2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Version: $Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 * Alan Cox : verify_area() calls
18 * Alan Cox : stopped close while in use off icmp
19 * messages. Not a fix but a botch that
20 * for udp at least is 'valid'.
21 * Alan Cox : Fixed icmp handling properly
22 * Alan Cox : Correct error for oversized datagrams
23 * Alan Cox : Tidied select() semantics.
24 * Alan Cox : udp_err() fixed properly, also now
25 * select and read wake correctly on errors
26 * Alan Cox : udp_send verify_area moved to avoid mem leak
27 * Alan Cox : UDP can count its memory
28 * Alan Cox : send to an unknown connection causes
29 * an ECONNREFUSED off the icmp, but
31 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
32 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
33 * bug no longer crashes it.
34 * Fred Van Kempen : Net2e support for sk->broadcast.
35 * Alan Cox : Uses skb_free_datagram
36 * Alan Cox : Added get/set sockopt support.
37 * Alan Cox : Broadcasting without option set returns EACCES.
38 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
39 * Alan Cox : Use ip_tos and ip_ttl
40 * Alan Cox : SNMP Mibs
41 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
42 * Matt Dillon : UDP length checks.
43 * Alan Cox : Smarter af_inet used properly.
44 * Alan Cox : Use new kernel side addressing.
45 * Alan Cox : Incorrect return on truncated datagram receive.
46 * Arnt Gulbrandsen : New udp_send and stuff
47 * Alan Cox : Cache last socket
48 * Alan Cox : Route cache
49 * Jon Peatfield : Minor efficiency fix to sendto().
50 * Mike Shaver : RFC1122 checks.
51 * Alan Cox : Nonblocking error fix.
52 * Willy Konynenberg : Transparent proxying support.
53 * Mike McLagan : Routing by source
54 * David S. Miller : New socket lookup architecture.
55 * Last socket cache retained as it
56 * does have a high hit rate.
57 * Olaf Kirch : Don't linearise iovec on sendmsg.
58 * Andi Kleen : Some cleanups, cache destination entry
60 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
61 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
62 * return ENOTCONN for unconnected sockets (POSIX)
63 * Janos Farkas : don't deliver multi/broadcasts to a different
64 * bound-to-device socket
65 * Hirokazu Takahashi : HW checksumming for outgoing UDP
67 * Hirokazu Takahashi : sendfile() on UDP works now.
68 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
69 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
70 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
71 * a single port at the same time.
72 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
75 * This program is free software; you can redistribute it and/or
76 * modify it under the terms of the GNU General Public License
77 * as published by the Free Software Foundation; either version
78 * 2 of the License, or (at your option) any later version.
81 #include <asm/system.h>
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
94 #include <linux/inet.h>
95 #include <linux/netdevice.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/icmp.h>
101 #include <net/route.h>
102 #include <net/checksum.h>
103 #include <net/xfrm.h>
104 #include "udp_impl.h"
107 * Snmp MIB for the UDP layer
110 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
112 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
113 DEFINE_RWLOCK(udp_hash_lock);
115 static int udp_port_rover;
117 static inline int __udp_lib_lport_inuse(__u16 num, struct hlist_head udptable[])
120 struct hlist_node *node;
122 sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
123 if (sk->sk_hash == num)
129 * __udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
131 * @sk: socket struct in question
132 * @snum: port number to look up
133 * @udptable: hash list table, must be of UDP_HTABLE_SIZE
134 * @port_rover: pointer to record of last unallocated port
135 * @saddr_comp: AF-dependent comparison of bound local IP addresses
137 int __udp_lib_get_port(struct sock *sk, unsigned short snum,
138 struct hlist_head udptable[], int *port_rover,
139 int (*saddr_comp)(const struct sock *sk1,
140 const struct sock *sk2 ) )
142 struct hlist_node *node;
143 struct hlist_head *head;
147 write_lock_bh(&udp_hash_lock);
149 int best_size_so_far, best, result, i;
151 if (*port_rover > sysctl_local_port_range[1] ||
152 *port_rover < sysctl_local_port_range[0])
153 *port_rover = sysctl_local_port_range[0];
154 best_size_so_far = 32767;
155 best = result = *port_rover;
156 for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
159 head = &udptable[result & (UDP_HTABLE_SIZE - 1)];
160 if (hlist_empty(head)) {
161 if (result > sysctl_local_port_range[1])
162 result = sysctl_local_port_range[0] +
163 ((result - sysctl_local_port_range[0]) &
