tracing/filters: fix NULL pointer dereference
[linux-2.6] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34         /* verify the security_operations structure exists */
35         if (!ops)
36                 return -EINVAL;
37         security_fixup_ops(ops);
38         return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43         initcall_t *call;
44         call = __security_initcall_start;
45         while (call < __security_initcall_end) {
46                 (*call) ();
47                 call++;
48         }
49 }
50
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58         printk(KERN_INFO "Security Framework initialized\n");
59
60         security_fixup_ops(&default_security_ops);
61         security_ops = &default_security_ops;
62         do_security_initcalls();
63
64         return 0;
65 }
66
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71         return 1;
72 }
73 __setup("security=", choose_lsm);
74
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *      -The passed LSM is the one chosen by user at boot time,
85  *      -or user didn't specify a specific LSM and we're the first to ask
86  *       for registration permission,
87  *      -or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92         if (!*chosen_lsm)
93                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95                 return 0;
96
97         return 1;
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_may_access(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(int cap)
158 {
159         return security_ops->capable(current, current_cred(), cap,
160                                      SECURITY_CAP_AUDIT);
161 }
162
163 int security_real_capable(struct task_struct *tsk, int cap)
164 {
165         const struct cred *cred;
166         int ret;
167
168         cred = get_task_cred(tsk);
169         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
170         put_cred(cred);
171         return ret;
172 }
173
174 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
175 {
176         const struct cred *cred;
177         int ret;
178
179         cred = get_task_cred(tsk);
180         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
181         put_cred(cred);
182         return ret;
183 }
184
185 int security_acct(struct file *file)
186 {
187         return security_ops->acct(file);
188 }
189
190 int security_sysctl(struct ctl_table *table, int op)
191 {
192         return security_ops->sysctl(table, op);
193 }
194
195 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
196 {
197         return security_ops->quotactl(cmds, type, id, sb);
198 }
199
200 int security_quota_on(struct dentry *dentry)
201 {
202         return security_ops->quota_on(dentry);
203 }
204
205 int security_syslog(int type)
206 {
207         return security_ops->syslog(type);
208 }
209
210 int security_settime(struct timespec *ts, struct timezone *tz)
211 {
212         return security_ops->settime(ts, tz);
213 }
214
215 int security_vm_enough_memory(long pages)
216 {
217         WARN_ON(current->mm == NULL);
218         return security_ops->vm_enough_memory(current->mm, pages);
219 }
220
221 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
222 {
223         WARN_ON(mm == NULL);
224         return security_ops->vm_enough_memory(mm, pages);
225 }
226
227 int security_vm_enough_memory_kern(long pages)
228 {
229         /* If current->mm is a kernel thread then we will pass NULL,
230            for this specific case that is fine */
231         return security_ops->vm_enough_memory(current->mm, pages);
232 }
233
234 int security_bprm_set_creds(struct linux_binprm *bprm)
235 {
236         return security_ops->bprm_set_creds(bprm);
237 }
238
239 int security_bprm_check(struct linux_binprm *bprm)
240 {
241         return security_ops->bprm_check_security(bprm);
242 }
243
244 void security_bprm_committing_creds(struct linux_binprm *bprm)
245 {
246         security_ops->bprm_committing_creds(bprm);
247 }
248
249 void security_bprm_committed_creds(struct linux_binprm *bprm)
250 {
251         security_ops->bprm_committed_creds(bprm);
252 }
253
254 int security_bprm_secureexec(struct linux_binprm *bprm)
255 {
256         return security_ops->bprm_secureexec(bprm);
257 }
258
259 int security_sb_alloc(struct super_block *sb)
260 {
261         return security_ops->sb_alloc_security(sb);
262 }
263
264 void security_sb_free(struct super_block *sb)
265 {
266         security_ops->sb_free_security(sb);
267 }
268
269 int security_sb_copy_data(char *orig, char *copy)
270 {
271         return security_ops->sb_copy_data(orig, copy);
272 }
273 EXPORT_SYMBOL(security_sb_copy_data);
274
275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
276 {
277         return security_ops->sb_kern_mount(sb, flags, data);
278 }
279
280 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
281 {
282         return security_ops->sb_show_options(m, sb);
283 }
284
