2 * SMP boot-related support
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
43 #include <asm/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
50 #include <asm/machvec.h>
53 #include <asm/pgalloc.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/ptrace.h>
58 #include <asm/system.h>
59 #include <asm/tlbflush.h>
60 #include <asm/unistd.h>
61 #include <asm/sn/arch.h>
66 #define Dprintk(x...) printk(x)
71 #ifdef CONFIG_HOTPLUG_CPU
72 #ifdef CONFIG_PERMIT_BSP_REMOVE
73 #define bsp_remove_ok 1
75 #define bsp_remove_ok 0
79 * Store all idle threads, this can be reused instead of creating
80 * a new thread. Also avoids complicated thread destroy functionality
83 struct task_struct *idle_thread_array[NR_CPUS];
86 * Global array allocated for NR_CPUS at boot time
88 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
91 * start_ap in head.S uses this to store current booting cpu
94 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
96 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
98 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
99 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
103 #define get_idle_for_cpu(x) (NULL)
104 #define set_idle_for_cpu(x,p)
105 #define set_brendez_area(x)
110 * ITC synchronization related stuff:
113 #define SLAVE (SMP_CACHE_BYTES/8)
115 #define NUM_ROUNDS 64 /* magic value */
116 #define NUM_ITERS 5 /* likewise */
118 static DEFINE_SPINLOCK(itc_sync_lock);
119 static volatile unsigned long go[SLAVE + 1];
121 #define DEBUG_ITC_SYNC 0
123 extern void __devinit calibrate_delay (void);
124 extern void start_ap (void);
125 extern unsigned long ia64_iobase;
127 struct task_struct *task_for_booting_cpu;
132 DEFINE_PER_CPU(int, cpu_state);
134 /* Bitmasks of currently online, and possible CPUs */
135 cpumask_t cpu_online_map;
136 EXPORT_SYMBOL(cpu_online_map);
137 cpumask_t cpu_possible_map = CPU_MASK_NONE;
138 EXPORT_SYMBOL(cpu_possible_map);
140 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
141 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
142 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
144 int smp_num_siblings = 1;
145 int smp_num_cpucores = 1;
147 /* which logical CPU number maps to which CPU (physical APIC ID) */
148 volatile int ia64_cpu_to_sapicid[NR_CPUS];
149 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
151 static volatile cpumask_t cpu_callin_map;
153 struct smp_boot_data smp_boot_data __initdata;
155 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
157 char __initdata no_int_routing;
159 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
161 #ifdef CONFIG_FORCE_CPEI_RETARGET
162 #define CPEI_OVERRIDE_DEFAULT (1)
164 #define CPEI_OVERRIDE_DEFAULT (0)
167 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
170 cmdl_force_cpei(char *str)
174 get_option (&str, &value);
175 force_cpei_retarget = value;
180 __setup("force_cpei=", cmdl_force_cpei);
183 nointroute (char *str)
186 printk ("no_int_routing on\n");
190 __setup("nointroute", nointroute);
192 static void fix_b0_for_bsp(void)
194 #ifdef CONFIG_HOTPLUG_CPU
196 static int fix_bsp_b0 = 1;
198 cpuid = smp_processor_id();
201 * Cache the b0 value on the first AP that comes up
203 if (!(fix_bsp_b0 && cpuid))
206 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
207 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
214 sync_master (void *arg)
216 unsigned long flags, i;
220 local_irq_save(flags);
222 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
226 go[SLAVE] = ia64_get_itc();
229 local_irq_restore(flags);
233 * Return the number of cycles by which our itc differs from the itc on the master
234 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
235 * negative that it is behind.
238 get_delta (long *rt, long *master)
240 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
241 unsigned long tcenter, t0, t1, tm;
244 for (i = 0; i < NUM_ITERS; ++i) {
247 while (!(tm = go[SLAVE]))
252 if (t1 - t0 < best_t1 - best_t0)
253 best_t0 = t0, best_t1 = t1, best_tm = tm;
256 *rt = best_t1 - best_t0;
257 *master = best_tm - best_t0;
259 /* average best_t0 and best_t1 without overflow: */
260 tcenter = (best_t0/2 + best_t1/2);
261 if (best_t0 % 2 + best_t1 % 2 == 2)
263 return tcenter - best_tm;
267 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
268 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
269 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
270 * step). The basic idea is for the slave to ask the master what itc value it has and to
271 * read its own itc before and after the master responds. Each iteration gives us three
285 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
286 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
287 * between the slave and the master is symmetric. Even if the interconnect were
288 * asymmetric, we would still know that the synchronization error is smaller than the
289 * roundtrip latency (t0 - t1).
