Merge commit 'origin/master' into next
[linux-2.6] / arch / powerpc / oprofile / op_model_cell.c
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *         Carl Love <carll@us.ibm.com>
9  *         Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/jiffies.h>
21 #include <linux/kthread.h>
22 #include <linux/oprofile.h>
23 #include <linux/percpu.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/timer.h>
27 #include <asm/cell-pmu.h>
28 #include <asm/cputable.h>
29 #include <asm/firmware.h>
30 #include <asm/io.h>
31 #include <asm/oprofile_impl.h>
32 #include <asm/processor.h>
33 #include <asm/prom.h>
34 #include <asm/ptrace.h>
35 #include <asm/reg.h>
36 #include <asm/rtas.h>
37 #include <asm/system.h>
38 #include <asm/cell-regs.h>
39
40 #include "../platforms/cell/interrupt.h"
41 #include "cell/pr_util.h"
42
43 #define PPU_PROFILING            0
44 #define SPU_PROFILING_CYCLES     1
45 #define SPU_PROFILING_EVENTS     2
46
47 #define SPU_EVENT_NUM_START      4100
48 #define SPU_EVENT_NUM_STOP       4399
49 #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
50 #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
51 #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
52
53 #define NUM_SPUS_PER_NODE    8
54 #define SPU_CYCLES_EVENT_NUM 2  /*  event number for SPU_CYCLES */
55
56 #define PPU_CYCLES_EVENT_NUM 1  /*  event number for CYCLES */
57 #define PPU_CYCLES_GRP_NUM   1  /* special group number for identifying
58                                  * PPU_CYCLES event
59                                  */
60 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
61
62 #define NUM_THREADS 2         /* number of physical threads in
63                                * physical processor
64                                */
65 #define NUM_DEBUG_BUS_WORDS 4
66 #define NUM_INPUT_BUS_WORDS 2
67
68 #define MAX_SPU_COUNT 0xFFFFFF  /* maximum 24 bit LFSR value */
69
70 /* Minumum HW interval timer setting to send value to trace buffer is 10 cycle.
71  * To configure counter to send value every N cycles set counter to
72  * 2^32 - 1 - N.
73  */
74 #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
75
76 /*
77  * spu_cycle_reset is the number of cycles between samples.
78  * This variable is used for SPU profiling and should ONLY be set
79  * at the beginning of cell_reg_setup; otherwise, it's read-only.
80  */
81 static unsigned int spu_cycle_reset;
82 static unsigned int profiling_mode;
83 static int spu_evnt_phys_spu_indx;
84
85 struct pmc_cntrl_data {
86         unsigned long vcntr;
87         unsigned long evnts;
88         unsigned long masks;
89         unsigned long enabled;
90 };
91
92 /*
93  * ibm,cbe-perftools rtas parameters
94  */
95 struct pm_signal {
96         u16 cpu;                /* Processor to modify */
97         u16 sub_unit;           /* hw subunit this applies to (if applicable)*/
98         short int signal_group; /* Signal Group to Enable/Disable */
99         u8 bus_word;            /* Enable/Disable on this Trace/Trigger/Event
100                                  * Bus Word(s) (bitmask)
101                                  */
102         u8 bit;                 /* Trigger/Event bit (if applicable) */
103 };
104
105 /*
106  * rtas call arguments
107  */
108 enum {
109         SUBFUNC_RESET = 1,
110         SUBFUNC_ACTIVATE = 2,
111         SUBFUNC_DEACTIVATE = 3,
112
113         PASSTHRU_IGNORE = 0,
114         PASSTHRU_ENABLE = 1,
115         PASSTHRU_DISABLE = 2,
116 };
117
118 struct pm_cntrl {
119         u16 enable;
120         u16 stop_at_max;
121         u16 trace_mode;
122         u16 freeze;
123         u16 count_mode;
124         u16 spu_addr_trace;
125         u8  trace_buf_ovflw;
126 };
127
128 static struct {
129         u32 group_control;
130         u32 debug_bus_control;
131         struct pm_cntrl pm_cntrl;
132         u32 pm07_cntrl[NR_PHYS_CTRS];
133 } pm_regs;
134
135 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
136 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
137 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
138 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
139 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
140 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
141
142 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
143 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
144 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
145
146 /*
147  * The CELL profiling code makes rtas calls to setup the debug bus to
148  * route the performance signals.  Additionally, SPU profiling requires
149  * a second rtas call to setup the hardware to capture the SPU PCs.
150  * The EIO error value is returned if the token lookups or the rtas
151  * call fail.  The EIO error number is the best choice of the existing
152  * error numbers.  The probability of rtas related error is very low.  But
153  * by returning EIO and printing additional information to dmsg the user
154  * will know that OProfile did not start and dmesg will tell them why.
155  * OProfile does not support returning errors on Stop.  Not a huge issue
156  * since failure to reset the debug bus or stop the SPU PC collection is
157  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
158  * either.
159  */
160
161 /*
162  * Interpetation of hdw_thread:
163  * 0 - even virtual cpus 0, 2, 4,...
164  * 1 - odd virtual cpus 1, 3, 5, ...
165  *
166  * FIXME: this is strictly wrong, we need to clean this up in a number
167  * of places. It works for now. -arnd
168  */
169 static u32 hdw_thread;
170
171 static u32 virt_cntr_inter_mask;
172 static struct timer_list timer_virt_cntr;
173 static struct timer_list timer_spu_event_swap;
174
175 /*
176  * pm_signal needs to be global since it is initialized in
177  * cell_reg_setup at the time when the necessary information
178  * is available.
179  */
180 static struct pm_signal pm_signal[NR_PHYS_CTRS];
181 static int pm_rtas_token;    /* token for debug bus setup call */
182 static int spu_rtas_token;   /* token for SPU cycle profiling */
183
184 static u32 reset_value[NR_PHYS_CTRS];
185 static int num_counters;
186 static int oprofile_running;
187 static DEFINE_SPINLOCK(cntr_lock);
188
189 static u32 ctr_enabled;
190
191 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
192
193 /*
194  * Firmware interface functions
195  */
196 static int
197 rtas_ibm_cbe_perftools(int subfunc, int passthru,
198                        void *address, unsigned long length)
199 {
200         u64 paddr = __pa(address);
201
202         return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
203                          passthru, paddr >> 32, paddr & 0xffffffff, length);
204 }
205
206 static void pm_rtas_reset_signals(u32 node)
207 {
208         int ret;
209         struct pm_signal pm_signal_local;
210
211         /*
212          * The debug bus is being set to the passthru disable state.
213          * However, the FW still expects atleast one legal signal routing
214          * entry or it will return an error on the arguments.   If we don't
215          * supply a valid entry, we must ignore all return values.  Ignoring
216          * all return values means we might miss an error we should be
217          * concerned about.
