perf_counter: More aggressive frequency adjustment
[linux-2.6] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2  * Performance counter x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *
10  *  For licencing details see kernel-base/COPYING
11  */
12
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include <asm/apic.h>
24 #include <asm/stacktrace.h>
25 #include <asm/nmi.h>
26
27 static u64 perf_counter_mask __read_mostly;
28
29 struct cpu_hw_counters {
30         struct perf_counter     *counters[X86_PMC_IDX_MAX];
31         unsigned long           used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
32         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33         unsigned long           interrupts;
34         int                     enabled;
35 };
36
37 /*
38  * struct x86_pmu - generic x86 pmu
39  */
40 struct x86_pmu {
41         const char      *name;
42         int             version;
43         int             (*handle_irq)(struct pt_regs *);
44         void            (*disable_all)(void);
45         void            (*enable_all)(void);
46         void            (*enable)(struct hw_perf_counter *, int);
47         void            (*disable)(struct hw_perf_counter *, int);
48         unsigned        eventsel;
49         unsigned        perfctr;
50         u64             (*event_map)(int);
51         u64             (*raw_event)(u64);
52         int             max_events;
53         int             num_counters;
54         int             num_counters_fixed;
55         int             counter_bits;
56         u64             counter_mask;
57         u64             max_period;
58         u64             intel_ctrl;
59 };
60
61 static struct x86_pmu x86_pmu __read_mostly;
62
63 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
64         .enabled = 1,
65 };
66
67 /*
68  * Intel PerfMon v3. Used on Core2 and later.
69  */
70 static const u64 intel_perfmon_event_map[] =
71 {
72   [PERF_COUNT_CPU_CYCLES]               = 0x003c,
73   [PERF_COUNT_INSTRUCTIONS]             = 0x00c0,
74   [PERF_COUNT_CACHE_REFERENCES]         = 0x4f2e,
75   [PERF_COUNT_CACHE_MISSES]             = 0x412e,
76   [PERF_COUNT_BRANCH_INSTRUCTIONS]      = 0x00c4,
77   [PERF_COUNT_BRANCH_MISSES]            = 0x00c5,
78   [PERF_COUNT_BUS_CYCLES]               = 0x013c,
79 };
80
81 static u64 intel_pmu_event_map(int event)
82 {
83         return intel_perfmon_event_map[event];
84 }
85
86 /*
87  * Generalized hw caching related event table, filled
88  * in on a per model basis. A value of 0 means
89  * 'not supported', -1 means 'event makes no sense on
90  * this CPU', any other value means the raw event
91  * ID.
92  */
93
94 #define C(x) PERF_COUNT_HW_CACHE_##x
95
96 static u64 __read_mostly hw_cache_event_ids
97                                 [PERF_COUNT_HW_CACHE_MAX]
98                                 [PERF_COUNT_HW_CACHE_OP_MAX]
99                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
100
101 static const u64 nehalem_hw_cache_event_ids
102                                 [PERF_COUNT_HW_CACHE_MAX]
103                                 [PERF_COUNT_HW_CACHE_OP_MAX]
104                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
105 {
106  [ C(L1D) ] = {
107         [ C(OP_READ) ] = {
108                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI            */
109                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE         */
110         },
111         [ C(OP_WRITE) ] = {
112                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI            */
113                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE         */
114         },
115         [ C(OP_PREFETCH) ] = {
116                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
117                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
118         },
119  },
120  [ C(L1I ) ] = {
121         [ C(OP_READ) ] = {
122                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
123                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
124         },
125         [ C(OP_WRITE) ] = {
126                 [ C(RESULT_ACCESS) ] = -1,
127                 [ C(RESULT_MISS)   ] = -1,
128         },
129         [ C(OP_PREFETCH) ] = {
130                 [ C(RESULT_ACCESS) ] = 0x0,
131                 [ C(RESULT_MISS)   ] = 0x0,
132         },
133  },
134  [ C(L2  ) ] = {
135         [ C(OP_READ) ] = {
136                 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS               */
137                 [ C(RESULT_MISS)   ] = 0x0224, /* L2_RQSTS.LD_MISS             */
138         },
139         [ C(OP_WRITE) ] = {
140                 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS                */
141                 [ C(RESULT_MISS)   ] = 0x0824, /* L2_RQSTS.RFO_MISS            */
142         },
143         [ C(OP_PREFETCH) ] = {