291 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
292 * within one or two cycles. However, we can only *guarantee* that the synchronization is
293 * accurate to within a round-trip time, which is typically in the range of several
294 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
295 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
296 * than half a micro second or so.
299 ia64_sync_itc (unsigned int master)
301 long i, delta, adj, adjust_latency = 0, done = 0;
302 unsigned long flags, rt, master_time_stamp, bound;
305 long rt; /* roundtrip time */
306 long master; /* master's timestamp */
307 long diff; /* difference between midpoint and master's timestamp */
308 long lat; /* estimate of itc adjustment latency */
313 * Make sure local timer ticks are disabled while we sync. If
314 * they were enabled, we'd have to worry about nasty issues
315 * like setting the ITC ahead of (or a long time before) the
316 * next scheduled tick.
318 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
322 if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
323 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
328 cpu_relax(); /* wait for master to be ready */
330 spin_lock_irqsave(&itc_sync_lock, flags);
332 for (i = 0; i < NUM_ROUNDS; ++i) {
333 delta = get_delta(&rt, &master_time_stamp);
335 done = 1; /* let's lock on to this... */
341 adjust_latency += -delta;
342 adj = -delta + adjust_latency/4;
346 ia64_set_itc(ia64_get_itc() + adj);
350 t[i].master = master_time_stamp;
352 t[i].lat = adjust_latency/4;
356 spin_unlock_irqrestore(&itc_sync_lock, flags);
359 for (i = 0; i < NUM_ROUNDS; ++i)
360 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
361 t[i].rt, t[i].master, t[i].diff, t[i].lat);
364 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
365 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
369 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
371 static inline void __devinit
372 smp_setup_percpu_timer (void)
376 static void __cpuinit
379 int cpuid, phys_id, itc_master;
380 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
381 extern void ia64_init_itm(void);
382 extern volatile int time_keeper_id;
384 #ifdef CONFIG_PERFMON
385 extern void pfm_init_percpu(void);
388 cpuid = smp_processor_id();
389 phys_id = hard_smp_processor_id();
390 itc_master = time_keeper_id;
392 if (cpu_online(cpuid)) {
393 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
401 spin_lock(&vector_lock);
402 /* Setup the per cpu irq handling data structures */
403 __setup_vector_irq(cpuid);
404 cpu_set(cpuid, cpu_online_map);
405 unlock_ipi_calllock();
406 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
407 spin_unlock(&vector_lock);
409 smp_setup_percpu_timer();
411 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
413 #ifdef CONFIG_PERFMON
419 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
421 * Synchronize the ITC with the BP. Need to do this after irqs are
422 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
423 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
424 * local_bh_enable(), which bugs out if irqs are not enabled...
426 Dprintk("Going to syncup ITC with ITC Master.\n");
427 ia64_sync_itc(itc_master);
436 * Delay calibration can be skipped if new processor is identical to the
437 * previous processor.
439 last_cpuinfo = cpu_data(cpuid - 1);
440 this_cpuinfo = local_cpu_data;
441 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
442 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
443 last_cpuinfo->features != this_cpuinfo->features ||
444 last_cpuinfo->revision != this_cpuinfo->revision ||
445 last_cpuinfo->family != this_cpuinfo->family ||
446 last_cpuinfo->archrev != this_cpuinfo->archrev ||
447 last_cpuinfo->model != this_cpuinfo->model)
449 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
451 #ifdef CONFIG_IA32_SUPPORT
456 * Allow the master to continue.
458 cpu_set(cpuid, cpu_callin_map);
459 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
464 * Activate a secondary processor. head.S calls this.
467 start_secondary (void *unused)
469 /* Early console may use I/O ports */
470 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
471 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
481 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
487 struct work_struct work;
488 struct task_struct *idle;
489 struct completion done;
494 do_fork_idle(struct work_struct *work)
496 struct create_idle *c_idle =
497 container_of(work, struct create_idle, work);
499 c_idle->idle = fork_idle(c_idle->cpu);
500 complete(&c_idle->done);
504 do_boot_cpu (int sapicid, int cpu)
507 struct create_idle c_idle = {
508 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
510 .done = COMPLETION_INITIALIZER(c_idle.done),
513 c_idle.idle = get_idle_for_cpu(cpu);
515 init_idle(c_idle.idle, cpu);
520 * We can't use kernel_thread since we must avoid to reschedule the child.