164 (UDP_HTABLE_SIZE - 1));
168 sk_for_each(sk2, node, head) {
169 if (++size >= best_size_so_far)
172 best_size_so_far = size;
178 for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE;
179 i++, result += UDP_HTABLE_SIZE) {
180 if (result > sysctl_local_port_range[1])
181 result = sysctl_local_port_range[0]
182 + ((result - sysctl_local_port_range[0]) &
183 (UDP_HTABLE_SIZE - 1));
184 if (! __udp_lib_lport_inuse(result, udptable))
187 if (i >= (1 << 16) / UDP_HTABLE_SIZE)
190 *port_rover = snum = result;
192 head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
194 sk_for_each(sk2, node, head)
195 if (sk2->sk_hash == snum &&
197 (!sk2->sk_reuse || !sk->sk_reuse) &&
198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
199 || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 (*saddr_comp)(sk, sk2) )
203 inet_sk(sk)->num = snum;
205 if (sk_unhashed(sk)) {
206 head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
207 sk_add_node(sk, head);
208 sock_prot_inc_use(sk->sk_prot);
212 write_unlock_bh(&udp_hash_lock);
216 int udp_get_port(struct sock *sk, unsigned short snum,
217 int (*scmp)(const struct sock *, const struct sock *))
219 return __udp_lib_get_port(sk, snum, udp_hash, &udp_port_rover, scmp);
222 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
224 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
226 return ( !ipv6_only_sock(sk2) &&
227 (!inet1->rcv_saddr || !inet2->rcv_saddr ||
228 inet1->rcv_saddr == inet2->rcv_saddr ));
231 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
233 return udp_get_port(sk, snum, ipv4_rcv_saddr_equal);
236 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
237 * harder than this. -DaveM
239 static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport,
240 __be32 daddr, __be16 dport,
241 int dif, struct hlist_head udptable[])
243 struct sock *sk, *result = NULL;
244 struct hlist_node *node;
245 unsigned short hnum = ntohs(dport);
248 read_lock(&udp_hash_lock);
249 sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
250 struct inet_sock *inet = inet_sk(sk);
252 if (sk->sk_hash == hnum && !ipv6_only_sock(sk)) {
253 int score = (sk->sk_family == PF_INET ? 1 : 0);
254 if (inet->rcv_saddr) {
255 if (inet->rcv_saddr != daddr)
260 if (inet->daddr != saddr)
265 if (inet->dport != sport)
269 if (sk->sk_bound_dev_if) {
270 if (sk->sk_bound_dev_if != dif)
277 } else if (score > badness) {
285 read_unlock(&udp_hash_lock);
289 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
290 __be16 loc_port, __be32 loc_addr,
291 __be16 rmt_port, __be32 rmt_addr,
294 struct hlist_node *node;
296 unsigned short hnum = ntohs(loc_port);
298 sk_for_each_from(s, node) {
299 struct inet_sock *inet = inet_sk(s);
301 if (s->sk_hash != hnum ||
302 (inet->daddr && inet->daddr != rmt_addr) ||
303 (inet->dport != rmt_port && inet->dport) ||
304 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) ||
306 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
308 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
318 * This routine is called by the ICMP module when it gets some
319 * sort of error condition. If err < 0 then the socket should
320 * be closed and the error returned to the user. If err > 0
321 * it's just the icmp type << 8 | icmp code.
322 * Header points to the ip header of the error packet. We move
323 * on past this. Then (as it used to claim before adjustment)
324 * header points to the first 8 bytes of the udp header. We need
325 * to find the appropriate port.
328 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
330 struct inet_sock *inet;
331 struct iphdr *iph = (struct iphdr*)skb->data;
332 struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
333 const int type = icmp_hdr(skb)->type;
334 const int code = icmp_hdr(skb)->code;
339 sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source,
340 skb->dev->ifindex, udptable );
342 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
343 return; /* No socket for error */
352 case ICMP_TIME_EXCEEDED:
355 case ICMP_SOURCE_QUENCH:
357 case ICMP_PARAMETERPROB:
361 case ICMP_DEST_UNREACH:
362 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
363 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
371 if (code <= NR_ICMP_UNREACH) {
372 harderr = icmp_err_convert[code].fatal;
373 err = icmp_err_convert[code].errno;
379 * RFC1122: OK. Passes ICMP errors back to application, as per
382 if (!inet->recverr) {
383 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
386 ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
389 sk->sk_error_report(sk);
394 void udp_err(struct sk_buff *skb, u32 info)
396 return __udp4_lib_err(skb, info, udp_hash);
400 * Throw away all pending data and cancel the corking. Socket is locked.
