4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
37 static DEFINE_SPINLOCK(swap_lock);
38 static unsigned int nr_swapfiles;
40 long total_swap_pages;
41 static int swap_overflow;
42 static int least_priority;
44 static const char Bad_file[] = "Bad swap file entry ";
45 static const char Unused_file[] = "Unused swap file entry ";
46 static const char Bad_offset[] = "Bad swap offset entry ";
47 static const char Unused_offset[] = "Unused swap offset entry ";
49 static struct swap_list_t swap_list = {-1, -1};
51 static struct swap_info_struct swap_info[MAX_SWAPFILES];
53 static DEFINE_MUTEX(swapon_mutex);
56 * We need this because the bdev->unplug_fn can sleep and we cannot
57 * hold swap_lock while calling the unplug_fn. And swap_lock
58 * cannot be turned into a mutex.
60 static DECLARE_RWSEM(swap_unplug_sem);
62 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
66 down_read(&swap_unplug_sem);
67 entry.val = page_private(page);
68 if (PageSwapCache(page)) {
69 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
70 struct backing_dev_info *bdi;
73 * If the page is removed from swapcache from under us (with a
74 * racy try_to_unuse/swapoff) we need an additional reference
75 * count to avoid reading garbage from page_private(page) above.
76 * If the WARN_ON triggers during a swapoff it maybe the race
77 * condition and it's harmless. However if it triggers without
78 * swapoff it signals a problem.
80 WARN_ON(page_count(page) <= 1);
82 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
83 blk_run_backing_dev(bdi, page);
85 up_read(&swap_unplug_sem);
89 * swapon tell device that all the old swap contents can be discarded,
90 * to allow the swap device to optimize its wear-levelling.
92 static int discard_swap(struct swap_info_struct *si)
94 struct swap_extent *se;
97 list_for_each_entry(se, &si->extent_list, list) {
98 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
99 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
101 if (se->start_page == 0) {
102 /* Do not discard the swap header page! */
103 start_block += 1 << (PAGE_SHIFT - 9);
104 nr_blocks -= 1 << (PAGE_SHIFT - 9);
109 err = blkdev_issue_discard(si->bdev, start_block,
110 nr_blocks, GFP_KERNEL);
116 return err; /* That will often be -EOPNOTSUPP */
120 * swap allocation tell device that a cluster of swap can now be discarded,
121 * to allow the swap device to optimize its wear-levelling.
123 static void discard_swap_cluster(struct swap_info_struct *si,
124 pgoff_t start_page, pgoff_t nr_pages)
126 struct swap_extent *se = si->curr_swap_extent;
127 int found_extent = 0;
130 struct list_head *lh;
132 if (se->start_page <= start_page &&
133 start_page < se->start_page + se->nr_pages) {
134 pgoff_t offset = start_page - se->start_page;
135 sector_t start_block = se->start_block + offset;
136 sector_t nr_blocks = se->nr_pages - offset;
138 if (nr_blocks > nr_pages)
139 nr_blocks = nr_pages;
140 start_page += nr_blocks;
141 nr_pages -= nr_blocks;
144 si->curr_swap_extent = se;
146 start_block <<= PAGE_SHIFT - 9;
147 nr_blocks <<= PAGE_SHIFT - 9;
148 if (blkdev_issue_discard(si->bdev, start_block,
149 nr_blocks, GFP_NOIO))
154 if (lh == &si->extent_list)
156 se = list_entry(lh, struct swap_extent, list);
160 static int wait_for_discard(void *word)
166 #define SWAPFILE_CLUSTER 256
167 #define LATENCY_LIMIT 256
169 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
171 unsigned long offset;
172 unsigned long scan_base;
173 unsigned long last_in_cluster = 0;
174 int latency_ration = LATENCY_LIMIT;
175 int found_free_cluster = 0;
178 * We try to cluster swap pages by allocating them sequentially
179 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
180 * way, however, we resort to first-free allocation, starting
181 * a new cluster. This prevents us from scattering swap pages
182 * all over the entire swap partition, so that we reduce
183 * overall disk seek times between swap pages. -- sct
184 * But we do now try to find an empty cluster. -Andrea
185 * And we let swap pages go all over an SSD partition. Hugh
188 si->flags += SWP_SCANNING;
189 scan_base = offset = si->cluster_next;
191 if (unlikely(!si->cluster_nr--)) {
192 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
193 si->cluster_nr = SWAPFILE_CLUSTER - 1;
196 if (si->flags & SWP_DISCARDABLE) {
198 * Start range check on racing allocations, in case
199 * they overlap the cluster we eventually decide on
200 * (we scan without swap_lock to allow preemption).
201 * It's hardly conceivable that cluster_nr could be
202 * wrapped during our scan, but don't depend on it.
204 if (si->lowest_alloc)
206 si->lowest_alloc = si->max;
207 si->highest_alloc = 0;
209 spin_unlock(&swap_lock);
212 * If seek is expensive, start searching for new cluster from
213 * start of partition, to minimize the span of allocated swap.
214 * But if seek is cheap, search from our current position, so
215 * that swap is allocated from all over the partition: if the
216 * Flash Translation Layer only remaps within limited zones,
217 * we don't want to wear out the first zone too quickly.
