1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
38 #include "extent_map.h"
46 #include "buffer_head_io.h"
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
77 fe = (struct ocfs2_dinode *) bh->b_data;
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
100 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh)
109 && ocfs2_inode_is_new(inode)) {
110 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 mlog(ML_ERROR, "couldn't kmap!\n");
115 memcpy(kaddr + (bh_result->b_size * iblock),
116 buffer_cache_bh->b_data,
118 kunmap_atomic(kaddr, KM_USER0);
119 set_buffer_uptodate(bh_result);
121 brelse(buffer_cache_bh);
124 map_bh(bh_result, inode->i_sb,
125 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
141 unsigned int ext_flags;
142 u64 p_blkno, past_eof;
143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 (unsigned long long)iblock, bh_result, create);
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
173 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 "ino %lu, iblock %llu\n", inode->i_ino,
175 (unsigned long long)iblock);
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 map_bh(bh_result, inode->i_sb, p_blkno);
181 if (!ocfs2_sparse_alloc(osb)) {
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock,
187 (unsigned long long)p_blkno,
188 (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
193 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 (unsigned long long)past_eof);
197 if (create && (iblock >= past_eof))
198 set_buffer_new(bh_result);
209 static int ocfs2_readpage(struct file *file, struct page *page)
211 struct inode *inode = page->mapping->host;
212 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
215 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
217 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
219 if (ret == AOP_TRUNCATED_PAGE)
225 if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226 ret = AOP_TRUNCATED_PAGE;
227 goto out_meta_unlock;
231 * i_size might have just been updated as we grabed the meta lock. We
232 * might now be discovering a truncate that hit on another node.
233 * block_read_full_page->get_block freaks out if it is asked to read
234 * beyond the end of a file, so we check here. Callers
235 * (generic_file_read, fault->nopage) are clever enough to check i_size
236 * and notice that the page they just read isn't needed.
238 * XXX sys_readahead() seems to get that wrong?
240 if (start >= i_size_read(inode)) {
241 zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242 SetPageUptodate(page);
247 ret = ocfs2_data_lock_with_page(inode, 0, page);
249 if (ret == AOP_TRUNCATED_PAGE)
255 ret = block_read_full_page(page, ocfs2_get_block);
258 ocfs2_data_unlock(inode, 0);
260 up_read(&OCFS2_I(inode)->ip_alloc_sem);
262 ocfs2_meta_unlock(inode, 0);
270 /* Note: Because we don't support holes, our allocation has
271 * already happened (allocation writes zeros to the file data)
272 * so we don't have to worry about ordered writes in
275 * ->writepage is called during the process of invalidating the page cache
276 * during blocked lock processing. It can't block on any cluster locks
277 * to during block mapping. It's relying on the fact that the block
278 * mapping can't have disappeared under the dirty pages that it is
279 * being asked to write back.
281 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
285 mlog_entry("(0x%p)\n", page);
287 ret = block_write_full_page(page, ocfs2_get_block, wbc);
295 * This is called from ocfs2_write_zero_page() which has handled it's
296 * own cluster locking and has ensured allocation exists for those
297 * blocks to be written.
299 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300 unsigned from, unsigned to)
304 down_read(&OCFS2_I(inode)->ip_alloc_sem);
306 ret = block_prepare_write(page, from, to, ocfs2_get_block);
308 up_read(&OCFS2_I(inode)->ip_alloc_sem);
313 /* Taken from ext3. We don't necessarily need the full blown
314 * functionality yet, but IMHO it's better to cut and paste the whole
315 * thing so we can avoid introducing our own bugs (and easily pick up
316 * their fixes when they happen) --Mark */
317 int walk_page_buffers( handle_t *handle,
318 struct buffer_head *head,
322 int (*fn)( handle_t *handle,
323 struct buffer_head *bh))
325 struct buffer_head *bh;
326 unsigned block_start, block_end;
327 unsigned blocksize = head->b_size;
329 struct buffer_head *next;
331 for ( bh = head, block_start = 0;
332 ret == 0 && (bh != head || !block_start);
333 block_start = block_end, bh = next)
335 next = bh->b_this_page;
336 block_end = block_start + blocksize;
337 if (block_end <= from || block_start >= to) {
338 if (partial && !buffer_uptodate(bh))
342 err = (*fn)(handle, bh);
349 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
354 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
355 handle_t *handle = NULL;
358 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
365 if (ocfs2_should_order_data(inode)) {
366 ret = walk_page_buffers(handle,
369 ocfs2_journal_dirty_data);
376 ocfs2_commit_trans(osb, handle);
377 handle = ERR_PTR(ret);
382 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
387 struct inode *inode = mapping->host;
389 mlog_entry("(block = %llu)\n", (unsigned long long)block);
391 /* We don't need to lock journal system files, since they aren't
392 * accessed concurrently from multiple nodes.
