2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @fis: Buffer into which data will output
115 * @pmp: Port multiplier port
117 * Converts a standard ATA taskfile to a Serial ATA
118 * FIS structure (Register - Host to Device).
121 * Inherited from caller.
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
128 bit 7 indicates Command FIS */
129 fis[2] = tf->command;
130 fis[3] = tf->feature;
137 fis[8] = tf->hob_lbal;
138 fis[9] = tf->hob_lbam;
139 fis[10] = tf->hob_lbah;
140 fis[11] = tf->hob_feature;
143 fis[13] = tf->hob_nsect;
154 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
155 * @fis: Buffer from which data will be input
156 * @tf: Taskfile to output
158 * Converts a serial ATA FIS structure to a standard ATA taskfile.
161 * Inherited from caller.
164 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
166 tf->command = fis[2]; /* status */
167 tf->feature = fis[3]; /* error */
174 tf->hob_lbal = fis[8];
175 tf->hob_lbam = fis[9];
176 tf->hob_lbah = fis[10];
179 tf->hob_nsect = fis[13];
182 static const u8 ata_rw_cmds[] = {
186 ATA_CMD_READ_MULTI_EXT,
187 ATA_CMD_WRITE_MULTI_EXT,
191 ATA_CMD_WRITE_MULTI_FUA_EXT,
195 ATA_CMD_PIO_READ_EXT,
196 ATA_CMD_PIO_WRITE_EXT,
209 ATA_CMD_WRITE_FUA_EXT
213 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
214 * @tf: command to examine and configure
215 * @dev: device tf belongs to
217 * Examine the device configuration and tf->flags to calculate
218 * the proper read/write commands and protocol to use.
223 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
227 int index, fua, lba48, write;
229 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
230 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
231 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
233 if (dev->flags & ATA_DFLAG_PIO) {
234 tf->protocol = ATA_PROT_PIO;
235 index = dev->multi_count ? 0 : 8;
236 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
237 /* Unable to use DMA due to host limitation */
238 tf->protocol = ATA_PROT_PIO;
239 index = dev->multi_count ? 0 : 8;
241 tf->protocol = ATA_PROT_DMA;
245 cmd = ata_rw_cmds[index + fua + lba48 + write];
254 * ata_tf_read_block - Read block address from ATA taskfile
255 * @tf: ATA taskfile of interest
256 * @dev: ATA device @tf belongs to
261 * Read block address from @tf. This function can handle all
262 * three address formats - LBA, LBA48 and CHS. tf->protocol and
263 * flags select the address format to use.
266 * Block address read from @tf.
268 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
272 if (tf->flags & ATA_TFLAG_LBA) {
273 if (tf->flags & ATA_TFLAG_LBA48) {
274 block |= (u64)tf->hob_lbah << 40;
275 block |= (u64)tf->hob_lbam << 32;
276 block |= tf->hob_lbal << 24;
278 block |= (tf->device & 0xf) << 24;
280 block |= tf->lbah << 16;
281 block |= tf->lbam << 8;
286 cyl = tf->lbam | (tf->lbah << 8);
287 head = tf->device & 0xf;
290 block = (cyl * dev->heads + head) * dev->sectors + sect;
297 * ata_build_rw_tf - Build ATA taskfile for given read/write request
298 * @tf: Target ATA taskfile
299 * @dev: ATA device @tf belongs to
300 * @block: Block address
301 * @n_block: Number of blocks
302 * @tf_flags: RW/FUA etc...
308 * Build ATA taskfile @tf for read/write request described by
309 * @block, @n_block, @tf_flags and @tag on @dev.
313 * 0 on success, -ERANGE if the request is too large for @dev,
314 * -EINVAL if the request is invalid.
316 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
317 u64 block, u32 n_block, unsigned int tf_flags,
320 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
321 tf->flags |= tf_flags;
323 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
325 if (!lba_48_ok(block, n_block))
328 tf->protocol = ATA_PROT_NCQ;
329 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
331 if (tf->flags & ATA_TFLAG_WRITE)
332 tf->command = ATA_CMD_FPDMA_WRITE;
334 tf->command = ATA_CMD_FPDMA_READ;
336 tf->nsect = tag << 3;
337 tf->hob_feature = (n_block >> 8) & 0xff;
338 tf->feature = n_block & 0xff;
340 tf->hob_lbah = (block >> 40) & 0xff;
341 tf->hob_lbam = (block >> 32) & 0xff;
342 tf->hob_lbal = (block >> 24) & 0xff;
343 tf->lbah = (block >> 16) & 0xff;
344 tf->lbam = (block >> 8) & 0xff;
345 tf->lbal = block & 0xff;
348 if (tf->flags & ATA_TFLAG_FUA)
349 tf->device |= 1 << 7;
350 } else if (dev->flags & ATA_DFLAG_LBA) {
351 tf->flags |= ATA_TFLAG_LBA;
353 if (lba_28_ok(block, n_block)) {
355 tf->device |= (block >> 24) & 0xf;
356 } else if (lba_48_ok(block, n_block)) {
357 if (!(dev->flags & ATA_DFLAG_LBA48))
361 tf->flags |= ATA_TFLAG_LBA48;
363 tf->hob_nsect = (n_block >> 8) & 0xff;
365 tf->hob_lbah = (block >> 40) & 0xff;
366 tf->hob_lbam = (block >> 32) & 0xff;
367 tf->hob_lbal = (block >> 24) & 0xff;
369 /* request too large even for LBA48 */
372 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 tf->nsect = n_block & 0xff;
377 tf->lbah = (block >> 16) & 0xff;
378 tf->lbam = (block >> 8) & 0xff;
379 tf->lbal = block & 0xff;
381 tf->device |= ATA_LBA;
384 u32 sect, head, cyl, track;
386 /* The request -may- be too large for CHS addressing. */
387 if (!lba_28_ok(block, n_block))
390 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 /* Convert LBA to CHS */
394 track = (u32)block / dev->sectors;
395 cyl = track / dev->heads;
396 head = track % dev->heads;
397 sect = (u32)block % dev->sectors + 1;
399 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
400 (u32)block, track, cyl, head, sect);
402 /* Check whether the converted CHS can fit.
406 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
421 * @pio_mask: pio_mask
422 * @mwdma_mask: mwdma_mask
423 * @udma_mask: udma_mask
425 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
426 * unsigned int xfer_mask.
434 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
435 unsigned int mwdma_mask,
436 unsigned int udma_mask)
438 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
439 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
440 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
444 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
445 * @xfer_mask: xfer_mask to unpack
446 * @pio_mask: resulting pio_mask
447 * @mwdma_mask: resulting mwdma_mask
448 * @udma_mask: resulting udma_mask
450 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
451 * Any NULL distination masks will be ignored.
453 static void ata_unpack_xfermask(unsigned int xfer_mask,
454 unsigned int *pio_mask,
455 unsigned int *mwdma_mask,
456 unsigned int *udma_mask)
459 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
461 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
463 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466 static const struct ata_xfer_ent {
470 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
471 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
472 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
477 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
478 * @xfer_mask: xfer_mask of interest
480 * Return matching XFER_* value for @xfer_mask. Only the highest
481 * bit of @xfer_mask is considered.
487 * Matching XFER_* value, 0 if no match found.
489 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
491 int highbit = fls(xfer_mask) - 1;
492 const struct ata_xfer_ent *ent;
494 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
495 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
496 return ent->base + highbit - ent->shift;
501 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
502 * @xfer_mode: XFER_* of interest
504 * Return matching xfer_mask for @xfer_mode.
510 * Matching xfer_mask, 0 if no match found.
512 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
514 const struct ata_xfer_ent *ent;
516 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
517 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
518 return 1 << (ent->shift + xfer_mode - ent->base);
523 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
524 * @xfer_mode: XFER_* of interest
526 * Return matching xfer_shift for @xfer_mode.
532 * Matching xfer_shift, -1 if no match found.
534 static int ata_xfer_mode2shift(unsigned int xfer_mode)
536 const struct ata_xfer_ent *ent;
538 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
539 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
545 * ata_mode_string - convert xfer_mask to string
546 * @xfer_mask: mask of bits supported; only highest bit counts.
548 * Determine string which represents the highest speed
549 * (highest bit in @modemask).
555 * Constant C string representing highest speed listed in
556 * @mode_mask, or the constant C string "<n/a>".
558 static const char *ata_mode_string(unsigned int xfer_mask)
560 static const char * const xfer_mode_str[] = {
584 highbit = fls(xfer_mask) - 1;
585 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
586 return xfer_mode_str[highbit];
590 static const char *sata_spd_string(unsigned int spd)
592 static const char * const spd_str[] = {
597 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
599 return spd_str[spd - 1];
602 void ata_dev_disable(struct ata_device *dev)
604 if (ata_dev_enabled(dev)) {
605 if (ata_msg_drv(dev->ap))
606 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
607 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
614 * ata_devchk - PATA device presence detection
615 * @ap: ATA channel to examine
616 * @device: Device to examine (starting at zero)
618 * This technique was originally described in
619 * Hale Landis's ATADRVR (www.ata-atapi.com), and
620 * later found its way into the ATA/ATAPI spec.
622 * Write a pattern to the ATA shadow registers,
623 * and if a device is present, it will respond by
624 * correctly storing and echoing back the
625 * ATA shadow register contents.
631 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
633 struct ata_ioports *ioaddr = &ap->ioaddr;
636 ap->ops->dev_select(ap, device);
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
641 iowrite8(0xaa, ioaddr->nsect_addr);
642 iowrite8(0x55, ioaddr->lbal_addr);
644 iowrite8(0x55, ioaddr->nsect_addr);
645 iowrite8(0xaa, ioaddr->lbal_addr);
647 nsect = ioread8(ioaddr->nsect_addr);
648 lbal = ioread8(ioaddr->lbal_addr);
650 if ((nsect == 0x55) && (lbal == 0xaa))
651 return 1; /* we found a device */
653 return 0; /* nothing found */
657 * ata_dev_classify - determine device type based on ATA-spec signature
658 * @tf: ATA taskfile register set for device to be identified
660 * Determine from taskfile register contents whether a device is
661 * ATA or ATAPI, as per "Signature and persistence" section
662 * of ATA/PI spec (volume 1, sect 5.14).
668 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
669 * the event of failure.
672 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
674 /* Apple's open source Darwin code hints that some devices only
675 * put a proper signature into the LBA mid/high registers,
676 * So, we only check those. It's sufficient for uniqueness.
679 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
680 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
681 DPRINTK("found ATA device by sig\n");
685 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
686 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
687 DPRINTK("found ATAPI device by sig\n");
688 return ATA_DEV_ATAPI;
691 DPRINTK("unknown device\n");
692 return ATA_DEV_UNKNOWN;
696 * ata_dev_try_classify - Parse returned ATA device signature
697 * @ap: ATA channel to examine
698 * @device: Device to examine (starting at zero)
699 * @r_err: Value of error register on completion
701 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
702 * an ATA/ATAPI-defined set of values is placed in the ATA
703 * shadow registers, indicating the results of device detection
706 * Select the ATA device, and read the values from the ATA shadow
707 * registers. Then parse according to the Error register value,
708 * and the spec-defined values examined by ata_dev_classify().
714 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
718 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
720 struct ata_taskfile tf;
724 ap->ops->dev_select(ap, device);
726 memset(&tf, 0, sizeof(tf));
728 ap->ops->tf_read(ap, &tf);
733 /* see if device passed diags: if master then continue and warn later */
734 if (err == 0 && device == 0)
735 /* diagnostic fail : do nothing _YET_ */
736 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if ((device == 0) && (err == 0x81))
744 /* determine if device is ATA or ATAPI */
745 class = ata_dev_classify(&tf);
747 if (class == ATA_DEV_UNKNOWN)
749 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
755 * ata_id_string - Convert IDENTIFY DEVICE page into string
756 * @id: IDENTIFY DEVICE results we will examine
757 * @s: string into which data is output
758 * @ofs: offset into identify device page
759 * @len: length of string to return. must be an even number.
761 * The strings in the IDENTIFY DEVICE page are broken up into
762 * 16-bit chunks. Run through the string, and output each
763 * 8-bit chunk linearly, regardless of platform.
769 void ata_id_string(const u16 *id, unsigned char *s,
770 unsigned int ofs, unsigned int len)
789 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
790 * @id: IDENTIFY DEVICE results we will examine
791 * @s: string into which data is output
792 * @ofs: offset into identify device page
793 * @len: length of string to return. must be an odd number.
795 * This function is identical to ata_id_string except that it
796 * trims trailing spaces and terminates the resulting string with
797 * null. @len must be actual maximum length (even number) + 1.
802 void ata_id_c_string(const u16 *id, unsigned char *s,
803 unsigned int ofs, unsigned int len)
809 ata_id_string(id, s, ofs, len - 1);
811 p = s + strnlen(s, len - 1);
812 while (p > s && p[-1] == ' ')
817 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
821 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
822 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
823 sectors |= (tf->hob_lbal & 0xff) << 24;
824 sectors |= (tf->lbah & 0xff) << 16;
825 sectors |= (tf->lbam & 0xff) << 8;
826 sectors |= (tf->lbal & 0xff);
831 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
835 sectors |= (tf->device & 0x0f) << 24;
836 sectors |= (tf->lbah & 0xff) << 16;
837 sectors |= (tf->lbam & 0xff) << 8;
838 sectors |= (tf->lbal & 0xff);
844 * ata_read_native_max_address_ext - LBA48 native max query
845 * @dev: Device to query
847 * Perform an LBA48 size query upon the device in question. Return the
848 * actual LBA48 size or zero if the command fails.
851 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854 struct ata_taskfile tf;
856 ata_tf_init(dev, &tf);
858 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
859 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
860 tf.protocol |= ATA_PROT_NODATA;
863 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
867 return ata_tf_to_lba48(&tf);
871 * ata_read_native_max_address - LBA28 native max query
872 * @dev: Device to query
874 * Performa an LBA28 size query upon the device in question. Return the
875 * actual LBA28 size or zero if the command fails.
878 static u64 ata_read_native_max_address(struct ata_device *dev)
881 struct ata_taskfile tf;
883 ata_tf_init(dev, &tf);
885 tf.command = ATA_CMD_READ_NATIVE_MAX;
886 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
887 tf.protocol |= ATA_PROT_NODATA;
890 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
894 return ata_tf_to_lba(&tf);
898 * ata_set_native_max_address_ext - LBA48 native max set
899 * @dev: Device to query
900 * @new_sectors: new max sectors value to set for the device
902 * Perform an LBA48 size set max upon the device in question. Return the
903 * actual LBA48 size or zero if the command fails.
906 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909 struct ata_taskfile tf;
913 ata_tf_init(dev, &tf);
915 tf.command = ATA_CMD_SET_MAX_EXT;
916 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
917 tf.protocol |= ATA_PROT_NODATA;
920 tf.lbal = (new_sectors >> 0) & 0xff;
921 tf.lbam = (new_sectors >> 8) & 0xff;
922 tf.lbah = (new_sectors >> 16) & 0xff;
924 tf.hob_lbal = (new_sectors >> 24) & 0xff;
925 tf.hob_lbam = (new_sectors >> 32) & 0xff;
926 tf.hob_lbah = (new_sectors >> 40) & 0xff;
928 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
932 return ata_tf_to_lba48(&tf);
936 * ata_set_native_max_address - LBA28 native max set
937 * @dev: Device to query
938 * @new_sectors: new max sectors value to set for the device
940 * Perform an LBA28 size set max upon the device in question. Return the
941 * actual LBA28 size or zero if the command fails.
944 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947 struct ata_taskfile tf;
951 ata_tf_init(dev, &tf);
953 tf.command = ATA_CMD_SET_MAX;
954 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
955 tf.protocol |= ATA_PROT_NODATA;
957 tf.lbal = (new_sectors >> 0) & 0xff;
958 tf.lbam = (new_sectors >> 8) & 0xff;
959 tf.lbah = (new_sectors >> 16) & 0xff;
960 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
962 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
966 return ata_tf_to_lba(&tf);
970 * ata_hpa_resize - Resize a device with an HPA set
971 * @dev: Device to resize
973 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
974 * it if required to the full size of the media. The caller must check
975 * the drive has the HPA feature set enabled.
978 static u64 ata_hpa_resize(struct ata_device *dev)
980 u64 sectors = dev->n_sectors;
983 if (ata_id_has_lba48(dev->id))
984 hpa_sectors = ata_read_native_max_address_ext(dev);
986 hpa_sectors = ata_read_native_max_address(dev);
988 if (hpa_sectors > sectors) {
989 ata_dev_printk(dev, KERN_INFO,
990 "Host Protected Area detected:\n"
991 "\tcurrent size: %lld sectors\n"
992 "\tnative size: %lld sectors\n",
993 (long long)sectors, (long long)hpa_sectors);
995 if (ata_ignore_hpa) {
996 if (ata_id_has_lba48(dev->id))
997 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
999 hpa_sectors = ata_set_native_max_address(dev,
1003 ata_dev_printk(dev, KERN_INFO, "native size "
1004 "increased to %lld sectors\n",
1005 (long long)hpa_sectors);
1009 } else if (hpa_sectors < sectors)
1010 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1011 "is smaller than sectors (%lld)\n", __FUNCTION__,
1012 (long long)hpa_sectors, (long long)sectors);
1017 static u64 ata_id_n_sectors(const u16 *id)
1019 if (ata_id_has_lba(id)) {
1020 if (ata_id_has_lba48(id))
1021 return ata_id_u64(id, 100);
1023 return ata_id_u32(id, 60);
1025 if (ata_id_current_chs_valid(id))
1026 return ata_id_u32(id, 57);
1028 return id[1] * id[3] * id[6];
1033 * ata_id_to_dma_mode - Identify DMA mode from id block
1034 * @dev: device to identify
1035 * @unknown: mode to assume if we cannot tell
1037 * Set up the timing values for the device based upon the identify
1038 * reported values for the DMA mode. This function is used by drivers
1039 * which rely upon firmware configured modes, but wish to report the
1040 * mode correctly when possible.
1042 * In addition we emit similarly formatted messages to the default
1043 * ata_dev_set_mode handler, in order to provide consistency of
1047 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1052 /* Pack the DMA modes */
1053 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1054 if (dev->id[53] & 0x04)
1055 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1057 /* Select the mode in use */
1058 mode = ata_xfer_mask2mode(mask);
1061 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1062 ata_mode_string(mask));
1064 /* SWDMA perhaps ? */
1066 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 /* Configure the device reporting */
1070 dev->xfer_mode = mode;
1071 dev->xfer_shift = ata_xfer_mode2shift(mode);
1075 * ata_noop_dev_select - Select device 0/1 on ATA bus
1076 * @ap: ATA channel to manipulate
1077 * @device: ATA device (numbered from zero) to select
1079 * This function performs no actual function.