218          */
219
220         /*  fw expects physical cpu #. */
221         pm_signal_local.cpu = node;
222         pm_signal_local.signal_group = 21;
223         pm_signal_local.bus_word = 1;
224         pm_signal_local.sub_unit = 0;
225         pm_signal_local.bit = 0;
226
227         ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
228                                      &pm_signal_local,
229                                      sizeof(struct pm_signal));
230
231         if (unlikely(ret))
232                 /*
233                  * Not a fatal error. For Oprofile stop, the oprofile
234                  * functions do not support returning an error for
235                  * failure to stop OProfile.
236                  */
237                 printk(KERN_WARNING "%s: rtas returned: %d\n",
238                        __func__, ret);
239 }
240
241 static int pm_rtas_activate_signals(u32 node, u32 count)
242 {
243         int ret;
244         int i, j;
245         struct pm_signal pm_signal_local[NR_PHYS_CTRS];
246
247         /*
248          * There is no debug setup required for the cycles event.
249          * Note that only events in the same group can be used.
250          * Otherwise, there will be conflicts in correctly routing
251          * the signals on the debug bus.  It is the responsiblity
252          * of the OProfile user tool to check the events are in
253          * the same group.
254          */
255         i = 0;
256         for (j = 0; j < count; j++) {
257                 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
258
259                         /* fw expects physical cpu # */
260                         pm_signal_local[i].cpu = node;
261                         pm_signal_local[i].signal_group
262                                 = pm_signal[j].signal_group;
263                         pm_signal_local[i].bus_word = pm_signal[j].bus_word;
264                         pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
265                         pm_signal_local[i].bit = pm_signal[j].bit;
266                         i++;
267                 }
268         }
269
270         if (i != 0) {
271                 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
272                                              pm_signal_local,
273                                              i * sizeof(struct pm_signal));
274
275                 if (unlikely(ret)) {
276                         printk(KERN_WARNING "%s: rtas returned: %d\n",
277                                __func__, ret);
278                         return -EIO;
279                 }
280         }
281
282         return 0;
283 }
284
285 /*
286  * PM Signal functions
287  */
288 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
289 {
290         struct pm_signal *p;
291         u32 signal_bit;
292         u32 bus_word, bus_type, count_cycles, polarity, input_control;
293         int j, i;
294
295         if (event == PPU_CYCLES_EVENT_NUM) {
296                 /* Special Event: Count all cpu cycles */
297                 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
298                 p = &(pm_signal[ctr]);
299                 p->signal_group = PPU_CYCLES_GRP_NUM;
300                 p->bus_word = 1;
301                 p->sub_unit = 0;
302                 p->bit = 0;
303                 goto out;
304         } else {
305                 pm_regs.pm07_cntrl[ctr] = 0;
306         }
307
308         bus_word = GET_BUS_WORD(unit_mask);
309         bus_type = GET_BUS_TYPE(unit_mask);
310         count_cycles = GET_COUNT_CYCLES(unit_mask);
311         polarity = GET_POLARITY(unit_mask);
312         input_control = GET_INPUT_CONTROL(unit_mask);
313         signal_bit = (event % 100);
314
315         p = &(pm_signal[ctr]);
316
317         p->signal_group = event / 100;
318         p->bus_word = bus_word;
319         p->sub_unit = GET_SUB_UNIT(unit_mask);
320
321         pm_regs.pm07_cntrl[ctr] = 0;
322         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
323         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
324         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
325
326         /*
327          * Some of the islands signal selection is based on 64 bit words.
328          * The debug bus words are 32 bits, the input words to the performance
329          * counters are defined as 32 bits.  Need to convert the 64 bit island
330          * specification to the appropriate 32 input bit and bus word for the
331          * performance counter event selection.  See the CELL Performance
332          * monitoring signals manual and the Perf cntr hardware descriptions
333          * for the details.
334          */
335         if (input_control == 0) {
336                 if (signal_bit > 31) {
337                         signal_bit -= 32;
338                         if (bus_word == 0x3)
339                                 bus_word = 0x2;
340                         else if (bus_word == 0xc)
341                                 bus_word = 0x8;
342                 }
343
344                 if ((bus_type == 0) && p->signal_group >= 60)
345                         bus_type = 2;
346                 if ((bus_type == 1) && p->signal_group >= 50)
347                         bus_type = 0;
348
349                 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
350         } else {
351                 pm_regs.pm07_cntrl[ctr] = 0;
352                 p->bit = signal_bit;
353         }
354
355         for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
356                 if (bus_word & (1 << i)) {
357                         pm_regs.debug_bus_control |=
358                                 (bus_type << (30 - (2 * i)));
359
360                         for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
361                                 if (input_bus[j] == 0xff) {
362                                         input_bus[j] = i;
363                                         pm_regs.group_control |=
364                                                 (i << (30 - (2 * j)));
365
366                                         break;
367                                 }
368                         }
369                 }
370         }
371 out:
372         ;
373 }
374
375 static void write_pm_cntrl(int cpu)
376 {
377         /*
378          * Oprofile will use 32 bit counters, set bits 7:10 to 0
379          * pmregs.pm_cntrl is a global
380          */
381
382         u32 val = 0;
383         if (pm_regs.pm_cntrl.enable == 1)
384                 val |= CBE_PM_ENABLE_PERF_MON;
385
386         if (pm_regs.pm_cntrl.stop_at_max == 1)
387                 val |= CBE_PM_STOP_AT_MAX;
388
389         if (pm_regs.pm_cntrl.trace_mode != 0)
390                 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
391
392         if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
393                 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
394         if (pm_regs.pm_cntrl.freeze == 1)
395                 val |= CBE_PM_FREEZE_ALL_CTRS;
396
397         val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
398
399         /*
400          * Routine set_count_mode must be called previously to set
401          * the count mode based on the user selection of user and kernel.
402          */
403         val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
404         cbe_write_pm(cpu, pm_control, val);
405 }
406
407 static inline void
408 set_count_mode(u32 kernel, u32 user)
409 {
410         /*
411          * The user must specify user and kernel if they want them. If
412          *  neither is specified, OProfile will count in hypervisor mode.
413          *  pm_regs.pm_cntrl is a global
414          */
415         if (kernel) {
416                 if (user)
417                         pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
418                 else
419                         pm_regs.pm_cntrl.count_mode =
420                                 CBE_COUNT_SUPERVISOR_MODE;
421         } else {
422                 if (user)
423                         pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
424                 else
425                         pm_regs.pm_cntrl.count_mode =
426                                 CBE_COUNT_HYPERVISOR_MODE;
427         }
428 }
429
430 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
431 {
432
433         pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
434         cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
435 }
436
437 /*
438  * Oprofile is expected to collect data on all CPUs simultaneously.
439  * However, there is one set of performance counters per node.  There are
440  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
441  * multiplex in time the performance counter collection on the two virtual
442  * CPUs.  The multiplexing of the performance counters is done by this
443  * virtual counter routine.