394 if (!INODE_JOURNAL(inode)) {
395 err = ocfs2_meta_lock(inode, NULL, 0);
401 down_read(&OCFS2_I(inode)->ip_alloc_sem);
404 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
406 if (!INODE_JOURNAL(inode)) {
407 up_read(&OCFS2_I(inode)->ip_alloc_sem);
408 ocfs2_meta_unlock(inode, 0);
412 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413 (unsigned long long)block);
420 status = err ? 0 : p_blkno;
422 mlog_exit((int)status);
428 * TODO: Make this into a generic get_blocks function.
430 * From do_direct_io in direct-io.c:
431 * "So what we do is to permit the ->get_blocks function to populate
432 * bh.b_size with the size of IO which is permitted at this offset and
435 * This function is called directly from get_more_blocks in direct-io.c.
437 * called like this: dio->get_blocks(dio->inode, fs_startblk,
438 * fs_count, map_bh, dio->rw == WRITE);
440 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
441 struct buffer_head *bh_result, int create)
444 u64 p_blkno, inode_blocks, contig_blocks;
445 unsigned int ext_flags;
446 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
447 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
449 /* This function won't even be called if the request isn't all
450 * nicely aligned and of the right size, so there's no need
451 * for us to check any of that. */
453 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
456 * Any write past EOF is not allowed because we'd be extending.
458 if (create && (iblock + max_blocks) > inode_blocks) {
463 /* This figures out the size of the next contiguous block, and
464 * our logical offset */
465 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
466 &contig_blocks, &ext_flags);
468 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469 (unsigned long long)iblock);
474 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475 ocfs2_error(inode->i_sb,
476 "Inode %llu has a hole at block %llu\n",
477 (unsigned long long)OCFS2_I(inode)->ip_blkno,
478 (unsigned long long)iblock);
484 * get_more_blocks() expects us to describe a hole by clearing
485 * the mapped bit on bh_result().
487 * Consider an unwritten extent as a hole.
489 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
490 map_bh(bh_result, inode->i_sb, p_blkno);
493 * ocfs2_prepare_inode_for_write() should have caught
494 * the case where we'd be filling a hole and triggered
495 * a buffered write instead.
503 clear_buffer_mapped(bh_result);
506 /* make sure we don't map more than max_blocks blocks here as
507 that's all the kernel will handle at this point. */
508 if (max_blocks < contig_blocks)
509 contig_blocks = max_blocks;
510 bh_result->b_size = contig_blocks << blocksize_bits;
516 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
517 * particularly interested in the aio/dio case. Like the core uses
518 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519 * truncation on another.
521 static void ocfs2_dio_end_io(struct kiocb *iocb,
526 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
529 /* this io's submitter should not have unlocked this before we could */
530 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
532 ocfs2_iocb_clear_rw_locked(iocb);
534 level = ocfs2_iocb_rw_locked_level(iocb);
536 up_read(&inode->i_alloc_sem);
537 ocfs2_rw_unlock(inode, level);
541 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542 * from ext3. PageChecked() bits have been removed as OCFS2 does not
543 * do journalled data.