522 if (!keventd_up() || current_is_keventd())
523 c_idle.work.func(&c_idle.work);
525 schedule_work(&c_idle.work);
526 wait_for_completion(&c_idle.done);
529 if (IS_ERR(c_idle.idle))
530 panic("failed fork for CPU %d", cpu);
532 set_idle_for_cpu(cpu, c_idle.idle);
535 task_for_booting_cpu = c_idle.idle;
537 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
539 set_brendez_area(cpu);
540 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
543 * Wait 10s total for the AP to start
545 Dprintk("Waiting on callin_map ...");
546 for (timeout = 0; timeout < 100000; timeout++) {
547 if (cpu_isset(cpu, cpu_callin_map))
548 break; /* It has booted */
553 if (!cpu_isset(cpu, cpu_callin_map)) {
554 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
555 ia64_cpu_to_sapicid[cpu] = -1;
556 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
566 get_option (&str, &ticks);
570 __setup("decay=", decay);
573 * Initialize the logical CPU number to SAPICID mapping
576 smp_build_cpu_map (void)
579 int boot_cpu_id = hard_smp_processor_id();
581 for (cpu = 0; cpu < NR_CPUS; cpu++) {
582 ia64_cpu_to_sapicid[cpu] = -1;
585 ia64_cpu_to_sapicid[0] = boot_cpu_id;
586 cpus_clear(cpu_present_map);
587 cpu_set(0, cpu_present_map);
588 cpu_set(0, cpu_possible_map);
589 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
590 sapicid = smp_boot_data.cpu_phys_id[i];
591 if (sapicid == boot_cpu_id)
593 cpu_set(cpu, cpu_present_map);
594 cpu_set(cpu, cpu_possible_map);
595 ia64_cpu_to_sapicid[cpu] = sapicid;
601 * Cycle through the APs sending Wakeup IPIs to boot each.
604 smp_prepare_cpus (unsigned int max_cpus)
606 int boot_cpu_id = hard_smp_processor_id();
609 * Initialize the per-CPU profiling counter/multiplier
612 smp_setup_percpu_timer();
615 * We have the boot CPU online for sure.
617 cpu_set(0, cpu_online_map);
618 cpu_set(0, cpu_callin_map);
620 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
621 ia64_cpu_to_sapicid[0] = boot_cpu_id;
623 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
625 current_thread_info()->cpu = 0;
628 * If SMP should be disabled, then really disable it!
631 printk(KERN_INFO "SMP mode deactivated.\n");
632 cpus_clear(cpu_online_map);
633 cpus_clear(cpu_present_map);
634 cpus_clear(cpu_possible_map);
635 cpu_set(0, cpu_online_map);
636 cpu_set(0, cpu_present_map);
637 cpu_set(0, cpu_possible_map);
642 void __devinit smp_prepare_boot_cpu(void)
644 cpu_set(smp_processor_id(), cpu_online_map);
645 cpu_set(smp_processor_id(), cpu_callin_map);
646 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
649 #ifdef CONFIG_HOTPLUG_CPU
651 clear_cpu_sibling_map(int cpu)
655 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
656 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
657 for_each_cpu_mask(i, cpu_core_map[cpu])
658 cpu_clear(cpu, cpu_core_map[i]);
660 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
664 remove_siblinginfo(int cpu)
668 if (cpu_data(cpu)->threads_per_core == 1 &&
669 cpu_data(cpu)->cores_per_socket == 1) {
670 cpu_clear(cpu, cpu_core_map[cpu]);
671 cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
675 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
677 /* remove it from all sibling map's */
678 clear_cpu_sibling_map(cpu);
681 extern void fixup_irqs(void);
683 int migrate_platform_irqs(unsigned int cpu)
686 irq_desc_t *desc = NULL;
691 * dont permit CPEI target to removed.
693 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
694 printk ("CPU (%d) is CPEI Target\n", cpu);
695 if (can_cpei_retarget()) {
697 * Now re-target the CPEI to a different processor
699 new_cpei_cpu = any_online_cpu(cpu_online_map);
700 mask = cpumask_of_cpu(new_cpei_cpu);
701 set_cpei_target_cpu(new_cpei_cpu);
702 desc = irq_desc + ia64_cpe_irq;
704 * Switch for now, immediately, we need to do fake intr
705 * as other interrupts, but need to study CPEI behaviour with
706 * polling before making changes.