444  *
445  * The pmc_values used below is defined as 'per-cpu' but its use is
446  * more akin to 'per-node'.  We need to store two sets of counter
447  * values per node -- one for the previous run and one for the next.
448  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
449  * pair of per-cpu arrays is used for storing the previous and next
450  * pmc values for a given node.
451  * NOTE: We use the per-cpu variable to improve cache performance.
452  *
453  * This routine will alternate loading the virtual counters for
454  * virtual CPUs
455  */
456 static void cell_virtual_cntr(unsigned long data)
457 {
458         int i, prev_hdw_thread, next_hdw_thread;
459         u32 cpu;
460         unsigned long flags;
461
462         /*
463          * Make sure that the interrupt_hander and the virt counter are
464          * not both playing with the counters on the same node.
465          */
466
467         spin_lock_irqsave(&cntr_lock, flags);
468
469         prev_hdw_thread = hdw_thread;
470
471         /* switch the cpu handling the interrupts */
472         hdw_thread = 1 ^ hdw_thread;
473         next_hdw_thread = hdw_thread;
474
475         pm_regs.group_control = 0;
476         pm_regs.debug_bus_control = 0;
477
478         for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
479                 input_bus[i] = 0xff;
480
481         /*
482          * There are some per thread events.  Must do the
483          * set event, for the thread that is being started
484          */
485         for (i = 0; i < num_counters; i++)
486                 set_pm_event(i,
487                         pmc_cntrl[next_hdw_thread][i].evnts,
488                         pmc_cntrl[next_hdw_thread][i].masks);
489
490         /*
491          * The following is done only once per each node, but
492          * we need cpu #, not node #, to pass to the cbe_xxx functions.
493          */
494         for_each_online_cpu(cpu) {
495                 if (cbe_get_hw_thread_id(cpu))
496                         continue;
497
498                 /*
499                  * stop counters, save counter values, restore counts
500                  * for previous thread
501                  */
502                 cbe_disable_pm(cpu);
503                 cbe_disable_pm_interrupts(cpu);
504                 for (i = 0; i < num_counters; i++) {
505                         per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
506                                 = cbe_read_ctr(cpu, i);
507
508                         if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
509                             == 0xFFFFFFFF)
510                                 /* If the cntr value is 0xffffffff, we must
511                                  * reset that to 0xfffffff0 when the current
512                                  * thread is restarted.  This will generate a
513                                  * new interrupt and make sure that we never
514                                  * restore the counters to the max value.  If
515                                  * the counters were restored to the max value,
516                                  * they do not increment and no interrupts are
517                                  * generated.  Hence no more samples will be
518                                  * collected on that cpu.
519                                  */
520                                 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
521                         else
522                                 cbe_write_ctr(cpu, i,
523                                               per_cpu(pmc_values,
524                                                       cpu +
525                                                       next_hdw_thread)[i]);
526                 }
527
528                 /*
529                  * Switch to the other thread. Change the interrupt
530                  * and control regs to be scheduled on the CPU
531                  * corresponding to the thread to execute.
532                  */
533                 for (i = 0; i < num_counters; i++) {
534                         if (pmc_cntrl[next_hdw_thread][i].enabled) {
535                                 /*
536                                  * There are some per thread events.
537                                  * Must do the set event, enable_cntr
538                                  * for each cpu.
539                                  */
540                                 enable_ctr(cpu, i,
541                                            pm_regs.pm07_cntrl);
542                         } else {
543                                 cbe_write_pm07_control(cpu, i, 0);
544                         }
545                 }
546
547                 /* Enable interrupts on the CPU thread that is starting */
548                 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
549                                          virt_cntr_inter_mask);
550                 cbe_enable_pm(cpu);
551         }
552
553         spin_unlock_irqrestore(&cntr_lock, flags);
554
555         mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
556 }
557
558 static void start_virt_cntrs(void)
559 {
560         init_timer(&timer_virt_cntr);
561         timer_virt_cntr.function = cell_virtual_cntr;
562         timer_virt_cntr.data = 0UL;
563         timer_virt_cntr.expires = jiffies + HZ / 10;
564         add_timer(&timer_virt_cntr);
565 }
566
567 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
568                         struct op_system_config *sys, int num_ctrs)
569 {
570         spu_cycle_reset = ctr[0].count;
571
572         /*
573          * Each node will need to make the rtas call to start
574          * and stop SPU profiling.  Get the token once and store it.
575          */
576         spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
577
578         if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
579                 printk(KERN_ERR
580                        "%s: rtas token ibm,cbe-spu-perftools unknown\n",
581                        __func__);
582                 return -EIO;
583         }
584         return 0;
585 }
586
587 /* Unfortunately, the hardware will only support event profiling
588  * on one SPU per node at a time.  Therefore, we must time slice
589  * the profiling across all SPUs in the node.  Note, we do this
590  * in parallel for each node.  The following routine is called
591  * periodically based on kernel timer to switch which SPU is
592  * being monitored in a round robbin fashion.
593  */
594 static void spu_evnt_swap(unsigned long data)
595 {
596         int node;
597         int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
598         unsigned long flags;
599         int cpu;
600         int ret;
601         u32 interrupt_mask;
602
603
604         /* enable interrupts on cntr 0 */
605         interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
606
607         hdw_thread = 0;
608
609         /* Make sure spu event interrupt handler and spu event swap
610          * don't access the counters simultaneously.
611          */
612         spin_lock_irqsave(&cntr_lock, flags);
613
614         cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
615
616         if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
617                 spu_evnt_phys_spu_indx = 0;
618
619         pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
620         pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
621         pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
622
623         /* switch the SPU being profiled on each node */
624         for_each_online_cpu(cpu) {
625                 if (cbe_get_hw_thread_id(cpu))
626                         continue;
627
628                 node = cbe_cpu_to_node(cpu);
629                 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
630                         + cur_spu_evnt_phys_spu_indx;
631                 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
632                         + spu_evnt_phys_spu_indx;
633
634                 /*
635                  * stop counters, save counter values, restore counts
636                  * for previous physical SPU
637                  */
638                 cbe_disable_pm(cpu);
639                 cbe_disable_pm_interrupts(cpu);
640
641                 spu_pm_cnt[cur_phys_spu]
642                         = cbe_read_ctr(cpu, 0);
643
644                 /* restore previous count for the next spu to sample */
645                 /* NOTE, hardware issue, counter will not start if the
646                  * counter value is at max (0xFFFFFFFF).