402 static void udp_flush_pending_frames(struct sock *sk)
404 struct udp_sock *up = udp_sk(sk);
409 ip_flush_pending_frames(sk);
414 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
415 * @sk: socket we are sending on
416 * @skb: sk_buff containing the filled-in UDP header
417 * (checksum field must be zeroed out)
419 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
420 __be32 src, __be32 dst, int len )
423 struct udphdr *uh = udp_hdr(skb);
426 if (skb_queue_len(&sk->sk_write_queue) == 1) {
428 * Only one fragment on the socket.
430 skb->csum_start = skb_transport_header(skb) - skb->head;
431 skb->csum_offset = offsetof(struct udphdr, check);
432 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
435 * HW-checksum won't work as there are two or more
436 * fragments on the socket so that all csums of sk_buffs
439 offset = skb_transport_offset(skb);
440 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
442 skb->ip_summed = CHECKSUM_NONE;
444 skb_queue_walk(&sk->sk_write_queue, skb) {
445 csum = csum_add(csum, skb->csum);
448 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
450 uh->check = CSUM_MANGLED_0;
455 * Push out all pending data as one UDP datagram. Socket is locked.
457 static int udp_push_pending_frames(struct sock *sk)
459 struct udp_sock *up = udp_sk(sk);
460 struct inet_sock *inet = inet_sk(sk);
461 struct flowi *fl = &inet->cork.fl;
467 /* Grab the skbuff where UDP header space exists. */
468 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
472 * Create a UDP header
475 uh->source = fl->fl_ip_sport;
476 uh->dest = fl->fl_ip_dport;
477 uh->len = htons(up->len);
480 if (up->pcflag) /* UDP-Lite */
481 csum = udplite_csum_outgoing(sk, skb);
483 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
485 skb->ip_summed = CHECKSUM_NONE;
488 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
490 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
493 } else /* `normal' UDP */
494 csum = udp_csum_outgoing(sk, skb);
496 /* add protocol-dependent pseudo-header */
497 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
498 sk->sk_protocol, csum );
500 uh->check = CSUM_MANGLED_0;
503 err = ip_push_pending_frames(sk);
510 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
513 struct inet_sock *inet = inet_sk(sk);
514 struct udp_sock *up = udp_sk(sk);
516 struct ipcm_cookie ipc;
517 struct rtable *rt = NULL;
520 __be32 daddr, faddr, saddr;
523 int err, is_udplite = up->pcflag;
524 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
525 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
534 if (msg->msg_flags&MSG_OOB) /* Mirror BSD error message compatibility */
541 * There are pending frames.
542 * The socket lock must be held while it's corked.
545 if (likely(up->pending)) {
546 if (unlikely(up->pending != AF_INET)) {
554 ulen += sizeof(struct udphdr);
557 * Get and verify the address.
560 struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
561 if (msg->msg_namelen < sizeof(*usin))
563 if (usin->sin_family != AF_INET) {
564 if (usin->sin_family != AF_UNSPEC)
565 return -EAFNOSUPPORT;
568 daddr = usin->sin_addr.s_addr;
569 dport = usin->sin_port;
573 if (sk->sk_state != TCP_ESTABLISHED)
574 return -EDESTADDRREQ;
577 /* Open fast path for connected socket.
578 Route will not be used, if at least one option is set.
582 ipc.addr = inet->saddr;
584 ipc.oif = sk->sk_bound_dev_if;
585 if (msg->msg_controllen) {
586 err = ip_cmsg_send(msg, &ipc);
597 ipc.addr = faddr = daddr;
599 if (ipc.opt && ipc.opt->srr) {
602 faddr = ipc.opt->faddr;
605 tos = RT_TOS(inet->tos);
606 if (sock_flag(sk, SOCK_LOCALROUTE) ||
607 (msg->msg_flags & MSG_DONTROUTE) ||
608 (ipc.opt && ipc.opt->is_strictroute)) {
613 if (MULTICAST(daddr)) {
615 ipc.oif = inet->mc_index;
617 saddr = inet->mc_addr;
622 rt = (struct rtable*)sk_dst_check(sk, 0);
625 struct flowi fl = { .oif = ipc.oif,
630 .proto = sk->sk_protocol,
632 { .sport = inet->sport,
633 .dport = dport } } };
634 security_sk_classify_flow(sk, &fl);
635 err = ip_route_output_flow(&rt, &fl, sk, 1);
637 if (err == -ENETUNREACH)
638 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
643 if ((rt->rt_flags & RTCF_BROADCAST) &&
644 !sock_flag(sk, SOCK_BROADCAST))
647 sk_dst_set(sk, dst_clone(&rt->u.dst));
650 if (msg->msg_flags&MSG_CONFIRM)
656 daddr = ipc.addr = rt->rt_dst;
659 if (unlikely(up->pending)) {
660 /* The socket is already corked while preparing it. */
661 /* ... which is an evident application bug. --ANK */
664 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
669 * Now cork the socket to pend data.