285 int security_sb_statfs(struct dentry *dentry)
286 {
287         return security_ops->sb_statfs(dentry);
288 }
289
290 int security_sb_mount(char *dev_name, struct path *path,
291                        char *type, unsigned long flags, void *data)
292 {
293         return security_ops->sb_mount(dev_name, path, type, flags, data);
294 }
295
296 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
297 {
298         return security_ops->sb_check_sb(mnt, path);
299 }
300
301 int security_sb_umount(struct vfsmount *mnt, int flags)
302 {
303         return security_ops->sb_umount(mnt, flags);
304 }
305
306 void security_sb_umount_close(struct vfsmount *mnt)
307 {
308         security_ops->sb_umount_close(mnt);
309 }
310
311 void security_sb_umount_busy(struct vfsmount *mnt)
312 {
313         security_ops->sb_umount_busy(mnt);
314 }
315
316 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
317 {
318         security_ops->sb_post_remount(mnt, flags, data);
319 }
320
321 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
322 {
323         security_ops->sb_post_addmount(mnt, mountpoint);
324 }
325
326 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
327 {
328         return security_ops->sb_pivotroot(old_path, new_path);
329 }
330
331 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
332 {
333         security_ops->sb_post_pivotroot(old_path, new_path);
334 }
335
336 int security_sb_set_mnt_opts(struct super_block *sb,
337                                 struct security_mnt_opts *opts)
338 {
339         return security_ops->sb_set_mnt_opts(sb, opts);
340 }
341 EXPORT_SYMBOL(security_sb_set_mnt_opts);
342
343 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
344                                 struct super_block *newsb)
345 {
346         security_ops->sb_clone_mnt_opts(oldsb, newsb);
347 }
348 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
349
350 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
351 {
352         return security_ops->sb_parse_opts_str(options, opts);
353 }
354 EXPORT_SYMBOL(security_sb_parse_opts_str);
355
356 int security_inode_alloc(struct inode *inode)
357 {
358         inode->i_security = NULL;
359         return security_ops->inode_alloc_security(inode);
360 }
361
362 void security_inode_free(struct inode *inode)
363 {
364         security_ops->inode_free_security(inode);
365 }
366
367 int security_inode_init_security(struct inode *inode, struct inode *dir,
368                                   char **name, void **value, size_t *len)
369 {
370         if (unlikely(IS_PRIVATE(inode)))
371                 return -EOPNOTSUPP;
372         return security_ops->inode_init_security(inode, dir, name, value, len);
373 }
374 EXPORT_SYMBOL(security_inode_init_security);
375
376 #ifdef CONFIG_SECURITY_PATH
377 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
378                         unsigned int dev)
379 {
380         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
381                 return 0;
382         return security_ops->path_mknod(path, dentry, mode, dev);
383 }
384 EXPORT_SYMBOL(security_path_mknod);
385
386 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
387 {
388         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
389                 return 0;
390         return security_ops->path_mkdir(path, dentry, mode);
391 }
392
393 int security_path_rmdir(struct path *path, struct dentry *dentry)
394 {
395         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
396                 return 0;
397         return security_ops->path_rmdir(path, dentry);
398 }
399
400 int security_path_unlink(struct path *path, struct dentry *dentry)
401 {
402         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
403                 return 0;
404         return security_ops->path_unlink(path, dentry);
405 }
406
407 int security_path_symlink(struct path *path, struct dentry *dentry,
408                           const char *old_name)
409 {
410         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
411                 return 0;
412         return security_ops->path_symlink(path, dentry, old_name);
413 }
414
415 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
416                        struct dentry *new_dentry)
417 {
418         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
419                 return 0;
420         return security_ops->path_link(old_dentry, new_dir, new_dentry);
421 }
422
423 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
424                          struct path *new_dir, struct dentry *new_dentry)
425 {
426         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
427                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
428                 return 0;
429         return security_ops->path_rename(old_dir, old_dentry, new_dir,
430                                          new_dentry);
431 }
432
433 int security_path_truncate(struct path *path, loff_t length,