1081 * May be used as the dev_select() entry in ata_port_operations.
1086 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1092 * ata_std_dev_select - Select device 0/1 on ATA bus
1093 * @ap: ATA channel to manipulate
1094 * @device: ATA device (numbered from zero) to select
1096 * Use the method defined in the ATA specification to
1097 * make either device 0, or device 1, active on the
1098 * ATA channel. Works with both PIO and MMIO.
1100 * May be used as the dev_select() entry in ata_port_operations.
1106 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1111 tmp = ATA_DEVICE_OBS;
1113 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1115 iowrite8(tmp, ap->ioaddr.device_addr);
1116 ata_pause(ap); /* needed; also flushes, for mmio */
1120 * ata_dev_select - Select device 0/1 on ATA bus
1121 * @ap: ATA channel to manipulate
1122 * @device: ATA device (numbered from zero) to select
1123 * @wait: non-zero to wait for Status register BSY bit to clear
1124 * @can_sleep: non-zero if context allows sleeping
1126 * Use the method defined in the ATA specification to
1127 * make either device 0, or device 1, active on the
1130 * This is a high-level version of ata_std_dev_select(),
1131 * which additionally provides the services of inserting
1132 * the proper pauses and status polling, where needed.
1138 void ata_dev_select(struct ata_port *ap, unsigned int device,
1139 unsigned int wait, unsigned int can_sleep)
1141 if (ata_msg_probe(ap))
1142 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1143 "device %u, wait %u\n", device, wait);
1148 ap->ops->dev_select(ap, device);
1151 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1158 * ata_dump_id - IDENTIFY DEVICE info debugging output
1159 * @id: IDENTIFY DEVICE page to dump
1161 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1168 static inline void ata_dump_id(const u16 *id)
1170 DPRINTK("49==0x%04x "
1180 DPRINTK("80==0x%04x "
1190 DPRINTK("88==0x%04x "
1197 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1198 * @id: IDENTIFY data to compute xfer mask from
1200 * Compute the xfermask for this device. This is not as trivial
1201 * as it seems if we must consider early devices correctly.
1203 * FIXME: pre IDE drive timing (do we care ?).
1211 static unsigned int ata_id_xfermask(const u16 *id)
1213 unsigned int pio_mask, mwdma_mask, udma_mask;
1215 /* Usual case. Word 53 indicates word 64 is valid */
1216 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1217 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1221 /* If word 64 isn't valid then Word 51 high byte holds
1222 * the PIO timing number for the maximum. Turn it into
1225 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1226 if (mode < 5) /* Valid PIO range */
1227 pio_mask = (2 << mode) - 1;
1231 /* But wait.. there's more. Design your standards by
1232 * committee and you too can get a free iordy field to
1233 * process. However its the speeds not the modes that
1234 * are supported... Note drivers using the timing API
1235 * will get this right anyway
1239 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1241 if (ata_id_is_cfa(id)) {
1243 * Process compact flash extended modes
1245 int pio = id[163] & 0x7;
1246 int dma = (id[163] >> 3) & 7;
1249 pio_mask |= (1 << 5);
1251 pio_mask |= (1 << 6);
1253 mwdma_mask |= (1 << 3);
1255 mwdma_mask |= (1 << 4);
1259 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1260 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1262 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1266 * ata_port_queue_task - Queue port_task
1267 * @ap: The ata_port to queue port_task for
1268 * @fn: workqueue function to be scheduled
1269 * @data: data for @fn to use
1270 * @delay: delay time for workqueue function
1272 * Schedule @fn(@data) for execution after @delay jiffies using
1273 * port_task. There is one port_task per port and it's the
1274 * user(low level driver)'s responsibility to make sure that only
1275 * one task is active at any given time.
1277 * libata core layer takes care of synchronization between
1278 * port_task and EH. ata_port_queue_task() may be ignored for EH
1282 * Inherited from caller.
1284 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1285 unsigned long delay)
1287 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1288 ap->port_task_data = data;
1290 /* may fail if ata_port_flush_task() in progress */
1291 queue_delayed_work(ata_wq, &ap->port_task, delay);
1295 * ata_port_flush_task - Flush port_task
1296 * @ap: The ata_port to flush port_task for
1298 * After this function completes, port_task is guranteed not to
1299 * be running or scheduled.
1302 * Kernel thread context (may sleep)
1304 void ata_port_flush_task(struct ata_port *ap)
1308 cancel_rearming_delayed_work(&ap->port_task);
1310 if (ata_msg_ctl(ap))
1311 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1314 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1316 struct completion *waiting = qc->private_data;
1322 * ata_exec_internal_sg - execute libata internal command
1323 * @dev: Device to which the command is sent
1324 * @tf: Taskfile registers for the command and the result
1325 * @cdb: CDB for packet command
1326 * @dma_dir: Data tranfer direction of the command
1327 * @sg: sg list for the data buffer of the command
1328 * @n_elem: Number of sg entries
1330 * Executes libata internal command with timeout. @tf contains
1331 * command on entry and result on return. Timeout and error
1332 * conditions are reported via return value. No recovery action
1333 * is taken after a command times out. It's caller's duty to
1334 * clean up after timeout.
1337 * None. Should be called with kernel context, might sleep.
1340 * Zero on success, AC_ERR_* mask on failure
1342 unsigned ata_exec_internal_sg(struct ata_device *dev,
1343 struct ata_taskfile *tf, const u8 *cdb,
1344 int dma_dir, struct scatterlist *sg,
1345 unsigned int n_elem)
1347 struct ata_port *ap = dev->ap;
1348 u8 command = tf->command;
1349 struct ata_queued_cmd *qc;
1350 unsigned int tag, preempted_tag;
1351 u32 preempted_sactive, preempted_qc_active;
1352 DECLARE_COMPLETION_ONSTACK(wait);
1353 unsigned long flags;
1354 unsigned int err_mask;
1357 spin_lock_irqsave(ap->lock, flags);
1359 /* no internal command while frozen */
1360 if (ap->pflags & ATA_PFLAG_FROZEN) {
1361 spin_unlock_irqrestore(ap->lock, flags);
1362 return AC_ERR_SYSTEM;
1365 /* initialize internal qc */
1367 /* XXX: Tag 0 is used for drivers with legacy EH as some
1368 * drivers choke if any other tag is given. This breaks
1369 * ata_tag_internal() test for those drivers. Don't use new
1370 * EH stuff without converting to it.
1372 if (ap->ops->error_handler)
1373 tag = ATA_TAG_INTERNAL;
1377 if (test_and_set_bit(tag, &ap->qc_allocated))
1379 qc = __ata_qc_from_tag(ap, tag);
1387 preempted_tag = ap->active_tag;
1388 preempted_sactive = ap->sactive;
1389 preempted_qc_active = ap->qc_active;
1390 ap->active_tag = ATA_TAG_POISON;
1394 /* prepare & issue qc */
1397 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1398 qc->flags |= ATA_QCFLAG_RESULT_TF;
1399 qc->dma_dir = dma_dir;
1400 if (dma_dir != DMA_NONE) {
1401 unsigned int i, buflen = 0;
1403 for (i = 0; i < n_elem; i++)
1404 buflen += sg[i].length;
1406 ata_sg_init(qc, sg, n_elem);
1407 qc->nbytes = buflen;
1410 qc->private_data = &wait;
1411 qc->complete_fn = ata_qc_complete_internal;
1415 spin_unlock_irqrestore(ap->lock, flags);
1417 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1419 ata_port_flush_task(ap);
1422 spin_lock_irqsave(ap->lock, flags);
1424 /* We're racing with irq here. If we lose, the
1425 * following test prevents us from completing the qc
1426 * twice. If we win, the port is frozen and will be
1427 * cleaned up by ->post_internal_cmd().
1429 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1430 qc->err_mask |= AC_ERR_TIMEOUT;
1432 if (ap->ops->error_handler)
1433 ata_port_freeze(ap);
1435 ata_qc_complete(qc);
1437 if (ata_msg_warn(ap))
1438 ata_dev_printk(dev, KERN_WARNING,
1439 "qc timeout (cmd 0x%x)\n", command);
1442 spin_unlock_irqrestore(ap->lock, flags);
1445 /* do post_internal_cmd */
1446 if (ap->ops->post_internal_cmd)
1447 ap->ops->post_internal_cmd(qc);
1449 /* perform minimal error analysis */
1450 if (qc->flags & ATA_QCFLAG_FAILED) {
1451 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1452 qc->err_mask |= AC_ERR_DEV;
1455 qc->err_mask |= AC_ERR_OTHER;
1457 if (qc->err_mask & ~AC_ERR_OTHER)
1458 qc->err_mask &= ~AC_ERR_OTHER;
1462 spin_lock_irqsave(ap->lock, flags);
1464 *tf = qc->result_tf;
1465 err_mask = qc->err_mask;
1468 ap->active_tag = preempted_tag;
1469 ap->sactive = preempted_sactive;
1470 ap->qc_active = preempted_qc_active;
1472 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1473 * Until those drivers are fixed, we detect the condition
1474 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * Note that this doesn't change any behavior as internal
1478 * command failure results in disabling the device in the
1479 * higher layer for LLDDs without new reset/EH callbacks.
1481 * Kill the following code as soon as those drivers are fixed.
1483 if (ap->flags & ATA_FLAG_DISABLED) {
1484 err_mask |= AC_ERR_SYSTEM;
1488 spin_unlock_irqrestore(ap->lock, flags);
1494 * ata_exec_internal - execute libata internal command
1495 * @dev: Device to which the command is sent
1496 * @tf: Taskfile registers for the command and the result
1497 * @cdb: CDB for packet command
1498 * @dma_dir: Data tranfer direction of the command
1499 * @buf: Data buffer of the command
1500 * @buflen: Length of data buffer
1502 * Wrapper around ata_exec_internal_sg() which takes simple
1503 * buffer instead of sg list.
1506 * None. Should be called with kernel context, might sleep.
1509 * Zero on success, AC_ERR_* mask on failure
1511 unsigned ata_exec_internal(struct ata_device *dev,
1512 struct ata_taskfile *tf, const u8 *cdb,
1513 int dma_dir, void *buf, unsigned int buflen)
1515 struct scatterlist *psg = NULL, sg;
1516 unsigned int n_elem = 0;
1518 if (dma_dir != DMA_NONE) {
1520 sg_init_one(&sg, buf, buflen);
1525 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1529 * ata_do_simple_cmd - execute simple internal command
1530 * @dev: Device to which the command is sent
1531 * @cmd: Opcode to execute
1533 * Execute a 'simple' command, that only consists of the opcode
1534 * 'cmd' itself, without filling any other registers
1537 * Kernel thread context (may sleep).
1540 * Zero on success, AC_ERR_* mask on failure
1542 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1544 struct ata_taskfile tf;
1546 ata_tf_init(dev, &tf);
1549 tf.flags |= ATA_TFLAG_DEVICE;
1550 tf.protocol = ATA_PROT_NODATA;
1552 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1556 * ata_pio_need_iordy - check if iordy needed
1559 * Check if the current speed of the device requires IORDY. Used
1560 * by various controllers for chip configuration.
1563 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1565 /* Controller doesn't support IORDY. Probably a pointless check
1566 as the caller should know this */
1567 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1569 /* PIO3 and higher it is mandatory */
1570 if (adev->pio_mode > XFER_PIO_2)
1572 /* We turn it on when possible */
1573 if (ata_id_has_iordy(adev->id))
1579 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * Compute the highest mode possible if we are not using iordy. Return
1583 * -1 if no iordy mode is available.
1586 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1588 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1589 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1590 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1591 /* Is the speed faster than the drive allows non IORDY ? */
1593 /* This is cycle times not frequency - watch the logic! */
1594 if (pio > 240) /* PIO2 is 240nS per cycle */
1595 return 3 << ATA_SHIFT_PIO;
1596 return 7 << ATA_SHIFT_PIO;
1599 return 3 << ATA_SHIFT_PIO;
1603 * ata_dev_read_id - Read ID data from the specified device
1604 * @dev: target device
1605 * @p_class: pointer to class of the target device (may be changed)
1606 * @flags: ATA_READID_* flags
1607 * @id: buffer to read IDENTIFY data into
1609 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1610 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1611 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1612 * for pre-ATA4 drives.
1615 * Kernel thread context (may sleep)
1618 * 0 on success, -errno otherwise.
1620 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1621 unsigned int flags, u16 *id)
1623 struct ata_port *ap = dev->ap;
1624 unsigned int class = *p_class;
1625 struct ata_taskfile tf;
1626 unsigned int err_mask = 0;
1628 int may_fallback = 1, tried_spinup = 0;
1631 if (ata_msg_ctl(ap))
1632 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1634 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1636 ata_tf_init(dev, &tf);
1640 tf.command = ATA_CMD_ID_ATA;
1643 tf.command = ATA_CMD_ID_ATAPI;
1647 reason = "unsupported class";
1651 tf.protocol = ATA_PROT_PIO;
1653 /* Some devices choke if TF registers contain garbage. Make
1654 * sure those are properly initialized.
1656 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1658 /* Device presence detection is unreliable on some
1659 * controllers. Always poll IDENTIFY if available.
1661 tf.flags |= ATA_TFLAG_POLLING;
1663 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1664 id, sizeof(id[0]) * ATA_ID_WORDS);
1666 if (err_mask & AC_ERR_NODEV_HINT) {
1667 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1668 ap->print_id, dev->devno);
1672 /* Device or controller might have reported the wrong
1673 * device class. Give a shot at the other IDENTIFY if
1674 * the current one is aborted by the device.
1677 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 if (class == ATA_DEV_ATA)
1681 class = ATA_DEV_ATAPI;
1683 class = ATA_DEV_ATA;
1688 reason = "I/O error";
1692 /* Falling back doesn't make sense if ID data was read
1693 * successfully at least once.
1697 swap_buf_le16(id, ATA_ID_WORDS);
1701 reason = "device reports invalid type";
1703 if (class == ATA_DEV_ATA) {
1704 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 if (ata_id_is_ata(id))
1711 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 * Drive powered-up in standby mode, and requires a specific
1715 * SET_FEATURES spin-up subcommand before it will accept
1716 * anything other than the original IDENTIFY command.
1718 ata_tf_init(dev, &tf);
1719 tf.command = ATA_CMD_SET_FEATURES;
1720 tf.feature = SETFEATURES_SPINUP;
1721 tf.protocol = ATA_PROT_NODATA;
1722 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1723 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 reason = "SPINUP failed";
1730 * If the drive initially returned incomplete IDENTIFY info,
1731 * we now must reissue the IDENTIFY command.
1733 if (id[2] == 0x37c8)
1737 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1739 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * INITIALIZE DEVICE PARAMETERS
1744 * Some drives were very specific about that exact sequence.
1746 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1747 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1750 reason = "INIT_DEV_PARAMS failed";
1754 /* current CHS translation info (id[53-58]) might be
1755 * changed. reread the identify device info.
1757 flags &= ~ATA_READID_POSTRESET;
1767 if (ata_msg_warn(ap))
1768 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1769 "(%s, err_mask=0x%x)\n", reason, err_mask);
1773 static inline u8 ata_dev_knobble(struct ata_device *dev)
1775 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1778 static void ata_dev_config_ncq(struct ata_device *dev,
1779 char *desc, size_t desc_sz)
1781 struct ata_port *ap = dev->ap;
1782 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1784 if (!ata_id_has_ncq(dev->id)) {
1788 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1789 snprintf(desc, desc_sz, "NCQ (not used)");
1792 if (ap->flags & ATA_FLAG_NCQ) {
1793 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1794 dev->flags |= ATA_DFLAG_NCQ;
1797 if (hdepth >= ddepth)
1798 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1800 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1804 * ata_dev_configure - Configure the specified ATA/ATAPI device
1805 * @dev: Target device to configure
1807 * Configure @dev according to @dev->id. Generic and low-level
1808 * driver specific fixups are also applied.