219 if (!(si->flags & SWP_SOLIDSTATE))
220 scan_base = offset = si->lowest_bit;
221 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
223 /* Locate the first empty (unaligned) cluster */
224 for (; last_in_cluster <= si->highest_bit; offset++) {
225 if (si->swap_map[offset])
226 last_in_cluster = offset + SWAPFILE_CLUSTER;
227 else if (offset == last_in_cluster) {
228 spin_lock(&swap_lock);
229 offset -= SWAPFILE_CLUSTER - 1;
230 si->cluster_next = offset;
231 si->cluster_nr = SWAPFILE_CLUSTER - 1;
232 found_free_cluster = 1;
235 if (unlikely(--latency_ration < 0)) {
237 latency_ration = LATENCY_LIMIT;
241 offset = si->lowest_bit;
242 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
244 /* Locate the first empty (unaligned) cluster */
245 for (; last_in_cluster < scan_base; offset++) {
246 if (si->swap_map[offset])
247 last_in_cluster = offset + SWAPFILE_CLUSTER;
248 else if (offset == last_in_cluster) {
249 spin_lock(&swap_lock);
250 offset -= SWAPFILE_CLUSTER - 1;
251 si->cluster_next = offset;
252 si->cluster_nr = SWAPFILE_CLUSTER - 1;
253 found_free_cluster = 1;
256 if (unlikely(--latency_ration < 0)) {
258 latency_ration = LATENCY_LIMIT;
263 spin_lock(&swap_lock);
264 si->cluster_nr = SWAPFILE_CLUSTER - 1;
265 si->lowest_alloc = 0;
269 if (!(si->flags & SWP_WRITEOK))
271 if (!si->highest_bit)
273 if (offset > si->highest_bit)
274 scan_base = offset = si->lowest_bit;
275 if (si->swap_map[offset])
278 if (offset == si->lowest_bit)
280 if (offset == si->highest_bit)
283 if (si->inuse_pages == si->pages) {
284 si->lowest_bit = si->max;
287 si->swap_map[offset] = 1;
288 si->cluster_next = offset + 1;
289 si->flags -= SWP_SCANNING;
291 if (si->lowest_alloc) {
293 * Only set when SWP_DISCARDABLE, and there's a scan
294 * for a free cluster in progress or just completed.
296 if (found_free_cluster) {
298 * To optimize wear-levelling, discard the
299 * old data of the cluster, taking care not to
300 * discard any of its pages that have already
301 * been allocated by racing tasks (offset has
302 * already stepped over any at the beginning).
304 if (offset < si->highest_alloc &&
305 si->lowest_alloc <= last_in_cluster)
306 last_in_cluster = si->lowest_alloc - 1;
307 si->flags |= SWP_DISCARDING;
308 spin_unlock(&swap_lock);
310 if (offset < last_in_cluster)
311 discard_swap_cluster(si, offset,
312 last_in_cluster - offset + 1);
314 spin_lock(&swap_lock);
315 si->lowest_alloc = 0;
316 si->flags &= ~SWP_DISCARDING;
318 smp_mb(); /* wake_up_bit advises this */
319 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
321 } else if (si->flags & SWP_DISCARDING) {
323 * Delay using pages allocated by racing tasks
324 * until the whole discard has been issued. We
325 * could defer that delay until swap_writepage,
326 * but it's easier to keep this self-contained.
328 spin_unlock(&swap_lock);
329 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
330 wait_for_discard, TASK_UNINTERRUPTIBLE);
331 spin_lock(&swap_lock);
334 * Note pages allocated by racing tasks while
335 * scan for a free cluster is in progress, so
336 * that its final discard can exclude them.
338 if (offset < si->lowest_alloc)
339 si->lowest_alloc = offset;
340 if (offset > si->highest_alloc)
341 si->highest_alloc = offset;
347 spin_unlock(&swap_lock);
348 while (++offset <= si->highest_bit) {
349 if (!si->swap_map[offset]) {
350 spin_lock(&swap_lock);
353 if (unlikely(--latency_ration < 0)) {
355 latency_ration = LATENCY_LIMIT;
358 offset = si->lowest_bit;
359 while (++offset < scan_base) {
360 if (!si->swap_map[offset]) {
361 spin_lock(&swap_lock);
364 if (unlikely(--latency_ration < 0)) {
366 latency_ration = LATENCY_LIMIT;
369 spin_lock(&swap_lock);
372 si->flags -= SWP_SCANNING;
376 swp_entry_t get_swap_page(void)
378 struct swap_info_struct *si;
383 spin_lock(&swap_lock);
384 if (nr_swap_pages <= 0)
388 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
389 si = swap_info + type;
392 (!wrapped && si->prio != swap_info[next].prio)) {
393 next = swap_list.head;
397 if (!si->highest_bit)
399 if (!(si->flags & SWP_WRITEOK))
402 swap_list.next = next;
403 offset = scan_swap_map(si);
405 spin_unlock(&swap_lock);
406 return swp_entry(type, offset);
408 next = swap_list.next;
413 spin_unlock(&swap_lock);
414 return (swp_entry_t) {0};
417 swp_entry_t get_swap_page_of_type(int type)
419 struct swap_info_struct *si;
422 spin_lock(&swap_lock);
423 si = swap_info + type;
424 if (si->flags & SWP_WRITEOK) {
426 offset = scan_swap_map(si);
428 spin_unlock(&swap_lock);
429 return swp_entry(type, offset);
433 spin_unlock(&swap_lock);
434 return (swp_entry_t) {0};
437 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
439 struct swap_info_struct * p;
440 unsigned long offset, type;
444 type = swp_type(entry);
445 if (type >= nr_swapfiles)
447 p = & swap_info[type];
448 if (!(p->flags & SWP_USED))
450 offset = swp_offset(entry);
451 if (offset >= p->max)
453 if (!p->swap_map[offset])
455 spin_lock(&swap_lock);
459 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
462 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
465 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
468 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
473 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
475 int count = p->swap_map[offset];
477 if (count < SWAP_MAP_MAX) {
479 p->swap_map[offset] = count;
481 if (offset < p->lowest_bit)
482 p->lowest_bit = offset;
483 if (offset > p->highest_bit)
484 p->highest_bit = offset;
485 if (p->prio > swap_info[swap_list.next].prio)
486 swap_list.next = p - swap_info;
495 * Caller has made sure that the swapdevice corresponding to entry
496 * is still around or has not been recycled.