647                  */
648                 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
649                         cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
650                  else
651                          cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
652
653                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
654
655                 /* setup the debug bus measure the one event and
656                  * the two events to route the next SPU's PC on
657                  * the debug bus
658                  */
659                 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
660                 if (ret)
661                         printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
662                                "SPU event swap\n", __func__);
663
664                 /* clear the trace buffer, don't want to take PC for
665                  * previous SPU*/
666                 cbe_write_pm(cpu, trace_address, 0);
667
668                 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
669
670                 /* Enable interrupts on the CPU thread that is starting */
671                 cbe_enable_pm_interrupts(cpu, hdw_thread,
672                                          interrupt_mask);
673                 cbe_enable_pm(cpu);
674         }
675
676         spin_unlock_irqrestore(&cntr_lock, flags);
677
678         /* swap approximately every 0.1 seconds */
679         mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
680 }
681
682 static void start_spu_event_swap(void)
683 {
684         init_timer(&timer_spu_event_swap);
685         timer_spu_event_swap.function = spu_evnt_swap;
686         timer_spu_event_swap.data = 0UL;
687         timer_spu_event_swap.expires = jiffies + HZ / 25;
688         add_timer(&timer_spu_event_swap);
689 }
690
691 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
692                         struct op_system_config *sys, int num_ctrs)
693 {
694         int i;
695
696         /* routine is called once for all nodes */
697
698         spu_evnt_phys_spu_indx = 0;
699         /*
700          * For all events except PPU CYCLEs, each node will need to make
701          * the rtas cbe-perftools call to setup and reset the debug bus.
702          * Make the token lookup call once and store it in the global
703          * variable pm_rtas_token.
704          */
705         pm_rtas_token = rtas_token("ibm,cbe-perftools");
706
707         if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
708                 printk(KERN_ERR
709                        "%s: rtas token ibm,cbe-perftools unknown\n",
710                        __func__);
711                 return -EIO;
712         }
713
714         /* setup the pm_control register settings,
715          * settings will be written per node by the
716          * cell_cpu_setup() function.
717          */
718         pm_regs.pm_cntrl.trace_buf_ovflw = 1;
719
720         /* Use the occurrence trace mode to have SPU PC saved
721          * to the trace buffer.  Occurrence data in trace buffer
722          * is not used.  Bit 2 must be set to store SPU addresses.
723          */
724         pm_regs.pm_cntrl.trace_mode = 2;
725
726         pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
727                                                    event 2 & 3 */
728
729         /* setup the debug bus event array with the SPU PC routing events.
730         *  Note, pm_signal[0] will be filled in by set_pm_event() call below.
731         */
732         pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
733         pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
734         pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
735         pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
736
737         pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
738         pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
739         pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
740         pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
741
742         /* Set the user selected spu event to profile on,
743          * note, only one SPU profiling event is supported
744          */
745         num_counters = 1;  /* Only support one SPU event at a time */
746         set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
747
748         reset_value[0] = 0xFFFFFFFF - ctr[0].count;
749
750         /* global, used by cell_cpu_setup */
751         ctr_enabled |= 1;
752
753         /* Initialize the count for each SPU to the reset value */
754         for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
755                 spu_pm_cnt[i] = reset_value[0];
756
757         return 0;
758 }
759
760 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
761                         struct op_system_config *sys, int num_ctrs)
762 {
763         /* routine is called once for all nodes */
764         int i, j, cpu;
765
766         num_counters = num_ctrs;
767
768         if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
769                 printk(KERN_ERR
770                        "%s: Oprofile, number of specified events " \
771                        "exceeds number of physical counters\n",
772                        __func__);
773                 return -EIO;
774         }
775
776         set_count_mode(sys->enable_kernel, sys->enable_user);
777
778         /* Setup the thread 0 events */
779         for (i = 0; i < num_ctrs; ++i) {
780
781                 pmc_cntrl[0][i].evnts = ctr[i].event;
782                 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
783                 pmc_cntrl[0][i].enabled = ctr[i].enabled;
784                 pmc_cntrl[0][i].vcntr = i;
785
786                 for_each_possible_cpu(j)
787                         per_cpu(pmc_values, j)[i] = 0;
788         }
789
790         /*
791          * Setup the thread 1 events, map the thread 0 event to the
792          * equivalent thread 1 event.
793          */
794         for (i = 0; i < num_ctrs; ++i) {
795                 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
796                         pmc_cntrl[1][i].evnts = ctr[i].event + 19;
797                 else if (ctr[i].event == 2203)
798                         pmc_cntrl[1][i].evnts = ctr[i].event;
799                 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
800                         pmc_cntrl[1][i].evnts = ctr[i].event + 16;
801                 else
802                         pmc_cntrl[1][i].evnts = ctr[i].event;
803
804                 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
805                 pmc_cntrl[1][i].enabled = ctr[i].enabled;
806                 pmc_cntrl[1][i].vcntr = i;
807         }
808
809         for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
810                 input_bus[i] = 0xff;
811
812         /*
813          * Our counters count up, and "count" refers to
814          * how much before the next interrupt, and we interrupt
815          * on overflow.  So we calculate the starting value
816          * which will give us "count" until overflow.
817          * Then we set the events on the enabled counters.
818          */
819         for (i = 0; i < num_counters; ++i) {
820                 /* start with virtual counter set 0 */
821                 if (pmc_cntrl[0][i].enabled) {
822                         /* Using 32bit counters, reset max - count */
823                         reset_value[i] = 0xFFFFFFFF - ctr[i].count;
824                         set_pm_event(i,
825                                      pmc_cntrl[0][i].evnts,
826                                      pmc_cntrl[0][i].masks);
827
828                         /* global, used by cell_cpu_setup */
829                         ctr_enabled |= (1 << i);
830                 }
831         }
832
833         /* initialize the previous counts for the virtual cntrs */
834         for_each_online_cpu(cpu)
835                 for (i = 0; i < num_counters; ++i) {
836                         per_cpu(pmc_values, cpu)[i] = reset_value[i];
837                 }
838
839         return 0;
840 }
841
842
843 /* This function is called once for all cpus combined */
844 static int cell_reg_setup(struct op_counter_config *ctr,
845                         struct op_system_config *sys, int num_ctrs)
846 {
847         int ret=0;
848         spu_cycle_reset = 0;
849
850         /* initialize the spu_arr_trace value, will be reset if
851          * doing spu event profiling.
852          */
853         pm_regs.group_control = 0;
854         pm_regs.debug_bus_control = 0;
855         pm_regs.pm_cntrl.stop_at_max = 1;
856         pm_regs.pm_cntrl.trace_mode = 0;
857         pm_regs.pm_cntrl.freeze = 1;
858         pm_regs.pm_cntrl.trace_buf_ovflw = 0;
859         pm_regs.pm_cntrl.spu_addr_trace = 0;
860
861         /*
862          * For all events except PPU CYCLEs, each node will need to make
863          * the rtas cbe-perftools call to setup and reset the debug bus.
864          * Make the token lookup call once and store it in the global
865          * variable pm_rtas_token.
866          */
867         pm_rtas_token = rtas_token("ibm,cbe-perftools");
868
869         if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
870                 printk(KERN_ERR
871                        "%s: rtas token ibm,cbe-perftools unknown\n",
872                        __func__);
873                 return -EIO;
874         }
875
876         if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
877                 profiling_mode = SPU_PROFILING_CYCLES;
878                 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
879         } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
880                    (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
881                 profiling_mode = SPU_PROFILING_EVENTS;
882                 spu_cycle_reset = ctr[0].count;
883
884                 /* for SPU event profiling, need to setup the
885                  * pm_signal array with the events to route the
886                  * SPU PC before making the FW call.  Note, only
887                  * one SPU event for profiling can be specified
888                  * at a time.