1811 * Kernel thread context (may sleep)
1814 * 0 on success, -errno otherwise
1816 int ata_dev_configure(struct ata_device *dev)
1818 struct ata_port *ap = dev->ap;
1819 struct ata_eh_context *ehc = &ap->eh_context;
1820 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1821 const u16 *id = dev->id;
1822 unsigned int xfer_mask;
1823 char revbuf[7]; /* XYZ-99\0 */
1824 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1825 char modelbuf[ATA_ID_PROD_LEN+1];
1828 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1829 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1834 if (ata_msg_probe(ap))
1835 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1838 dev->horkage |= ata_dev_blacklisted(dev);
1840 /* let ACPI work its magic */
1841 rc = ata_acpi_on_devcfg(dev);
1845 /* print device capabilities */
1846 if (ata_msg_probe(ap))
1847 ata_dev_printk(dev, KERN_DEBUG,
1848 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1849 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1851 id[49], id[82], id[83], id[84],
1852 id[85], id[86], id[87], id[88]);
1854 /* initialize to-be-configured parameters */
1855 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1856 dev->max_sectors = 0;
1864 * common ATA, ATAPI feature tests
1867 /* find max transfer mode; for printk only */
1868 xfer_mask = ata_id_xfermask(id);
1870 if (ata_msg_probe(ap))
1873 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1874 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 /* ATA-specific feature tests */
1881 if (dev->class == ATA_DEV_ATA) {
1882 if (ata_id_is_cfa(id)) {
1883 if (id[162] & 1) /* CPRM may make this media unusable */
1884 ata_dev_printk(dev, KERN_WARNING,
1885 "supports DRM functions and may "
1886 "not be fully accessable.\n");
1887 snprintf(revbuf, 7, "CFA");
1890 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1892 dev->n_sectors = ata_id_n_sectors(id);
1894 if (dev->id[59] & 0x100)
1895 dev->multi_count = dev->id[59] & 0xff;
1897 if (ata_id_has_lba(id)) {
1898 const char *lba_desc;
1902 dev->flags |= ATA_DFLAG_LBA;
1903 if (ata_id_has_lba48(id)) {
1904 dev->flags |= ATA_DFLAG_LBA48;
1907 if (dev->n_sectors >= (1UL << 28) &&
1908 ata_id_has_flush_ext(id))
1909 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1912 if (ata_id_hpa_enabled(dev->id))
1913 dev->n_sectors = ata_hpa_resize(dev);
1916 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1918 /* print device info to dmesg */
1919 if (ata_msg_drv(ap) && print_info) {
1920 ata_dev_printk(dev, KERN_INFO,
1921 "%s: %s, %s, max %s\n",
1922 revbuf, modelbuf, fwrevbuf,
1923 ata_mode_string(xfer_mask));
1924 ata_dev_printk(dev, KERN_INFO,
1925 "%Lu sectors, multi %u: %s %s\n",
1926 (unsigned long long)dev->n_sectors,
1927 dev->multi_count, lba_desc, ncq_desc);
1932 /* Default translation */
1933 dev->cylinders = id[1];
1935 dev->sectors = id[6];
1937 if (ata_id_current_chs_valid(id)) {
1938 /* Current CHS translation is valid. */
1939 dev->cylinders = id[54];
1940 dev->heads = id[55];
1941 dev->sectors = id[56];
1944 /* print device info to dmesg */
1945 if (ata_msg_drv(ap) && print_info) {
1946 ata_dev_printk(dev, KERN_INFO,
1947 "%s: %s, %s, max %s\n",
1948 revbuf, modelbuf, fwrevbuf,
1949 ata_mode_string(xfer_mask));
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1952 (unsigned long long)dev->n_sectors,
1953 dev->multi_count, dev->cylinders,
1954 dev->heads, dev->sectors);
1961 /* ATAPI-specific feature tests */
1962 else if (dev->class == ATA_DEV_ATAPI) {
1963 char *cdb_intr_string = "";
1965 rc = atapi_cdb_len(id);
1966 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1967 if (ata_msg_warn(ap))
1968 ata_dev_printk(dev, KERN_WARNING,
1969 "unsupported CDB len\n");
1973 dev->cdb_len = (unsigned int) rc;
1975 if (ata_id_cdb_intr(dev->id)) {
1976 dev->flags |= ATA_DFLAG_CDB_INTR;
1977 cdb_intr_string = ", CDB intr";
1980 /* print device info to dmesg */
1981 if (ata_msg_drv(ap) && print_info)
1982 ata_dev_printk(dev, KERN_INFO,
1983 "ATAPI: %s, %s, max %s%s\n",
1985 ata_mode_string(xfer_mask),
1989 /* determine max_sectors */
1990 dev->max_sectors = ATA_MAX_SECTORS;
1991 if (dev->flags & ATA_DFLAG_LBA48)
1992 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1994 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1995 /* Let the user know. We don't want to disallow opens for
1996 rescue purposes, or in case the vendor is just a blithering
1999 ata_dev_printk(dev, KERN_WARNING,
2000 "Drive reports diagnostics failure. This may indicate a drive\n");
2001 ata_dev_printk(dev, KERN_WARNING,
2002 "fault or invalid emulation. Contact drive vendor for information.\n");
2006 /* limit bridge transfers to udma5, 200 sectors */
2007 if (ata_dev_knobble(dev)) {
2008 if (ata_msg_drv(ap) && print_info)
2009 ata_dev_printk(dev, KERN_INFO,
2010 "applying bridge limits\n");
2011 dev->udma_mask &= ATA_UDMA5;
2012 dev->max_sectors = ATA_MAX_SECTORS;
2015 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2016 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2019 if (ap->ops->dev_config)
2020 ap->ops->dev_config(dev);
2022 if (ata_msg_probe(ap))
2023 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2024 __FUNCTION__, ata_chk_status(ap));
2028 if (ata_msg_probe(ap))
2029 ata_dev_printk(dev, KERN_DEBUG,
2030 "%s: EXIT, err\n", __FUNCTION__);
2035 * ata_cable_40wire - return 40 wire cable type
2038 * Helper method for drivers which want to hardwire 40 wire cable
2042 int ata_cable_40wire(struct ata_port *ap)
2044 return ATA_CBL_PATA40;
2048 * ata_cable_80wire - return 80 wire cable type
2051 * Helper method for drivers which want to hardwire 80 wire cable
2055 int ata_cable_80wire(struct ata_port *ap)
2057 return ATA_CBL_PATA80;
2061 * ata_cable_unknown - return unknown PATA cable.
2064 * Helper method for drivers which have no PATA cable detection.
2067 int ata_cable_unknown(struct ata_port *ap)
2069 return ATA_CBL_PATA_UNK;
2073 * ata_cable_sata - return SATA cable type
2076 * Helper method for drivers which have SATA cables
2079 int ata_cable_sata(struct ata_port *ap)
2081 return ATA_CBL_SATA;
2085 * ata_bus_probe - Reset and probe ATA bus
2088 * Master ATA bus probing function. Initiates a hardware-dependent
2089 * bus reset, then attempts to identify any devices found on
2093 * PCI/etc. bus probe sem.
2096 * Zero on success, negative errno otherwise.
2099 int ata_bus_probe(struct ata_port *ap)
2101 unsigned int classes[ATA_MAX_DEVICES];
2102 int tries[ATA_MAX_DEVICES];
2104 struct ata_device *dev;
2108 for (i = 0; i < ATA_MAX_DEVICES; i++)
2109 tries[i] = ATA_PROBE_MAX_TRIES;
2112 /* reset and determine device classes */
2113 ap->ops->phy_reset(ap);
2115 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2116 dev = &ap->device[i];
2118 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2119 dev->class != ATA_DEV_UNKNOWN)
2120 classes[dev->devno] = dev->class;
2122 classes[dev->devno] = ATA_DEV_NONE;
2124 dev->class = ATA_DEV_UNKNOWN;
2129 /* after the reset the device state is PIO 0 and the controller
2130 state is undefined. Record the mode */
2132 for (i = 0; i < ATA_MAX_DEVICES; i++)
2133 ap->device[i].pio_mode = XFER_PIO_0;
2135 /* read IDENTIFY page and configure devices. We have to do the identify
2136 specific sequence bass-ackwards so that PDIAG- is released by
2139 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2140 dev = &ap->device[i];
2143 dev->class = classes[i];
2145 if (!ata_dev_enabled(dev))
2148 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2154 /* Now ask for the cable type as PDIAG- should have been released */
2155 if (ap->ops->cable_detect)
2156 ap->cbl = ap->ops->cable_detect(ap);
2158 /* After the identify sequence we can now set up the devices. We do
2159 this in the normal order so that the user doesn't get confused */
2161 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2162 dev = &ap->device[i];
2163 if (!ata_dev_enabled(dev))
2166 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2167 rc = ata_dev_configure(dev);
2168 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2173 /* configure transfer mode */
2174 rc = ata_set_mode(ap, &dev);
2178 for (i = 0; i < ATA_MAX_DEVICES; i++)
2179 if (ata_dev_enabled(&ap->device[i]))
2182 /* no device present, disable port */
2183 ata_port_disable(ap);
2184 ap->ops->port_disable(ap);
2188 tries[dev->devno]--;
2192 /* eeek, something went very wrong, give up */
2193 tries[dev->devno] = 0;
2197 /* give it just one more chance */
2198 tries[dev->devno] = min(tries[dev->devno], 1);
2200 if (tries[dev->devno] == 1) {
2201 /* This is the last chance, better to slow
2202 * down than lose it.
2204 sata_down_spd_limit(ap);
2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2209 if (!tries[dev->devno])
2210 ata_dev_disable(dev);
2216 * ata_port_probe - Mark port as enabled
2217 * @ap: Port for which we indicate enablement
2219 * Modify @ap data structure such that the system
2220 * thinks that the entire port is enabled.
2222 * LOCKING: host lock, or some other form of
2226 void ata_port_probe(struct ata_port *ap)
2228 ap->flags &= ~ATA_FLAG_DISABLED;
2232 * sata_print_link_status - Print SATA link status
2233 * @ap: SATA port to printk link status about
2235 * This function prints link speed and status of a SATA link.
2240 void sata_print_link_status(struct ata_port *ap)
2242 u32 sstatus, scontrol, tmp;
2244 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2246 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2248 if (ata_port_online(ap)) {
2249 tmp = (sstatus >> 4) & 0xf;
2250 ata_port_printk(ap, KERN_INFO,
2251 "SATA link up %s (SStatus %X SControl %X)\n",
2252 sata_spd_string(tmp), sstatus, scontrol);
2254 ata_port_printk(ap, KERN_INFO,
2255 "SATA link down (SStatus %X SControl %X)\n",
2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2262 * @ap: SATA port associated with target SATA PHY.
2264 * This function issues commands to standard SATA Sxxx
2265 * PHY registers, to wake up the phy (and device), and
2266 * clear any reset condition.
2269 * PCI/etc. bus probe sem.
2272 void __sata_phy_reset(struct ata_port *ap)
2275 unsigned long timeout = jiffies + (HZ * 5);
2277 if (ap->flags & ATA_FLAG_SATA_RESET) {
2278 /* issue phy wake/reset */
2279 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2280 /* Couldn't find anything in SATA I/II specs, but
2281 * AHCI-1.1 10.4.2 says at least 1 ms. */
2284 /* phy wake/clear reset */
2285 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2287 /* wait for phy to become ready, if necessary */
2290 sata_scr_read(ap, SCR_STATUS, &sstatus);
2291 if ((sstatus & 0xf) != 1)
2293 } while (time_before(jiffies, timeout));
2295 /* print link status */
2296 sata_print_link_status(ap);
2298 /* TODO: phy layer with polling, timeouts, etc. */
2299 if (!ata_port_offline(ap))
2302 ata_port_disable(ap);
2304 if (ap->flags & ATA_FLAG_DISABLED)
2307 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2308 ata_port_disable(ap);
2312 ap->cbl = ATA_CBL_SATA;
2316 * sata_phy_reset - Reset SATA bus.
2317 * @ap: SATA port associated with target SATA PHY.
2319 * This function resets the SATA bus, and then probes
2320 * the bus for devices.
2323 * PCI/etc. bus probe sem.
2326 void sata_phy_reset(struct ata_port *ap)
2328 __sata_phy_reset(ap);
2329 if (ap->flags & ATA_FLAG_DISABLED)
2335 * ata_dev_pair - return other device on cable
2338 * Obtain the other device on the same cable, or if none is
2339 * present NULL is returned
2342 struct ata_device *ata_dev_pair(struct ata_device *adev)
2344 struct ata_port *ap = adev->ap;
2345 struct ata_device *pair = &ap->device[1 - adev->devno];
2346 if (!ata_dev_enabled(pair))
2352 * ata_port_disable - Disable port.
2353 * @ap: Port to be disabled.
2355 * Modify @ap data structure such that the system
2356 * thinks that the entire port is disabled, and should
2357 * never attempt to probe or communicate with devices
2360 * LOCKING: host lock, or some other form of
2364 void ata_port_disable(struct ata_port *ap)
2366 ap->device[0].class = ATA_DEV_NONE;
2367 ap->device[1].class = ATA_DEV_NONE;
2368 ap->flags |= ATA_FLAG_DISABLED;
2372 * sata_down_spd_limit - adjust SATA spd limit downward
2373 * @ap: Port to adjust SATA spd limit for
2375 * Adjust SATA spd limit of @ap downward. Note that this
2376 * function only adjusts the limit. The change must be applied
2377 * using sata_set_spd().
2380 * Inherited from caller.
2383 * 0 on success, negative errno on failure
2385 int sata_down_spd_limit(struct ata_port *ap)
2387 u32 sstatus, spd, mask;
2390 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2394 mask = ap->sata_spd_limit;
2397 highbit = fls(mask) - 1;
2398 mask &= ~(1 << highbit);
2400 spd = (sstatus >> 4) & 0xf;
2404 mask &= (1 << spd) - 1;
2408 ap->sata_spd_limit = mask;
2410 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2411 sata_spd_string(fls(mask)));
2416 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2420 if (ap->sata_spd_limit == UINT_MAX)
2423 limit = fls(ap->sata_spd_limit);
2425 spd = (*scontrol >> 4) & 0xf;
2426 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2428 return spd != limit;
2432 * sata_set_spd_needed - is SATA spd configuration needed
2433 * @ap: Port in question
2435 * Test whether the spd limit in SControl matches
2436 * @ap->sata_spd_limit. This function is used to determine
2437 * whether hardreset is necessary to apply SATA spd
2441 * Inherited from caller.
2444 * 1 if SATA spd configuration is needed, 0 otherwise.
2446 int sata_set_spd_needed(struct ata_port *ap)
2450 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2453 return __sata_set_spd_needed(ap, &scontrol);
2457 * sata_set_spd - set SATA spd according to spd limit
2458 * @ap: Port to set SATA spd for
2460 * Set SATA spd of @ap according to sata_spd_limit.
2463 * Inherited from caller.
2466 * 0 if spd doesn't need to be changed, 1 if spd has been
2467 * changed. Negative errno if SCR registers are inaccessible.
2469 int sata_set_spd(struct ata_port *ap)
2474 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2477 if (!__sata_set_spd_needed(ap, &scontrol))
2480 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2487 * This mode timing computation functionality is ported over from
2488 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2491 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2492 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2493 * for UDMA6, which is currently supported only by Maxtor drives.
2495 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2498 static const struct ata_timing ata_timing[] = {
2500 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2501 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2502 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2503 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2505 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2506 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2507 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2508 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2509 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2511 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2513 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2514 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2515 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2517 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2518 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2519 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2521 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2522 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2523 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2524 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2526 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2527 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2528 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2530 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2535 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2536 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2538 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2540 q->setup = EZ(t->setup * 1000, T);
2541 q->act8b = EZ(t->act8b * 1000, T);
2542 q->rec8b = EZ(t->rec8b * 1000, T);
2543 q->cyc8b = EZ(t->cyc8b * 1000, T);
2544 q->active = EZ(t->active * 1000, T);
2545 q->recover = EZ(t->recover * 1000, T);
2546 q->cycle = EZ(t->cycle * 1000, T);
2547 q->udma = EZ(t->udma * 1000, UT);
2550 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2551 struct ata_timing *m, unsigned int what)
2553 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2554 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2555 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2556 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2557 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2558 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2559 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2560 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2563 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2565 const struct ata_timing *t;
2567 for (t = ata_timing; t->mode != speed; t++)
2568 if (t->mode == 0xFF)
2573 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2574 struct ata_timing *t, int T, int UT)
2576 const struct ata_timing *s;
2577 struct ata_timing p;
2583 if (!(s = ata_timing_find_mode(speed)))
2586 memcpy(t, s, sizeof(*s));
2589 * If the drive is an EIDE drive, it can tell us it needs extended
2590 * PIO/MW_DMA cycle timing.
2593 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2594 memset(&p, 0, sizeof(p));
2595 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2596 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2597 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2598 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2599 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2601 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2605 * Convert the timing to bus clock counts.
2608 ata_timing_quantize(t, t, T, UT);
2611 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2612 * S.M.A.R.T * and some other commands. We have to ensure that the
2613 * DMA cycle timing is slower/equal than the fastest PIO timing.
2616 if (speed > XFER_PIO_6) {
2617 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2618 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2622 * Lengthen active & recovery time so that cycle time is correct.
2625 if (t->act8b + t->rec8b < t->cyc8b) {
2626 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2627 t->rec8b = t->cyc8b - t->act8b;
2630 if (t->active + t->recover < t->cycle) {
2631 t->active += (t->cycle - (t->active + t->recover)) / 2;
2632 t->recover = t->cycle - t->active;
2635 /* In a few cases quantisation may produce enough errors to
2636 leave t->cycle too low for the sum of active and recovery
2637 if so we must correct this */
2638 if (t->active + t->recover > t->cycle)
2639 t->cycle = t->active + t->recover;
2645 * ata_down_xfermask_limit - adjust dev xfer masks downward
2646 * @dev: Device to adjust xfer masks
2647 * @sel: ATA_DNXFER_* selector
2649 * Adjust xfer masks of @dev downward. Note that this function
2650 * does not apply the change. Invoking ata_set_mode() afterwards
2651 * will apply the limit.
2654 * Inherited from caller.
2657 * 0 on success, negative errno on failure
2659 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2662 unsigned int orig_mask, xfer_mask;
2663 unsigned int pio_mask, mwdma_mask, udma_mask;
2666 quiet = !!(sel & ATA_DNXFER_QUIET);
2667 sel &= ~ATA_DNXFER_QUIET;
2669 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2672 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2675 case ATA_DNXFER_PIO:
2676 highbit = fls(pio_mask) - 1;
2677 pio_mask &= ~(1 << highbit);
2680 case ATA_DNXFER_DMA:
2682 highbit = fls(udma_mask) - 1;
2683 udma_mask &= ~(1 << highbit);
2686 } else if (mwdma_mask) {
2687 highbit = fls(mwdma_mask) - 1;
2688 mwdma_mask &= ~(1 << highbit);
2694 case ATA_DNXFER_40C:
2695 udma_mask &= ATA_UDMA_MASK_40C;
2698 case ATA_DNXFER_FORCE_PIO0:
2700 case ATA_DNXFER_FORCE_PIO:
2709 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2711 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2715 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2716 snprintf(buf, sizeof(buf), "%s:%s",
2717 ata_mode_string(xfer_mask),
2718 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2720 snprintf(buf, sizeof(buf), "%s",
2721 ata_mode_string(xfer_mask));
2723 ata_dev_printk(dev, KERN_WARNING,
2724 "limiting speed to %s\n", buf);
2727 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2733 static int ata_dev_set_mode(struct ata_device *dev)
2735 struct ata_eh_context *ehc = &dev->ap->eh_context;
2736 unsigned int err_mask;
2739 dev->flags &= ~ATA_DFLAG_PIO;
2740 if (dev->xfer_shift == ATA_SHIFT_PIO)
2741 dev->flags |= ATA_DFLAG_PIO;
2743 err_mask = ata_dev_set_xfermode(dev);
2744 /* Old CFA may refuse this command, which is just fine */
2745 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2746 err_mask &= ~AC_ERR_DEV;
2749 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2750 "(err_mask=0x%x)\n", err_mask);
2754 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2755 rc = ata_dev_revalidate(dev, 0);
2756 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2760 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2761 dev->xfer_shift, (int)dev->xfer_mode);
2763 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2764 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2769 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2770 * @ap: port on which timings will be programmed
2771 * @r_failed_dev: out paramter for failed device
2773 * Standard implementation of the function used to tune and set
2774 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2775 * ata_dev_set_mode() fails, pointer to the failing device is
2776 * returned in @r_failed_dev.
2779 * PCI/etc. bus probe sem.