498 void swap_free(swp_entry_t entry)
500 struct swap_info_struct * p;
502 p = swap_info_get(entry);
504 swap_entry_free(p, swp_offset(entry));
505 spin_unlock(&swap_lock);
510 * How many references to page are currently swapped out?
512 static inline int page_swapcount(struct page *page)
515 struct swap_info_struct *p;
518 entry.val = page_private(page);
519 p = swap_info_get(entry);
521 /* Subtract the 1 for the swap cache itself */
522 count = p->swap_map[swp_offset(entry)] - 1;
523 spin_unlock(&swap_lock);
529 * We can write to an anon page without COW if there are no other references
530 * to it. And as a side-effect, free up its swap: because the old content
531 * on disk will never be read, and seeking back there to write new content
532 * later would only waste time away from clustering.
534 int reuse_swap_page(struct page *page)
538 VM_BUG_ON(!PageLocked(page));
539 count = page_mapcount(page);
540 if (count <= 1 && PageSwapCache(page)) {
541 count += page_swapcount(page);
542 if (count == 1 && !PageWriteback(page)) {
543 delete_from_swap_cache(page);
551 * If swap is getting full, or if there are no more mappings of this page,
552 * then try_to_free_swap is called to free its swap space.
554 int try_to_free_swap(struct page *page)
556 VM_BUG_ON(!PageLocked(page));
558 if (!PageSwapCache(page))
560 if (PageWriteback(page))
562 if (page_swapcount(page))
565 delete_from_swap_cache(page);
571 * Free the swap entry like above, but also try to
572 * free the page cache entry if it is the last user.
574 int free_swap_and_cache(swp_entry_t entry)
576 struct swap_info_struct *p;
577 struct page *page = NULL;
579 if (is_migration_entry(entry))
582 p = swap_info_get(entry);
584 if (swap_entry_free(p, swp_offset(entry)) == 1) {
585 page = find_get_page(&swapper_space, entry.val);
586 if (page && !trylock_page(page)) {
587 page_cache_release(page);
591 spin_unlock(&swap_lock);
595 * Not mapped elsewhere, or swap space full? Free it!
596 * Also recheck PageSwapCache now page is locked (above).
598 if (PageSwapCache(page) && !PageWriteback(page) &&
599 (!page_mapped(page) || vm_swap_full())) {
600 delete_from_swap_cache(page);
604 page_cache_release(page);
609 #ifdef CONFIG_HIBERNATION
611 * Find the swap type that corresponds to given device (if any).
613 * @offset - number of the PAGE_SIZE-sized block of the device, starting
614 * from 0, in which the swap header is expected to be located.
616 * This is needed for the suspend to disk (aka swsusp).
618 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
620 struct block_device *bdev = NULL;
624 bdev = bdget(device);
626 spin_lock(&swap_lock);
627 for (i = 0; i < nr_swapfiles; i++) {
628 struct swap_info_struct *sis = swap_info + i;
630 if (!(sis->flags & SWP_WRITEOK))
637 spin_unlock(&swap_lock);
640 if (bdev == sis->bdev) {
641 struct swap_extent *se;
643 se = list_entry(sis->extent_list.next,
644 struct swap_extent, list);
645 if (se->start_block == offset) {
649 spin_unlock(&swap_lock);
655 spin_unlock(&swap_lock);
663 * Return either the total number of swap pages of given type, or the number
664 * of free pages of that type (depending on @free)
666 * This is needed for software suspend
668 unsigned int count_swap_pages(int type, int free)
672 if (type < nr_swapfiles) {
673 spin_lock(&swap_lock);
674 if (swap_info[type].flags & SWP_WRITEOK) {
675 n = swap_info[type].pages;
677 n -= swap_info[type].inuse_pages;
679 spin_unlock(&swap_lock);
686 * No need to decide whether this PTE shares the swap entry with others,
687 * just let do_wp_page work it out if a write is requested later - to
688 * force COW, vm_page_prot omits write permission from any private vma.
690 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
691 unsigned long addr, swp_entry_t entry, struct page *page)
693 struct mem_cgroup *ptr = NULL;
698 if (mem_cgroup_try_charge(vma->vm_mm, GFP_HIGHUSER_MOVABLE, &ptr))
701 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
702 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
704 mem_cgroup_cancel_charge_swapin(ptr);
709 inc_mm_counter(vma->vm_mm, anon_rss);
711 set_pte_at(vma->vm_mm, addr, pte,
712 pte_mkold(mk_pte(page, vma->vm_page_prot)));
713 page_add_anon_rmap(page, vma, addr);
714 mem_cgroup_commit_charge_swapin(page, ptr);
717 * Move the page to the active list so it is not
718 * immediately swapped out again after swapon.
722 pte_unmap_unlock(pte, ptl);
726 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
727 unsigned long addr, unsigned long end,
728 swp_entry_t entry, struct page *page)
730 pte_t swp_pte = swp_entry_to_pte(entry);
735 * We don't actually need pte lock while scanning for swp_pte: since
736 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
737 * page table while we're scanning; though it could get zapped, and on
738 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
739 * of unmatched parts which look like swp_pte, so unuse_pte must
740 * recheck under pte lock. Scanning without pte lock lets it be
741 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
743 pte = pte_offset_map(pmd, addr);
746 * swapoff spends a _lot_ of time in this loop!
747 * Test inline before going to call unuse_pte.