434                            unsigned int time_attrs)
435 {
436         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
437                 return 0;
438         return security_ops->path_truncate(path, length, time_attrs);
439 }
440 #endif
441
442 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
443 {
444         if (unlikely(IS_PRIVATE(dir)))
445                 return 0;
446         return security_ops->inode_create(dir, dentry, mode);
447 }
448 EXPORT_SYMBOL_GPL(security_inode_create);
449
450 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
451                          struct dentry *new_dentry)
452 {
453         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
454                 return 0;
455         return security_ops->inode_link(old_dentry, dir, new_dentry);
456 }
457
458 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
459 {
460         if (unlikely(IS_PRIVATE(dentry->d_inode)))
461                 return 0;
462         return security_ops->inode_unlink(dir, dentry);
463 }
464
465 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
466                             const char *old_name)
467 {
468         if (unlikely(IS_PRIVATE(dir)))
469                 return 0;
470         return security_ops->inode_symlink(dir, dentry, old_name);
471 }
472
473 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
474 {
475         if (unlikely(IS_PRIVATE(dir)))
476                 return 0;
477         return security_ops->inode_mkdir(dir, dentry, mode);
478 }
479 EXPORT_SYMBOL_GPL(security_inode_mkdir);
480
481 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
482 {
483         if (unlikely(IS_PRIVATE(dentry->d_inode)))
484                 return 0;
485         return security_ops->inode_rmdir(dir, dentry);
486 }
487
488 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
489 {
490         if (unlikely(IS_PRIVATE(dir)))
491                 return 0;
492         return security_ops->inode_mknod(dir, dentry, mode, dev);
493 }
494
495 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
496                            struct inode *new_dir, struct dentry *new_dentry)
497 {
498         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
499             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
500                 return 0;
501         return security_ops->inode_rename(old_dir, old_dentry,
502                                            new_dir, new_dentry);
503 }
504
505 int security_inode_readlink(struct dentry *dentry)
506 {
507         if (unlikely(IS_PRIVATE(dentry->d_inode)))
508                 return 0;
509         return security_ops->inode_readlink(dentry);
510 }
511
512 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
513 {
514         if (unlikely(IS_PRIVATE(dentry->d_inode)))
515                 return 0;
516         return security_ops->inode_follow_link(dentry, nd);
517 }
518
519 int security_inode_permission(struct inode *inode, int mask)
520 {
521         if (unlikely(IS_PRIVATE(inode)))
522                 return 0;
523         return security_ops->inode_permission(inode, mask);
524 }
525
526 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
527 {
528         if (unlikely(IS_PRIVATE(dentry->d_inode)))
529                 return 0;
530         return security_ops->inode_setattr(dentry, attr);
531 }
532 EXPORT_SYMBOL_GPL(security_inode_setattr);
533
534 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
535 {
536         if (unlikely(IS_PRIVATE(dentry->d_inode)))
537                 return 0;
538         return security_ops->inode_getattr(mnt, dentry);
539 }
540
541 void security_inode_delete(struct inode *inode)
542 {
543         if (unlikely(IS_PRIVATE(inode)))
544                 return;
545         security_ops->inode_delete(inode);
546 }
547
548 int security_inode_setxattr(struct dentry *dentry, const char *name,
549                             const void *value, size_t size, int flags)
550 {
551         if (unlikely(IS_PRIVATE(dentry->d_inode)))
552                 return 0;
553         return security_ops->inode_setxattr(dentry, name, value, size, flags);
554 }
555
556 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
557                                   const void *value, size_t size, int flags)
558 {
559         if (unlikely(IS_PRIVATE(dentry->d_inode)))
560                 return;
561         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
562 }
563
564 int security_inode_getxattr(struct dentry *dentry, const char *name)
565 {
566         if (unlikely(IS_PRIVATE(dentry->d_inode)))
567                 return 0;
568         return security_ops->inode_getxattr(dentry, name);
569 }
570
571 int security_inode_listxattr(struct dentry *dentry)
572 {
573         if (unlikely(IS_PRIVATE(dentry->d_inode)))
574                 return 0;
575         return security_ops->inode_listxattr(dentry);
576 }
577
578 int security_inode_removexattr(struct dentry *dentry, const char *name)
579 {