2782 * 0 on success, negative errno otherwise
2785 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2787 struct ata_device *dev;
2788 int i, rc = 0, used_dma = 0, found = 0;
2791 /* step 1: calculate xfer_mask */
2792 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2793 unsigned int pio_mask, dma_mask;
2795 dev = &ap->device[i];
2797 if (!ata_dev_enabled(dev))
2800 ata_dev_xfermask(dev);
2802 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2803 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2804 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2805 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2814 /* step 2: always set host PIO timings */
2815 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2816 dev = &ap->device[i];
2817 if (!ata_dev_enabled(dev))
2820 if (!dev->pio_mode) {
2821 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2826 dev->xfer_mode = dev->pio_mode;
2827 dev->xfer_shift = ATA_SHIFT_PIO;
2828 if (ap->ops->set_piomode)
2829 ap->ops->set_piomode(ap, dev);
2832 /* step 3: set host DMA timings */
2833 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2834 dev = &ap->device[i];
2836 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2839 dev->xfer_mode = dev->dma_mode;
2840 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2841 if (ap->ops->set_dmamode)
2842 ap->ops->set_dmamode(ap, dev);
2845 /* step 4: update devices' xfer mode */
2846 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2847 dev = &ap->device[i];
2849 /* don't update suspended devices' xfer mode */
2850 if (!ata_dev_enabled(dev))
2853 rc = ata_dev_set_mode(dev);
2858 /* Record simplex status. If we selected DMA then the other
2859 * host channels are not permitted to do so.
2861 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2862 ap->host->simplex_claimed = ap;
2866 *r_failed_dev = dev;
2871 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2872 * @ap: port on which timings will be programmed
2873 * @r_failed_dev: out paramter for failed device
2875 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2876 * ata_set_mode() fails, pointer to the failing device is
2877 * returned in @r_failed_dev.
2880 * PCI/etc. bus probe sem.
2883 * 0 on success, negative errno otherwise
2885 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2887 /* has private set_mode? */
2888 if (ap->ops->set_mode)
2889 return ap->ops->set_mode(ap, r_failed_dev);
2890 return ata_do_set_mode(ap, r_failed_dev);
2894 * ata_tf_to_host - issue ATA taskfile to host controller
2895 * @ap: port to which command is being issued
2896 * @tf: ATA taskfile register set
2898 * Issues ATA taskfile register set to ATA host controller,
2899 * with proper synchronization with interrupt handler and
2903 * spin_lock_irqsave(host lock)
2906 static inline void ata_tf_to_host(struct ata_port *ap,
2907 const struct ata_taskfile *tf)
2909 ap->ops->tf_load(ap, tf);
2910 ap->ops->exec_command(ap, tf);
2914 * ata_busy_sleep - sleep until BSY clears, or timeout
2915 * @ap: port containing status register to be polled
2916 * @tmout_pat: impatience timeout
2917 * @tmout: overall timeout
2919 * Sleep until ATA Status register bit BSY clears,
2920 * or a timeout occurs.
2923 * Kernel thread context (may sleep).
2926 * 0 on success, -errno otherwise.
2928 int ata_busy_sleep(struct ata_port *ap,
2929 unsigned long tmout_pat, unsigned long tmout)
2931 unsigned long timer_start, timeout;
2934 status = ata_busy_wait(ap, ATA_BUSY, 300);
2935 timer_start = jiffies;
2936 timeout = timer_start + tmout_pat;
2937 while (status != 0xff && (status & ATA_BUSY) &&
2938 time_before(jiffies, timeout)) {
2940 status = ata_busy_wait(ap, ATA_BUSY, 3);
2943 if (status != 0xff && (status & ATA_BUSY))
2944 ata_port_printk(ap, KERN_WARNING,
2945 "port is slow to respond, please be patient "
2946 "(Status 0x%x)\n", status);
2948 timeout = timer_start + tmout;
2949 while (status != 0xff && (status & ATA_BUSY) &&
2950 time_before(jiffies, timeout)) {
2952 status = ata_chk_status(ap);
2958 if (status & ATA_BUSY) {
2959 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2960 "(%lu secs, Status 0x%x)\n",
2961 tmout / HZ, status);
2969 * ata_wait_ready - sleep until BSY clears, or timeout
2970 * @ap: port containing status register to be polled
2971 * @deadline: deadline jiffies for the operation
2973 * Sleep until ATA Status register bit BSY clears, or timeout
2977 * Kernel thread context (may sleep).
2980 * 0 on success, -errno otherwise.
2982 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2984 unsigned long start = jiffies;
2988 u8 status = ata_chk_status(ap);
2989 unsigned long now = jiffies;
2991 if (!(status & ATA_BUSY))
2993 if (!ata_port_online(ap) && status == 0xff)
2995 if (time_after(now, deadline))
2998 if (!warned && time_after(now, start + 5 * HZ) &&
2999 (deadline - now > 3 * HZ)) {
3000 ata_port_printk(ap, KERN_WARNING,
3001 "port is slow to respond, please be patient "
3002 "(Status 0x%x)\n", status);
3010 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3011 unsigned long deadline)
3013 struct ata_ioports *ioaddr = &ap->ioaddr;
3014 unsigned int dev0 = devmask & (1 << 0);
3015 unsigned int dev1 = devmask & (1 << 1);
3018 /* if device 0 was found in ata_devchk, wait for its
3022 rc = ata_wait_ready(ap, deadline);
3030 /* if device 1 was found in ata_devchk, wait for register
3031 * access briefly, then wait for BSY to clear.
3036 ap->ops->dev_select(ap, 1);
3038 /* Wait for register access. Some ATAPI devices fail
3039 * to set nsect/lbal after reset, so don't waste too
3040 * much time on it. We're gonna wait for !BSY anyway.
3042 for (i = 0; i < 2; i++) {
3045 nsect = ioread8(ioaddr->nsect_addr);
3046 lbal = ioread8(ioaddr->lbal_addr);
3047 if ((nsect == 1) && (lbal == 1))
3049 msleep(50); /* give drive a breather */
3052 rc = ata_wait_ready(ap, deadline);
3060 /* is all this really necessary? */
3061 ap->ops->dev_select(ap, 0);
3063 ap->ops->dev_select(ap, 1);
3065 ap->ops->dev_select(ap, 0);
3070 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3071 unsigned long deadline)
3073 struct ata_ioports *ioaddr = &ap->ioaddr;
3075 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3077 /* software reset. causes dev0 to be selected */
3078 iowrite8(ap->ctl, ioaddr->ctl_addr);
3079 udelay(20); /* FIXME: flush */
3080 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3081 udelay(20); /* FIXME: flush */
3082 iowrite8(ap->ctl, ioaddr->ctl_addr);
3084 /* spec mandates ">= 2ms" before checking status.
3085 * We wait 150ms, because that was the magic delay used for
3086 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3087 * between when the ATA command register is written, and then
3088 * status is checked. Because waiting for "a while" before
3089 * checking status is fine, post SRST, we perform this magic
3090 * delay here as well.
3092 * Old drivers/ide uses the 2mS rule and then waits for ready
3096 /* Before we perform post reset processing we want to see if
3097 * the bus shows 0xFF because the odd clown forgets the D7
3098 * pulldown resistor.
3100 if (ata_check_status(ap) == 0xFF)
3103 return ata_bus_post_reset(ap, devmask, deadline);
3107 * ata_bus_reset - reset host port and associated ATA channel
3108 * @ap: port to reset
3110 * This is typically the first time we actually start issuing
3111 * commands to the ATA channel. We wait for BSY to clear, then
3112 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3113 * result. Determine what devices, if any, are on the channel
3114 * by looking at the device 0/1 error register. Look at the signature
3115 * stored in each device's taskfile registers, to determine if
3116 * the device is ATA or ATAPI.
3119 * PCI/etc. bus probe sem.
3120 * Obtains host lock.
3123 * Sets ATA_FLAG_DISABLED if bus reset fails.
3126 void ata_bus_reset(struct ata_port *ap)
3128 struct ata_ioports *ioaddr = &ap->ioaddr;
3129 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3131 unsigned int dev0, dev1 = 0, devmask = 0;
3134 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3136 /* determine if device 0/1 are present */
3137 if (ap->flags & ATA_FLAG_SATA_RESET)
3140 dev0 = ata_devchk(ap, 0);
3142 dev1 = ata_devchk(ap, 1);
3146 devmask |= (1 << 0);
3148 devmask |= (1 << 1);
3150 /* select device 0 again */
3151 ap->ops->dev_select(ap, 0);
3153 /* issue bus reset */
3154 if (ap->flags & ATA_FLAG_SRST) {
3155 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3156 if (rc && rc != -ENODEV)
3161 * determine by signature whether we have ATA or ATAPI devices
3163 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3164 if ((slave_possible) && (err != 0x81))
3165 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3167 /* is double-select really necessary? */
3168 if (ap->device[1].class != ATA_DEV_NONE)
3169 ap->ops->dev_select(ap, 1);
3170 if (ap->device[0].class != ATA_DEV_NONE)
3171 ap->ops->dev_select(ap, 0);
3173 /* if no devices were detected, disable this port */
3174 if ((ap->device[0].class == ATA_DEV_NONE) &&
3175 (ap->device[1].class == ATA_DEV_NONE))
3178 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3179 /* set up device control for ATA_FLAG_SATA_RESET */
3180 iowrite8(ap->ctl, ioaddr->ctl_addr);
3187 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3188 ap->ops->port_disable(ap);
3194 * sata_phy_debounce - debounce SATA phy status
3195 * @ap: ATA port to debounce SATA phy status for
3196 * @params: timing parameters { interval, duratinon, timeout } in msec
3197 * @deadline: deadline jiffies for the operation
3199 * Make sure SStatus of @ap reaches stable state, determined by
3200 * holding the same value where DET is not 1 for @duration polled
3201 * every @interval, before @timeout. Timeout constraints the
3202 * beginning of the stable state. Because DET gets stuck at 1 on
3203 * some controllers after hot unplugging, this functions waits
3204 * until timeout then returns 0 if DET is stable at 1.
3206 * @timeout is further limited by @deadline. The sooner of the
3210 * Kernel thread context (may sleep)
3213 * 0 on success, -errno on failure.
3215 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3216 unsigned long deadline)
3218 unsigned long interval_msec = params[0];
3219 unsigned long duration = msecs_to_jiffies(params[1]);
3220 unsigned long last_jiffies, t;
3224 t = jiffies + msecs_to_jiffies(params[2]);
3225 if (time_before(t, deadline))
3228 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3233 last_jiffies = jiffies;
3236 msleep(interval_msec);
3237 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3243 if (cur == 1 && time_before(jiffies, deadline))
3245 if (time_after(jiffies, last_jiffies + duration))
3250 /* unstable, start over */
3252 last_jiffies = jiffies;
3254 /* check deadline */
3255 if (time_after(jiffies, deadline))
3261 * sata_phy_resume - resume SATA phy
3262 * @ap: ATA port to resume SATA phy for
3263 * @params: timing parameters { interval, duratinon, timeout } in msec
3264 * @deadline: deadline jiffies for the operation
3266 * Resume SATA phy of @ap and debounce it.
3269 * Kernel thread context (may sleep)
3272 * 0 on success, -errno on failure.
3274 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3275 unsigned long deadline)
3280 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3283 scontrol = (scontrol & 0x0f0) | 0x300;
3285 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3288 /* Some PHYs react badly if SStatus is pounded immediately
3289 * after resuming. Delay 200ms before debouncing.
3293 return sata_phy_debounce(ap, params, deadline);
3297 * ata_std_prereset - prepare for reset
3298 * @ap: ATA port to be reset
3299 * @deadline: deadline jiffies for the operation
3301 * @ap is about to be reset. Initialize it. Failure from
3302 * prereset makes libata abort whole reset sequence and give up
3303 * that port, so prereset should be best-effort. It does its
3304 * best to prepare for reset sequence but if things go wrong, it
3305 * should just whine, not fail.
3308 * Kernel thread context (may sleep)
3311 * 0 on success, -errno otherwise.
3313 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3315 struct ata_eh_context *ehc = &ap->eh_context;
3316 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3319 /* handle link resume */
3320 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3321 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3322 ehc->i.action |= ATA_EH_HARDRESET;
3324 /* if we're about to do hardreset, nothing more to do */
3325 if (ehc->i.action & ATA_EH_HARDRESET)
3328 /* if SATA, resume phy */
3329 if (ap->flags & ATA_FLAG_SATA) {
3330 rc = sata_phy_resume(ap, timing, deadline);
3331 /* whine about phy resume failure but proceed */
3332 if (rc && rc != -EOPNOTSUPP)
3333 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3334 "link for reset (errno=%d)\n", rc);
3337 /* Wait for !BSY if the controller can wait for the first D2H
3338 * Reg FIS and we don't know that no device is attached.
3340 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3341 rc = ata_wait_ready(ap, deadline);
3342 if (rc && rc != -ENODEV) {
3343 ata_port_printk(ap, KERN_WARNING, "device not ready "
3344 "(errno=%d), forcing hardreset\n", rc);
3345 ehc->i.action |= ATA_EH_HARDRESET;
3353 * ata_std_softreset - reset host port via ATA SRST
3354 * @ap: port to reset
3355 * @classes: resulting classes of attached devices
3356 * @deadline: deadline jiffies for the operation
3358 * Reset host port using ATA SRST.
3361 * Kernel thread context (may sleep)
3364 * 0 on success, -errno otherwise.
3366 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3367 unsigned long deadline)
3369 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3370 unsigned int devmask = 0;
3376 if (ata_port_offline(ap)) {
3377 classes[0] = ATA_DEV_NONE;
3381 /* determine if device 0/1 are present */
3382 if (ata_devchk(ap, 0))
3383 devmask |= (1 << 0);
3384 if (slave_possible && ata_devchk(ap, 1))
3385 devmask |= (1 << 1);
3387 /* select device 0 again */
3388 ap->ops->dev_select(ap, 0);
3390 /* issue bus reset */
3391 DPRINTK("about to softreset, devmask=%x\n", devmask);
3392 rc = ata_bus_softreset(ap, devmask, deadline);
3393 /* if link is occupied, -ENODEV too is an error */
3394 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3395 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3399 /* determine by signature whether we have ATA or ATAPI devices */
3400 classes[0] = ata_dev_try_classify(ap, 0, &err);
3401 if (slave_possible && err != 0x81)
3402 classes[1] = ata_dev_try_classify(ap, 1, &err);
3405 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3410 * sata_port_hardreset - reset port via SATA phy reset
3411 * @ap: port to reset
3412 * @timing: timing parameters { interval, duratinon, timeout } in msec
3413 * @deadline: deadline jiffies for the operation
3415 * SATA phy-reset host port using DET bits of SControl register.
3418 * Kernel thread context (may sleep)
3421 * 0 on success, -errno otherwise.
3423 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3424 unsigned long deadline)
3431 if (sata_set_spd_needed(ap)) {
3432 /* SATA spec says nothing about how to reconfigure
3433 * spd. To be on the safe side, turn off phy during
3434 * reconfiguration. This works for at least ICH7 AHCI
3437 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3440 scontrol = (scontrol & 0x0f0) | 0x304;
3442 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3448 /* issue phy wake/reset */
3449 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3452 scontrol = (scontrol & 0x0f0) | 0x301;
3454 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3457 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3458 * 10.4.2 says at least 1 ms.
3462 /* bring phy back */
3463 rc = sata_phy_resume(ap, timing, deadline);
3465 DPRINTK("EXIT, rc=%d\n", rc);
3470 * sata_std_hardreset - reset host port via SATA phy reset
3471 * @ap: port to reset
3472 * @class: resulting class of attached device
3473 * @deadline: deadline jiffies for the operation
3475 * SATA phy-reset host port using DET bits of SControl register,
3476 * wait for !BSY and classify the attached device.
3479 * Kernel thread context (may sleep)
3482 * 0 on success, -errno otherwise.
3484 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3485 unsigned long deadline)
3487 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3493 rc = sata_port_hardreset(ap, timing, deadline);
3495 ata_port_printk(ap, KERN_ERR,
3496 "COMRESET failed (errno=%d)\n", rc);
3500 /* TODO: phy layer with polling, timeouts, etc. */
3501 if (ata_port_offline(ap)) {
3502 *class = ATA_DEV_NONE;
3503 DPRINTK("EXIT, link offline\n");
3507 /* wait a while before checking status, see SRST for more info */
3510 rc = ata_wait_ready(ap, deadline);
3511 /* link occupied, -ENODEV too is an error */
3513 ata_port_printk(ap, KERN_ERR,
3514 "COMRESET failed (errno=%d)\n", rc);
3518 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3520 *class = ata_dev_try_classify(ap, 0, NULL);
3522 DPRINTK("EXIT, class=%u\n", *class);
3527 * ata_std_postreset - standard postreset callback
3528 * @ap: the target ata_port
3529 * @classes: classes of attached devices
3531 * This function is invoked after a successful reset. Note that
3532 * the device might have been reset more than once using
3533 * different reset methods before postreset is invoked.
3536 * Kernel thread context (may sleep)
3538 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3544 /* print link status */
3545 sata_print_link_status(ap);
3548 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3549 sata_scr_write(ap, SCR_ERROR, serror);
3551 /* is double-select really necessary? */
3552 if (classes[0] != ATA_DEV_NONE)
3553 ap->ops->dev_select(ap, 1);
3554 if (classes[1] != ATA_DEV_NONE)
3555 ap->ops->dev_select(ap, 0);
3557 /* bail out if no device is present */
3558 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3559 DPRINTK("EXIT, no device\n");
3563 /* set up device control */
3564 if (ap->ioaddr.ctl_addr)
3565 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3571 * ata_dev_same_device - Determine whether new ID matches configured device
3572 * @dev: device to compare against
3573 * @new_class: class of the new device
3574 * @new_id: IDENTIFY page of the new device
3576 * Compare @new_class and @new_id against @dev and determine
3577 * whether @dev is the device indicated by @new_class and
3584 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3586 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3589 const u16 *old_id = dev->id;
3590 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3591 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3593 if (dev->class != new_class) {
3594 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3595 dev->class, new_class);
3599 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3600 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3601 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3602 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3604 if (strcmp(model[0], model[1])) {
3605 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3606 "'%s' != '%s'\n", model[0], model[1]);
3610 if (strcmp(serial[0], serial[1])) {
3611 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3612 "'%s' != '%s'\n", serial[0], serial[1]);
3620 * ata_dev_reread_id - Re-read IDENTIFY data
3621 * @dev: target ATA device
3622 * @readid_flags: read ID flags
3624 * Re-read IDENTIFY page and make sure @dev is still attached to
3628 * Kernel thread context (may sleep)
3631 * 0 on success, negative errno otherwise
3633 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3635 unsigned int class = dev->class;
3636 u16 *id = (void *)dev->ap->sector_buf;
3640 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3644 /* is the device still there? */
3645 if (!ata_dev_same_device(dev, class, id))
3648 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3653 * ata_dev_revalidate - Revalidate ATA device
3654 * @dev: device to revalidate
3655 * @readid_flags: read ID flags
3657 * Re-read IDENTIFY page, make sure @dev is still attached to the
3658 * port and reconfigure it according to the new IDENTIFY page.