749 if (unlikely(pte_same(*pte, swp_pte))) {
751 ret = unuse_pte(vma, pmd, addr, entry, page);
754 pte = pte_offset_map(pmd, addr);
756 } while (pte++, addr += PAGE_SIZE, addr != end);
762 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
763 unsigned long addr, unsigned long end,
764 swp_entry_t entry, struct page *page)
770 pmd = pmd_offset(pud, addr);
772 next = pmd_addr_end(addr, end);
773 if (pmd_none_or_clear_bad(pmd))
775 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
778 } while (pmd++, addr = next, addr != end);
782 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
783 unsigned long addr, unsigned long end,
784 swp_entry_t entry, struct page *page)
790 pud = pud_offset(pgd, addr);
792 next = pud_addr_end(addr, end);
793 if (pud_none_or_clear_bad(pud))
795 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
798 } while (pud++, addr = next, addr != end);
802 static int unuse_vma(struct vm_area_struct *vma,
803 swp_entry_t entry, struct page *page)
806 unsigned long addr, end, next;
810 addr = page_address_in_vma(page, vma);
814 end = addr + PAGE_SIZE;
816 addr = vma->vm_start;
820 pgd = pgd_offset(vma->vm_mm, addr);
822 next = pgd_addr_end(addr, end);
823 if (pgd_none_or_clear_bad(pgd))
825 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
828 } while (pgd++, addr = next, addr != end);
832 static int unuse_mm(struct mm_struct *mm,
833 swp_entry_t entry, struct page *page)
835 struct vm_area_struct *vma;
838 if (!down_read_trylock(&mm->mmap_sem)) {
840 * Activate page so shrink_inactive_list is unlikely to unmap
841 * its ptes while lock is dropped, so swapoff can make progress.
845 down_read(&mm->mmap_sem);
848 for (vma = mm->mmap; vma; vma = vma->vm_next) {
849 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
852 up_read(&mm->mmap_sem);
853 return (ret < 0)? ret: 0;
857 * Scan swap_map from current position to next entry still in use.
858 * Recycle to start on reaching the end, returning 0 when empty.
860 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
863 unsigned int max = si->max;
864 unsigned int i = prev;
868 * No need for swap_lock here: we're just looking
869 * for whether an entry is in use, not modifying it; false
870 * hits are okay, and sys_swapoff() has already prevented new
871 * allocations from this area (while holding swap_lock).
880 * No entries in use at top of swap_map,
881 * loop back to start and recheck there.
887 count = si->swap_map[i];
888 if (count && count != SWAP_MAP_BAD)
895 * We completely avoid races by reading each swap page in advance,
896 * and then search for the process using it. All the necessary
897 * page table adjustments can then be made atomically.
899 static int try_to_unuse(unsigned int type)
901 struct swap_info_struct * si = &swap_info[type];
902 struct mm_struct *start_mm;
903 unsigned short *swap_map;
904 unsigned short swcount;
909 int reset_overflow = 0;
913 * When searching mms for an entry, a good strategy is to
914 * start at the first mm we freed the previous entry from
915 * (though actually we don't notice whether we or coincidence
916 * freed the entry). Initialize this start_mm with a hold.
918 * A simpler strategy would be to start at the last mm we
919 * freed the previous entry from; but that would take less
920 * advantage of mmlist ordering, which clusters forked mms
921 * together, child after parent. If we race with dup_mmap(), we
922 * prefer to resolve parent before child, lest we miss entries
923 * duplicated after we scanned child: using last mm would invert
924 * that. Though it's only a serious concern when an overflowed
925 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
928 atomic_inc(&init_mm.mm_users);
931 * Keep on scanning until all entries have gone. Usually,
932 * one pass through swap_map is enough, but not necessarily:
933 * there are races when an instance of an entry might be missed.
935 while ((i = find_next_to_unuse(si, i)) != 0) {
936 if (signal_pending(current)) {
942 * Get a page for the entry, using the existing swap
943 * cache page if there is one. Otherwise, get a clean
944 * page and read the swap into it.
946 swap_map = &si->swap_map[i];
947 entry = swp_entry(type, i);
948 page = read_swap_cache_async(entry,
949 GFP_HIGHUSER_MOVABLE, NULL, 0);
952 * Either swap_duplicate() failed because entry
953 * has been freed independently, and will not be
954 * reused since sys_swapoff() already disabled
955 * allocation from here, or alloc_page() failed.
964 * Don't hold on to start_mm if it looks like exiting.
966 if (atomic_read(&start_mm->mm_users) == 1) {
969 atomic_inc(&init_mm.mm_users);
973 * Wait for and lock page. When do_swap_page races with
974 * try_to_unuse, do_swap_page can handle the fault much
975 * faster than try_to_unuse can locate the entry. This
976 * apparently redundant "wait_on_page_locked" lets try_to_unuse
977 * defer to do_swap_page in such a case - in some tests,
978 * do_swap_page and try_to_unuse repeatedly compete.
980 wait_on_page_locked(page);
981 wait_on_page_writeback(page);
983 wait_on_page_writeback(page);
986 * Remove all references to entry.
987 * Whenever we reach init_mm, there's no address space
988 * to search, but use it as a reminder to search shmem.
993 if (start_mm == &init_mm)
994 shmem = shmem_unuse(entry, page);
996 retval = unuse_mm(start_mm, entry, page);
999 int set_start_mm = (*swap_map >= swcount);
1000 struct list_head *p = &start_mm->mmlist;
1001 struct mm_struct *new_start_mm = start_mm;
1002 struct mm_struct *prev_mm = start_mm;
1003 struct mm_struct *mm;
1005 atomic_inc(&new_start_mm->mm_users);
1006 atomic_inc(&prev_mm->mm_users);
1007 spin_lock(&mmlist_lock);
1008 while (*swap_map > 1 && !retval && !shmem &&
1009 (p = p->next) != &start_mm->mmlist) {
1010 mm = list_entry(p, struct mm_struct, mmlist);
1011 if (!atomic_inc_not_zero(&mm->mm_users))
1013 spin_unlock(&mmlist_lock);
1019 swcount = *swap_map;
1022 else if (mm == &init_mm) {
1024 shmem = shmem_unuse(entry, page);
1026 retval = unuse_mm(mm, entry, page);
1027 if (set_start_mm && *swap_map < swcount) {
1028 mmput(new_start_mm);
1029 atomic_inc(&mm->mm_users);
1033 spin_lock(&mmlist_lock);
1035 spin_unlock(&mmlist_lock);
1038 start_mm = new_start_mm;
1041 /* page has already been unlocked and released */
1049 page_cache_release(page);
1054 * How could swap count reach 0x7fff when the maximum
1055 * pid is 0x7fff, and there's no way to repeat a swap
1056 * page within an mm (except in shmem, where it's the
1057 * shared object which takes the reference count)?
