1 /* sun4m_smp.c: Sparc SUN4M SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
8 #include <linux/kernel.h>
9 #include <linux/sched.h>
10 #include <linux/threads.h>
11 #include <linux/smp.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
17 #include <linux/swap.h>
18 #include <linux/profile.h>
19 #include <linux/delay.h>
20 #include <linux/cpu.h>
22 #include <asm/cacheflush.h>
23 #include <asm/tlbflush.h>
24 #include <asm/irq_regs.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/cpudata.h>
38 #define IRQ_CROSS_CALL 15
40 extern ctxd_t *srmmu_ctx_table_phys;
42 extern volatile unsigned long cpu_callin_map[NR_CPUS];
43 extern unsigned char boot_cpu_id;
45 extern cpumask_t smp_commenced_mask;
47 extern int __smp4m_processor_id(void);
52 #define SMP_PRINTK(x) printk x
57 static inline unsigned long
58 swap_ulong(volatile unsigned long *ptr, unsigned long val)
60 __asm__ __volatile__("swap [%1], %0\n\t" :
61 "=&r" (val), "=&r" (ptr) :
62 "0" (val), "1" (ptr));
66 static void smp_setup_percpu_timer(void);
67 extern void cpu_probe(void);
69 void __cpuinit smp4m_callin(void)
71 int cpuid = hard_smp_processor_id();
73 local_flush_cache_all();
74 local_flush_tlb_all();
76 notify_cpu_starting(cpuid);
78 /* Get our local ticker going. */
79 smp_setup_percpu_timer();
82 smp_store_cpu_info(cpuid);
84 local_flush_cache_all();
85 local_flush_tlb_all();
88 * Unblock the master CPU _only_ when the scheduler state
89 * of all secondary CPUs will be up-to-date, so after
90 * the SMP initialization the master will be just allowed
91 * to call the scheduler code.
93 /* Allow master to continue. */
94 swap_ulong(&cpu_callin_map[cpuid], 1);
96 /* XXX: What's up with all the flushes? */
97 local_flush_cache_all();
98 local_flush_tlb_all();
102 /* Fix idle thread fields. */
103 __asm__ __volatile__("ld [%0], %%g6\n\t"
104 : : "r" (¤t_set[cpuid])
105 : "memory" /* paranoid */);
107 /* Attach to the address space of init_task. */
108 atomic_inc(&init_mm.mm_count);
109 current->active_mm = &init_mm;
111 while (!cpu_isset(cpuid, smp_commenced_mask))
116 cpu_set(cpuid, cpu_online_map);
120 * Cycle through the processors asking the PROM to start each one.
123 extern struct linux_prom_registers smp_penguin_ctable;
124 extern unsigned long trapbase_cpu1[];
125 extern unsigned long trapbase_cpu2[];
126 extern unsigned long trapbase_cpu3[];
128 void __init smp4m_boot_cpus(void)
130 smp_setup_percpu_timer();
131 local_flush_cache_all();
134 int __cpuinit smp4m_boot_one_cpu(int i)
136 extern unsigned long sun4m_cpu_startup;
137 unsigned long *entry = &sun4m_cpu_startup;
138 struct task_struct *p;
142 cpu_find_by_mid(i, &cpu_node);
144 /* Cook up an idler for this guy. */
146 current_set[i] = task_thread_info(p);
147 /* See trampoline.S for details... */
148 entry += ((i-1) * 3);
151 * Initialize the contexts table
152 * Since the call to prom_startcpu() trashes the structure,
153 * we need to re-initialize it for each cpu
155 smp_penguin_ctable.which_io = 0;
156 smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
157 smp_penguin_ctable.reg_size = 0;
159 /* whirrr, whirrr, whirrrrrrrrr... */
160 printk("Starting CPU %d at %p\n", i, entry);
161 local_flush_cache_all();
162 prom_startcpu(cpu_node,
163 &smp_penguin_ctable, 0, (char *)entry);
165 /* wheee... it's going... */
166 for(timeout = 0; timeout < 10000; timeout++) {
167 if(cpu_callin_map[i])
172 if (!(cpu_callin_map[i])) {
173 printk("Processor %d is stuck.\n", i);
177 local_flush_cache_all();
181 void __init smp4m_smp_done(void)
186 /* setup cpu list for irq rotation */
189 for (i = 0; i < NR_CPUS; i++) {
192 prev = &cpu_data(i).next;
196 local_flush_cache_all();
198 /* Free unneeded trap tables */
199 if (!cpu_isset(1, cpu_present_map)) {
200 ClearPageReserved(virt_to_page(trapbase_cpu1));
201 init_page_count(virt_to_page(trapbase_cpu1));
202 free_page((unsigned long)trapbase_cpu1);
206 if (!cpu_isset(2, cpu_present_map)) {
207 ClearPageReserved(virt_to_page(trapbase_cpu2));
208 init_page_count(virt_to_page(trapbase_cpu2));
209 free_page((unsigned long)trapbase_cpu2);
213 if (!cpu_isset(3, cpu_present_map)) {
214 ClearPageReserved(virt_to_page(trapbase_cpu3));
215 init_page_count(virt_to_page(trapbase_cpu3));
216 free_page((unsigned long)trapbase_cpu3);
221 /* Ok, they are spinning and ready to go. */
224 /* At each hardware IRQ, we get this called to forward IRQ reception
225 * to the next processor. The caller must disable the IRQ level being
226 * serviced globally so that there are no double interrupts received.