3661 * Kernel thread context (may sleep)
3664 * 0 on success, negative errno otherwise
3666 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3668 u64 n_sectors = dev->n_sectors;
3671 if (!ata_dev_enabled(dev))
3675 rc = ata_dev_reread_id(dev, readid_flags);
3679 /* configure device according to the new ID */
3680 rc = ata_dev_configure(dev);
3684 /* verify n_sectors hasn't changed */
3685 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3686 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3688 (unsigned long long)n_sectors,
3689 (unsigned long long)dev->n_sectors);
3697 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3701 struct ata_blacklist_entry {
3702 const char *model_num;
3703 const char *model_rev;
3704 unsigned long horkage;
3707 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3708 /* Devices with DMA related problems under Linux */
3709 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3710 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3711 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3712 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3713 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3714 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3715 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3716 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3717 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3718 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3719 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3720 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3721 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3722 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3723 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3724 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3725 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3726 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3727 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3728 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3729 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3730 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3731 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3732 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3733 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3734 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3735 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3736 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3737 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3738 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3739 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3740 { "IOMEGA ZIP 250 ATAPI Floppy",
3741 NULL, ATA_HORKAGE_NODMA },
3743 /* Weird ATAPI devices */
3744 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3746 /* Devices we expect to fail diagnostics */
3748 /* Devices where NCQ should be avoided */
3750 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3751 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3752 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3754 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3755 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3756 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3757 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3758 ATA_HORKAGE_NONCQ },
3759 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3760 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3761 /* Blacklist entries taken from Silicon Image 3124/3132
3762 Windows driver .inf file - also several Linux problem reports */
3763 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3764 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3765 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3766 /* Drives which do spurious command completion */
3767 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3768 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3769 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3770 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3771 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3773 /* Devices with NCQ limits */
3779 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3781 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3782 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3783 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3785 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3786 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3788 while (ad->model_num) {
3789 if (!strcmp(ad->model_num, model_num)) {
3790 if (ad->model_rev == NULL)
3792 if (!strcmp(ad->model_rev, model_rev))
3800 static int ata_dma_blacklisted(const struct ata_device *dev)
3802 /* We don't support polling DMA.
3803 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3804 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3806 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3807 (dev->flags & ATA_DFLAG_CDB_INTR))
3809 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3813 * ata_dev_xfermask - Compute supported xfermask of the given device
3814 * @dev: Device to compute xfermask for
3816 * Compute supported xfermask of @dev and store it in
3817 * dev->*_mask. This function is responsible for applying all
3818 * known limits including host controller limits, device
3824 static void ata_dev_xfermask(struct ata_device *dev)
3826 struct ata_port *ap = dev->ap;
3827 struct ata_host *host = ap->host;
3828 unsigned long xfer_mask;
3830 /* controller modes available */
3831 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3832 ap->mwdma_mask, ap->udma_mask);
3834 /* drive modes available */
3835 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3836 dev->mwdma_mask, dev->udma_mask);
3837 xfer_mask &= ata_id_xfermask(dev->id);
3840 * CFA Advanced TrueIDE timings are not allowed on a shared
3843 if (ata_dev_pair(dev)) {
3844 /* No PIO5 or PIO6 */
3845 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3846 /* No MWDMA3 or MWDMA 4 */
3847 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3850 if (ata_dma_blacklisted(dev)) {
3851 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3852 ata_dev_printk(dev, KERN_WARNING,
3853 "device is on DMA blacklist, disabling DMA\n");
3856 if ((host->flags & ATA_HOST_SIMPLEX) &&
3857 host->simplex_claimed && host->simplex_claimed != ap) {
3858 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3859 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3860 "other device, disabling DMA\n");
3863 if (ap->flags & ATA_FLAG_NO_IORDY)
3864 xfer_mask &= ata_pio_mask_no_iordy(dev);
3866 if (ap->ops->mode_filter)
3867 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3869 /* Apply cable rule here. Don't apply it early because when
3870 * we handle hot plug the cable type can itself change.
3871 * Check this last so that we know if the transfer rate was
3872 * solely limited by the cable.
3873 * Unknown or 80 wire cables reported host side are checked
3874 * drive side as well. Cases where we know a 40wire cable
3875 * is used safely for 80 are not checked here.
3877 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3878 /* UDMA/44 or higher would be available */
3879 if((ap->cbl == ATA_CBL_PATA40) ||
3880 (ata_drive_40wire(dev->id) &&
3881 (ap->cbl == ATA_CBL_PATA_UNK ||
3882 ap->cbl == ATA_CBL_PATA80))) {
3883 ata_dev_printk(dev, KERN_WARNING,
3884 "limited to UDMA/33 due to 40-wire cable\n");
3885 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3888 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3889 &dev->mwdma_mask, &dev->udma_mask);
3893 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3894 * @dev: Device to which command will be sent
3896 * Issue SET FEATURES - XFER MODE command to device @dev
3900 * PCI/etc. bus probe sem.
3903 * 0 on success, AC_ERR_* mask otherwise.
3906 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3908 struct ata_taskfile tf;
3909 unsigned int err_mask;
3911 /* set up set-features taskfile */
3912 DPRINTK("set features - xfer mode\n");
3914 /* Some controllers and ATAPI devices show flaky interrupt
3915 * behavior after setting xfer mode. Use polling instead.
3917 ata_tf_init(dev, &tf);
3918 tf.command = ATA_CMD_SET_FEATURES;
3919 tf.feature = SETFEATURES_XFER;
3920 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3921 tf.protocol = ATA_PROT_NODATA;
3922 tf.nsect = dev->xfer_mode;
3924 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3926 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3931 * ata_dev_init_params - Issue INIT DEV PARAMS command
3932 * @dev: Device to which command will be sent
3933 * @heads: Number of heads (taskfile parameter)
3934 * @sectors: Number of sectors (taskfile parameter)
3937 * Kernel thread context (may sleep)
3940 * 0 on success, AC_ERR_* mask otherwise.
3942 static unsigned int ata_dev_init_params(struct ata_device *dev,
3943 u16 heads, u16 sectors)
3945 struct ata_taskfile tf;
3946 unsigned int err_mask;
3948 /* Number of sectors per track 1-255. Number of heads 1-16 */
3949 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3950 return AC_ERR_INVALID;
3952 /* set up init dev params taskfile */
3953 DPRINTK("init dev params \n");
3955 ata_tf_init(dev, &tf);
3956 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3957 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3958 tf.protocol = ATA_PROT_NODATA;
3960 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3962 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3964 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3969 * ata_sg_clean - Unmap DMA memory associated with command
3970 * @qc: Command containing DMA memory to be released
3972 * Unmap all mapped DMA memory associated with this command.
3975 * spin_lock_irqsave(host lock)
3977 void ata_sg_clean(struct ata_queued_cmd *qc)
3979 struct ata_port *ap = qc->ap;
3980 struct scatterlist *sg = qc->__sg;
3981 int dir = qc->dma_dir;
3982 void *pad_buf = NULL;
3984 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3985 WARN_ON(sg == NULL);
3987 if (qc->flags & ATA_QCFLAG_SINGLE)
3988 WARN_ON(qc->n_elem > 1);
3990 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3992 /* if we padded the buffer out to 32-bit bound, and data
3993 * xfer direction is from-device, we must copy from the
3994 * pad buffer back into the supplied buffer
3996 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3997 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3999 if (qc->flags & ATA_QCFLAG_SG) {
4001 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4002 /* restore last sg */
4003 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4005 struct scatterlist *psg = &qc->pad_sgent;
4006 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4007 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4008 kunmap_atomic(addr, KM_IRQ0);
4012 dma_unmap_single(ap->dev,
4013 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4016 sg->length += qc->pad_len;
4018 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4019 pad_buf, qc->pad_len);
4022 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4027 * ata_fill_sg - Fill PCI IDE PRD table
4028 * @qc: Metadata associated with taskfile to be transferred
4030 * Fill PCI IDE PRD (scatter-gather) table with segments
4031 * associated with the current disk command.
4034 * spin_lock_irqsave(host lock)
4037 static void ata_fill_sg(struct ata_queued_cmd *qc)
4039 struct ata_port *ap = qc->ap;
4040 struct scatterlist *sg;
4043 WARN_ON(qc->__sg == NULL);
4044 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4047 ata_for_each_sg(sg, qc) {
4051 /* determine if physical DMA addr spans 64K boundary.
4052 * Note h/w doesn't support 64-bit, so we unconditionally
4053 * truncate dma_addr_t to u32.
4055 addr = (u32) sg_dma_address(sg);
4056 sg_len = sg_dma_len(sg);
4059 offset = addr & 0xffff;
4061 if ((offset + sg_len) > 0x10000)
4062 len = 0x10000 - offset;
4064 ap->prd[idx].addr = cpu_to_le32(addr);
4065 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4066 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4075 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4079 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4080 * @qc: Metadata associated with taskfile to be transferred
4082 * Fill PCI IDE PRD (scatter-gather) table with segments
4083 * associated with the current disk command. Perform the fill
4084 * so that we avoid writing any length 64K records for
4085 * controllers that don't follow the spec.
4088 * spin_lock_irqsave(host lock)
4091 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4093 struct ata_port *ap = qc->ap;
4094 struct scatterlist *sg;
4097 WARN_ON(qc->__sg == NULL);
4098 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4101 ata_for_each_sg(sg, qc) {
4103 u32 sg_len, len, blen;
4105 /* determine if physical DMA addr spans 64K boundary.
4106 * Note h/w doesn't support 64-bit, so we unconditionally
4107 * truncate dma_addr_t to u32.
4109 addr = (u32) sg_dma_address(sg);
4110 sg_len = sg_dma_len(sg);
4113 offset = addr & 0xffff;
4115 if ((offset + sg_len) > 0x10000)
4116 len = 0x10000 - offset;
4118 blen = len & 0xffff;
4119 ap->prd[idx].addr = cpu_to_le32(addr);
4121 /* Some PATA chipsets like the CS5530 can't
4122 cope with 0x0000 meaning 64K as the spec says */
4123 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4125 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4127 ap->prd[idx].flags_len = cpu_to_le32(blen);
4128 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4137 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4141 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4142 * @qc: Metadata associated with taskfile to check
4144 * Allow low-level driver to filter ATA PACKET commands, returning
4145 * a status indicating whether or not it is OK to use DMA for the
4146 * supplied PACKET command.
4149 * spin_lock_irqsave(host lock)
4151 * RETURNS: 0 when ATAPI DMA can be used
4154 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4156 struct ata_port *ap = qc->ap;
4158 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4159 * few ATAPI devices choke on such DMA requests.
4161 if (unlikely(qc->nbytes & 15))
4164 if (ap->ops->check_atapi_dma)
4165 return ap->ops->check_atapi_dma(qc);
4171 * ata_qc_prep - Prepare taskfile for submission
4172 * @qc: Metadata associated with taskfile to be prepared
4174 * Prepare ATA taskfile for submission.
4177 * spin_lock_irqsave(host lock)
4179 void ata_qc_prep(struct ata_queued_cmd *qc)
4181 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4188 * ata_dumb_qc_prep - Prepare taskfile for submission
4189 * @qc: Metadata associated with taskfile to be prepared
4191 * Prepare ATA taskfile for submission.
4194 * spin_lock_irqsave(host lock)
4196 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4198 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4201 ata_fill_sg_dumb(qc);
4204 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4207 * ata_sg_init_one - Associate command with memory buffer
4208 * @qc: Command to be associated
4209 * @buf: Memory buffer
4210 * @buflen: Length of memory buffer, in bytes.
4212 * Initialize the data-related elements of queued_cmd @qc
4213 * to point to a single memory buffer, @buf of byte length @buflen.
4216 * spin_lock_irqsave(host lock)
4219 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4221 qc->flags |= ATA_QCFLAG_SINGLE;
4223 qc->__sg = &qc->sgent;
4225 qc->orig_n_elem = 1;
4227 qc->nbytes = buflen;
4229 sg_init_one(&qc->sgent, buf, buflen);
4233 * ata_sg_init - Associate command with scatter-gather table.
4234 * @qc: Command to be associated
4235 * @sg: Scatter-gather table.
4236 * @n_elem: Number of elements in s/g table.
4238 * Initialize the data-related elements of queued_cmd @qc
4239 * to point to a scatter-gather table @sg, containing @n_elem
4243 * spin_lock_irqsave(host lock)
4246 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4247 unsigned int n_elem)
4249 qc->flags |= ATA_QCFLAG_SG;
4251 qc->n_elem = n_elem;
4252 qc->orig_n_elem = n_elem;
4256 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4257 * @qc: Command with memory buffer to be mapped.
4259 * DMA-map the memory buffer associated with queued_cmd @qc.
4262 * spin_lock_irqsave(host lock)
4265 * Zero on success, negative on error.
4268 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4270 struct ata_port *ap = qc->ap;
4271 int dir = qc->dma_dir;
4272 struct scatterlist *sg = qc->__sg;
4273 dma_addr_t dma_address;
4276 /* we must lengthen transfers to end on a 32-bit boundary */
4277 qc->pad_len = sg->length & 3;
4279 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4280 struct scatterlist *psg = &qc->pad_sgent;
4282 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4284 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4286 if (qc->tf.flags & ATA_TFLAG_WRITE)
4287 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4290 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4291 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4293 sg->length -= qc->pad_len;
4294 if (sg->length == 0)
4297 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4298 sg->length, qc->pad_len);
4306 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4308 if (dma_mapping_error(dma_address)) {
4310 sg->length += qc->pad_len;
4314 sg_dma_address(sg) = dma_address;
4315 sg_dma_len(sg) = sg->length;
4318 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4319 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4325 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4326 * @qc: Command with scatter-gather table to be mapped.
4328 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4331 * spin_lock_irqsave(host lock)
4334 * Zero on success, negative on error.
4338 static int ata_sg_setup(struct ata_queued_cmd *qc)
4340 struct ata_port *ap = qc->ap;
4341 struct scatterlist *sg = qc->__sg;
4342 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4343 int n_elem, pre_n_elem, dir, trim_sg = 0;
4345 VPRINTK("ENTER, ata%u\n", ap->print_id);
4346 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4348 /* we must lengthen transfers to end on a 32-bit boundary */
4349 qc->pad_len = lsg->length & 3;
4351 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4352 struct scatterlist *psg = &qc->pad_sgent;
4353 unsigned int offset;
4355 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4357 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4360 * psg->page/offset are used to copy to-be-written
4361 * data in this function or read data in ata_sg_clean.
4363 offset = lsg->offset + lsg->length - qc->pad_len;
4364 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4365 psg->offset = offset_in_page(offset);
4367 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4368 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4369 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4370 kunmap_atomic(addr, KM_IRQ0);
4373 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4374 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4376 lsg->length -= qc->pad_len;
4377 if (lsg->length == 0)
4380 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4381 qc->n_elem - 1, lsg->length, qc->pad_len);
4384 pre_n_elem = qc->n_elem;
4385 if (trim_sg && pre_n_elem)
4394 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4396 /* restore last sg */
4397 lsg->length += qc->pad_len;
4401 DPRINTK("%d sg elements mapped\n", n_elem);
4404 qc->n_elem = n_elem;
4410 * swap_buf_le16 - swap halves of 16-bit words in place
4411 * @buf: Buffer to swap
4412 * @buf_words: Number of 16-bit words in buffer.
4414 * Swap halves of 16-bit words if needed to convert from
4415 * little-endian byte order to native cpu byte order, or
4419 * Inherited from caller.
4421 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4426 for (i = 0; i < buf_words; i++)
4427 buf[i] = le16_to_cpu(buf[i]);
4428 #endif /* __BIG_ENDIAN */
4432 * ata_data_xfer - Transfer data by PIO
4433 * @adev: device to target
4435 * @buflen: buffer length
4436 * @write_data: read/write
4438 * Transfer data from/to the device data register by PIO.
4441 * Inherited from caller.
4443 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4444 unsigned int buflen, int write_data)
4446 struct ata_port *ap = adev->ap;
4447 unsigned int words = buflen >> 1;
4449 /* Transfer multiple of 2 bytes */
4451 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4453 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4455 /* Transfer trailing 1 byte, if any. */
4456 if (unlikely(buflen & 0x01)) {
4457 u16 align_buf[1] = { 0 };
4458 unsigned char *trailing_buf = buf + buflen - 1;
4461 memcpy(align_buf, trailing_buf, 1);
4462 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4464 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4465 memcpy(trailing_buf, align_buf, 1);
4471 * ata_data_xfer_noirq - Transfer data by PIO
4472 * @adev: device to target
4474 * @buflen: buffer length
4475 * @write_data: read/write
4477 * Transfer data from/to the device data register by PIO. Do the
4478 * transfer with interrupts disabled.
4481 * Inherited from caller.
4483 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4484 unsigned int buflen, int write_data)
4486 unsigned long flags;
4487 local_irq_save(flags);
4488 ata_data_xfer(adev, buf, buflen, write_data);
4489 local_irq_restore(flags);
4494 * ata_pio_sector - Transfer a sector of data.
4495 * @qc: Command on going
4497 * Transfer qc->sect_size bytes of data from/to the ATA device.
4500 * Inherited from caller.
4503 static void ata_pio_sector(struct ata_queued_cmd *qc)
4505 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4506 struct scatterlist *sg = qc->__sg;
4507 struct ata_port *ap = qc->ap;
4509 unsigned int offset;
4512 if (qc->curbytes == qc->nbytes - qc->sect_size)
4513 ap->hsm_task_state = HSM_ST_LAST;
4515 page = sg[qc->cursg].page;
4516 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4518 /* get the current page and offset */
4519 page = nth_page(page, (offset >> PAGE_SHIFT));
4520 offset %= PAGE_SIZE;
4522 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4524 if (PageHighMem(page)) {
4525 unsigned long flags;
4527 /* FIXME: use a bounce buffer */
4528 local_irq_save(flags);
4529 buf = kmap_atomic(page, KM_IRQ0);
4531 /* do the actual data transfer */
4532 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4534 kunmap_atomic(buf, KM_IRQ0);
4535 local_irq_restore(flags);
4537 buf = page_address(page);
4538 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4541 qc->curbytes += qc->sect_size;
4542 qc->cursg_ofs += qc->sect_size;
4544 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4551 * ata_pio_sectors - Transfer one or many sectors.