1058 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
1060 * If that's wrong, then we should worry more about
1061 * exit_mmap() and do_munmap() cases described above:
1062 * we might be resetting SWAP_MAP_MAX too early here.
1063 * We know "Undead"s can happen, they're okay, so don't
1064 * report them; but do report if we reset SWAP_MAP_MAX.
1066 if (*swap_map == SWAP_MAP_MAX) {
1067 spin_lock(&swap_lock);
1069 spin_unlock(&swap_lock);
1074 * If a reference remains (rare), we would like to leave
1075 * the page in the swap cache; but try_to_unmap could
1076 * then re-duplicate the entry once we drop page lock,
1077 * so we might loop indefinitely; also, that page could
1078 * not be swapped out to other storage meanwhile. So:
1079 * delete from cache even if there's another reference,
1080 * after ensuring that the data has been saved to disk -
1081 * since if the reference remains (rarer), it will be
1082 * read from disk into another page. Splitting into two
1083 * pages would be incorrect if swap supported "shared
1084 * private" pages, but they are handled by tmpfs files.
1086 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
1087 struct writeback_control wbc = {
1088 .sync_mode = WB_SYNC_NONE,
1091 swap_writepage(page, &wbc);
1093 wait_on_page_writeback(page);
1097 * It is conceivable that a racing task removed this page from
1098 * swap cache just before we acquired the page lock at the top,
1099 * or while we dropped it in unuse_mm(). The page might even
1100 * be back in swap cache on another swap area: that we must not
1101 * delete, since it may not have been written out to swap yet.
1103 if (PageSwapCache(page) &&
1104 likely(page_private(page) == entry.val))
1105 delete_from_swap_cache(page);
1108 * So we could skip searching mms once swap count went
1109 * to 1, we did not mark any present ptes as dirty: must
1110 * mark page dirty so shrink_page_list will preserve it.
1114 page_cache_release(page);
1117 * Make sure that we aren't completely killing
1118 * interactive performance.
1124 if (reset_overflow) {
1125 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1132 * After a successful try_to_unuse, if no swap is now in use, we know
1133 * we can empty the mmlist. swap_lock must be held on entry and exit.
1134 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1135 * added to the mmlist just after page_duplicate - before would be racy.
1137 static void drain_mmlist(void)
1139 struct list_head *p, *next;
1142 for (i = 0; i < nr_swapfiles; i++)
1143 if (swap_info[i].inuse_pages)
1145 spin_lock(&mmlist_lock);
1146 list_for_each_safe(p, next, &init_mm.mmlist)
1148 spin_unlock(&mmlist_lock);
1152 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1153 * corresponds to page offset `offset'.
1155 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1157 struct swap_extent *se = sis->curr_swap_extent;
1158 struct swap_extent *start_se = se;
1161 struct list_head *lh;
1163 if (se->start_page <= offset &&
1164 offset < (se->start_page + se->nr_pages)) {
1165 return se->start_block + (offset - se->start_page);
1168 if (lh == &sis->extent_list)
1170 se = list_entry(lh, struct swap_extent, list);
1171 sis->curr_swap_extent = se;
1172 BUG_ON(se == start_se); /* It *must* be present */
1176 #ifdef CONFIG_HIBERNATION
1178 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1179 * corresponding to given index in swap_info (swap type).
1181 sector_t swapdev_block(int swap_type, pgoff_t offset)
1183 struct swap_info_struct *sis;
1185 if (swap_type >= nr_swapfiles)
1188 sis = swap_info + swap_type;
1189 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1191 #endif /* CONFIG_HIBERNATION */
1194 * Free all of a swapdev's extent information
1196 static void destroy_swap_extents(struct swap_info_struct *sis)
1198 while (!list_empty(&sis->extent_list)) {
1199 struct swap_extent *se;
1201 se = list_entry(sis->extent_list.next,
1202 struct swap_extent, list);
1203 list_del(&se->list);
1209 * Add a block range (and the corresponding page range) into this swapdev's
1210 * extent list. The extent list is kept sorted in page order.
1212 * This function rather assumes that it is called in ascending page order.
1215 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1216 unsigned long nr_pages, sector_t start_block)
1218 struct swap_extent *se;
1219 struct swap_extent *new_se;
1220 struct list_head *lh;
1222 lh = sis->extent_list.prev; /* The highest page extent */
1223 if (lh != &sis->extent_list) {
1224 se = list_entry(lh, struct swap_extent, list);
1225 BUG_ON(se->start_page + se->nr_pages != start_page);
1226 if (se->start_block + se->nr_pages == start_block) {
1228 se->nr_pages += nr_pages;
1234 * No merge. Insert a new extent, preserving ordering.
1236 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1239 new_se->start_page = start_page;
1240 new_se->nr_pages = nr_pages;
1241 new_se->start_block = start_block;
1243 list_add_tail(&new_se->list, &sis->extent_list);
1248 * A `swap extent' is a simple thing which maps a contiguous range of pages
1249 * onto a contiguous range of disk blocks. An ordered list of swap extents
1250 * is built at swapon time and is then used at swap_writepage/swap_readpage
1251 * time for locating where on disk a page belongs.