545 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
547 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
549 journal_invalidatepage(journal, page, offset);
552 static int ocfs2_releasepage(struct page *page, gfp_t wait)
554 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
556 if (!page_has_buffers(page))
558 return journal_try_to_free_buffers(journal, page, wait);
561 static ssize_t ocfs2_direct_IO(int rw,
563 const struct iovec *iov,
565 unsigned long nr_segs)
567 struct file *file = iocb->ki_filp;
568 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
573 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
575 * We get PR data locks even for O_DIRECT. This
576 * allows concurrent O_DIRECT I/O but doesn't let
577 * O_DIRECT with extending and buffered zeroing writes
578 * race. If they did race then the buffered zeroing
579 * could be written back after the O_DIRECT I/O. It's
580 * one thing to tell people not to mix buffered and
581 * O_DIRECT writes, but expecting them to understand
582 * that file extension is also an implicit buffered
583 * write is too much. By getting the PR we force
584 * writeback of the buffered zeroing before
587 ret = ocfs2_data_lock(inode, 0);
592 ocfs2_data_unlock(inode, 0);
595 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596 inode->i_sb->s_bdev, iov, offset,
598 ocfs2_direct_IO_get_blocks,
605 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
610 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
612 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
615 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
617 cluster_start = cpos % cpp;
618 cluster_start = cluster_start << osb->s_clustersize_bits;
620 cluster_end = cluster_start + osb->s_clustersize;
623 BUG_ON(cluster_start > PAGE_SIZE);
624 BUG_ON(cluster_end > PAGE_SIZE);
627 *start = cluster_start;
633 * 'from' and 'to' are the region in the page to avoid zeroing.
635 * If pagesize > clustersize, this function will avoid zeroing outside
636 * of the cluster boundary.
638 * from == to == 0 is code for "zero the entire cluster region"
640 static void ocfs2_clear_page_regions(struct page *page,
641 struct ocfs2_super *osb, u32 cpos,
642 unsigned from, unsigned to)
645 unsigned int cluster_start, cluster_end;
647 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
649 kaddr = kmap_atomic(page, KM_USER0);
652 if (from > cluster_start)
653 memset(kaddr + cluster_start, 0, from - cluster_start);
654 if (to < cluster_end)
655 memset(kaddr + to, 0, cluster_end - to);
657 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
660 kunmap_atomic(kaddr, KM_USER0);
664 * Some of this taken from block_prepare_write(). We already have our
665 * mapping by now though, and the entire write will be allocating or
666 * it won't, so not much need to use BH_New.
668 * This will also skip zeroing, which is handled externally.
670 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
671 struct inode *inode, unsigned int from,
672 unsigned int to, int new)
675 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
676 unsigned int block_end, block_start;
677 unsigned int bsize = 1 << inode->i_blkbits;
679 if (!page_has_buffers(page))
680 create_empty_buffers(page, bsize, 0);
682 head = page_buffers(page);
683 for (bh = head, block_start = 0; bh != head || !block_start;
684 bh = bh->b_this_page, block_start += bsize) {
685 block_end = block_start + bsize;
687 clear_buffer_new(bh);
690 * Ignore blocks outside of our i/o range -
691 * they may belong to unallocated clusters.
693 if (block_start >= to || block_end <= from) {
694 if (PageUptodate(page))
695 set_buffer_uptodate(bh);
700 * For an allocating write with cluster size >= page
701 * size, we always write the entire page.
706 if (!buffer_mapped(bh)) {
707 map_bh(bh, inode->i_sb, *p_blkno);
708 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
711 if (PageUptodate(page)) {
712 if (!buffer_uptodate(bh))
713 set_buffer_uptodate(bh);
714 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
716 (block_start < from || block_end > to)) {
717 ll_rw_block(READ, 1, &bh);
721 *p_blkno = *p_blkno + 1;
725 * If we issued read requests - let them complete.
727 while(wait_bh > wait) {
728 wait_on_buffer(*--wait_bh);
729 if (!buffer_uptodate(*wait_bh))
733 if (ret == 0 || !new)
737 * If we get -EIO above, zero out any newly allocated blocks
738 * to avoid exposing stale data.