4552 * @qc: Command on going
4554 * Transfer one or many sectors of data from/to the
4555 * ATA device for the DRQ request.
4558 * Inherited from caller.
4561 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4563 if (is_multi_taskfile(&qc->tf)) {
4564 /* READ/WRITE MULTIPLE */
4567 WARN_ON(qc->dev->multi_count == 0);
4569 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4570 qc->dev->multi_count);
4578 * atapi_send_cdb - Write CDB bytes to hardware
4579 * @ap: Port to which ATAPI device is attached.
4580 * @qc: Taskfile currently active
4582 * When device has indicated its readiness to accept
4583 * a CDB, this function is called. Send the CDB.
4589 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4592 DPRINTK("send cdb\n");
4593 WARN_ON(qc->dev->cdb_len < 12);
4595 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4596 ata_altstatus(ap); /* flush */
4598 switch (qc->tf.protocol) {
4599 case ATA_PROT_ATAPI:
4600 ap->hsm_task_state = HSM_ST;
4602 case ATA_PROT_ATAPI_NODATA:
4603 ap->hsm_task_state = HSM_ST_LAST;
4605 case ATA_PROT_ATAPI_DMA:
4606 ap->hsm_task_state = HSM_ST_LAST;
4607 /* initiate bmdma */
4608 ap->ops->bmdma_start(qc);
4614 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4615 * @qc: Command on going
4616 * @bytes: number of bytes
4618 * Transfer Transfer data from/to the ATAPI device.
4621 * Inherited from caller.
4625 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4627 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4628 struct scatterlist *sg = qc->__sg;
4629 struct ata_port *ap = qc->ap;
4632 unsigned int offset, count;
4634 if (qc->curbytes + bytes >= qc->nbytes)
4635 ap->hsm_task_state = HSM_ST_LAST;
4638 if (unlikely(qc->cursg >= qc->n_elem)) {
4640 * The end of qc->sg is reached and the device expects
4641 * more data to transfer. In order not to overrun qc->sg
4642 * and fulfill length specified in the byte count register,
4643 * - for read case, discard trailing data from the device
4644 * - for write case, padding zero data to the device
4646 u16 pad_buf[1] = { 0 };
4647 unsigned int words = bytes >> 1;
4650 if (words) /* warning if bytes > 1 */
4651 ata_dev_printk(qc->dev, KERN_WARNING,
4652 "%u bytes trailing data\n", bytes);
4654 for (i = 0; i < words; i++)
4655 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4657 ap->hsm_task_state = HSM_ST_LAST;
4661 sg = &qc->__sg[qc->cursg];
4664 offset = sg->offset + qc->cursg_ofs;
4666 /* get the current page and offset */
4667 page = nth_page(page, (offset >> PAGE_SHIFT));
4668 offset %= PAGE_SIZE;
4670 /* don't overrun current sg */
4671 count = min(sg->length - qc->cursg_ofs, bytes);
4673 /* don't cross page boundaries */
4674 count = min(count, (unsigned int)PAGE_SIZE - offset);
4676 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4678 if (PageHighMem(page)) {
4679 unsigned long flags;
4681 /* FIXME: use bounce buffer */
4682 local_irq_save(flags);
4683 buf = kmap_atomic(page, KM_IRQ0);
4685 /* do the actual data transfer */
4686 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4688 kunmap_atomic(buf, KM_IRQ0);
4689 local_irq_restore(flags);
4691 buf = page_address(page);
4692 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4696 qc->curbytes += count;
4697 qc->cursg_ofs += count;
4699 if (qc->cursg_ofs == sg->length) {
4709 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4710 * @qc: Command on going
4712 * Transfer Transfer data from/to the ATAPI device.
4715 * Inherited from caller.
4718 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4720 struct ata_port *ap = qc->ap;
4721 struct ata_device *dev = qc->dev;
4722 unsigned int ireason, bc_lo, bc_hi, bytes;
4723 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4725 /* Abuse qc->result_tf for temp storage of intermediate TF
4726 * here to save some kernel stack usage.
4727 * For normal completion, qc->result_tf is not relevant. For
4728 * error, qc->result_tf is later overwritten by ata_qc_complete().
4729 * So, the correctness of qc->result_tf is not affected.
4731 ap->ops->tf_read(ap, &qc->result_tf);
4732 ireason = qc->result_tf.nsect;
4733 bc_lo = qc->result_tf.lbam;
4734 bc_hi = qc->result_tf.lbah;
4735 bytes = (bc_hi << 8) | bc_lo;
4737 /* shall be cleared to zero, indicating xfer of data */
4738 if (ireason & (1 << 0))
4741 /* make sure transfer direction matches expected */
4742 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4743 if (do_write != i_write)
4746 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4748 __atapi_pio_bytes(qc, bytes);
4753 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4754 qc->err_mask |= AC_ERR_HSM;
4755 ap->hsm_task_state = HSM_ST_ERR;
4759 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4760 * @ap: the target ata_port
4764 * 1 if ok in workqueue, 0 otherwise.
4767 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4769 if (qc->tf.flags & ATA_TFLAG_POLLING)
4772 if (ap->hsm_task_state == HSM_ST_FIRST) {
4773 if (qc->tf.protocol == ATA_PROT_PIO &&
4774 (qc->tf.flags & ATA_TFLAG_WRITE))
4777 if (is_atapi_taskfile(&qc->tf) &&
4778 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4786 * ata_hsm_qc_complete - finish a qc running on standard HSM
4787 * @qc: Command to complete
4788 * @in_wq: 1 if called from workqueue, 0 otherwise
4790 * Finish @qc which is running on standard HSM.
4793 * If @in_wq is zero, spin_lock_irqsave(host lock).
4794 * Otherwise, none on entry and grabs host lock.
4796 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4798 struct ata_port *ap = qc->ap;
4799 unsigned long flags;
4801 if (ap->ops->error_handler) {
4803 spin_lock_irqsave(ap->lock, flags);
4805 /* EH might have kicked in while host lock is
4808 qc = ata_qc_from_tag(ap, qc->tag);
4810 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4811 ap->ops->irq_on(ap);
4812 ata_qc_complete(qc);
4814 ata_port_freeze(ap);
4817 spin_unlock_irqrestore(ap->lock, flags);
4819 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4820 ata_qc_complete(qc);
4822 ata_port_freeze(ap);
4826 spin_lock_irqsave(ap->lock, flags);
4827 ap->ops->irq_on(ap);
4828 ata_qc_complete(qc);
4829 spin_unlock_irqrestore(ap->lock, flags);
4831 ata_qc_complete(qc);
4836 * ata_hsm_move - move the HSM to the next state.
4837 * @ap: the target ata_port
4839 * @status: current device status
4840 * @in_wq: 1 if called from workqueue, 0 otherwise
4843 * 1 when poll next status needed, 0 otherwise.
4845 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4846 u8 status, int in_wq)
4848 unsigned long flags = 0;
4851 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4853 /* Make sure ata_qc_issue_prot() does not throw things
4854 * like DMA polling into the workqueue. Notice that
4855 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4857 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4860 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4861 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4863 switch (ap->hsm_task_state) {
4865 /* Send first data block or PACKET CDB */
4867 /* If polling, we will stay in the work queue after
4868 * sending the data. Otherwise, interrupt handler
4869 * takes over after sending the data.
4871 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4873 /* check device status */
4874 if (unlikely((status & ATA_DRQ) == 0)) {
4875 /* handle BSY=0, DRQ=0 as error */
4876 if (likely(status & (ATA_ERR | ATA_DF)))
4877 /* device stops HSM for abort/error */
4878 qc->err_mask |= AC_ERR_DEV;
4880 /* HSM violation. Let EH handle this */
4881 qc->err_mask |= AC_ERR_HSM;
4883 ap->hsm_task_state = HSM_ST_ERR;
4887 /* Device should not ask for data transfer (DRQ=1)
4888 * when it finds something wrong.
4889 * We ignore DRQ here and stop the HSM by
4890 * changing hsm_task_state to HSM_ST_ERR and
4891 * let the EH abort the command or reset the device.
4893 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4894 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4895 "error, dev_stat 0x%X\n", status);
4896 qc->err_mask |= AC_ERR_HSM;
4897 ap->hsm_task_state = HSM_ST_ERR;
4901 /* Send the CDB (atapi) or the first data block (ata pio out).
4902 * During the state transition, interrupt handler shouldn't
4903 * be invoked before the data transfer is complete and
4904 * hsm_task_state is changed. Hence, the following locking.
4907 spin_lock_irqsave(ap->lock, flags);
4909 if (qc->tf.protocol == ATA_PROT_PIO) {
4910 /* PIO data out protocol.
4911 * send first data block.
4914 /* ata_pio_sectors() might change the state
4915 * to HSM_ST_LAST. so, the state is changed here
4916 * before ata_pio_sectors().
4918 ap->hsm_task_state = HSM_ST;
4919 ata_pio_sectors(qc);
4920 ata_altstatus(ap); /* flush */
4923 atapi_send_cdb(ap, qc);
4926 spin_unlock_irqrestore(ap->lock, flags);
4928 /* if polling, ata_pio_task() handles the rest.
4929 * otherwise, interrupt handler takes over from here.
4934 /* complete command or read/write the data register */
4935 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4936 /* ATAPI PIO protocol */
4937 if ((status & ATA_DRQ) == 0) {
4938 /* No more data to transfer or device error.
4939 * Device error will be tagged in HSM_ST_LAST.
4941 ap->hsm_task_state = HSM_ST_LAST;
4945 /* Device should not ask for data transfer (DRQ=1)
4946 * when it finds something wrong.
4947 * We ignore DRQ here and stop the HSM by
4948 * changing hsm_task_state to HSM_ST_ERR and
4949 * let the EH abort the command or reset the device.
4951 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4952 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4953 "device error, dev_stat 0x%X\n",
4955 qc->err_mask |= AC_ERR_HSM;
4956 ap->hsm_task_state = HSM_ST_ERR;
4960 atapi_pio_bytes(qc);
4962 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4963 /* bad ireason reported by device */
4967 /* ATA PIO protocol */
4968 if (unlikely((status & ATA_DRQ) == 0)) {
4969 /* handle BSY=0, DRQ=0 as error */
4970 if (likely(status & (ATA_ERR | ATA_DF)))
4971 /* device stops HSM for abort/error */
4972 qc->err_mask |= AC_ERR_DEV;
4974 /* HSM violation. Let EH handle this.
4975 * Phantom devices also trigger this
4976 * condition. Mark hint.
4978 qc->err_mask |= AC_ERR_HSM |
4981 ap->hsm_task_state = HSM_ST_ERR;
4985 /* For PIO reads, some devices may ask for
4986 * data transfer (DRQ=1) alone with ERR=1.
4987 * We respect DRQ here and transfer one
4988 * block of junk data before changing the
4989 * hsm_task_state to HSM_ST_ERR.
4991 * For PIO writes, ERR=1 DRQ=1 doesn't make
4992 * sense since the data block has been
4993 * transferred to the device.
4995 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4996 /* data might be corrputed */
4997 qc->err_mask |= AC_ERR_DEV;
4999 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5000 ata_pio_sectors(qc);
5002 status = ata_wait_idle(ap);
5005 if (status & (ATA_BUSY | ATA_DRQ))
5006 qc->err_mask |= AC_ERR_HSM;
5008 /* ata_pio_sectors() might change the
5009 * state to HSM_ST_LAST. so, the state
5010 * is changed after ata_pio_sectors().
5012 ap->hsm_task_state = HSM_ST_ERR;
5016 ata_pio_sectors(qc);
5018 if (ap->hsm_task_state == HSM_ST_LAST &&
5019 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5022 status = ata_wait_idle(ap);
5027 ata_altstatus(ap); /* flush */
5032 if (unlikely(!ata_ok(status))) {
5033 qc->err_mask |= __ac_err_mask(status);
5034 ap->hsm_task_state = HSM_ST_ERR;
5038 /* no more data to transfer */
5039 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5040 ap->print_id, qc->dev->devno, status);
5042 WARN_ON(qc->err_mask);
5044 ap->hsm_task_state = HSM_ST_IDLE;
5046 /* complete taskfile transaction */
5047 ata_hsm_qc_complete(qc, in_wq);
5053 /* make sure qc->err_mask is available to
5054 * know what's wrong and recover
5056 WARN_ON(qc->err_mask == 0);
5058 ap->hsm_task_state = HSM_ST_IDLE;
5060 /* complete taskfile transaction */
5061 ata_hsm_qc_complete(qc, in_wq);
5073 static void ata_pio_task(struct work_struct *work)
5075 struct ata_port *ap =
5076 container_of(work, struct ata_port, port_task.work);
5077 struct ata_queued_cmd *qc = ap->port_task_data;
5082 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5085 * This is purely heuristic. This is a fast path.
5086 * Sometimes when we enter, BSY will be cleared in
5087 * a chk-status or two. If not, the drive is probably seeking
5088 * or something. Snooze for a couple msecs, then
5089 * chk-status again. If still busy, queue delayed work.
5091 status = ata_busy_wait(ap, ATA_BUSY, 5);
5092 if (status & ATA_BUSY) {
5094 status = ata_busy_wait(ap, ATA_BUSY, 10);
5095 if (status & ATA_BUSY) {
5096 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5102 poll_next = ata_hsm_move(ap, qc, status, 1);
5104 /* another command or interrupt handler
5105 * may be running at this point.
5112 * ata_qc_new - Request an available ATA command, for queueing
5113 * @ap: Port associated with device @dev
5114 * @dev: Device from whom we request an available command structure
5120 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5122 struct ata_queued_cmd *qc = NULL;
5125 /* no command while frozen */
5126 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5129 /* the last tag is reserved for internal command. */
5130 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5131 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5132 qc = __ata_qc_from_tag(ap, i);
5143 * ata_qc_new_init - Request an available ATA command, and initialize it
5144 * @dev: Device from whom we request an available command structure
5150 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5152 struct ata_port *ap = dev->ap;
5153 struct ata_queued_cmd *qc;
5155 qc = ata_qc_new(ap);
5168 * ata_qc_free - free unused ata_queued_cmd
5169 * @qc: Command to complete
5171 * Designed to free unused ata_queued_cmd object
5172 * in case something prevents using it.
5175 * spin_lock_irqsave(host lock)
5177 void ata_qc_free(struct ata_queued_cmd *qc)
5179 struct ata_port *ap = qc->ap;
5182 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5186 if (likely(ata_tag_valid(tag))) {
5187 qc->tag = ATA_TAG_POISON;
5188 clear_bit(tag, &ap->qc_allocated);
5192 void __ata_qc_complete(struct ata_queued_cmd *qc)
5194 struct ata_port *ap = qc->ap;
5196 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5197 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5199 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5202 /* command should be marked inactive atomically with qc completion */
5203 if (qc->tf.protocol == ATA_PROT_NCQ)
5204 ap->sactive &= ~(1 << qc->tag);
5206 ap->active_tag = ATA_TAG_POISON;
5208 /* atapi: mark qc as inactive to prevent the interrupt handler
5209 * from completing the command twice later, before the error handler
5210 * is called. (when rc != 0 and atapi request sense is needed)
5212 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5213 ap->qc_active &= ~(1 << qc->tag);
5215 /* call completion callback */
5216 qc->complete_fn(qc);
5219 static void fill_result_tf(struct ata_queued_cmd *qc)
5221 struct ata_port *ap = qc->ap;
5223 qc->result_tf.flags = qc->tf.flags;
5224 ap->ops->tf_read(ap, &qc->result_tf);
5228 * ata_qc_complete - Complete an active ATA command
5229 * @qc: Command to complete
5230 * @err_mask: ATA Status register contents
5232 * Indicate to the mid and upper layers that an ATA
5233 * command has completed, with either an ok or not-ok status.
5236 * spin_lock_irqsave(host lock)
5238 void ata_qc_complete(struct ata_queued_cmd *qc)
5240 struct ata_port *ap = qc->ap;
5242 /* XXX: New EH and old EH use different mechanisms to
5243 * synchronize EH with regular execution path.
5245 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5246 * Normal execution path is responsible for not accessing a
5247 * failed qc. libata core enforces the rule by returning NULL
5248 * from ata_qc_from_tag() for failed qcs.
5250 * Old EH depends on ata_qc_complete() nullifying completion
5251 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5252 * not synchronize with interrupt handler. Only PIO task is
5255 if (ap->ops->error_handler) {
5256 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5258 if (unlikely(qc->err_mask))
5259 qc->flags |= ATA_QCFLAG_FAILED;
5261 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5262 if (!ata_tag_internal(qc->tag)) {
5263 /* always fill result TF for failed qc */
5265 ata_qc_schedule_eh(qc);
5270 /* read result TF if requested */
5271 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5274 __ata_qc_complete(qc);
5276 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5279 /* read result TF if failed or requested */
5280 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5283 __ata_qc_complete(qc);
5288 * ata_qc_complete_multiple - Complete multiple qcs successfully
5289 * @ap: port in question
5290 * @qc_active: new qc_active mask
5291 * @finish_qc: LLDD callback invoked before completing a qc
5293 * Complete in-flight commands. This functions is meant to be
5294 * called from low-level driver's interrupt routine to complete
5295 * requests normally. ap->qc_active and @qc_active is compared
5296 * and commands are completed accordingly.
5299 * spin_lock_irqsave(host lock)
5302 * Number of completed commands on success, -errno otherwise.
5304 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5305 void (*finish_qc)(struct ata_queued_cmd *))
5311 done_mask = ap->qc_active ^ qc_active;
5313 if (unlikely(done_mask & qc_active)) {
5314 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5315 "(%08x->%08x)\n", ap->qc_active, qc_active);
5319 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5320 struct ata_queued_cmd *qc;
5322 if (!(done_mask & (1 << i)))
5325 if ((qc = ata_qc_from_tag(ap, i))) {
5328 ata_qc_complete(qc);
5336 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5338 struct ata_port *ap = qc->ap;
5340 switch (qc->tf.protocol) {
5343 case ATA_PROT_ATAPI_DMA:
5346 case ATA_PROT_ATAPI:
5348 if (ap->flags & ATA_FLAG_PIO_DMA)
5361 * ata_qc_issue - issue taskfile to device
5362 * @qc: command to issue to device
5364 * Prepare an ATA command to submission to device.