144                 [ C(RESULT_ACCESS) ] = 0xc024, /* L2_RQSTS.PREFETCHES          */
145                 [ C(RESULT_MISS)   ] = 0x8024, /* L2_RQSTS.PREFETCH_MISS       */
146         },
147  },
148  [ C(DTLB) ] = {
149         [ C(OP_READ) ] = {
150                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
151                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
152         },
153         [ C(OP_WRITE) ] = {
154                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
155                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
156         },
157         [ C(OP_PREFETCH) ] = {
158                 [ C(RESULT_ACCESS) ] = 0x0,
159                 [ C(RESULT_MISS)   ] = 0x0,
160         },
161  },
162  [ C(ITLB) ] = {
163         [ C(OP_READ) ] = {
164                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
165                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
166         },
167         [ C(OP_WRITE) ] = {
168                 [ C(RESULT_ACCESS) ] = -1,
169                 [ C(RESULT_MISS)   ] = -1,
170         },
171         [ C(OP_PREFETCH) ] = {
172                 [ C(RESULT_ACCESS) ] = -1,
173                 [ C(RESULT_MISS)   ] = -1,
174         },
175  },
176  [ C(BPU ) ] = {
177         [ C(OP_READ) ] = {
178                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
179                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
180         },
181         [ C(OP_WRITE) ] = {
182                 [ C(RESULT_ACCESS) ] = -1,
183                 [ C(RESULT_MISS)   ] = -1,
184         },
185         [ C(OP_PREFETCH) ] = {
186                 [ C(RESULT_ACCESS) ] = -1,
187                 [ C(RESULT_MISS)   ] = -1,
188         },
189  },
190 };
191
192 static const u64 core2_hw_cache_event_ids
193                                 [PERF_COUNT_HW_CACHE_MAX]
194                                 [PERF_COUNT_HW_CACHE_OP_MAX]
195                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
196 {
197  [ C(L1D) ] = {
198         [ C(OP_READ) ] = {
199                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
200                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
201         },
202         [ C(OP_WRITE) ] = {
203                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
204                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
205         },
206         [ C(OP_PREFETCH) ] = {
207                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
208                 [ C(RESULT_MISS)   ] = 0,
209         },
210  },
211  [ C(L1I ) ] = {
212         [ C(OP_READ) ] = {
213                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
214                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
215         },
216         [ C(OP_WRITE) ] = {
217                 [ C(RESULT_ACCESS) ] = -1,
218                 [ C(RESULT_MISS)   ] = -1,
219         },
220         [ C(OP_PREFETCH) ] = {
221                 [ C(RESULT_ACCESS) ] = 0,
222                 [ C(RESULT_MISS)   ] = 0,
223         },
224  },
225  [ C(L2  ) ] = {
226         [ C(OP_READ) ] = {
227                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
228                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
229         },
230         [ C(OP_WRITE) ] = {
231                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
232                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
233         },
234         [ C(OP_PREFETCH) ] = {
235                 [ C(RESULT_ACCESS) ] = 0,
236                 [ C(RESULT_MISS)   ] = 0,
237         },
238  },
239  [ C(DTLB) ] = {
240         [ C(OP_READ) ] = {
241                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
242                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
243         },
244         [ C(OP_WRITE) ] = {
245                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
246                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
247         },
248         [ C(OP_PREFETCH) ] = {
249                 [ C(RESULT_ACCESS) ] = 0,
250                 [ C(RESULT_MISS)   ] = 0,
251         },
252  },
253  [ C(ITLB) ] = {
254         [ C(OP_READ) ] = {
255                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
256                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
257         },
258         [ C(OP_WRITE) ] = {
259                 [ C(RESULT_ACCESS) ] = -1,
260                 [ C(RESULT_MISS)   ] = -1,
261         },
262         [ C(OP_PREFETCH) ] = {
263                 [ C(RESULT_ACCESS) ] = -1,
264                 [ C(RESULT_MISS)   ] = -1,
265         },
266  },
267  [ C(BPU ) ] = {
268         [ C(OP_READ) ] = {
269                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