745 block_end = block_start + bsize;
746 if (block_end <= from)
748 if (block_start >= to)
751 kaddr = kmap_atomic(page, KM_USER0);
752 memset(kaddr+block_start, 0, bh->b_size);
753 flush_dcache_page(page);
754 kunmap_atomic(kaddr, KM_USER0);
755 set_buffer_uptodate(bh);
756 mark_buffer_dirty(bh);
759 block_start = block_end;
760 bh = bh->b_this_page;
761 } while (bh != head);
766 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
767 #define OCFS2_MAX_CTXT_PAGES 1
769 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
772 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
775 * Describe the state of a single cluster to be written to.
777 struct ocfs2_write_cluster_desc {
781 * Give this a unique field because c_phys eventually gets
787 struct ocfs2_write_ctxt {
788 /* Logical cluster position / len of write */
792 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
795 * This is true if page_size > cluster_size.
797 * It triggers a set of special cases during write which might
798 * have to deal with allocating writes to partial pages.
800 unsigned int w_large_pages;
803 * Pages involved in this write.
805 * w_target_page is the page being written to by the user.
807 * w_pages is an array of pages which always contains
808 * w_target_page, and in the case of an allocating write with
809 * page_size < cluster size, it will contain zero'd and mapped
810 * pages adjacent to w_target_page which need to be written
811 * out in so that future reads from that region will get
814 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
815 unsigned int w_num_pages;
816 struct page *w_target_page;
819 * ocfs2_write_end() uses this to know what the real range to
820 * write in the target should be.
822 unsigned int w_target_from;
823 unsigned int w_target_to;
826 * We could use journal_current_handle() but this is cleaner,
831 struct buffer_head *w_di_bh;
834 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
838 for(i = 0; i < wc->w_num_pages; i++) {
839 if (wc->w_pages[i] == NULL)
842 unlock_page(wc->w_pages[i]);
843 mark_page_accessed(wc->w_pages[i]);
844 page_cache_release(wc->w_pages[i]);
851 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
852 struct ocfs2_super *osb, loff_t pos,
853 unsigned len, struct buffer_head *di_bh)
855 struct ocfs2_write_ctxt *wc;
857 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
861 wc->w_cpos = pos >> osb->s_clustersize_bits;
862 wc->w_clen = ocfs2_clusters_for_bytes(osb->sb, len);
866 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
867 wc->w_large_pages = 1;
869 wc->w_large_pages = 0;
877 * If a page has any new buffers, zero them out here, and mark them uptodate
878 * and dirty so they'll be written out (in order to prevent uninitialised
879 * block data from leaking). And clear the new bit.
881 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
883 unsigned int block_start, block_end;
884 struct buffer_head *head, *bh;
886 BUG_ON(!PageLocked(page));
887 if (!page_has_buffers(page))
890 bh = head = page_buffers(page);
893 block_end = block_start + bh->b_size;
895 if (buffer_new(bh)) {
896 if (block_end > from && block_start < to) {
897 if (!PageUptodate(page)) {
901 start = max(from, block_start);
902 end = min(to, block_end);
904 kaddr = kmap_atomic(page, KM_USER0);
905 memset(kaddr+start, 0, end - start);
906 flush_dcache_page(page);
907 kunmap_atomic(kaddr, KM_USER0);
908 set_buffer_uptodate(bh);
911 clear_buffer_new(bh);
912 mark_buffer_dirty(bh);
916 block_start = block_end;
917 bh = bh->b_this_page;
918 } while (bh != head);
922 * Only called when we have a failure during allocating write to write
923 * zero's to the newly allocated region.