5365 * This includes mapping the data into a DMA-able
5366 * area, filling in the S/G table, and finally
5367 * writing the taskfile to hardware, starting the command.
5370 * spin_lock_irqsave(host lock)
5372 void ata_qc_issue(struct ata_queued_cmd *qc)
5374 struct ata_port *ap = qc->ap;
5376 /* Make sure only one non-NCQ command is outstanding. The
5377 * check is skipped for old EH because it reuses active qc to
5378 * request ATAPI sense.
5380 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5382 if (qc->tf.protocol == ATA_PROT_NCQ) {
5383 WARN_ON(ap->sactive & (1 << qc->tag));
5384 ap->sactive |= 1 << qc->tag;
5386 WARN_ON(ap->sactive);
5387 ap->active_tag = qc->tag;
5390 qc->flags |= ATA_QCFLAG_ACTIVE;
5391 ap->qc_active |= 1 << qc->tag;
5393 if (ata_should_dma_map(qc)) {
5394 if (qc->flags & ATA_QCFLAG_SG) {
5395 if (ata_sg_setup(qc))
5397 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5398 if (ata_sg_setup_one(qc))
5402 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5405 ap->ops->qc_prep(qc);
5407 qc->err_mask |= ap->ops->qc_issue(qc);
5408 if (unlikely(qc->err_mask))
5413 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5414 qc->err_mask |= AC_ERR_SYSTEM;
5416 ata_qc_complete(qc);
5420 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5421 * @qc: command to issue to device
5423 * Using various libata functions and hooks, this function
5424 * starts an ATA command. ATA commands are grouped into
5425 * classes called "protocols", and issuing each type of protocol
5426 * is slightly different.
5428 * May be used as the qc_issue() entry in ata_port_operations.
5431 * spin_lock_irqsave(host lock)
5434 * Zero on success, AC_ERR_* mask on failure
5437 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5439 struct ata_port *ap = qc->ap;
5441 /* Use polling pio if the LLD doesn't handle
5442 * interrupt driven pio and atapi CDB interrupt.
5444 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5445 switch (qc->tf.protocol) {
5447 case ATA_PROT_NODATA:
5448 case ATA_PROT_ATAPI:
5449 case ATA_PROT_ATAPI_NODATA:
5450 qc->tf.flags |= ATA_TFLAG_POLLING;
5452 case ATA_PROT_ATAPI_DMA:
5453 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5454 /* see ata_dma_blacklisted() */
5462 /* select the device */
5463 ata_dev_select(ap, qc->dev->devno, 1, 0);
5465 /* start the command */
5466 switch (qc->tf.protocol) {
5467 case ATA_PROT_NODATA:
5468 if (qc->tf.flags & ATA_TFLAG_POLLING)
5469 ata_qc_set_polling(qc);
5471 ata_tf_to_host(ap, &qc->tf);
5472 ap->hsm_task_state = HSM_ST_LAST;
5474 if (qc->tf.flags & ATA_TFLAG_POLLING)
5475 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5480 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5482 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5483 ap->ops->bmdma_setup(qc); /* set up bmdma */
5484 ap->ops->bmdma_start(qc); /* initiate bmdma */
5485 ap->hsm_task_state = HSM_ST_LAST;
5489 if (qc->tf.flags & ATA_TFLAG_POLLING)
5490 ata_qc_set_polling(qc);
5492 ata_tf_to_host(ap, &qc->tf);
5494 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5495 /* PIO data out protocol */
5496 ap->hsm_task_state = HSM_ST_FIRST;
5497 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5499 /* always send first data block using
5500 * the ata_pio_task() codepath.
5503 /* PIO data in protocol */
5504 ap->hsm_task_state = HSM_ST;
5506 if (qc->tf.flags & ATA_TFLAG_POLLING)
5507 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5509 /* if polling, ata_pio_task() handles the rest.
5510 * otherwise, interrupt handler takes over from here.
5516 case ATA_PROT_ATAPI:
5517 case ATA_PROT_ATAPI_NODATA:
5518 if (qc->tf.flags & ATA_TFLAG_POLLING)
5519 ata_qc_set_polling(qc);
5521 ata_tf_to_host(ap, &qc->tf);
5523 ap->hsm_task_state = HSM_ST_FIRST;
5525 /* send cdb by polling if no cdb interrupt */
5526 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5527 (qc->tf.flags & ATA_TFLAG_POLLING))
5528 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5531 case ATA_PROT_ATAPI_DMA:
5532 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5534 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5535 ap->ops->bmdma_setup(qc); /* set up bmdma */
5536 ap->hsm_task_state = HSM_ST_FIRST;
5538 /* send cdb by polling if no cdb interrupt */
5539 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5540 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5545 return AC_ERR_SYSTEM;
5552 * ata_host_intr - Handle host interrupt for given (port, task)
5553 * @ap: Port on which interrupt arrived (possibly...)
5554 * @qc: Taskfile currently active in engine
5556 * Handle host interrupt for given queued command. Currently,
5557 * only DMA interrupts are handled. All other commands are
5558 * handled via polling with interrupts disabled (nIEN bit).
5561 * spin_lock_irqsave(host lock)
5564 * One if interrupt was handled, zero if not (shared irq).
5567 inline unsigned int ata_host_intr (struct ata_port *ap,
5568 struct ata_queued_cmd *qc)
5570 struct ata_eh_info *ehi = &ap->eh_info;
5571 u8 status, host_stat = 0;
5573 VPRINTK("ata%u: protocol %d task_state %d\n",
5574 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5576 /* Check whether we are expecting interrupt in this state */
5577 switch (ap->hsm_task_state) {
5579 /* Some pre-ATAPI-4 devices assert INTRQ
5580 * at this state when ready to receive CDB.
5583 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5584 * The flag was turned on only for atapi devices.
5585 * No need to check is_atapi_taskfile(&qc->tf) again.
5587 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5591 if (qc->tf.protocol == ATA_PROT_DMA ||
5592 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5593 /* check status of DMA engine */
5594 host_stat = ap->ops->bmdma_status(ap);
5595 VPRINTK("ata%u: host_stat 0x%X\n",
5596 ap->print_id, host_stat);
5598 /* if it's not our irq... */
5599 if (!(host_stat & ATA_DMA_INTR))
5602 /* before we do anything else, clear DMA-Start bit */
5603 ap->ops->bmdma_stop(qc);
5605 if (unlikely(host_stat & ATA_DMA_ERR)) {
5606 /* error when transfering data to/from memory */
5607 qc->err_mask |= AC_ERR_HOST_BUS;
5608 ap->hsm_task_state = HSM_ST_ERR;
5618 /* check altstatus */
5619 status = ata_altstatus(ap);
5620 if (status & ATA_BUSY)
5623 /* check main status, clearing INTRQ */
5624 status = ata_chk_status(ap);
5625 if (unlikely(status & ATA_BUSY))
5628 /* ack bmdma irq events */
5629 ap->ops->irq_clear(ap);
5631 ata_hsm_move(ap, qc, status, 0);
5633 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5634 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5635 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5637 return 1; /* irq handled */
5640 ap->stats.idle_irq++;
5643 if ((ap->stats.idle_irq % 1000) == 0) {
5644 ap->ops->irq_ack(ap, 0); /* debug trap */
5645 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5649 return 0; /* irq not handled */
5653 * ata_interrupt - Default ATA host interrupt handler
5654 * @irq: irq line (unused)
5655 * @dev_instance: pointer to our ata_host information structure
5657 * Default interrupt handler for PCI IDE devices. Calls
5658 * ata_host_intr() for each port that is not disabled.
5661 * Obtains host lock during operation.
5664 * IRQ_NONE or IRQ_HANDLED.
5667 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5669 struct ata_host *host = dev_instance;
5671 unsigned int handled = 0;
5672 unsigned long flags;
5674 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5675 spin_lock_irqsave(&host->lock, flags);
5677 for (i = 0; i < host->n_ports; i++) {
5678 struct ata_port *ap;
5680 ap = host->ports[i];
5682 !(ap->flags & ATA_FLAG_DISABLED)) {
5683 struct ata_queued_cmd *qc;
5685 qc = ata_qc_from_tag(ap, ap->active_tag);
5686 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5687 (qc->flags & ATA_QCFLAG_ACTIVE))
5688 handled |= ata_host_intr(ap, qc);
5692 spin_unlock_irqrestore(&host->lock, flags);
5694 return IRQ_RETVAL(handled);
5698 * sata_scr_valid - test whether SCRs are accessible
5699 * @ap: ATA port to test SCR accessibility for
5701 * Test whether SCRs are accessible for @ap.
5707 * 1 if SCRs are accessible, 0 otherwise.
5709 int sata_scr_valid(struct ata_port *ap)
5711 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5715 * sata_scr_read - read SCR register of the specified port
5716 * @ap: ATA port to read SCR for
5718 * @val: Place to store read value
5720 * Read SCR register @reg of @ap into *@val. This function is
5721 * guaranteed to succeed if the cable type of the port is SATA
5722 * and the port implements ->scr_read.
5728 * 0 on success, negative errno on failure.
5730 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5732 if (sata_scr_valid(ap)) {
5733 *val = ap->ops->scr_read(ap, reg);
5740 * sata_scr_write - write SCR register of the specified port
5741 * @ap: ATA port to write SCR for
5742 * @reg: SCR to write
5743 * @val: value to write
5745 * Write @val to SCR register @reg of @ap. This function is
5746 * guaranteed to succeed if the cable type of the port is SATA
5747 * and the port implements ->scr_read.
5753 * 0 on success, negative errno on failure.
5755 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5757 if (sata_scr_valid(ap)) {
5758 ap->ops->scr_write(ap, reg, val);
5765 * sata_scr_write_flush - write SCR register of the specified port and flush
5766 * @ap: ATA port to write SCR for
5767 * @reg: SCR to write
5768 * @val: value to write
5770 * This function is identical to sata_scr_write() except that this
5771 * function performs flush after writing to the register.
5777 * 0 on success, negative errno on failure.
5779 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5781 if (sata_scr_valid(ap)) {
5782 ap->ops->scr_write(ap, reg, val);
5783 ap->ops->scr_read(ap, reg);
5790 * ata_port_online - test whether the given port is online
5791 * @ap: ATA port to test
5793 * Test whether @ap is online. Note that this function returns 0
5794 * if online status of @ap cannot be obtained, so
5795 * ata_port_online(ap) != !ata_port_offline(ap).
5801 * 1 if the port online status is available and online.
5803 int ata_port_online(struct ata_port *ap)
5807 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5813 * ata_port_offline - test whether the given port is offline
5814 * @ap: ATA port to test
5816 * Test whether @ap is offline. Note that this function returns
5817 * 0 if offline status of @ap cannot be obtained, so
5818 * ata_port_online(ap) != !ata_port_offline(ap).
5824 * 1 if the port offline status is available and offline.
5826 int ata_port_offline(struct ata_port *ap)
5830 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5835 int ata_flush_cache(struct ata_device *dev)
5837 unsigned int err_mask;
5840 if (!ata_try_flush_cache(dev))
5843 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5844 cmd = ATA_CMD_FLUSH_EXT;
5846 cmd = ATA_CMD_FLUSH;
5848 err_mask = ata_do_simple_cmd(dev, cmd);
5850 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5858 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5859 unsigned int action, unsigned int ehi_flags,
5862 unsigned long flags;
5865 for (i = 0; i < host->n_ports; i++) {
5866 struct ata_port *ap = host->ports[i];
5868 /* Previous resume operation might still be in
5869 * progress. Wait for PM_PENDING to clear.
5871 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5872 ata_port_wait_eh(ap);
5873 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5876 /* request PM ops to EH */
5877 spin_lock_irqsave(ap->lock, flags);
5882 ap->pm_result = &rc;
5885 ap->pflags |= ATA_PFLAG_PM_PENDING;
5886 ap->eh_info.action |= action;
5887 ap->eh_info.flags |= ehi_flags;
5889 ata_port_schedule_eh(ap);
5891 spin_unlock_irqrestore(ap->lock, flags);
5893 /* wait and check result */
5895 ata_port_wait_eh(ap);
5896 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5906 * ata_host_suspend - suspend host
5907 * @host: host to suspend
5910 * Suspend @host. Actual operation is performed by EH. This
5911 * function requests EH to perform PM operations and waits for EH
5915 * Kernel thread context (may sleep).
5918 * 0 on success, -errno on failure.
5920 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5924 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5926 host->dev->power.power_state = mesg;
5931 * ata_host_resume - resume host
5932 * @host: host to resume
5934 * Resume @host. Actual operation is performed by EH. This
5935 * function requests EH to perform PM operations and returns.
5936 * Note that all resume operations are performed parallely.
5939 * Kernel thread context (may sleep).
5941 void ata_host_resume(struct ata_host *host)
5943 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5944 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5945 host->dev->power.power_state = PMSG_ON;
5950 * ata_port_start - Set port up for dma.
5951 * @ap: Port to initialize
5953 * Called just after data structures for each port are
5954 * initialized. Allocates space for PRD table.
5956 * May be used as the port_start() entry in ata_port_operations.
5959 * Inherited from caller.
5961 int ata_port_start(struct ata_port *ap)
5963 struct device *dev = ap->dev;
5966 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5971 rc = ata_pad_alloc(ap, dev);
5975 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5976 (unsigned long long)ap->prd_dma);
5981 * ata_dev_init - Initialize an ata_device structure
5982 * @dev: Device structure to initialize
5984 * Initialize @dev in preparation for probing.
5987 * Inherited from caller.
5989 void ata_dev_init(struct ata_device *dev)
5991 struct ata_port *ap = dev->ap;
5992 unsigned long flags;
5994 /* SATA spd limit is bound to the first device */
5995 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5997 /* High bits of dev->flags are used to record warm plug
5998 * requests which occur asynchronously. Synchronize using
6001 spin_lock_irqsave(ap->lock, flags);
6002 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6003 spin_unlock_irqrestore(ap->lock, flags);
6005 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6006 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6007 dev->pio_mask = UINT_MAX;
6008 dev->mwdma_mask = UINT_MAX;
6009 dev->udma_mask = UINT_MAX;
6013 * ata_port_alloc - allocate and initialize basic ATA port resources
6014 * @host: ATA host this allocated port belongs to
6016 * Allocate and initialize basic ATA port resources.
6019 * Allocate ATA port on success, NULL on failure.
6022 * Inherited from calling layer (may sleep).
6024 struct ata_port *ata_port_alloc(struct ata_host *host)
6026 struct ata_port *ap;
6031 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6035 ap->pflags |= ATA_PFLAG_INITIALIZING;
6036 ap->lock = &host->lock;
6037 ap->flags = ATA_FLAG_DISABLED;
6039 ap->ctl = ATA_DEVCTL_OBS;
6041 ap->dev = host->dev;
6043 ap->hw_sata_spd_limit = UINT_MAX;
6044 ap->active_tag = ATA_TAG_POISON;
6045 ap->last_ctl = 0xFF;
6047 #if defined(ATA_VERBOSE_DEBUG)
6048 /* turn on all debugging levels */
6049 ap->msg_enable = 0x00FF;
6050 #elif defined(ATA_DEBUG)
6051 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6053 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6056 INIT_DELAYED_WORK(&ap->port_task, NULL);
6057 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6058 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6059 INIT_LIST_HEAD(&ap->eh_done_q);
6060 init_waitqueue_head(&ap->eh_wait_q);
6062 ap->cbl = ATA_CBL_NONE;
6064 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6065 struct ata_device *dev = &ap->device[i];
6072 ap->stats.unhandled_irq = 1;
6073 ap->stats.idle_irq = 1;
6078 static void ata_host_release(struct device *gendev, void *res)
6080 struct ata_host *host = dev_get_drvdata(gendev);
6083 for (i = 0; i < host->n_ports; i++) {
6084 struct ata_port *ap = host->ports[i];
6089 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6090 ap->ops->port_stop(ap);
6093 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6094 host->ops->host_stop(host);
6096 for (i = 0; i < host->n_ports; i++) {
6097 struct ata_port *ap = host->ports[i];
6103 scsi_host_put(ap->scsi_host);
6106 host->ports[i] = NULL;
6109 dev_set_drvdata(gendev, NULL);
6113 * ata_host_alloc - allocate and init basic ATA host resources
6114 * @dev: generic device this host is associated with
6115 * @max_ports: maximum number of ATA ports associated with this host
6117 * Allocate and initialize basic ATA host resources. LLD calls
6118 * this function to allocate a host, initializes it fully and
6119 * attaches it using ata_host_register().
6121 * @max_ports ports are allocated and host->n_ports is
6122 * initialized to @max_ports. The caller is allowed to decrease
6123 * host->n_ports before calling ata_host_register(). The unused
6124 * ports will be automatically freed on registration.
6127 * Allocate ATA host on success, NULL on failure.
6130 * Inherited from calling layer (may sleep).
6132 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6134 struct ata_host *host;
6140 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6143 /* alloc a container for our list of ATA ports (buses) */
6144 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6145 /* alloc a container for our list of ATA ports (buses) */
6146 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6150 devres_add(dev, host);
6151 dev_set_drvdata(dev, host);
6153 spin_lock_init(&host->lock);
6155 host->n_ports = max_ports;
6157 /* allocate ports bound to this host */
6158 for (i = 0; i < max_ports; i++) {
6159 struct ata_port *ap;
6161 ap = ata_port_alloc(host);
6166 host->ports[i] = ap;
6169 devres_remove_group(dev, NULL);
6173 devres_release_group(dev, NULL);
6178 * ata_host_alloc_pinfo - alloc host and init with port_info array
6179 * @dev: generic device this host is associated with
6180 * @ppi: array of ATA port_info to initialize host with
6181 * @n_ports: number of ATA ports attached to this host
6183 * Allocate ATA host and initialize with info from @ppi. If NULL
6184 * terminated, @ppi may contain fewer entries than @n_ports. The
6185 * last entry will be used for the remaining ports.
6188 * Allocate ATA host on success, NULL on failure.
6191 * Inherited from calling layer (may sleep).