580         if (unlikely(IS_PRIVATE(dentry->d_inode)))
581                 return 0;
582         return security_ops->inode_removexattr(dentry, name);
583 }
584
585 int security_inode_need_killpriv(struct dentry *dentry)
586 {
587         return security_ops->inode_need_killpriv(dentry);
588 }
589
590 int security_inode_killpriv(struct dentry *dentry)
591 {
592         return security_ops->inode_killpriv(dentry);
593 }
594
595 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
596 {
597         if (unlikely(IS_PRIVATE(inode)))
598                 return 0;
599         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
600 }
601
602 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
603 {
604         if (unlikely(IS_PRIVATE(inode)))
605                 return 0;
606         return security_ops->inode_setsecurity(inode, name, value, size, flags);
607 }
608
609 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
610 {
611         if (unlikely(IS_PRIVATE(inode)))
612                 return 0;
613         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
614 }
615
616 void security_inode_getsecid(const struct inode *inode, u32 *secid)
617 {
618         security_ops->inode_getsecid(inode, secid);
619 }
620
621 int security_file_permission(struct file *file, int mask)
622 {
623         return security_ops->file_permission(file, mask);
624 }
625
626 int security_file_alloc(struct file *file)
627 {
628         return security_ops->file_alloc_security(file);
629 }
630
631 void security_file_free(struct file *file)
632 {
633         security_ops->file_free_security(file);
634 }
635
636 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
637 {
638         return security_ops->file_ioctl(file, cmd, arg);
639 }
640
641 int security_file_mmap(struct file *file, unsigned long reqprot,
642                         unsigned long prot, unsigned long flags,
643                         unsigned long addr, unsigned long addr_only)
644 {
645         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
646 }
647
648 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
649                             unsigned long prot)
650 {
651         return security_ops->file_mprotect(vma, reqprot, prot);
652 }
653
654 int security_file_lock(struct file *file, unsigned int cmd)
655 {
656         return security_ops->file_lock(file, cmd);
657 }
658
659 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
660 {
661         return security_ops->file_fcntl(file, cmd, arg);
662 }
663
664 int security_file_set_fowner(struct file *file)
665 {
666         return security_ops->file_set_fowner(file);
667 }
668
669 int security_file_send_sigiotask(struct task_struct *tsk,
670                                   struct fown_struct *fown, int sig)
671 {
672         return security_ops->file_send_sigiotask(tsk, fown, sig);
673 }
674
675 int security_file_receive(struct file *file)
676 {
677         return security_ops->file_receive(file);
678 }
679
680 int security_dentry_open(struct file *file, const struct cred *cred)
681 {
682         return security_ops->dentry_open(file, cred);
683 }
684
685 int security_task_create(unsigned long clone_flags)
686 {
687         return security_ops->task_create(clone_flags);
688 }
689
690 void security_cred_free(struct cred *cred)
691 {
692         security_ops->cred_free(cred);
693 }
694
695 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
696 {
697         return security_ops->cred_prepare(new, old, gfp);
698 }
699
700 void security_commit_creds(struct cred *new, const struct cred *old)
701 {
702         security_ops->cred_commit(new, old);
703 }
704
705 int security_kernel_act_as(struct cred *new, u32 secid)
706 {
707         return security_ops->kernel_act_as(new, secid);
708 }
709
710 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
711 {
712         return security_ops->kernel_create_files_as(new, inode);
713 }
714
715 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
716 {
717         return security_ops->task_setuid(id0, id1, id2, flags);
718 }
719
720 int security_task_fix_setuid(struct cred *new, const struct cred *old,
721                              int flags)
722 {
723         return security_ops->task_fix_setuid(new, old, flags);
724 }
725
726 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
727 {
728         return security_ops->task_setgid(id0, id1, id2, flags);
729 }
730
731 int security_task_setpgid(struct task_struct *p, pid_t pgid)
732 {
733         return security_ops->task_setpgid(p, pgid);
734 }
735
736 int security_task_getpgid(struct task_struct *p)
737 {
738         return security_ops->task_getpgid(p);
739 }
740
741 int security_task_getsid(struct task_struct *p)
742 {
743         return security_ops->task_getsid(p);
744 }
745
746 void security_task_getsecid(struct task_struct *p, u32 *secid)
747 {
748         security_ops->task_getsecid(p, secid);
749 }
750 EXPORT_SYMBOL(security_task_getsecid);
751
752 int security_task_setgroups(struct group_info *group_info)