671 inet->cork.fl.fl4_dst = daddr;
672 inet->cork.fl.fl_ip_dport = dport;
673 inet->cork.fl.fl4_src = saddr;
674 inet->cork.fl.fl_ip_sport = inet->sport;
675 up->pending = AF_INET;
679 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
680 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
681 sizeof(struct udphdr), &ipc, rt,
682 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
684 udp_flush_pending_frames(sk);
686 err = udp_push_pending_frames(sk);
687 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
696 UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
700 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
701 * ENOBUFS might not be good (it's not tunable per se), but otherwise
702 * we don't have a good statistic (IpOutDiscards but it can be too many
703 * things). We could add another new stat but at least for now that
704 * seems like overkill.
706 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
707 UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
712 dst_confirm(&rt->u.dst);
713 if (!(msg->msg_flags&MSG_PROBE) || len)
714 goto back_from_confirm;
719 int udp_sendpage(struct sock *sk, struct page *page, int offset,
720 size_t size, int flags)
722 struct udp_sock *up = udp_sk(sk);
726 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
728 /* Call udp_sendmsg to specify destination address which
729 * sendpage interface can't pass.
730 * This will succeed only when the socket is connected.
732 ret = udp_sendmsg(NULL, sk, &msg, 0);
739 if (unlikely(!up->pending)) {
742 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
746 ret = ip_append_page(sk, page, offset, size, flags);
747 if (ret == -EOPNOTSUPP) {
749 return sock_no_sendpage(sk->sk_socket, page, offset,
753 udp_flush_pending_frames(sk);
758 if (!(up->corkflag || (flags&MSG_MORE)))
759 ret = udp_push_pending_frames(sk);
768 * IOCTL requests applicable to the UDP protocol
771 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
776 int amount = atomic_read(&sk->sk_wmem_alloc);
777 return put_user(amount, (int __user *)arg);
783 unsigned long amount;
786 spin_lock_bh(&sk->sk_receive_queue.lock);
787 skb = skb_peek(&sk->sk_receive_queue);
790 * We will only return the amount
791 * of this packet since that is all
794 amount = skb->len - sizeof(struct udphdr);
796 spin_unlock_bh(&sk->sk_receive_queue.lock);
797 return put_user(amount, (int __user *)arg);
808 * This should be easy, if there is something there we
809 * return it, otherwise we block.
812 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
813 size_t len, int noblock, int flags, int *addr_len)
815 struct inet_sock *inet = inet_sk(sk);
816 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
818 unsigned int ulen, copied;
820 int is_udplite = IS_UDPLITE(sk);
823 * Check any passed addresses
826 *addr_len=sizeof(*sin);
828 if (flags & MSG_ERRQUEUE)
829 return ip_recv_error(sk, msg, len);
832 skb = skb_recv_datagram(sk, flags, noblock, &err);
836 ulen = skb->len - sizeof(struct udphdr);
840 else if (copied < ulen)
841 msg->msg_flags |= MSG_TRUNC;
844 * If checksum is needed at all, try to do it while copying the
845 * data. If the data is truncated, or if we only want a partial
846 * coverage checksum (UDP-Lite), do it before the copy.
849 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
850 if (udp_lib_checksum_complete(skb))
854 if (skb_csum_unnecessary(skb))
855 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
856 msg->msg_iov, copied );
858 err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
867 sock_recv_timestamp(msg, sk, skb);
869 /* Copy the address. */
872 sin->sin_family = AF_INET;
873 sin->sin_port = udp_hdr(skb)->source;
874 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
875 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
877 if (inet->cmsg_flags)
878 ip_cmsg_recv(msg, skb);
881 if (flags & MSG_TRUNC)
885 skb_free_datagram(sk, skb);
890 UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
892 skb_kill_datagram(sk, skb, flags);
900 int udp_disconnect(struct sock *sk, int flags)
902 struct inet_sock *inet = inet_sk(sk);
904 * 1003.1g - break association.