6193 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6194 const struct ata_port_info * const * ppi,
6197 const struct ata_port_info *pi;
6198 struct ata_host *host;
6201 host = ata_host_alloc(dev, n_ports);
6205 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6206 struct ata_port *ap = host->ports[i];
6211 ap->pio_mask = pi->pio_mask;
6212 ap->mwdma_mask = pi->mwdma_mask;
6213 ap->udma_mask = pi->udma_mask;
6214 ap->flags |= pi->flags;
6215 ap->ops = pi->port_ops;
6217 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6218 host->ops = pi->port_ops;
6219 if (!host->private_data && pi->private_data)
6220 host->private_data = pi->private_data;
6227 * ata_host_start - start and freeze ports of an ATA host
6228 * @host: ATA host to start ports for
6230 * Start and then freeze ports of @host. Started status is
6231 * recorded in host->flags, so this function can be called
6232 * multiple times. Ports are guaranteed to get started only
6233 * once. If host->ops isn't initialized yet, its set to the
6234 * first non-dummy port ops.
6237 * Inherited from calling layer (may sleep).
6240 * 0 if all ports are started successfully, -errno otherwise.
6242 int ata_host_start(struct ata_host *host)
6246 if (host->flags & ATA_HOST_STARTED)
6249 for (i = 0; i < host->n_ports; i++) {
6250 struct ata_port *ap = host->ports[i];
6252 if (!host->ops && !ata_port_is_dummy(ap))
6253 host->ops = ap->ops;
6255 if (ap->ops->port_start) {
6256 rc = ap->ops->port_start(ap);
6258 ata_port_printk(ap, KERN_ERR, "failed to "
6259 "start port (errno=%d)\n", rc);
6264 ata_eh_freeze_port(ap);
6267 host->flags |= ATA_HOST_STARTED;
6272 struct ata_port *ap = host->ports[i];
6274 if (ap->ops->port_stop)
6275 ap->ops->port_stop(ap);
6281 * ata_sas_host_init - Initialize a host struct
6282 * @host: host to initialize
6283 * @dev: device host is attached to
6284 * @flags: host flags
6288 * PCI/etc. bus probe sem.
6291 /* KILLME - the only user left is ipr */
6292 void ata_host_init(struct ata_host *host, struct device *dev,
6293 unsigned long flags, const struct ata_port_operations *ops)
6295 spin_lock_init(&host->lock);
6297 host->flags = flags;
6302 * ata_host_register - register initialized ATA host
6303 * @host: ATA host to register
6304 * @sht: template for SCSI host
6306 * Register initialized ATA host. @host is allocated using
6307 * ata_host_alloc() and fully initialized by LLD. This function
6308 * starts ports, registers @host with ATA and SCSI layers and
6309 * probe registered devices.
6312 * Inherited from calling layer (may sleep).
6315 * 0 on success, -errno otherwise.
6317 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6321 /* host must have been started */
6322 if (!(host->flags & ATA_HOST_STARTED)) {
6323 dev_printk(KERN_ERR, host->dev,
6324 "BUG: trying to register unstarted host\n");
6329 /* Blow away unused ports. This happens when LLD can't
6330 * determine the exact number of ports to allocate at
6333 for (i = host->n_ports; host->ports[i]; i++)
6334 kfree(host->ports[i]);
6336 /* give ports names and add SCSI hosts */
6337 for (i = 0; i < host->n_ports; i++)
6338 host->ports[i]->print_id = ata_print_id++;
6340 rc = ata_scsi_add_hosts(host, sht);
6344 /* associate with ACPI nodes */
6345 ata_acpi_associate(host);
6347 /* set cable, sata_spd_limit and report */
6348 for (i = 0; i < host->n_ports; i++) {
6349 struct ata_port *ap = host->ports[i];
6352 unsigned long xfer_mask;
6354 /* set SATA cable type if still unset */
6355 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6356 ap->cbl = ATA_CBL_SATA;
6358 /* init sata_spd_limit to the current value */
6359 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6360 int spd = (scontrol >> 4) & 0xf;
6362 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6364 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6366 /* report the secondary IRQ for second channel legacy */
6367 irq_line = host->irq;
6368 if (i == 1 && host->irq2)
6369 irq_line = host->irq2;
6371 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6374 /* print per-port info to dmesg */
6375 if (!ata_port_is_dummy(ap))
6376 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6377 "ctl 0x%p bmdma 0x%p irq %d\n",
6378 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6379 ata_mode_string(xfer_mask),
6380 ap->ioaddr.cmd_addr,
6381 ap->ioaddr.ctl_addr,
6382 ap->ioaddr.bmdma_addr,
6385 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6388 /* perform each probe synchronously */
6389 DPRINTK("probe begin\n");
6390 for (i = 0; i < host->n_ports; i++) {
6391 struct ata_port *ap = host->ports[i];
6395 if (ap->ops->error_handler) {
6396 struct ata_eh_info *ehi = &ap->eh_info;
6397 unsigned long flags;
6401 /* kick EH for boot probing */
6402 spin_lock_irqsave(ap->lock, flags);
6404 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6405 ehi->action |= ATA_EH_SOFTRESET;
6406 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6408 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6409 ap->pflags |= ATA_PFLAG_LOADING;
6410 ata_port_schedule_eh(ap);
6412 spin_unlock_irqrestore(ap->lock, flags);
6414 /* wait for EH to finish */
6415 ata_port_wait_eh(ap);
6417 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6418 rc = ata_bus_probe(ap);
6419 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6422 /* FIXME: do something useful here?
6423 * Current libata behavior will
6424 * tear down everything when
6425 * the module is removed
6426 * or the h/w is unplugged.
6432 /* probes are done, now scan each port's disk(s) */
6433 DPRINTK("host probe begin\n");
6434 for (i = 0; i < host->n_ports; i++) {
6435 struct ata_port *ap = host->ports[i];
6437 ata_scsi_scan_host(ap);
6444 * ata_host_activate - start host, request IRQ and register it
6445 * @host: target ATA host
6446 * @irq: IRQ to request
6447 * @irq_handler: irq_handler used when requesting IRQ
6448 * @irq_flags: irq_flags used when requesting IRQ
6449 * @sht: scsi_host_template to use when registering the host
6451 * After allocating an ATA host and initializing it, most libata
6452 * LLDs perform three steps to activate the host - start host,
6453 * request IRQ and register it. This helper takes necessasry
6454 * arguments and performs the three steps in one go.
6457 * Inherited from calling layer (may sleep).
6460 * 0 on success, -errno otherwise.
6462 int ata_host_activate(struct ata_host *host, int irq,
6463 irq_handler_t irq_handler, unsigned long irq_flags,
6464 struct scsi_host_template *sht)
6468 rc = ata_host_start(host);
6472 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6473 dev_driver_string(host->dev), host);
6477 /* Used to print device info at probe */
6480 rc = ata_host_register(host, sht);
6481 /* if failed, just free the IRQ and leave ports alone */
6483 devm_free_irq(host->dev, irq, host);
6489 * ata_port_detach - Detach ATA port in prepration of device removal
6490 * @ap: ATA port to be detached
6492 * Detach all ATA devices and the associated SCSI devices of @ap;
6493 * then, remove the associated SCSI host. @ap is guaranteed to
6494 * be quiescent on return from this function.
6497 * Kernel thread context (may sleep).
6499 void ata_port_detach(struct ata_port *ap)
6501 unsigned long flags;
6504 if (!ap->ops->error_handler)
6507 /* tell EH we're leaving & flush EH */
6508 spin_lock_irqsave(ap->lock, flags);
6509 ap->pflags |= ATA_PFLAG_UNLOADING;
6510 spin_unlock_irqrestore(ap->lock, flags);
6512 ata_port_wait_eh(ap);
6514 /* EH is now guaranteed to see UNLOADING, so no new device
6515 * will be attached. Disable all existing devices.
6517 spin_lock_irqsave(ap->lock, flags);
6519 for (i = 0; i < ATA_MAX_DEVICES; i++)
6520 ata_dev_disable(&ap->device[i]);
6522 spin_unlock_irqrestore(ap->lock, flags);
6524 /* Final freeze & EH. All in-flight commands are aborted. EH
6525 * will be skipped and retrials will be terminated with bad
6528 spin_lock_irqsave(ap->lock, flags);
6529 ata_port_freeze(ap); /* won't be thawed */
6530 spin_unlock_irqrestore(ap->lock, flags);
6532 ata_port_wait_eh(ap);
6533 cancel_rearming_delayed_work(&ap->hotplug_task);
6536 /* remove the associated SCSI host */
6537 scsi_remove_host(ap->scsi_host);
6541 * ata_host_detach - Detach all ports of an ATA host
6542 * @host: Host to detach
6544 * Detach all ports of @host.
6547 * Kernel thread context (may sleep).
6549 void ata_host_detach(struct ata_host *host)
6553 for (i = 0; i < host->n_ports; i++)
6554 ata_port_detach(host->ports[i]);
6558 * ata_std_ports - initialize ioaddr with standard port offsets.
6559 * @ioaddr: IO address structure to be initialized
6561 * Utility function which initializes data_addr, error_addr,
6562 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6563 * device_addr, status_addr, and command_addr to standard offsets
6564 * relative to cmd_addr.
6566 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6569 void ata_std_ports(struct ata_ioports *ioaddr)
6571 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6572 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6573 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6574 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6575 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6576 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6577 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6578 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6579 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6580 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6587 * ata_pci_remove_one - PCI layer callback for device removal
6588 * @pdev: PCI device that was removed
6590 * PCI layer indicates to libata via this hook that hot-unplug or
6591 * module unload event has occurred. Detach all ports. Resource
6592 * release is handled via devres.
6595 * Inherited from PCI layer (may sleep).
6597 void ata_pci_remove_one(struct pci_dev *pdev)
6599 struct device *dev = pci_dev_to_dev(pdev);
6600 struct ata_host *host = dev_get_drvdata(dev);
6602 ata_host_detach(host);
6605 /* move to PCI subsystem */
6606 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6608 unsigned long tmp = 0;
6610 switch (bits->width) {
6613 pci_read_config_byte(pdev, bits->reg, &tmp8);
6619 pci_read_config_word(pdev, bits->reg, &tmp16);
6625 pci_read_config_dword(pdev, bits->reg, &tmp32);
6636 return (tmp == bits->val) ? 1 : 0;
6640 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6642 pci_save_state(pdev);
6643 pci_disable_device(pdev);
6645 if (mesg.event == PM_EVENT_SUSPEND)
6646 pci_set_power_state(pdev, PCI_D3hot);
6649 int ata_pci_device_do_resume(struct pci_dev *pdev)
6653 pci_set_power_state(pdev, PCI_D0);
6654 pci_restore_state(pdev);
6656 rc = pcim_enable_device(pdev);
6658 dev_printk(KERN_ERR, &pdev->dev,
6659 "failed to enable device after resume (%d)\n", rc);
6663 pci_set_master(pdev);
6667 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6669 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6672 rc = ata_host_suspend(host, mesg);
6676 ata_pci_device_do_suspend(pdev, mesg);
6681 int ata_pci_device_resume(struct pci_dev *pdev)
6683 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6686 rc = ata_pci_device_do_resume(pdev);
6688 ata_host_resume(host);
6691 #endif /* CONFIG_PM */
6693 #endif /* CONFIG_PCI */
6696 static int __init ata_init(void)
6698 ata_probe_timeout *= HZ;
6699 ata_wq = create_workqueue("ata");
6703 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6705 destroy_workqueue(ata_wq);
6709 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6713 static void __exit ata_exit(void)
6715 destroy_workqueue(ata_wq);
6716 destroy_workqueue(ata_aux_wq);
6719 subsys_initcall(ata_init);
6720 module_exit(ata_exit);
6722 static unsigned long ratelimit_time;
6723 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6725 int ata_ratelimit(void)
6728 unsigned long flags;
6730 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6732 if (time_after(jiffies, ratelimit_time)) {
6734 ratelimit_time = jiffies + (HZ/5);
6738 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6744 * ata_wait_register - wait until register value changes
6745 * @reg: IO-mapped register
6746 * @mask: Mask to apply to read register value
6747 * @val: Wait condition
6748 * @interval_msec: polling interval in milliseconds
6749 * @timeout_msec: timeout in milliseconds
6751 * Waiting for some bits of register to change is a common
6752 * operation for ATA controllers. This function reads 32bit LE
6753 * IO-mapped register @reg and tests for the following condition.
6755 * (*@reg & mask) != val
6757 * If the condition is met, it returns; otherwise, the process is
6758 * repeated after @interval_msec until timeout.
6761 * Kernel thread context (may sleep)
6764 * The final register value.
6766 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6767 unsigned long interval_msec,
6768 unsigned long timeout_msec)
6770 unsigned long timeout;
6773 tmp = ioread32(reg);
6775 /* Calculate timeout _after_ the first read to make sure
6776 * preceding writes reach the controller before starting to
6777 * eat away the timeout.
6779 timeout = jiffies + (timeout_msec * HZ) / 1000;
6781 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6782 msleep(interval_msec);
6783 tmp = ioread32(reg);
6792 static void ata_dummy_noret(struct ata_port *ap) { }
6793 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6794 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6796 static u8 ata_dummy_check_status(struct ata_port *ap)
6801 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6803 return AC_ERR_SYSTEM;
6806 const struct ata_port_operations ata_dummy_port_ops = {
6807 .port_disable = ata_port_disable,
6808 .check_status = ata_dummy_check_status,
6809 .check_altstatus = ata_dummy_check_status,
6810 .dev_select = ata_noop_dev_select,
6811 .qc_prep = ata_noop_qc_prep,
6812 .qc_issue = ata_dummy_qc_issue,
6813 .freeze = ata_dummy_noret,
6814 .thaw = ata_dummy_noret,
6815 .error_handler = ata_dummy_noret,
6816 .post_internal_cmd = ata_dummy_qc_noret,
6817 .irq_clear = ata_dummy_noret,
6818 .port_start = ata_dummy_ret0,
6819 .port_stop = ata_dummy_noret,
6822 const struct ata_port_info ata_dummy_port_info = {
6823 .port_ops = &ata_dummy_port_ops,
6827 * libata is essentially a library of internal helper functions for
6828 * low-level ATA host controller drivers. As such, the API/ABI is
6829 * likely to change as new drivers are added and updated.
6830 * Do not depend on ABI/API stability.
6833 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6834 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6835 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6836 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6837 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6838 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6839 EXPORT_SYMBOL_GPL(ata_std_ports);
6840 EXPORT_SYMBOL_GPL(ata_host_init);
6841 EXPORT_SYMBOL_GPL(ata_host_alloc);
6842 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6843 EXPORT_SYMBOL_GPL(ata_host_start);
6844 EXPORT_SYMBOL_GPL(ata_host_register);
6845 EXPORT_SYMBOL_GPL(ata_host_activate);
6846 EXPORT_SYMBOL_GPL(ata_host_detach);
6847 EXPORT_SYMBOL_GPL(ata_sg_init);
6848 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6849 EXPORT_SYMBOL_GPL(ata_hsm_move);
6850 EXPORT_SYMBOL_GPL(ata_qc_complete);
6851 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6852 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6853 EXPORT_SYMBOL_GPL(ata_tf_load);
6854 EXPORT_SYMBOL_GPL(ata_tf_read);
6855 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6856 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6857 EXPORT_SYMBOL_GPL(sata_print_link_status);
6858 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6859 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6860 EXPORT_SYMBOL_GPL(ata_check_status);
6861 EXPORT_SYMBOL_GPL(ata_altstatus);
6862 EXPORT_SYMBOL_GPL(ata_exec_command);
6863 EXPORT_SYMBOL_GPL(ata_port_start);
6864 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6865 EXPORT_SYMBOL_GPL(ata_interrupt);
6866 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6867 EXPORT_SYMBOL_GPL(ata_data_xfer);
6868 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6869 EXPORT_SYMBOL_GPL(ata_qc_prep);
6870 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6871 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6872 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6873 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6874 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6875 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6876 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6877 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6878 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6879 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6880 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6881 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6882 EXPORT_SYMBOL_GPL(ata_port_probe);
6883 EXPORT_SYMBOL_GPL(ata_dev_disable);
6884 EXPORT_SYMBOL_GPL(sata_set_spd);
6885 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6886 EXPORT_SYMBOL_GPL(sata_phy_resume);
6887 EXPORT_SYMBOL_GPL(sata_phy_reset);
6888 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6889 EXPORT_SYMBOL_GPL(ata_bus_reset);
6890 EXPORT_SYMBOL_GPL(ata_std_prereset);
6891 EXPORT_SYMBOL_GPL(ata_std_softreset);
6892 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6893 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6894 EXPORT_SYMBOL_GPL(ata_std_postreset);
6895 EXPORT_SYMBOL_GPL(ata_dev_classify);
6896 EXPORT_SYMBOL_GPL(ata_dev_pair);
6897 EXPORT_SYMBOL_GPL(ata_port_disable);
6898 EXPORT_SYMBOL_GPL(ata_ratelimit);
6899 EXPORT_SYMBOL_GPL(ata_wait_register);
6900 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6901 EXPORT_SYMBOL_GPL(ata_wait_ready);
6902 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6903 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6904 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6905 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6906 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6907 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6908 EXPORT_SYMBOL_GPL(ata_host_intr);
6909 EXPORT_SYMBOL_GPL(sata_scr_valid);
6910 EXPORT_SYMBOL_GPL(sata_scr_read);
6911 EXPORT_SYMBOL_GPL(sata_scr_write);
6912 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6913 EXPORT_SYMBOL_GPL(ata_port_online);
6914 EXPORT_SYMBOL_GPL(ata_port_offline);
6916 EXPORT_SYMBOL_GPL(ata_host_suspend);
6917 EXPORT_SYMBOL_GPL(ata_host_resume);
6918 #endif /* CONFIG_PM */
6919 EXPORT_SYMBOL_GPL(ata_id_string);
6920 EXPORT_SYMBOL_GPL(ata_id_c_string);
6921 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6922 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6924 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6925 EXPORT_SYMBOL_GPL(ata_timing_compute);
6926 EXPORT_SYMBOL_GPL(ata_timing_merge);
6929 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6930 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6931 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6932 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6933 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6934 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6936 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6937 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6938 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6939 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6940 #endif /* CONFIG_PM */
6941 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6942 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6943 #endif /* CONFIG_PCI */
6945 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6946 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6947 EXPORT_SYMBOL_GPL(ata_port_abort);
6948 EXPORT_SYMBOL_GPL(ata_port_freeze);
6949 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6950 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6951 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6952 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6953 EXPORT_SYMBOL_GPL(ata_do_eh);
6954 EXPORT_SYMBOL_GPL(ata_irq_on);
6955 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6956 EXPORT_SYMBOL_GPL(ata_irq_ack);
6957 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6958 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6960 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6961 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6962 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6963 EXPORT_SYMBOL_GPL(ata_cable_sata);