753 {
754         return security_ops->task_setgroups(group_info);
755 }
756
757 int security_task_setnice(struct task_struct *p, int nice)
758 {
759         return security_ops->task_setnice(p, nice);
760 }
761
762 int security_task_setioprio(struct task_struct *p, int ioprio)
763 {
764         return security_ops->task_setioprio(p, ioprio);
765 }
766
767 int security_task_getioprio(struct task_struct *p)
768 {
769         return security_ops->task_getioprio(p);
770 }
771
772 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
773 {
774         return security_ops->task_setrlimit(resource, new_rlim);
775 }
776
777 int security_task_setscheduler(struct task_struct *p,
778                                 int policy, struct sched_param *lp)
779 {
780         return security_ops->task_setscheduler(p, policy, lp);
781 }
782
783 int security_task_getscheduler(struct task_struct *p)
784 {
785         return security_ops->task_getscheduler(p);
786 }
787
788 int security_task_movememory(struct task_struct *p)
789 {
790         return security_ops->task_movememory(p);
791 }
792
793 int security_task_kill(struct task_struct *p, struct siginfo *info,
794                         int sig, u32 secid)
795 {
796         return security_ops->task_kill(p, info, sig, secid);
797 }
798
799 int security_task_wait(struct task_struct *p)
800 {
801         return security_ops->task_wait(p);
802 }
803
804 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
805                          unsigned long arg4, unsigned long arg5)
806 {
807         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
808 }
809
810 void security_task_to_inode(struct task_struct *p, struct inode *inode)
811 {
812         security_ops->task_to_inode(p, inode);
813 }
814
815 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
816 {
817         return security_ops->ipc_permission(ipcp, flag);
818 }
819
820 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
821 {
822         security_ops->ipc_getsecid(ipcp, secid);
823 }
824
825 int security_msg_msg_alloc(struct msg_msg *msg)
826 {
827         return security_ops->msg_msg_alloc_security(msg);
828 }
829
830 void security_msg_msg_free(struct msg_msg *msg)
831 {
832         security_ops->msg_msg_free_security(msg);
833 }
834
835 int security_msg_queue_alloc(struct msg_queue *msq)
836 {
837         return security_ops->msg_queue_alloc_security(msq);
838 }
839
840 void security_msg_queue_free(struct msg_queue *msq)
841 {
842         security_ops->msg_queue_free_security(msq);
843 }
844
845 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
846 {
847         return security_ops->msg_queue_associate(msq, msqflg);
848 }
849
850 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
851 {
852         return security_ops->msg_queue_msgctl(msq, cmd);
853 }
854
855 int security_msg_queue_msgsnd(struct msg_queue *msq,
856                                struct msg_msg *msg, int msqflg)
857 {
858         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
859 }
860
861 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
862                                struct task_struct *target, long type, int mode)
863 {
864         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
865 }
866
867 int security_shm_alloc(struct shmid_kernel *shp)
868 {
869         return security_ops->shm_alloc_security(shp);
870 }
871
872 void security_shm_free(struct shmid_kernel *shp)
873 {
874         security_ops->shm_free_security(shp);
875 }
876
877 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
878 {
879         return security_ops->shm_associate(shp, shmflg);
880 }
881
882 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
883 {
884         return security_ops->shm_shmctl(shp, cmd);
885 }
886
887 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
888 {
889         return security_ops->shm_shmat(shp, shmaddr, shmflg);
890 }
891
892 int security_sem_alloc(struct sem_array *sma)
893 {
894         return security_ops->sem_alloc_security(sma);
895 }
896
897 void security_sem_free(struct sem_array *sma)
898 {
899         security_ops->sem_free_security(sma);
900 }
901
902 int security_sem_associate(struct sem_array *sma, int semflg)
903 {
904         return security_ops->sem_associate(sma, semflg);
905 }
906
907 int security_sem_semctl(struct sem_array *sma, int cmd)
908 {
909         return security_ops->sem_semctl(sma, cmd);
910 }
911
912 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
913                         unsigned nsops, int alter)
914 {
915         return security_ops->sem_semop(sma, sops, nsops, alter);
916 }
917
918 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
919 {
920         if (unlikely(inode && IS_PRIVATE(inode)))
921                 return;
922         security_ops->d_instantiate(dentry, inode);
923 }
924 EXPORT_SYMBOL(security_d_instantiate);
925
926 int security_getprocattr(struct task_struct *p, char *name, char **value)
927 {