709 desc->chip->disable(ia64_cpe_irq);
710 desc->chip->set_affinity(ia64_cpe_irq, mask);
711 desc->chip->enable(ia64_cpe_irq);
712 printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
716 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
723 /* must be called with cpucontrol mutex held */
724 int __cpu_disable(void)
726 int cpu = smp_processor_id();
729 * dont permit boot processor for now
731 if (cpu == 0 && !bsp_remove_ok) {
732 printk ("Your platform does not support removal of BSP\n");
736 if (ia64_platform_is("sn2")) {
737 if (!sn_cpu_disable_allowed(cpu))
741 cpu_clear(cpu, cpu_online_map);
743 if (migrate_platform_irqs(cpu)) {
744 cpu_set(cpu, cpu_online_map);
748 remove_siblinginfo(cpu);
749 cpu_clear(cpu, cpu_online_map);
751 local_flush_tlb_all();
752 cpu_clear(cpu, cpu_callin_map);
756 void __cpu_die(unsigned int cpu)
760 for (i = 0; i < 100; i++) {
761 /* They ack this in play_dead by setting CPU_DEAD */
762 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
764 printk ("CPU %d is now offline\n", cpu);
769 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
771 #else /* !CONFIG_HOTPLUG_CPU */
772 int __cpu_disable(void)
777 void __cpu_die(unsigned int cpu)
779 /* We said "no" in __cpu_disable */
782 #endif /* CONFIG_HOTPLUG_CPU */
785 smp_cpus_done (unsigned int dummy)
788 unsigned long bogosum = 0;
791 * Allow the user to impress friends.
794 for_each_online_cpu(cpu) {
795 bogosum += cpu_data(cpu)->loops_per_jiffy;
798 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
799 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
802 static inline void __devinit
803 set_cpu_sibling_map(int cpu)
807 for_each_online_cpu(i) {
808 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
809 cpu_set(i, cpu_core_map[cpu]);
810 cpu_set(cpu, cpu_core_map[i]);
811 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
812 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
813 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
820 __cpu_up (unsigned int cpu)
825 sapicid = ia64_cpu_to_sapicid[cpu];
830 * Already booted cpu? not valid anymore since we dont
831 * do idle loop tightspin anymore.
833 if (cpu_isset(cpu, cpu_callin_map))
836 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
837 /* Processor goes to start_secondary(), sets online flag */
838 ret = do_boot_cpu(sapicid, cpu);
842 if (cpu_data(cpu)->threads_per_core == 1 &&
843 cpu_data(cpu)->cores_per_socket == 1) {
844 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
845 cpu_set(cpu, cpu_core_map[cpu]);
849 set_cpu_sibling_map(cpu);
855 * Assume that CPUs have been discovered by some platform-dependent interface. For
856 * SoftSDV/Lion, that would be ACPI.
858 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
861 init_smp_config(void)
869 /* Tell SAL where to drop the APs. */
870 ap_startup = (struct fptr *) start_ap;
871 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
872 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
874 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
875 ia64_sal_strerror(sal_ret));
879 * identify_siblings(cpu) gets called from identify_cpu. This populates the
880 * information related to logical execution units in per_cpu_data structure.
883 identify_siblings(struct cpuinfo_ia64 *c)
887 pal_logical_to_physical_t info;
889 if (smp_num_cpucores == 1 && smp_num_siblings == 1)
892 if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) {
893 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
897 if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
898 printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
902 c->socket_id = (pltid << 8) | info.overview_ppid;
903 c->cores_per_socket = info.overview_cpp;
904 c->threads_per_core = info.overview_tpc;
905 c->num_log = info.overview_num_log;
907 c->core_id = info.log1_cid;
908 c->thread_id = info.log1_tid;
912 * returns non zero, if multi-threading is enabled
913 * on at least one physical package. Due to hotplug cpu
914 * and (maxcpus=), all threads may not necessarily be enabled
915 * even though the processor supports multi-threading.
917 int is_multithreading_enabled(void)
921 for_each_present_cpu(i) {
922 for_each_present_cpu(j) {
925 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
926 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
933 EXPORT_SYMBOL_GPL(is_multithreading_enabled);