889                  */
890                 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
891         } else {
892                 profiling_mode = PPU_PROFILING;
893                 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
894         }
895
896         return ret;
897 }
898
899
900
901 /* This function is called once for each cpu */
902 static int cell_cpu_setup(struct op_counter_config *cntr)
903 {
904         u32 cpu = smp_processor_id();
905         u32 num_enabled = 0;
906         int i;
907         int ret;
908
909         /* Cycle based SPU profiling does not use the performance
910          * counters.  The trace array is configured to collect
911          * the data.
912          */
913         if (profiling_mode == SPU_PROFILING_CYCLES)
914                 return 0;
915
916         /* There is one performance monitor per processor chip (i.e. node),
917          * so we only need to perform this function once per node.
918          */
919         if (cbe_get_hw_thread_id(cpu))
920                 return 0;
921
922         /* Stop all counters */
923         cbe_disable_pm(cpu);
924         cbe_disable_pm_interrupts(cpu);
925
926         cbe_write_pm(cpu, pm_start_stop, 0);
927         cbe_write_pm(cpu, group_control, pm_regs.group_control);
928         cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
929         write_pm_cntrl(cpu);
930
931         for (i = 0; i < num_counters; ++i) {
932                 if (ctr_enabled & (1 << i)) {
933                         pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
934                         num_enabled++;
935                 }
936         }
937
938         /*
939          * The pm_rtas_activate_signals will return -EIO if the FW
940          * call failed.
941          */
942         if (profiling_mode == SPU_PROFILING_EVENTS) {
943                 /* For SPU event profiling also need to setup the
944                  * pm interval timer
945                  */
946                 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
947                                                num_enabled+2);
948                 /* store PC from debug bus to Trace buffer as often
949                  * as possible (every 10 cycles)
950                  */
951                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
952                 return ret;
953         } else
954                 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
955                                                 num_enabled);
956 }
957
958 #define ENTRIES  303
959 #define MAXLFSR  0xFFFFFF
960
961 /* precomputed table of 24 bit LFSR values */
962 static int initial_lfsr[] = {
963  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
964  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
965  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
966  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
967  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
968  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
969  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
970  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
971  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
972  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
973  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
974  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
975  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
976  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
977  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
978  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
979  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
980  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
981  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
982  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
983  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
984  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
985  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
986  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
987  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
988  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
989  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
990  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
991  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
992  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
993  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
994  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
995  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
996  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
997  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
998  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
999  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
1000  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1001 };
1002
1003 /*
1004  * The hardware uses an LFSR counting sequence to determine when to capture
1005  * the SPU PCs.  An LFSR sequence is like a puesdo random number sequence
1006  * where each number occurs once in the sequence but the sequence is not in
1007  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1008  * the last value in the sequence.  Hence the user specified value N
1009  * corresponds to the LFSR number that is N from the end of the sequence.
1010  *
1011  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1012  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1013  * values is adjusted in each range so the error between the user specifed
1014  * number (N) of events between samples and the actual number of events based
1015  * on the precomputed value will be les then about 6.2%.  Note, if the user
1016  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1017  * This is to prevent the loss of samples because the trace buffer is full.
1018  *
1019  *         User specified N                  Step between          Index in
1020  *                                       precomputed values      precomputed
1021  *                                                                  table
1022  * 0                to  2^16-1                  ----                  0
1023  * 2^16     to  2^16+2^19-1             2^12                1 to 128
1024  * 2^16+2^19        to  2^16+2^19+2^22-1        2^15              129 to 256
1025  * 2^16+2^19+2^22  to   2^24-1                  2^18              257 to 302
1026  *
1027  *
1028  * For example, the LFSR values in the second range are computed for 2^16,
1029  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1030  * 1, 2,..., 127, 128.
1031  *
1032  * The 24 bit LFSR value for the nth number in the sequence can be
1033  * calculated using the following code:
1034  *
1035  * #define size 24
1036  * int calculate_lfsr(int n)
1037  * {
1038  *      int i;
1039  *      unsigned int newlfsr0;
1040  *      unsigned int lfsr = 0xFFFFFF;
1041  *      unsigned int howmany = n;
1042  *
1043  *      for (i = 2; i < howmany + 2; i++) {
1044  *              newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1045  *              ((lfsr >> (size - 1 - 1)) & 1) ^
1046  *              (((lfsr >> (size - 1 - 6)) & 1) ^
1047  *              ((lfsr >> (size - 1 - 23)) & 1)));
1048  *
1049  *              lfsr >>= 1;
1050  *              lfsr = lfsr | (newlfsr0 << (size - 1));
1051  *      }
1052  *      return lfsr;
1053  * }
1054  */
1055
1056 #define V2_16  (0x1 << 16)
1057 #define V2_19  (0x1 << 19)
1058 #define V2_22  (0x1 << 22)
1059
1060 static int calculate_lfsr(int n)
1061 {
1062         /*
1063          * The ranges and steps are in powers of 2 so the calculations
1064          * can be done using shifts rather then divide.
1065          */
1066         int index;
1067
1068         if ((n >> 16) == 0)
1069                 index = 0;
1070         else if (((n - V2_16) >> 19) == 0)
1071                 index = ((n - V2_16) >> 12) + 1;
1072         else if (((n - V2_16 - V2_19) >> 22) == 0)
1073                 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1074         else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1075                 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1076         else
1077                 index = ENTRIES-1;
1078
1079         /* make sure index is valid */
1080         if ((index > ENTRIES) || (index < 0))
1081                 index = ENTRIES-1;
1082
1083         return initial_lfsr[index];
1084 }
1085
1086 static int pm_rtas_activate_spu_profiling(u32 node)
1087 {
1088         int ret, i;
1089         struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1090
1091         /*
1092          * Set up the rtas call to configure the debug bus to
1093          * route the SPU PCs.  Setup the pm_signal for each SPU
1094          */
1095         for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1096                 pm_signal_local[i].cpu = node;
1097                 pm_signal_local[i].signal_group = 41;
1098                 /* spu i on word (i/2) */
1099                 pm_signal_local[i].bus_word = 1 << i / 2;
1100                 /* spu i */
1101                 pm_signal_local[i].sub_unit = i;
1102                 pm_signal_local[i].bit = 63;
1103         }
1104
1105         ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1106                                      PASSTHRU_ENABLE, pm_signal_local,
1107                                      (ARRAY_SIZE(pm_signal_local)
1108                                       * sizeof(struct pm_signal)));
1109
1110         if (unlikely(ret)) {
1111                 printk(KERN_WARNING "%s: rtas returned: %d\n",
1112                        __func__, ret);
1113                 return -EIO;
1114         }
1115
1116         return 0;
1117 }
1118
1119 #ifdef CONFIG_CPU_FREQ
1120 static int
1121 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1122 {
1123         int ret = 0;
1124         struct cpufreq_freqs *frq = data;
1125         if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1126             (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1127             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1128                 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1129         return ret;
1130 }
1131
1132 static struct notifier_block cpu_freq_notifier_block = {
1133         .notifier_call  = oprof_cpufreq_notify
1134 };
1135 #endif
1136
1137 /*
1138  * Note the generic OProfile stop calls do not support returning
1139  * an error on stop.  Hence, will not return an error if the FW
1140  * calls fail on stop.  Failure to reset the debug bus is not an issue.