907 sk->sk_state = TCP_CLOSE;
910 sk->sk_bound_dev_if = 0;
911 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
912 inet_reset_saddr(sk);
914 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
915 sk->sk_prot->unhash(sk);
923 * 1 if the UDP system should process it
924 * 0 if we should drop this packet
925 * -1 if it should get processed by xfrm4_rcv_encap
927 static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
932 struct udp_sock *up = udp_sk(sk);
939 __u16 encap_type = up->encap_type;
941 /* if we're overly short, let UDP handle it */
942 len = skb->len - sizeof(struct udphdr);
946 /* if this is not encapsulated socket, then just return now */
950 /* If this is a paged skb, make sure we pull up
951 * whatever data we need to look at. */
952 if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
955 /* Now we can get the pointers */
957 udpdata = (__u8 *)uh + sizeof(struct udphdr);
958 udpdata32 = (__be32 *)udpdata;
960 switch (encap_type) {
962 case UDP_ENCAP_ESPINUDP:
963 /* Check if this is a keepalive packet. If so, eat it. */
964 if (len == 1 && udpdata[0] == 0xff) {
966 } else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
967 /* ESP Packet without Non-ESP header */
968 len = sizeof(struct udphdr);
970 /* Must be an IKE packet.. pass it through */
973 case UDP_ENCAP_ESPINUDP_NON_IKE:
974 /* Check if this is a keepalive packet. If so, eat it. */
975 if (len == 1 && udpdata[0] == 0xff) {
977 } else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
978 udpdata32[0] == 0 && udpdata32[1] == 0) {
980 /* ESP Packet with Non-IKE marker */
981 len = sizeof(struct udphdr) + 2 * sizeof(u32);
983 /* Must be an IKE packet.. pass it through */
988 /* At this point we are sure that this is an ESPinUDP packet,
989 * so we need to remove 'len' bytes from the packet (the UDP
990 * header and optional ESP marker bytes) and then modify the
991 * protocol to ESP, and then call into the transform receiver.
993 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
996 /* Now we can update and verify the packet length... */
998 iphlen = iph->ihl << 2;
999 iph->tot_len = htons(ntohs(iph->tot_len) - len);
1000 if (skb->len < iphlen + len) {
1001 /* packet is too small!?! */
1005 /* pull the data buffer up to the ESP header and set the
1006 * transport header to point to ESP. Keep UDP on the stack
1009 __skb_pull(skb, len);
1010 skb_reset_transport_header(skb);
1012 /* modify the protocol (it's ESP!) */
1013 iph->protocol = IPPROTO_ESP;
1015 /* and let the caller know to send this into the ESP processor... */
1023 * >0: "udp encap" protocol resubmission
1025 * Note that in the success and error cases, the skb is assumed to
1026 * have either been requeued or freed.
1028 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
1030 struct udp_sock *up = udp_sk(sk);
1034 * Charge it to the socket, dropping if the queue is full.
1036 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1040 if (up->encap_type) {
1042 * This is an encapsulation socket, so let's see if this is
1043 * an encapsulated packet.
1044 * If it's a keepalive packet, then just eat it.
1045 * If it's an encapsulateed packet, then pass it to the
1046 * IPsec xfrm input and return the response
1047 * appropriately. Otherwise, just fall through and
1048 * pass this up the UDP socket.
1052 ret = udp_encap_rcv(sk, skb);
1054 /* Eat the packet .. */
1059 /* process the ESP packet */
1060 ret = xfrm4_rcv_encap(skb, up->encap_type);
1061 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1064 /* FALLTHROUGH -- it's a UDP Packet */
1068 * UDP-Lite specific tests, ignored on UDP sockets
1070 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1073 * MIB statistics other than incrementing the error count are
1074 * disabled for the following two types of errors: these depend
1075 * on the application settings, not on the functioning of the
1076 * protocol stack as such.
1078 * RFC 3828 here recommends (sec 3.3): "There should also be a
1079 * way ... to ... at least let the receiving application block
1080 * delivery of packets with coverage values less than a value
1081 * provided by the application."
1083 if (up->pcrlen == 0) { /* full coverage was set */
1084 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1085 "%d while full coverage %d requested\n",
1086 UDP_SKB_CB(skb)->cscov, skb->len);
1089 /* The next case involves violating the min. coverage requested
1090 * by the receiver. This is subtle: if receiver wants x and x is
1091 * greater than the buffersize/MTU then receiver will complain
1092 * that it wants x while sender emits packets of smaller size y.
1093 * Therefore the above ...()->partial_cov statement is essential.