925 static void ocfs2_write_failure(struct inode *inode,
926 struct ocfs2_write_ctxt *wc,
927 loff_t user_pos, unsigned user_len)
931 struct page *tmppage;
933 ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
935 if (wc->w_large_pages) {
936 from = wc->w_target_from;
937 to = wc->w_target_to;
940 to = PAGE_CACHE_SIZE;
943 for(i = 0; i < wc->w_num_pages; i++) {
944 tmppage = wc->w_pages[i];
946 if (ocfs2_should_order_data(inode))
947 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
949 ocfs2_journal_dirty_data);
951 block_commit_write(tmppage, from, to);
955 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
956 struct ocfs2_write_ctxt *wc,
957 struct page *page, u32 cpos,
958 loff_t user_pos, unsigned user_len,
962 unsigned int map_from = 0, map_to = 0;
963 unsigned int cluster_start, cluster_end;
964 unsigned int user_data_from = 0, user_data_to = 0;
966 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
967 &cluster_start, &cluster_end);
969 if (page == wc->w_target_page) {
970 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
971 map_to = map_from + user_len;
974 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
975 cluster_start, cluster_end,
978 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
979 map_from, map_to, new);
985 user_data_from = map_from;
986 user_data_to = map_to;
988 map_from = cluster_start;
989 map_to = cluster_end;
992 wc->w_target_from = map_from;
993 wc->w_target_to = map_to;
996 * If we haven't allocated the new page yet, we
997 * shouldn't be writing it out without copying user
998 * data. This is likely a math error from the caller.
1002 map_from = cluster_start;
1003 map_to = cluster_end;
1005 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1006 cluster_start, cluster_end, new);
1014 * Parts of newly allocated pages need to be zero'd.
1016 * Above, we have also rewritten 'to' and 'from' - as far as
1017 * the rest of the function is concerned, the entire cluster
1018 * range inside of a page needs to be written.
1020 * We can skip this if the page is up to date - it's already
1021 * been zero'd from being read in as a hole.
1023 if (new && !PageUptodate(page))
1024 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1025 cpos, user_data_from, user_data_to);
1027 flush_dcache_page(page);
1034 * This function will only grab one clusters worth of pages.
1036 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1037 struct ocfs2_write_ctxt *wc,
1038 u32 cpos, loff_t user_pos, int new,
1039 struct page *mmap_page)
1042 unsigned long start, target_index, index;
1043 struct inode *inode = mapping->host;
1045 target_index = user_pos >> PAGE_CACHE_SHIFT;
1048 * Figure out how many pages we'll be manipulating here. For
1049 * non allocating write, we just change the one
1050 * page. Otherwise, we'll need a whole clusters worth.
1053 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1054 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1056 wc->w_num_pages = 1;
1057 start = target_index;
1060 for(i = 0; i < wc->w_num_pages; i++) {
1063 if (index == target_index && mmap_page) {
1065 * ocfs2_pagemkwrite() is a little different
1066 * and wants us to directly use the page
1069 lock_page(mmap_page);
1071 if (mmap_page->mapping != mapping) {
1072 unlock_page(mmap_page);
1074 * Sanity check - the locking in
1075 * ocfs2_pagemkwrite() should ensure
1076 * that this code doesn't trigger.
1083 page_cache_get(mmap_page);
1084 wc->w_pages[i] = mmap_page;
1086 wc->w_pages[i] = find_or_create_page(mapping, index,
1088 if (!wc->w_pages[i]) {
1095 if (index == target_index)
1096 wc->w_target_page = wc->w_pages[i];
1103 * Prepare a single cluster for write one cluster into the file.
1105 static int ocfs2_write_cluster(struct address_space *mapping,
1106 u32 phys, struct ocfs2_alloc_context *data_ac,
1107 struct ocfs2_alloc_context *meta_ac,
1108 struct ocfs2_write_ctxt *wc, u32 cpos,
1109 loff_t user_pos, unsigned user_len)
1112 u64 v_blkno, p_blkno;
1113 struct inode *inode = mapping->host;
1115 new = phys == 0 ? 1 : 0;
1121 * This is safe to call with the page locks - it won't take
1122 * any additional semaphores or cluster locks.
1125 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1126 &tmp_pos, 1, wc->w_di_bh,
1127 wc->w_handle, data_ac,
1130 * This shouldn't happen because we must have already
1131 * calculated the correct meta data allocation required. The
1132 * internal tree allocation code should know how to increase
1133 * transaction credits itself.