1253 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1254 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1255 * swap files identically.
1257 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1258 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1259 * swapfiles are handled *identically* after swapon time.
1261 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1262 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1263 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1264 * requirements, they are simply tossed out - we will never use those blocks
1267 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1268 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1269 * which will scribble on the fs.
1271 * The amount of disk space which a single swap extent represents varies.
1272 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1273 * extents in the list. To avoid much list walking, we cache the previous
1274 * search location in `curr_swap_extent', and start new searches from there.
1275 * This is extremely effective. The average number of iterations in
1276 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1278 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1280 struct inode *inode;
1281 unsigned blocks_per_page;
1282 unsigned long page_no;
1284 sector_t probe_block;
1285 sector_t last_block;
1286 sector_t lowest_block = -1;
1287 sector_t highest_block = 0;
1291 inode = sis->swap_file->f_mapping->host;
1292 if (S_ISBLK(inode->i_mode)) {
1293 ret = add_swap_extent(sis, 0, sis->max, 0);
1298 blkbits = inode->i_blkbits;
1299 blocks_per_page = PAGE_SIZE >> blkbits;
1302 * Map all the blocks into the extent list. This code doesn't try
1307 last_block = i_size_read(inode) >> blkbits;
1308 while ((probe_block + blocks_per_page) <= last_block &&
1309 page_no < sis->max) {
1310 unsigned block_in_page;
1311 sector_t first_block;
1313 first_block = bmap(inode, probe_block);
1314 if (first_block == 0)
1318 * It must be PAGE_SIZE aligned on-disk
1320 if (first_block & (blocks_per_page - 1)) {
1325 for (block_in_page = 1; block_in_page < blocks_per_page;
1329 block = bmap(inode, probe_block + block_in_page);
1332 if (block != first_block + block_in_page) {
1339 first_block >>= (PAGE_SHIFT - blkbits);
1340 if (page_no) { /* exclude the header page */
1341 if (first_block < lowest_block)
1342 lowest_block = first_block;
1343 if (first_block > highest_block)
1344 highest_block = first_block;
1348 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1350 ret = add_swap_extent(sis, page_no, 1, first_block);
1355 probe_block += blocks_per_page;
1360 *span = 1 + highest_block - lowest_block;
1362 page_no = 1; /* force Empty message */
1364 sis->pages = page_no - 1;
1365 sis->highest_bit = page_no - 1;
1367 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1368 struct swap_extent, list);
1371 printk(KERN_ERR "swapon: swapfile has holes\n");
1377 asmlinkage long sys_swapoff(const char __user * specialfile)
1379 struct swap_info_struct * p = NULL;
1380 unsigned short *swap_map;
1381 struct file *swap_file, *victim;
1382 struct address_space *mapping;
1383 struct inode *inode;
1388 if (!capable(CAP_SYS_ADMIN))
1391 pathname = getname(specialfile);
1392 err = PTR_ERR(pathname);
1393 if (IS_ERR(pathname))
1396 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1398 err = PTR_ERR(victim);
1402 mapping = victim->f_mapping;
1404 spin_lock(&swap_lock);
1405 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1406 p = swap_info + type;
1407 if (p->flags & SWP_WRITEOK) {
1408 if (p->swap_file->f_mapping == mapping)
1415 spin_unlock(&swap_lock);
1418 if (!security_vm_enough_memory(p->pages))
1419 vm_unacct_memory(p->pages);
1422 spin_unlock(&swap_lock);
1426 swap_list.head = p->next;
1428 swap_info[prev].next = p->next;
1430 if (type == swap_list.next) {
1431 /* just pick something that's safe... */
1432 swap_list.next = swap_list.head;
1435 for (i = p->next; i >= 0; i = swap_info[i].next)
1436 swap_info[i].prio = p->prio--;
1439 nr_swap_pages -= p->pages;
1440 total_swap_pages -= p->pages;
1441 p->flags &= ~SWP_WRITEOK;
1442 spin_unlock(&swap_lock);
1444 current->flags |= PF_SWAPOFF;
1445 err = try_to_unuse(type);
1446 current->flags &= ~PF_SWAPOFF;
1449 /* re-insert swap space back into swap_list */
1450 spin_lock(&swap_lock);
1452 p->prio = --least_priority;
1454 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1455 if (p->prio >= swap_info[i].prio)
1461 swap_list.head = swap_list.next = p - swap_info;
1463 swap_info[prev].next = p - swap_info;
1464 nr_swap_pages += p->pages;
1465 total_swap_pages += p->pages;