1095 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1096 LIMIT_NETDEBUG(KERN_WARNING
1097 "UDPLITE: coverage %d too small, need min %d\n",
1098 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1103 if (sk->sk_filter) {
1104 if (udp_lib_checksum_complete(skb))
1108 if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1109 /* Note that an ENOMEM error is charged twice */
1111 UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag);
1115 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1119 UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag);
1125 * Multicasts and broadcasts go to each listener.
1127 * Note: called only from the BH handler context,
1128 * so we don't need to lock the hashes.
1130 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1132 __be32 saddr, __be32 daddr,
1133 struct hlist_head udptable[])
1138 read_lock(&udp_hash_lock);
1139 sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1140 dif = skb->dev->ifindex;
1141 sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1143 struct sock *sknext = NULL;
1146 struct sk_buff *skb1 = skb;
1148 sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1149 uh->source, saddr, dif);
1151 skb1 = skb_clone(skb, GFP_ATOMIC);
1154 int ret = udp_queue_rcv_skb(sk, skb1);
1156 /* we should probably re-process instead
1157 * of dropping packets here. */
1164 read_unlock(&udp_hash_lock);
1168 /* Initialize UDP checksum. If exited with zero value (success),
1169 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1170 * Otherwise, csum completion requires chacksumming packet body,
1171 * including udp header and folding it to skb->csum.
1173 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1176 const struct iphdr *iph;
1179 UDP_SKB_CB(skb)->partial_cov = 0;
1180 UDP_SKB_CB(skb)->cscov = skb->len;
1182 if (proto == IPPROTO_UDPLITE) {
1183 err = udplite_checksum_init(skb, uh);
1189 if (uh->check == 0) {
1190 skb->ip_summed = CHECKSUM_UNNECESSARY;
1191 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1192 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1194 skb->ip_summed = CHECKSUM_UNNECESSARY;
1196 if (!skb_csum_unnecessary(skb))
1197 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1198 skb->len, proto, 0);
1199 /* Probably, we should checksum udp header (it should be in cache
1200 * in any case) and data in tiny packets (< rx copybreak).
1207 * All we need to do is get the socket, and then do a checksum.
1210 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1214 struct udphdr *uh = udp_hdr(skb);
1215 unsigned short ulen;
1216 struct rtable *rt = (struct rtable*)skb->dst;
1217 __be32 saddr = ip_hdr(skb)->saddr;
1218 __be32 daddr = ip_hdr(skb)->daddr;
1221 * Validate the packet.
1223 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1224 goto drop; /* No space for header. */
1226 ulen = ntohs(uh->len);
1227 if (ulen > skb->len)
1230 if (proto == IPPROTO_UDP) {
1231 /* UDP validates ulen. */
1232 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1237 if (udp4_csum_init(skb, uh, proto))
1240 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1241 return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1243 sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
1244 skb->dev->ifindex, udptable );
1247 int ret = udp_queue_rcv_skb(sk, skb);
1250 /* a return value > 0 means to resubmit the input, but
1251 * it wants the return to be -protocol, or 0
1258 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1262 /* No socket. Drop packet silently, if checksum is wrong */
1263 if (udp_lib_checksum_complete(skb))
1266 UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1267 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1270 * Hmm. We got an UDP packet to a port to which we
1271 * don't wanna listen. Ignore it.
1277 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1278 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1289 * RFC1122: OK. Discards the bad packet silently (as far as
1290 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1292 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1293 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1300 UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1305 int udp_rcv(struct sk_buff *skb)
1307 return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1310 int udp_destroy_sock(struct sock *sk)
1313 udp_flush_pending_frames(sk);
1319 * Socket option code for UDP
1321 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1322 char __user *optval, int optlen,
1323 int (*push_pending_frames)(struct sock *))
1325 struct udp_sock *up = udp_sk(sk);
1329 if (optlen<sizeof(int))
1332 if (get_user(val, (int __user *)optval))
1342 (*push_pending_frames)(sk);
1350 case UDP_ENCAP_ESPINUDP:
1351 case UDP_ENCAP_ESPINUDP_NON_IKE:
1352 up->encap_type = val;
1361 * UDP-Lite's partial checksum coverage (RFC 3828).
1363 /* The sender sets actual checksum coverage length via this option.