928         return security_ops->getprocattr(p, name, value);
929 }
930
931 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
932 {
933         return security_ops->setprocattr(p, name, value, size);
934 }
935
936 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
937 {
938         return security_ops->netlink_send(sk, skb);
939 }
940
941 int security_netlink_recv(struct sk_buff *skb, int cap)
942 {
943         return security_ops->netlink_recv(skb, cap);
944 }
945 EXPORT_SYMBOL(security_netlink_recv);
946
947 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
948 {
949         return security_ops->secid_to_secctx(secid, secdata, seclen);
950 }
951 EXPORT_SYMBOL(security_secid_to_secctx);
952
953 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
954 {
955         return security_ops->secctx_to_secid(secdata, seclen, secid);
956 }
957 EXPORT_SYMBOL(security_secctx_to_secid);
958
959 void security_release_secctx(char *secdata, u32 seclen)
960 {
961         security_ops->release_secctx(secdata, seclen);
962 }
963 EXPORT_SYMBOL(security_release_secctx);
964
965 #ifdef CONFIG_SECURITY_NETWORK
966
967 int security_unix_stream_connect(struct socket *sock, struct socket *other,
968                                  struct sock *newsk)
969 {
970         return security_ops->unix_stream_connect(sock, other, newsk);
971 }
972 EXPORT_SYMBOL(security_unix_stream_connect);
973
974 int security_unix_may_send(struct socket *sock,  struct socket *other)
975 {
976         return security_ops->unix_may_send(sock, other);
977 }
978 EXPORT_SYMBOL(security_unix_may_send);
979
980 int security_socket_create(int family, int type, int protocol, int kern)
981 {
982         return security_ops->socket_create(family, type, protocol, kern);
983 }
984
985 int security_socket_post_create(struct socket *sock, int family,
986                                 int type, int protocol, int kern)
987 {
988         return security_ops->socket_post_create(sock, family, type,
989                                                 protocol, kern);
990 }
991
992 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
993 {
994         return security_ops->socket_bind(sock, address, addrlen);
995 }
996
997 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
998 {
999         return security_ops->socket_connect(sock, address, addrlen);
1000 }
1001
1002 int security_socket_listen(struct socket *sock, int backlog)
1003 {
1004         return security_ops->socket_listen(sock, backlog);
1005 }
1006
1007 int security_socket_accept(struct socket *sock, struct socket *newsock)
1008 {
1009         return security_ops->socket_accept(sock, newsock);
1010 }
1011
1012 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1013 {
1014         return security_ops->socket_sendmsg(sock, msg, size);
1015 }
1016
1017 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1018                             int size, int flags)
1019 {
1020         return security_ops->socket_recvmsg(sock, msg, size, flags);
1021 }
1022
1023 int security_socket_getsockname(struct socket *sock)
1024 {
1025         return security_ops->socket_getsockname(sock);
1026 }
1027
1028 int security_socket_getpeername(struct socket *sock)
1029 {
1030         return security_ops->socket_getpeername(sock);
1031 }
1032
1033 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1034 {
1035         return security_ops->socket_getsockopt(sock, level, optname);
1036 }
1037
1038 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1039 {
1040         return security_ops->socket_setsockopt(sock, level, optname);
1041 }
1042
1043 int security_socket_shutdown(struct socket *sock, int how)
1044 {
1045         return security_ops->socket_shutdown(sock, how);
1046 }
1047
1048 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1049 {
1050         return security_ops->socket_sock_rcv_skb(sk, skb);
1051 }
1052 EXPORT_SYMBOL(security_sock_rcv_skb);
1053
1054 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1055                                       int __user *optlen, unsigned len)
1056 {
1057         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1058 }
1059
1060 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1061 {
1062         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1063 }
1064 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1065
1066 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1067 {
1068         return security_ops->sk_alloc_security(sk, family, priority);
1069 }
1070
1071 void security_sk_free(struct sock *sk)
1072 {
1073         security_ops->sk_free_security(sk);
1074 }
1075
1076 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1077 {
1078         security_ops->sk_clone_security(sk, newsk);
1079 }
1080
1081 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1082 {
1083         security_ops->sk_getsecid(sk, &fl->secid);
1084 }
1085 EXPORT_SYMBOL(security_sk_classify_flow);
1086
1087 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1088 {