1466 p->flags |= SWP_WRITEOK;
1467 spin_unlock(&swap_lock);
1471 /* wait for any unplug function to finish */
1472 down_write(&swap_unplug_sem);
1473 up_write(&swap_unplug_sem);
1475 destroy_swap_extents(p);
1476 mutex_lock(&swapon_mutex);
1477 spin_lock(&swap_lock);
1480 /* wait for anyone still in scan_swap_map */
1481 p->highest_bit = 0; /* cuts scans short */
1482 while (p->flags >= SWP_SCANNING) {
1483 spin_unlock(&swap_lock);
1484 schedule_timeout_uninterruptible(1);
1485 spin_lock(&swap_lock);
1488 swap_file = p->swap_file;
1489 p->swap_file = NULL;
1491 swap_map = p->swap_map;
1494 spin_unlock(&swap_lock);
1495 mutex_unlock(&swapon_mutex);
1497 inode = mapping->host;
1498 if (S_ISBLK(inode->i_mode)) {
1499 struct block_device *bdev = I_BDEV(inode);
1500 set_blocksize(bdev, p->old_block_size);
1503 mutex_lock(&inode->i_mutex);
1504 inode->i_flags &= ~S_SWAPFILE;
1505 mutex_unlock(&inode->i_mutex);
1507 filp_close(swap_file, NULL);
1511 filp_close(victim, NULL);
1516 #ifdef CONFIG_PROC_FS
1518 static void *swap_start(struct seq_file *swap, loff_t *pos)
1520 struct swap_info_struct *ptr = swap_info;
1524 mutex_lock(&swapon_mutex);
1527 return SEQ_START_TOKEN;
1529 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1530 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1539 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1541 struct swap_info_struct *ptr;
1542 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1544 if (v == SEQ_START_TOKEN)
1551 for (; ptr < endptr; ptr++) {
1552 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1561 static void swap_stop(struct seq_file *swap, void *v)
1563 mutex_unlock(&swapon_mutex);
1566 static int swap_show(struct seq_file *swap, void *v)
1568 struct swap_info_struct *ptr = v;
1572 if (ptr == SEQ_START_TOKEN) {
1573 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1577 file = ptr->swap_file;
1578 len = seq_path(swap, &file->f_path, " \t\n\\");
1579 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1580 len < 40 ? 40 - len : 1, " ",
1581 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1582 "partition" : "file\t",
1583 ptr->pages << (PAGE_SHIFT - 10),
1584 ptr->inuse_pages << (PAGE_SHIFT - 10),
1589 static const struct seq_operations swaps_op = {
1590 .start = swap_start,
1596 static int swaps_open(struct inode *inode, struct file *file)
1598 return seq_open(file, &swaps_op);
1601 static const struct file_operations proc_swaps_operations = {
1604 .llseek = seq_lseek,
1605 .release = seq_release,
1608 static int __init procswaps_init(void)
1610 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1613 __initcall(procswaps_init);
1614 #endif /* CONFIG_PROC_FS */
1616 #ifdef MAX_SWAPFILES_CHECK
1617 static int __init max_swapfiles_check(void)
1619 MAX_SWAPFILES_CHECK();
1622 late_initcall(max_swapfiles_check);
1626 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1628 * The swapon system call
1630 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1632 struct swap_info_struct * p;
1634 struct block_device *bdev = NULL;
1635 struct file *swap_file = NULL;
1636 struct address_space *mapping;
1640 union swap_header *swap_header = NULL;
1641 unsigned int nr_good_pages = 0;
1644 unsigned long maxpages = 1;
1645 unsigned long swapfilepages;
1646 unsigned short *swap_map = NULL;
1647 struct page *page = NULL;
1648 struct inode *inode = NULL;
1651 if (!capable(CAP_SYS_ADMIN))
1653 spin_lock(&swap_lock);
1655 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1656 if (!(p->flags & SWP_USED))
1659 if (type >= MAX_SWAPFILES) {
1660 spin_unlock(&swap_lock);
1663 if (type >= nr_swapfiles)
1664 nr_swapfiles = type+1;
1665 memset(p, 0, sizeof(*p));
1666 INIT_LIST_HEAD(&p->extent_list);
1667 p->flags = SWP_USED;
1669 spin_unlock(&swap_lock);
1670 name = getname(specialfile);
1671 error = PTR_ERR(name);
1676 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1677 error = PTR_ERR(swap_file);
1678 if (IS_ERR(swap_file)) {
1683 p->swap_file = swap_file;
1684 mapping = swap_file->f_mapping;
1685 inode = mapping->host;
1688 for (i = 0; i < nr_swapfiles; i++) {
1689 struct swap_info_struct *q = &swap_info[i];
1691 if (i == type || !q->swap_file)
1693 if (mapping == q->swap_file->f_mapping)
1698 if (S_ISBLK(inode->i_mode)) {
1699 bdev = I_BDEV(inode);
1700 error = bd_claim(bdev, sys_swapon);
1706 p->old_block_size = block_size(bdev);
1707 error = set_blocksize(bdev, PAGE_SIZE);
1711 } else if (S_ISREG(inode->i_mode)) {
1712 p->bdev = inode->i_sb->s_bdev;
1713 mutex_lock(&inode->i_mutex);
1715 if (IS_SWAPFILE(inode)) {
1723 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1726 * Read the swap header.