1141  * Failure to disable the SPU profiling is not an issue.  The FW calls
1142  * to enable the performance counters and debug bus will work even if
1143  * the hardware was not cleanly reset.
1144  */
1145 static void cell_global_stop_spu_cycles(void)
1146 {
1147         int subfunc, rtn_value;
1148         unsigned int lfsr_value;
1149         int cpu;
1150
1151         oprofile_running = 0;
1152         smp_wmb();
1153
1154 #ifdef CONFIG_CPU_FREQ
1155         cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1156                                     CPUFREQ_TRANSITION_NOTIFIER);
1157 #endif
1158
1159         for_each_online_cpu(cpu) {
1160                 if (cbe_get_hw_thread_id(cpu))
1161                         continue;
1162
1163                 subfunc = 3;    /*
1164                                  * 2 - activate SPU tracing,
1165                                  * 3 - deactivate
1166                                  */
1167                 lfsr_value = 0x8f100000;
1168
1169                 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1170                                       subfunc, cbe_cpu_to_node(cpu),
1171                                       lfsr_value);
1172
1173                 if (unlikely(rtn_value != 0)) {
1174                         printk(KERN_ERR
1175                                "%s: rtas call ibm,cbe-spu-perftools " \
1176                                "failed, return = %d\n",
1177                                __func__, rtn_value);
1178                 }
1179
1180                 /* Deactivate the signals */
1181                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1182         }
1183
1184         stop_spu_profiling_cycles();
1185 }
1186
1187 static void cell_global_stop_spu_events(void)
1188 {
1189         int cpu;
1190         oprofile_running = 0;
1191
1192         stop_spu_profiling_events();
1193         smp_wmb();
1194
1195         for_each_online_cpu(cpu) {
1196                 if (cbe_get_hw_thread_id(cpu))
1197                         continue;
1198
1199                 cbe_sync_irq(cbe_cpu_to_node(cpu));
1200                 /* Stop the counters */
1201                 cbe_disable_pm(cpu);
1202                 cbe_write_pm07_control(cpu, 0, 0);
1203
1204                 /* Deactivate the signals */
1205                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1206
1207                 /* Deactivate interrupts */
1208                 cbe_disable_pm_interrupts(cpu);
1209         }
1210         del_timer_sync(&timer_spu_event_swap);
1211 }
1212
1213 static void cell_global_stop_ppu(void)
1214 {
1215         int cpu;
1216
1217         /*
1218          * This routine will be called once for the system.
1219          * There is one performance monitor per node, so we
1220          * only need to perform this function once per node.
1221          */
1222         del_timer_sync(&timer_virt_cntr);
1223         oprofile_running = 0;
1224         smp_wmb();
1225
1226         for_each_online_cpu(cpu) {
1227                 if (cbe_get_hw_thread_id(cpu))
1228                         continue;
1229
1230                 cbe_sync_irq(cbe_cpu_to_node(cpu));
1231                 /* Stop the counters */
1232                 cbe_disable_pm(cpu);
1233
1234                 /* Deactivate the signals */
1235                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1236
1237                 /* Deactivate interrupts */
1238                 cbe_disable_pm_interrupts(cpu);
1239         }
1240 }
1241
1242 static void cell_global_stop(void)
1243 {
1244         if (profiling_mode == PPU_PROFILING)
1245                 cell_global_stop_ppu();
1246         else if (profiling_mode == SPU_PROFILING_EVENTS)
1247                 cell_global_stop_spu_events();
1248         else
1249                 cell_global_stop_spu_cycles();
1250 }
1251
1252 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1253 {
1254         int subfunc;
1255         unsigned int lfsr_value;
1256         int cpu;
1257         int ret;
1258         int rtas_error;
1259         unsigned int cpu_khzfreq = 0;
1260
1261         /* The SPU profiling uses time-based profiling based on
1262          * cpu frequency, so if configured with the CPU_FREQ
1263          * option, we should detect frequency changes and react
1264          * accordingly.
1265          */
1266 #ifdef CONFIG_CPU_FREQ
1267         ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1268                                         CPUFREQ_TRANSITION_NOTIFIER);
1269         if (ret < 0)
1270                 /* this is not a fatal error */
1271                 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1272                        ret);
1273
1274         else
1275                 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1276 #endif
1277
1278         set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1279
1280         for_each_online_cpu(cpu) {
1281                 if (cbe_get_hw_thread_id(cpu))
1282                         continue;
1283
1284                 /*
1285                  * Setup SPU cycle-based profiling.
1286                  * Set perf_mon_control bit 0 to a zero before
1287                  * enabling spu collection hardware.
1288                  */
1289                 cbe_write_pm(cpu, pm_control, 0);
1290
1291                 if (spu_cycle_reset > MAX_SPU_COUNT)
1292                         /* use largest possible value */
1293                         lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1294                 else
1295                         lfsr_value = calculate_lfsr(spu_cycle_reset);
1296
1297                 /* must use a non zero value. Zero disables data collection. */
1298                 if (lfsr_value == 0)
1299                         lfsr_value = calculate_lfsr(1);
1300
1301                 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1302                                                 * register location
1303                                                 */
1304
1305                 /* debug bus setup */
1306                 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1307
1308                 if (unlikely(ret)) {
1309                         rtas_error = ret;
1310                         goto out;
1311                 }
1312
1313
1314                 subfunc = 2;    /* 2 - activate SPU tracing, 3 - deactivate */
1315
1316                 /* start profiling */
1317                 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1318                                 cbe_cpu_to_node(cpu), lfsr_value);
1319
1320                 if (unlikely(ret != 0)) {
1321                         printk(KERN_ERR
1322                                "%s: rtas call ibm,cbe-spu-perftools failed, " \
1323                                "return = %d\n", __func__, ret);
1324                         rtas_error = -EIO;
1325                         goto out;
1326                 }
1327         }
1328
1329         rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1330         if (rtas_error)
1331                 goto out_stop;
1332
1333         oprofile_running = 1;
1334         return 0;
1335
1336 out_stop:
1337         cell_global_stop_spu_cycles();  /* clean up the PMU/debug bus */
1338 out:
1339         return rtas_error;
1340 }
1341
1342 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1343 {
1344         int cpu;
1345         u32 interrupt_mask = 0;
1346         int rtn = 0;
1347
1348         hdw_thread = 0;
1349
1350         /* spu event profiling, uses the performance counters to generate
1351          * an interrupt.  The hardware is setup to store the SPU program
1352          * counter into the trace array.  The occurrence mode is used to
1353          * enable storing data to the trace buffer.  The bits are set
1354          * to send/store the SPU address in the trace buffer.  The debug
1355          * bus must be setup to route the SPU program counter onto the
1356          * debug bus.  The occurrence data in the trace buffer is not used.
