p, "earlyprintk=");
1617                 if (s) {
1618                         setup_early_printk(strchr(s, '=') + 1);
1619                         printk("early console enabled\n");
1620                 }
1621         }
1622 #endif
1623
1624         max_low_pfn = setup_memory();
1625
1626         /*
1627          * NOTE: before this point _nobody_ is allowed to allocate
1628          * any memory using the bootmem allocator.  Although the
1629          * alloctor is now initialised only the first 8Mb of the kernel
1630          * virtual address space has been mapped.  All allocations before
1631          * paging_init() has completed must use the alloc_bootmem_low_pages()
1632          * variant (which allocates DMA'able memory) and care must be taken
1633          * not to exceed the 8Mb limit.
1634          */
1635
1636 #ifdef CONFIG_SMP
1637         smp_alloc_memory(); /* AP processor realmode stacks in low memory*/
1638 #endif
1639         paging_init();
1640         remapped_pgdat_init();
1641         sparse_init();
1642         zone_sizes_init();
1643
1644         /*
1645          * NOTE: at this point the bootmem allocator is fully available.
1646          */
1647
1648         dmi_scan_machine();
1649
1650 #ifdef CONFIG_X86_GENERICARCH
1651         generic_apic_probe(*cmdline_p);
1652 #endif  
1653         if (efi_enabled)
1654                 efi_map_memmap();
1655
1656 #ifdef CONFIG_ACPI
1657         /*
1658          * Parse the ACPI tables for possible boot-time SMP configuration.
1659          */
1660         acpi_boot_table_init();
1661 #endif
1662
1663 #ifdef CONFIG_X86_IO_APIC
1664         check_acpi_pci();       /* Checks more than just ACPI actually */
1665 #endif
1666
1667 #ifdef CONFIG_ACPI
1668         acpi_boot_init();
1669
1670 #if defined(CONFIG_SMP) && defined(CONFIG_X86_PC)
1671         if (def_to_bigsmp)
1672                 printk(KERN_WARNING "More than 8 CPUs detected and "
1673                         "CONFIG_X86_PC cannot handle it.\nUse "
1674                         "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n");
1675 #endif
1676 #endif
1677 #ifdef CONFIG_X86_LOCAL_APIC
1678         if (smp_found_config)
1679                 get_smp_config();
1680 #endif
1681
1682         register_memory();
1683
1684 #ifdef CONFIG_VT
1685 #if defined(CONFIG_VGA_CONSOLE)
1686         if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1687                 conswitchp = &vga_con;
1688 #elif defined(CONFIG_DUMMY_CONSOLE)
1689         conswitchp = &dummy_con;
1690 #endif
1691 #endif
1692 }
1693
1694 static __init int add_pcspkr(void)
1695 {
1696         struct platform_device *pd;
1697         int ret;
1698
1699         pd = platform_device_alloc("pcspkr", -1);
1700         if (!pd)
1701                 return -ENOMEM;
1702
1703         ret = platform_device_add(pd);
1704         if (ret)
1705                 platform_device_put(pd);
1706
1707         return ret;
1708 }
1709 device_initcall(add_pcspkr);
1710
1711 #include "setup_arch_post.h"
1712 /*
1713  * Local Variables:
1714  * mode:c
1715  * c-file-style:"k&r"
1716  * c-basic-offset:8
1717  * End:
1718  */