1728 if (!mapping->a_ops->readpage) {
1732 page = read_mapping_page(mapping, 0, swap_file);
1734 error = PTR_ERR(page);
1737 swap_header = kmap(page);
1739 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1740 printk(KERN_ERR "Unable to find swap-space signature\n");
1745 /* swap partition endianess hack... */
1746 if (swab32(swap_header->info.version) == 1) {
1747 swab32s(&swap_header->info.version);
1748 swab32s(&swap_header->info.last_page);
1749 swab32s(&swap_header->info.nr_badpages);
1750 for (i = 0; i < swap_header->info.nr_badpages; i++)
1751 swab32s(&swap_header->info.badpages[i]);
1753 /* Check the swap header's sub-version */
1754 if (swap_header->info.version != 1) {
1756 "Unable to handle swap header version %d\n",
1757 swap_header->info.version);
1763 p->cluster_next = 1;
1766 * Find out how many pages are allowed for a single swap
1767 * device. There are two limiting factors: 1) the number of
1768 * bits for the swap offset in the swp_entry_t type and
1769 * 2) the number of bits in the a swap pte as defined by
1770 * the different architectures. In order to find the
1771 * largest possible bit mask a swap entry with swap type 0
1772 * and swap offset ~0UL is created, encoded to a swap pte,
1773 * decoded to a swp_entry_t again and finally the swap
1774 * offset is extracted. This will mask all the bits from
1775 * the initial ~0UL mask that can't be encoded in either
1776 * the swp_entry_t or the architecture definition of a
1779 maxpages = swp_offset(pte_to_swp_entry(
1780 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1781 if (maxpages > swap_header->info.last_page)
1782 maxpages = swap_header->info.last_page;
1783 p->highest_bit = maxpages - 1;
1788 if (swapfilepages && maxpages > swapfilepages) {
1790 "Swap area shorter than signature indicates\n");
1793 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1795 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1798 /* OK, set up the swap map and apply the bad block list */
1799 swap_map = vmalloc(maxpages * sizeof(short));
1805 memset(swap_map, 0, maxpages * sizeof(short));
1806 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1807 int page_nr = swap_header->info.badpages[i];
1808 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1812 swap_map[page_nr] = SWAP_MAP_BAD;
1814 nr_good_pages = swap_header->info.last_page -
1815 swap_header->info.nr_badpages -
1816 1 /* header page */;
1818 if (nr_good_pages) {
1819 swap_map[0] = SWAP_MAP_BAD;
1821 p->pages = nr_good_pages;
1822 nr_extents = setup_swap_extents(p, &span);
1823 if (nr_extents < 0) {
1827 nr_good_pages = p->pages;
1829 if (!nr_good_pages) {
1830 printk(KERN_WARNING "Empty swap-file\n");
1835 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1836 p->flags |= SWP_SOLIDSTATE;
1837 p->cluster_next = 1 + (random32() % p->highest_bit);
1839 if (discard_swap(p) == 0)
1840 p->flags |= SWP_DISCARDABLE;
1842 mutex_lock(&swapon_mutex);
1843 spin_lock(&swap_lock);
1844 if (swap_flags & SWAP_FLAG_PREFER)
1846 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1848 p->prio = --least_priority;
1849 p->swap_map = swap_map;
1850 p->flags |= SWP_WRITEOK;
1851 nr_swap_pages += nr_good_pages;
1852 total_swap_pages += nr_good_pages;
1854 printk(KERN_INFO "Adding %uk swap on %s. "
1855 "Priority:%d extents:%d across:%lluk %s%s\n",
1856 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1857 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1858 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1859 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1861 /* insert swap space into swap_list: */
1863 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1864 if (p->prio >= swap_info[i].prio) {
1871 swap_list.head = swap_list.next = p - swap_info;
1873 swap_info[prev].next = p - swap_info;
1875 spin_unlock(&swap_lock);
1876 mutex_unlock(&swapon_mutex);
1881 set_blocksize(bdev, p->old_block_size);
1884 destroy_swap_extents(p);
1886 spin_lock(&swap_lock);
1887 p->swap_file = NULL;
1889 spin_unlock(&swap_lock);
1892 filp_close(swap_file, NULL);
1894 if (page && !IS_ERR(page)) {
1896 page_cache_release(page);
1902 inode->i_flags |= S_SWAPFILE;
1903 mutex_unlock(&inode->i_mutex);
1908 void si_swapinfo(struct sysinfo *val)
1911 unsigned long nr_to_be_unused = 0;
1913 spin_lock(&swap_lock);
1914 for (i = 0; i < nr_swapfiles; i++) {
1915 if (!(swap_info[i].flags & SWP_USED) ||
1916 (swap_info[i].flags & SWP_WRITEOK))
1918 nr_to_be_unused += swap_info[i].inuse_pages;
1920 val->freeswap = nr_swap_pages + nr_to_be_unused;
1921 val->totalswap = total_swap_pages + nr_to_be_unused;
1922 spin_unlock(&swap_lock);
1926 * Verify that a swap entry is valid and increment its swap map count.
1928 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1929 * "permanent", but will be reclaimed by the next swapoff.
1931 int swap_duplicate(swp_entry_t entry)
1933 struct swap_info_struct * p;
1934 unsigned long offset, type;
1937 if (is_migration_entry(entry))
1940 type = swp_type(entry);
1941 if (type >= nr_swapfiles)
1943 p = type + swap_info;
1944 offset = swp_offset(entry);
1946 spin_lock(&swap_lock);
1947 if (offset < p->max && p->swap_map[offset]) {
1948 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1949 p->swap_map[offset]++;
1951 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1952 if (swap_overflow++ < 5)
1953 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1954 p->swap_map[offset] = SWAP_MAP_MAX;
1958 spin_unlock(&swap_lock);
1963 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1967 struct swap_info_struct *
1968 get_swap_info_struct(unsigned type)
1970 return &swap_info[type];
1974 * swap_lock prevents swap_map being freed. Don't grab an extra
1975 * reference on the swaphandle, it doesn't matter if it becomes unused.
1977 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1979 struct swap_info_struct *si;
1980 int our_page_cluster = page_cluster;
1981 pgoff_t target, toff;
1985 if (!our_page_cluster) /* no readahead */
1988 si = &swap_info[swp_type(entry)];
1989 target = swp_offset(entry);
1990 base = (target >> our_page_cluster) << our_page_cluster;
1991 end = base + (1 << our_page_cluster);
1992 if (!base) /* first page is swap header */
1995 spin_lock(&swap_lock);
1996 if (end > si->max) /* don't go beyond end of map */
1999 /* Count contiguous allocated slots above our target */
2000 for (toff = target; ++toff < end; nr_pages++) {
2001 /* Don't read in free or bad pages */
2002 if (!si->swap_map[toff])
2004 if (si->swap_map[toff] == SWAP_MAP_BAD)
2007 /* Count contiguous allocated slots below our target */
2008 for (toff = target; --toff >= base; nr_pages++) {
2009 /* Don't read in free or bad pages */
2010 if (!si->swap_map[toff])
2012 if (si->swap_map[toff] == SWAP_MAP_BAD)
2015 spin_unlock(&swap_lock);
2018 * Indicate starting offset, and return number of pages to get:
2019 * if only 1, say 0, since there's then no readahead to be done.
2022 return nr_pages? ++nr_pages: 0;