1357          */
1358
1359         /* This routine gets called once for the system.
1360          * There is one performance monitor per node, so we
1361          * only need to perform this function once per node.
1362          */
1363
1364         for_each_online_cpu(cpu) {
1365                 if (cbe_get_hw_thread_id(cpu))
1366                         continue;
1367
1368                 /*
1369                  * Setup SPU event-based profiling.
1370                  * Set perf_mon_control bit 0 to a zero before
1371                  * enabling spu collection hardware.
1372                  *
1373                  * Only support one SPU event on one SPU per node.
1374                  */
1375                 if (ctr_enabled & 1) {
1376                         cbe_write_ctr(cpu, 0, reset_value[0]);
1377                         enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1378                         interrupt_mask |=
1379                                 CBE_PM_CTR_OVERFLOW_INTR(0);
1380                 } else {
1381                         /* Disable counter */
1382                         cbe_write_pm07_control(cpu, 0, 0);
1383                 }
1384
1385                 cbe_get_and_clear_pm_interrupts(cpu);
1386                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1387                 cbe_enable_pm(cpu);
1388
1389                 /* clear the trace buffer */
1390                 cbe_write_pm(cpu, trace_address, 0);
1391         }
1392
1393         /* Start the timer to time slice collecting the event profile
1394          * on each of the SPUs.  Note, can collect profile on one SPU
1395          * per node at a time.
1396          */
1397         start_spu_event_swap();
1398         start_spu_profiling_events();
1399         oprofile_running = 1;
1400         smp_wmb();
1401
1402         return rtn;
1403 }
1404
1405 static int cell_global_start_ppu(struct op_counter_config *ctr)
1406 {
1407         u32 cpu, i;
1408         u32 interrupt_mask = 0;
1409
1410         /* This routine gets called once for the system.
1411          * There is one performance monitor per node, so we
1412          * only need to perform this function once per node.
1413          */
1414         for_each_online_cpu(cpu) {
1415                 if (cbe_get_hw_thread_id(cpu))
1416                         continue;
1417
1418                 interrupt_mask = 0;
1419
1420                 for (i = 0; i < num_counters; ++i) {
1421                         if (ctr_enabled & (1 << i)) {
1422                                 cbe_write_ctr(cpu, i, reset_value[i]);
1423                                 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1424                                 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1425                         } else {
1426                                 /* Disable counter */
1427                                 cbe_write_pm07_control(cpu, i, 0);
1428                         }
1429                 }
1430
1431                 cbe_get_and_clear_pm_interrupts(cpu);
1432                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1433                 cbe_enable_pm(cpu);
1434         }
1435
1436         virt_cntr_inter_mask = interrupt_mask;
1437         oprofile_running = 1;
1438         smp_wmb();
1439
1440         /*
1441          * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1442          * executed which manipulates the PMU.  We start the "virtual counter"
1443          * here so that we do not need to synchronize access to the PMU in
1444          * the above for-loop.
1445          */
1446         start_virt_cntrs();
1447
1448         return 0;
1449 }
1450
1451 static int cell_global_start(struct op_counter_config *ctr)
1452 {
1453         if (profiling_mode == SPU_PROFILING_CYCLES)
1454                 return cell_global_start_spu_cycles(ctr);
1455         else if (profiling_mode == SPU_PROFILING_EVENTS)
1456                 return cell_global_start_spu_events(ctr);
1457         else
1458                 return cell_global_start_ppu(ctr);
1459 }
1460
1461
1462 /* The SPU interrupt handler
1463  *
1464  * SPU event profiling works as follows:
1465  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1466  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1467  * pm_signal[2] contain the necessary events to route the SPU program
1468  * counter for the selected SPU onto the debug bus using words 2 and 3.
1469  * The pm_interval register is setup to write the SPU PC value into the
1470  * trace buffer at the maximum rate possible.  The trace buffer is configured
1471  * to store the PCs, wrapping when it is full.  The performance counter is
1472  * intialized to the max hardware count minus the number of events, N, between
1473  * samples.  Once the N events have occured, a HW counter overflow occurs
1474  * causing the generation of a HW counter interrupt which also stops the
1475  * writing of the SPU PC values to the trace buffer.  Hence the last PC
1476  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1477  * we have to read from the beginning of the trace buffer to get to the
1478  * last value written.  We just hope the PPU has nothing better to do then
1479  * service this interrupt. The PC for the specific SPU being profiled is
1480  * extracted from the trace buffer processed and stored.  The trace buffer
1481  * is cleared, interrupts are cleared, the counter is reset to max - N.
1482  * A kernel timer is used to periodically call the routine spu_evnt_swap()
1483  * to switch to the next physical SPU in the node to profile in round robbin
1484  * order.  This way data is collected for all SPUs on the node. It does mean
1485  * that we need to use a relatively small value of N to ensure enough samples
1486  * on each SPU are collected each SPU is being profiled 1/8 of the time.
1487  * It may also be necessary to use a longer sample collection period.
1488  */
1489 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1490                                       struct op_counter_config *ctr)
1491 {
1492         u32 cpu, cpu_tmp;
1493         u64 trace_entry;
1494         u32 interrupt_mask;
1495         u64 trace_buffer[2];
1496         u64 last_trace_buffer;
1497         u32 sample;
1498         u32 trace_addr;
1499         unsigned long sample_array_lock_flags;
1500         int spu_num;
1501         unsigned long flags;
1502
1503         /* Make sure spu event interrupt handler and spu event swap
1504          * don't access the counters simultaneously.
1505          */
1506         cpu = smp_processor_id();
1507         spin_lock_irqsave(&cntr_lock, flags);
1508
1509         cpu_tmp = cpu;
1510         cbe_disable_pm(cpu);
1511
1512         interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1513
1514         sample = 0xABCDEF;
1515         trace_entry = 0xfedcba;
1516         last_trace_buffer = 0xdeadbeaf;
1517
1518         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1519                 /* disable writes to trace buff */
1520                 cbe_write_pm(cpu, pm_interval, 0);
1521
1522                 /* only have one perf cntr being used, cntr 0 */
1523                 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1524                     && ctr[0].enabled)
1525                         /* The SPU PC values will be read
1526                          * from the trace buffer, reset counter
1527                          */
1528
1529                         cbe_write_ctr(cpu, 0, reset_value[0]);
1530
1531                 trace_addr = cbe_read_pm(cpu, trace_address);
1532
1533                 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1534                         /* There is data in the trace buffer to process
1535                          * Read the buffer until you get to the last
1536                          * entry.  This is the value we want.