1135 * If need be, we could handle -EAGAIN for a
1136 * RESTART_TRANS here.
1138 mlog_bug_on_msg(ret == -EAGAIN,
1139 "Inode %llu: EAGAIN return during allocation.\n",
1140 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1146 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1148 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1152 * The only reason this should fail is due to an inability to
1153 * find the extent added.
1155 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1158 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1159 "at logical block %llu",
1160 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1161 (unsigned long long)v_blkno);
1165 BUG_ON(p_blkno == 0);
1167 for(i = 0; i < wc->w_num_pages; i++) {
1170 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1171 wc->w_pages[i], cpos,
1172 user_pos, user_len, new);
1181 * We only have cleanup to do in case of allocating write.
1184 ocfs2_write_failure(inode, wc, user_pos, user_len);
1192 * ocfs2_write_end() wants to know which parts of the target page it
1193 * should complete the write on. It's easiest to compute them ahead of
1194 * time when a more complete view of the write is available.
1196 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1197 struct ocfs2_write_ctxt *wc,
1198 loff_t pos, unsigned len, int alloc)
1200 struct ocfs2_write_cluster_desc *desc;
1202 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1203 wc->w_target_to = wc->w_target_from + len;
1209 * Allocating write - we may have different boundaries based
1210 * on page size and cluster size.
1212 * NOTE: We can no longer compute one value from the other as
1213 * the actual write length and user provided length may be
1217 if (wc->w_large_pages) {
1219 * We only care about the 1st and last cluster within
1220 * our range and whether they are holes or not. Either
1221 * value may be extended out to the start/end of a
1222 * newly allocated cluster.
1224 desc = &wc->w_desc[0];
1226 ocfs2_figure_cluster_boundaries(osb,
1231 desc = &wc->w_desc[wc->w_clen - 1];
1233 ocfs2_figure_cluster_boundaries(osb,
1238 wc->w_target_from = 0;
1239 wc->w_target_to = PAGE_CACHE_SIZE;
1243 int ocfs2_write_begin_nolock(struct address_space *mapping,
1244 loff_t pos, unsigned len, unsigned flags,
1245 struct page **pagep, void **fsdata,
1246 struct buffer_head *di_bh, struct page *mmap_page)
1248 int ret, i, credits = OCFS2_INODE_UPDATE_CREDITS;
1249 unsigned int num_clusters = 0, clusters_to_alloc = 0;
1251 struct ocfs2_write_ctxt *wc;
1252 struct inode *inode = mapping->host;
1253 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1254 struct ocfs2_dinode *di;
1255 struct ocfs2_alloc_context *data_ac = NULL;
1256 struct ocfs2_alloc_context *meta_ac = NULL;
1258 struct ocfs2_write_cluster_desc *desc;
1260 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1266 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1268 for (i = 0; i < wc->w_clen; i++) {
1269 desc = &wc->w_desc[i];
1270 desc->c_cpos = wc->w_cpos + i;
1272 if (num_clusters == 0) {
1273 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1274 &num_clusters, NULL);
1281 * Only increment phys if it doesn't describe
1287 desc->c_phys = phys;
1290 clusters_to_alloc++;
1297 * We set w_target_from, w_target_to here so that
1298 * ocfs2_write_end() knows which range in the target page to
1299 * write out. An allocation requires that we write the entire
1302 if (clusters_to_alloc > 0) {
1304 * XXX: We are stretching the limits of
1305 * ocfs2_lock_allocators(). It greately over-estimates
1306 * the work to be done.