1364 * The case coverage > packet length is handled by send module. */
1365 case UDPLITE_SEND_CSCOV:
1366 if (!up->pcflag) /* Disable the option on UDP sockets */
1367 return -ENOPROTOOPT;
1368 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1371 up->pcflag |= UDPLITE_SEND_CC;
1374 /* The receiver specifies a minimum checksum coverage value. To make
1375 * sense, this should be set to at least 8 (as done below). If zero is
1376 * used, this again means full checksum coverage. */
1377 case UDPLITE_RECV_CSCOV:
1378 if (!up->pcflag) /* Disable the option on UDP sockets */
1379 return -ENOPROTOOPT;
1380 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1383 up->pcflag |= UDPLITE_RECV_CC;
1394 int udp_setsockopt(struct sock *sk, int level, int optname,
1395 char __user *optval, int optlen)
1397 if (level == SOL_UDP || level == SOL_UDPLITE)
1398 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1399 udp_push_pending_frames);
1400 return ip_setsockopt(sk, level, optname, optval, optlen);
1403 #ifdef CONFIG_COMPAT
1404 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1405 char __user *optval, int optlen)
1407 if (level == SOL_UDP || level == SOL_UDPLITE)
1408 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1409 udp_push_pending_frames);
1410 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1414 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1415 char __user *optval, int __user *optlen)
1417 struct udp_sock *up = udp_sk(sk);
1420 if (get_user(len,optlen))
1423 len = min_t(unsigned int, len, sizeof(int));
1434 val = up->encap_type;
1437 /* The following two cannot be changed on UDP sockets, the return is
1438 * always 0 (which corresponds to the full checksum coverage of UDP). */
1439 case UDPLITE_SEND_CSCOV:
1443 case UDPLITE_RECV_CSCOV:
1448 return -ENOPROTOOPT;
1451 if (put_user(len, optlen))
1453 if (copy_to_user(optval, &val,len))
1458 int udp_getsockopt(struct sock *sk, int level, int optname,
1459 char __user *optval, int __user *optlen)
1461 if (level == SOL_UDP || level == SOL_UDPLITE)
1462 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1463 return ip_getsockopt(sk, level, optname, optval, optlen);
1466 #ifdef CONFIG_COMPAT
1467 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1468 char __user *optval, int __user *optlen)
1470 if (level == SOL_UDP || level == SOL_UDPLITE)
1471 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1472 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1476 * udp_poll - wait for a UDP event.
1477 * @file - file struct
1479 * @wait - poll table
1481 * This is same as datagram poll, except for the special case of
1482 * blocking sockets. If application is using a blocking fd
1483 * and a packet with checksum error is in the queue;
1484 * then it could get return from select indicating data available
1485 * but then block when reading it. Add special case code
1486 * to work around these arguably broken applications.
1488 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1490 unsigned int mask = datagram_poll(file, sock, wait);
1491 struct sock *sk = sock->sk;
1492 int is_lite = IS_UDPLITE(sk);
1494 /* Check for false positives due to checksum errors */
1495 if ( (mask & POLLRDNORM) &&
1496 !(file->f_flags & O_NONBLOCK) &&
1497 !(sk->sk_shutdown & RCV_SHUTDOWN)){
1498 struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1499 struct sk_buff *skb;
1501 spin_lock_bh(&rcvq->lock);
1502 while ((skb = skb_peek(rcvq)) != NULL &&
1503 udp_lib_checksum_complete(skb)) {
1504 UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1505 __skb_unlink(skb, rcvq);
1508 spin_unlock_bh(&rcvq->lock);
1510 /* nothing to see, move along */
1512 mask &= ~(POLLIN | POLLRDNORM);
1519 struct proto udp_prot = {
1521 .owner = THIS_MODULE,
1522 .close = udp_lib_close,
1523 .connect = ip4_datagram_connect,
1524 .disconnect = udp_disconnect,
1526 .destroy = udp_destroy_sock,
1527 .setsockopt = udp_setsockopt,
1528 .getsockopt = udp_getsockopt,
1529 .sendmsg = udp_sendmsg,
1530 .recvmsg = udp_recvmsg,
1531 .sendpage = udp_sendpage,
1532 .backlog_rcv = udp_queue_rcv_skb,
1533 .hash = udp_lib_hash,
1534 .unhash = udp_lib_unhash,
1535 .get_port = udp_v4_get_port,
1536 .obj_size = sizeof(struct udp_sock),
1537 #ifdef CONFIG_COMPAT
1538 .compat_setsockopt = compat_udp_setsockopt,
1539 .compat_getsockopt = compat_udp_getsockopt,