1537                          */
1538
1539                         cbe_read_trace_buffer(cpu, trace_buffer);
1540                         trace_addr = cbe_read_pm(cpu, trace_address);
1541                 }
1542
1543                 /* SPU Address 16 bit count format for 128 bit
1544                  * HW trace buffer is used for the SPU PC storage
1545                  *    HDR bits          0:15
1546                  *    SPU Addr 0 bits   16:31
1547                  *    SPU Addr 1 bits   32:47
1548                  *    unused bits       48:127
1549                  *
1550                  * HDR: bit4 = 1 SPU Address 0 valid
1551                  * HDR: bit5 = 1 SPU Address 1 valid
1552                  *  - unfortunately, the valid bits don't seem to work
1553                  *
1554                  * Note trace_buffer[0] holds bits 0:63 of the HW
1555                  * trace buffer, trace_buffer[1] holds bits 64:127
1556                  */
1557
1558                 trace_entry = trace_buffer[0]
1559                         & 0x00000000FFFF0000;
1560
1561                 /* only top 16 of the 18 bit SPU PC address
1562                  * is stored in trace buffer, hence shift right
1563                  * by 16 -2 bits */
1564                 sample = trace_entry >> 14;
1565                 last_trace_buffer = trace_buffer[0];
1566
1567                 spu_num = spu_evnt_phys_spu_indx
1568                         + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1569
1570                 /* make sure only one process at a time is calling
1571                  * spu_sync_buffer()
1572                  */
1573                 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1574                                   sample_array_lock_flags);
1575                 spu_sync_buffer(spu_num, &sample, 1);
1576                 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1577                                        sample_array_lock_flags);
1578
1579                 smp_wmb();    /* insure spu event buffer updates are written
1580                                * don't want events intermingled... */
1581
1582                 /* The counters were frozen by the interrupt.
1583                  * Reenable the interrupt and restart the counters.
1584                  */
1585                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1586                 cbe_enable_pm_interrupts(cpu, hdw_thread,
1587                                          virt_cntr_inter_mask);
1588
1589                 /* clear the trace buffer, re-enable writes to trace buff */
1590                 cbe_write_pm(cpu, trace_address, 0);
1591                 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1592
1593                 /* The writes to the various performance counters only writes
1594                  * to a latch.  The new values (interrupt setting bits, reset
1595                  * counter value etc.) are not copied to the actual registers
1596                  * until the performance monitor is enabled.  In order to get
1597                  * this to work as desired, the permormance monitor needs to
1598                  * be disabled while writing to the latches.  This is a
1599                  * HW design issue.
1600                  */
1601                 write_pm_cntrl(cpu);
1602                 cbe_enable_pm(cpu);
1603         }
1604         spin_unlock_irqrestore(&cntr_lock, flags);
1605 }
1606
1607 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1608                                       struct op_counter_config *ctr)
1609 {
1610         u32 cpu;
1611         u64 pc;
1612         int is_kernel;
1613         unsigned long flags = 0;
1614         u32 interrupt_mask;
1615         int i;
1616
1617         cpu = smp_processor_id();
1618
1619         /*
1620          * Need to make sure the interrupt handler and the virt counter
1621          * routine are not running at the same time. See the
1622          * cell_virtual_cntr() routine for additional comments.
1623          */
1624         spin_lock_irqsave(&cntr_lock, flags);
1625
1626         /*
1627          * Need to disable and reenable the performance counters
1628          * to get the desired behavior from the hardware.  This
1629          * is hardware specific.
1630          */
1631
1632         cbe_disable_pm(cpu);
1633
1634         interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1635
1636         /*
1637          * If the interrupt mask has been cleared, then the virt cntr
1638          * has cleared the interrupt.  When the thread that generated
1639          * the interrupt is restored, the data count will be restored to
1640          * 0xffffff0 to cause the interrupt to be regenerated.
1641          */
1642
1643         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1644                 pc = regs->nip;
1645                 is_kernel = is_kernel_addr(pc);
1646
1647                 for (i = 0; i < num_counters; ++i) {
1648                         if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1649                             && ctr[i].enabled) {
1650                                 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1651                                 cbe_write_ctr(cpu, i, reset_value[i]);
1652                         }
1653                 }
1654
1655                 /*
1656                  * The counters were frozen by the interrupt.
1657                  * Reenable the interrupt and restart the counters.
1658                  * If there was a race between the interrupt handler and
1659                  * the virtual counter routine.  The virutal counter
1660                  * routine may have cleared the interrupts.  Hence must
1661                  * use the virt_cntr_inter_mask to re-enable the interrupts.
1662                  */
1663                 cbe_enable_pm_interrupts(cpu, hdw_thread,
1664                                          virt_cntr_inter_mask);
1665
1666                 /*
1667                  * The writes to the various performance counters only writes
1668                  * to a latch.  The new values (interrupt setting bits, reset
1669                  * counter value etc.) are not copied to the actual registers
1670                  * until the performance monitor is enabled.  In order to get
1671                  * this to work as desired, the permormance monitor needs to
1672                  * be disabled while writing to the latches.  This is a
1673                  * HW design issue.
1674                  */
1675                 cbe_enable_pm(cpu);
1676         }
1677         spin_unlock_irqrestore(&cntr_lock, flags);
1678 }
1679
1680 static void cell_handle_interrupt(struct pt_regs *regs,
1681                                   struct op_counter_config *ctr)
1682 {
1683         if (profiling_mode == PPU_PROFILING)
1684                 cell_handle_interrupt_ppu(regs, ctr);
1685         else
1686                 cell_handle_interrupt_spu(regs, ctr);
1687 }
1688
1689 /*
1690  * This function is called from the generic OProfile
1691  * driver.  When profiling PPUs, we need to do the
1692  * generic sync start; otherwise, do spu_sync_start.
1693  */
1694 static int cell_sync_start(void)
1695 {
1696         if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1697             (profiling_mode == SPU_PROFILING_EVENTS))
1698                 return spu_sync_start();
1699         else
1700                 return DO_GENERIC_SYNC;
1701 }
1702
1703 static int cell_sync_stop(void)
1704 {
1705         if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1706             (profiling_mode == SPU_PROFILING_EVENTS))
1707                 return spu_sync_stop();
1708         else
1709                 return 1;
1710 }
1711
1712 struct op_powerpc_model op_model_cell = {
1713         .reg_setup = cell_reg_setup,
1714         .cpu_setup = cell_cpu_setup,
1715         .global_start = cell_global_start,
1716         .global_stop = cell_global_stop,
1717         .sync_start = cell_sync_start,
1718         .sync_stop = cell_sync_stop,
1719         .handle_interrupt = cell_handle_interrupt,
1720 };