228 * XXX See sparc64 irq.c.
230 void smp4m_irq_rotate(int cpu)
232 int next = cpu_data(cpu).next;
237 static struct smp_funcall {
244 unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
245 unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
248 static DEFINE_SPINLOCK(cross_call_lock);
250 /* Cross calls must be serialized, at least currently. */
251 static void smp4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
252 unsigned long arg2, unsigned long arg3,
255 register int ncpus = SUN4M_NCPUS;
258 spin_lock_irqsave(&cross_call_lock, flags);
260 /* Init function glue. */
261 ccall_info.func = func;
262 ccall_info.arg1 = arg1;
263 ccall_info.arg2 = arg2;
264 ccall_info.arg3 = arg3;
265 ccall_info.arg4 = arg4;
268 /* Init receive/complete mapping, plus fire the IPI's off. */
272 cpu_clear(smp_processor_id(), mask);
273 cpus_and(mask, cpu_online_map, mask);
274 for(i = 0; i < ncpus; i++) {
275 if (cpu_isset(i, mask)) {
276 ccall_info.processors_in[i] = 0;
277 ccall_info.processors_out[i] = 0;
278 set_cpu_int(i, IRQ_CROSS_CALL);
280 ccall_info.processors_in[i] = 1;
281 ccall_info.processors_out[i] = 1;
291 if (!cpu_isset(i, mask))
293 while(!ccall_info.processors_in[i])
295 } while(++i < ncpus);
299 if (!cpu_isset(i, mask))
301 while(!ccall_info.processors_out[i])
303 } while(++i < ncpus);
306 spin_unlock_irqrestore(&cross_call_lock, flags);
309 /* Running cross calls. */
310 void smp4m_cross_call_irq(void)
312 int i = smp_processor_id();
314 ccall_info.processors_in[i] = 1;
315 ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
316 ccall_info.arg4, ccall_info.arg5);
317 ccall_info.processors_out[i] = 1;
320 extern void sun4m_clear_profile_irq(int cpu);
322 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
324 struct pt_regs *old_regs;
325 int cpu = smp_processor_id();
327 old_regs = set_irq_regs(regs);
329 sun4m_clear_profile_irq(cpu);
331 profile_tick(CPU_PROFILING);
333 if(!--prof_counter(cpu)) {
334 int user = user_mode(regs);
337 update_process_times(user);
340 prof_counter(cpu) = prof_multiplier(cpu);
342 set_irq_regs(old_regs);
345 extern unsigned int lvl14_resolution;
347 static void __cpuinit smp_setup_percpu_timer(void)
349 int cpu = smp_processor_id();
351 prof_counter(cpu) = prof_multiplier(cpu) = 1;
352 load_profile_irq(cpu, lvl14_resolution);
354 if(cpu == boot_cpu_id)
358 static void __init smp4m_blackbox_id(unsigned *addr)
360 int rd = *addr & 0x3e000000;
363 addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
364 addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */
365 addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */
368 static void __init smp4m_blackbox_current(unsigned *addr)
370 int rd = *addr & 0x3e000000;
373 addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
374 addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */
375 addr[4] = 0x8008200c | rd | rs1; /* and reg, 0xc, reg */
378 void __init sun4m_init_smp(void)
380 BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
381 BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
382 BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
383 BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);