1543 /* ------------------------------------------------------------------------ */
1544 #ifdef CONFIG_PROC_FS
1546 static struct sock *udp_get_first(struct seq_file *seq)
1549 struct udp_iter_state *state = seq->private;
1551 for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1552 struct hlist_node *node;
1553 sk_for_each(sk, node, state->hashtable + state->bucket) {
1554 if (sk->sk_family == state->family)
1563 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1565 struct udp_iter_state *state = seq->private;
1571 } while (sk && sk->sk_family != state->family);
1573 if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1574 sk = sk_head(state->hashtable + state->bucket);
1580 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1582 struct sock *sk = udp_get_first(seq);
1585 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1587 return pos ? NULL : sk;
1590 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1592 read_lock(&udp_hash_lock);
1593 return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1596 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1601 sk = udp_get_idx(seq, 0);
1603 sk = udp_get_next(seq, v);
1609 static void udp_seq_stop(struct seq_file *seq, void *v)
1611 read_unlock(&udp_hash_lock);
1614 static int udp_seq_open(struct inode *inode, struct file *file)
1616 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1617 struct seq_file *seq;
1619 struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1623 s->family = afinfo->family;
1624 s->hashtable = afinfo->hashtable;
1625 s->seq_ops.start = udp_seq_start;
1626 s->seq_ops.next = udp_seq_next;
1627 s->seq_ops.show = afinfo->seq_show;
1628 s->seq_ops.stop = udp_seq_stop;
1630 rc = seq_open(file, &s->seq_ops);
1634 seq = file->private_data;
1643 /* ------------------------------------------------------------------------ */
1644 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1646 struct proc_dir_entry *p;
1651 afinfo->seq_fops->owner = afinfo->owner;
1652 afinfo->seq_fops->open = udp_seq_open;
1653 afinfo->seq_fops->read = seq_read;
1654 afinfo->seq_fops->llseek = seq_lseek;
1655 afinfo->seq_fops->release = seq_release_private;
1657 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1665 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1669 proc_net_remove(afinfo->name);
1670 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1673 /* ------------------------------------------------------------------------ */
1674 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1676 struct inet_sock *inet = inet_sk(sp);
1677 __be32 dest = inet->daddr;
1678 __be32 src = inet->rcv_saddr;
1679 __u16 destp = ntohs(inet->dport);
1680 __u16 srcp = ntohs(inet->sport);
1682 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1683 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1684 bucket, src, srcp, dest, destp, sp->sk_state,
1685 atomic_read(&sp->sk_wmem_alloc),
1686 atomic_read(&sp->sk_rmem_alloc),
1687 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1688 atomic_read(&sp->sk_refcnt), sp);
1691 int udp4_seq_show(struct seq_file *seq, void *v)
1693 if (v == SEQ_START_TOKEN)
1694 seq_printf(seq, "%-127s\n",
1695 " sl local_address rem_address st tx_queue "
1696 "rx_queue tr tm->when retrnsmt uid timeout "
1700 struct udp_iter_state *state = seq->private;
1702 udp4_format_sock(v, tmpbuf, state->bucket);
1703 seq_printf(seq, "%-127s\n", tmpbuf);
1708 /* ------------------------------------------------------------------------ */
1709 static struct file_operations udp4_seq_fops;
1710 static struct udp_seq_afinfo udp4_seq_afinfo = {
1711 .owner = THIS_MODULE,
1714 .hashtable = udp_hash,
1715 .seq_show = udp4_seq_show,
1716 .seq_fops = &udp4_seq_fops,
1719 int __init udp4_proc_init(void)
1721 return udp_proc_register(&udp4_seq_afinfo);
1724 void udp4_proc_exit(void)
1726 udp_proc_unregister(&udp4_seq_afinfo);
1728 #endif /* CONFIG_PROC_FS */
1730 EXPORT_SYMBOL(udp_disconnect);
1731 EXPORT_SYMBOL(udp_hash);
1732 EXPORT_SYMBOL(udp_hash_lock);
1733 EXPORT_SYMBOL(udp_ioctl);
1734 EXPORT_SYMBOL(udp_get_port);
1735 EXPORT_SYMBOL(udp_prot);
1736 EXPORT_SYMBOL(udp_sendmsg);
1737 EXPORT_SYMBOL(udp_lib_getsockopt);
1738 EXPORT_SYMBOL(udp_lib_setsockopt);
1739 EXPORT_SYMBOL(udp_poll);
1741 #ifdef CONFIG_PROC_FS
1742 EXPORT_SYMBOL(udp_proc_register);
1743 EXPORT_SYMBOL(udp_proc_unregister);