1089         security_ops->req_classify_flow(req, fl);
1090 }
1091 EXPORT_SYMBOL(security_req_classify_flow);
1092
1093 void security_sock_graft(struct sock *sk, struct socket *parent)
1094 {
1095         security_ops->sock_graft(sk, parent);
1096 }
1097 EXPORT_SYMBOL(security_sock_graft);
1098
1099 int security_inet_conn_request(struct sock *sk,
1100                         struct sk_buff *skb, struct request_sock *req)
1101 {
1102         return security_ops->inet_conn_request(sk, skb, req);
1103 }
1104 EXPORT_SYMBOL(security_inet_conn_request);
1105
1106 void security_inet_csk_clone(struct sock *newsk,
1107                         const struct request_sock *req)
1108 {
1109         security_ops->inet_csk_clone(newsk, req);
1110 }
1111
1112 void security_inet_conn_established(struct sock *sk,
1113                         struct sk_buff *skb)
1114 {
1115         security_ops->inet_conn_established(sk, skb);
1116 }
1117
1118 #endif  /* CONFIG_SECURITY_NETWORK */
1119
1120 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1121
1122 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1123 {
1124         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1125 }
1126 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1127
1128 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1129                               struct xfrm_sec_ctx **new_ctxp)
1130 {
1131         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1132 }
1133
1134 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1135 {
1136         security_ops->xfrm_policy_free_security(ctx);
1137 }
1138 EXPORT_SYMBOL(security_xfrm_policy_free);
1139
1140 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1141 {
1142         return security_ops->xfrm_policy_delete_security(ctx);
1143 }
1144
1145 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1146 {
1147         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1148 }
1149 EXPORT_SYMBOL(security_xfrm_state_alloc);
1150
1151 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1152                                       struct xfrm_sec_ctx *polsec, u32 secid)
1153 {
1154         if (!polsec)
1155                 return 0;
1156         /*
1157          * We want the context to be taken from secid which is usually
1158          * from the sock.
1159          */
1160         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1161 }
1162
1163 int security_xfrm_state_delete(struct xfrm_state *x)
1164 {
1165         return security_ops->xfrm_state_delete_security(x);
1166 }
1167 EXPORT_SYMBOL(security_xfrm_state_delete);
1168
1169 void security_xfrm_state_free(struct xfrm_state *x)
1170 {
1171         security_ops->xfrm_state_free_security(x);
1172 }
1173
1174 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1175 {
1176         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1177 }
1178
1179 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1180                                        struct xfrm_policy *xp, struct flowi *fl)
1181 {
1182         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1183 }
1184
1185 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1186 {
1187         return security_ops->xfrm_decode_session(skb, secid, 1);
1188 }
1189
1190 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1191 {
1192         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1193
1194         BUG_ON(rc);
1195 }
1196 EXPORT_SYMBOL(security_skb_classify_flow);
1197
1198 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1199
1200 #ifdef CONFIG_KEYS
1201
1202 int security_key_alloc(struct key *key, const struct cred *cred,
1203                        unsigned long flags)
1204 {
1205         return security_ops->key_alloc(key, cred, flags);
1206 }
1207
1208 void security_key_free(struct key *key)
1209 {
1210         security_ops->key_free(key);
1211 }
1212
1213 int security_key_permission(key_ref_t key_ref,
1214                             const struct cred *cred, key_perm_t perm)
1215 {
1216         return security_ops->key_permission(key_ref, cred, perm);
1217 }
1218
1219 int security_key_getsecurity(struct key *key, char **_buffer)
1220 {
1221         return security_ops->key_getsecurity(key, _buffer);
1222 }
1223
1224 #endif  /* CONFIG_KEYS */
1225
1226 #ifdef CONFIG_AUDIT
1227
1228 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1229 {
1230         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1231 }
1232
1233 int security_audit_rule_known(struct audit_krule *krule)
1234 {
1235         return security_ops->audit_rule_known(krule);
1236 }
1237
1238 void security_audit_rule_free(void *lsmrule)
1239 {
1240         security_ops->audit_rule_free(lsmrule);
1241 }
1242
1243 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1244                               struct audit_context *actx)
1245 {
1246         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1247 }
1248
1249 #endif /* CONFIG_AUDIT */