1308 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1309 &data_ac, &meta_ac);
1315 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1320 ocfs2_set_target_boundaries(osb, wc, pos, len, clusters_to_alloc);
1322 handle = ocfs2_start_trans(osb, credits);
1323 if (IS_ERR(handle)) {
1324 ret = PTR_ERR(handle);
1329 wc->w_handle = handle;
1332 * We don't want this to fail in ocfs2_write_end(), so do it
1335 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1336 OCFS2_JOURNAL_ACCESS_WRITE);
1343 * Fill our page array first. That way we've grabbed enough so
1344 * that we can zero and flush if we error after adding the
1347 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1348 clusters_to_alloc, mmap_page);
1354 for (i = 0; i < wc->w_clen; i++) {
1355 desc = &wc->w_desc[i];
1357 ret = ocfs2_write_cluster(mapping, desc->c_phys, data_ac,
1358 meta_ac, wc, desc->c_cpos, pos, len);
1366 ocfs2_free_alloc_context(data_ac);
1368 ocfs2_free_alloc_context(meta_ac);
1370 *pagep = wc->w_target_page;
1374 ocfs2_commit_trans(osb, handle);
1377 ocfs2_free_write_ctxt(wc);
1380 ocfs2_free_alloc_context(data_ac);
1382 ocfs2_free_alloc_context(meta_ac);
1386 int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1387 loff_t pos, unsigned len, unsigned flags,
1388 struct page **pagep, void **fsdata)
1391 struct buffer_head *di_bh = NULL;
1392 struct inode *inode = mapping->host;
1394 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1401 * Take alloc sem here to prevent concurrent lookups. That way
1402 * the mapping, zeroing and tree manipulation within
1403 * ocfs2_write() will be safe against ->readpage(). This
1404 * should also serve to lock out allocation from a shared
1407 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1409 ret = ocfs2_data_lock(inode, 1);
1415 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1416 fsdata, di_bh, NULL);
1427 ocfs2_data_unlock(inode, 1);
1429 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1432 ocfs2_meta_unlock(inode, 1);
1437 int ocfs2_write_end_nolock(struct address_space *mapping,
1438 loff_t pos, unsigned len, unsigned copied,
1439 struct page *page, void *fsdata)
1442 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1443 struct inode *inode = mapping->host;
1444 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1445 struct ocfs2_write_ctxt *wc = fsdata;
1446 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1447 handle_t *handle = wc->w_handle;
1448 struct page *tmppage;
1450 if (unlikely(copied < len)) {
1451 if (!PageUptodate(wc->w_target_page))
1454 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1457 flush_dcache_page(wc->w_target_page);
1459 for(i = 0; i < wc->w_num_pages; i++) {
1460 tmppage = wc->w_pages[i];
1462 if (tmppage == wc->w_target_page) {
1463 from = wc->w_target_from;
1464 to = wc->w_target_to;
1466 BUG_ON(from > PAGE_CACHE_SIZE ||
1467 to > PAGE_CACHE_SIZE ||
1471 * Pages adjacent to the target (if any) imply
1472 * a hole-filling write in which case we want
1473 * to flush their entire range.
1476 to = PAGE_CACHE_SIZE;
1479 if (ocfs2_should_order_data(inode))
1480 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1482 ocfs2_journal_dirty_data);
1484 block_commit_write(tmppage, from, to);
1488 if (pos > inode->i_size) {
1489 i_size_write(inode, pos);
1490 mark_inode_dirty(inode);
1492 inode->i_blocks = ocfs2_inode_sector_count(inode);
1493 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1494 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1495 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1496 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1498 ocfs2_journal_dirty(handle, wc->w_di_bh);
1500 ocfs2_commit_trans(osb, handle);
1501 ocfs2_free_write_ctxt(wc);
1506 int ocfs2_write_end(struct file *file, struct address_space *mapping,
1507 loff_t pos, unsigned len, unsigned copied,
1508 struct page *page, void *fsdata)
1511 struct inode *inode = mapping->host;
1513 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1515 ocfs2_data_unlock(inode, 1);
1516 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1517 ocfs2_meta_unlock(inode, 1);
1522 const struct address_space_operations ocfs2_aops = {
1523 .readpage = ocfs2_readpage,
1524 .writepage = ocfs2_writepage,
1526 .sync_page = block_sync_page,
1527 .direct_IO = ocfs2_direct_IO,
1528 .invalidatepage = ocfs2_invalidatepage,
1529 .releasepage = ocfs2_releasepage,
1530 .migratepage = buffer_migrate_page,