270                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
271         },
272         [ C(OP_WRITE) ] = {
273                 [ C(RESULT_ACCESS) ] = -1,
274                 [ C(RESULT_MISS)   ] = -1,
275         },
276         [ C(OP_PREFETCH) ] = {
277                 [ C(RESULT_ACCESS) ] = -1,
278                 [ C(RESULT_MISS)   ] = -1,
279         },
280  },
281 };
282
283 static const u64 atom_hw_cache_event_ids
284                                 [PERF_COUNT_HW_CACHE_MAX]
285                                 [PERF_COUNT_HW_CACHE_OP_MAX]
286                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
287 {
288  [ C(L1D) ] = {
289         [ C(OP_READ) ] = {
290                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
291                 [ C(RESULT_MISS)   ] = 0,
292         },
293         [ C(OP_WRITE) ] = {
294                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
295                 [ C(RESULT_MISS)   ] = 0,
296         },
297         [ C(OP_PREFETCH) ] = {
298                 [ C(RESULT_ACCESS) ] = 0x0,
299                 [ C(RESULT_MISS)   ] = 0,
300         },
301  },
302  [ C(L1I ) ] = {
303         [ C(OP_READ) ] = {
304                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
305                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
306         },
307         [ C(OP_WRITE) ] = {
308                 [ C(RESULT_ACCESS) ] = -1,
309                 [ C(RESULT_MISS)   ] = -1,
310         },
311         [ C(OP_PREFETCH) ] = {
312                 [ C(RESULT_ACCESS) ] = 0,
313                 [ C(RESULT_MISS)   ] = 0,
314         },
315  },
316  [ C(L2  ) ] = {
317         [ C(OP_READ) ] = {
318                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
319                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
320         },
321         [ C(OP_WRITE) ] = {
322                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
323                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
324         },
325         [ C(OP_PREFETCH) ] = {
326                 [ C(RESULT_ACCESS) ] = 0,
327                 [ C(RESULT_MISS)   ] = 0,
328         },
329  },
330  [ C(DTLB) ] = {
331         [ C(OP_READ) ] = {
332                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
333                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
334         },
335         [ C(OP_WRITE) ] = {
336                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
337                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
338         },
339         [ C(OP_PREFETCH) ] = {
340                 [ C(RESULT_ACCESS) ] = 0,
341                 [ C(RESULT_MISS)   ] = 0,
342         },
343  },
344  [ C(ITLB) ] = {
345         [ C(OP_READ) ] = {
346                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
347                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
348         },
349         [ C(OP_WRITE) ] = {
350                 [ C(RESULT_ACCESS) ] = -1,
351                 [ C(RESULT_MISS)   ] = -1,
352         },
353         [ C(OP_PREFETCH) ] = {
354                 [ C(RESULT_ACCESS) ] = -1,
355                 [ C(RESULT_MISS)   ] = -1,
356         },
357  },
358  [ C(BPU ) ] = {
359         [ C(OP_READ) ] = {
360                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
361                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
362         },
363         [ C(OP_WRITE) ] = {
364                 [ C(RESULT_ACCESS) ] = -1,
365                 [ C(RESULT_MISS)   ] = -1,
366         },
367         [ C(OP_PREFETCH) ] = {
368                 [ C(RESULT_ACCESS) ] = -1,
369                 [ C(RESULT_MISS)   ] = -1,
370         },
371  },
372 };
373
374 static u64 intel_pmu_raw_event(u64 event)
375 {
376 #define CORE_EVNTSEL_EVENT_MASK         0x000000FFULL
377 #define CORE_EVNTSEL_UNIT_MASK          0x0000FF00ULL
378 #define CORE_EVNTSEL_EDGE_MASK          0x00040000ULL
379 #define CORE_EVNTSEL_INV_MASK           0x00800000ULL
380 #define CORE_EVNTSEL_COUNTER_MASK       0xFF000000ULL
381
382 #define CORE_EVNTSEL_MASK               \
383         (CORE_EVNTSEL_EVENT_MASK |      \
384          CORE_EVNTSEL_UNIT_MASK  |      \
385          CORE_EVNTSEL_EDGE_MASK  |      \
386          CORE_EVNTSEL_INV_MASK  |       \
387          CORE_EVNTSEL_COUNTER_MASK)
388
389         return event & CORE_EVNTSEL_MASK;
390 }
391
392 static const u64 amd_0f_hw_cache_event_ids
393                                 [PERF_COUNT_HW_CACHE_MAX]
394                                 [PERF_COUNT_HW_CACHE_OP_MAX]
395                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
396 {
397  [ C(L1D) ] = {
398         [ C(OP_READ) ] = {
399                 [ C(RESULT_ACCESS) ] = 0,
400                 [ C(RESULT_MISS)   ] = 0,
401         },
402         [ C(OP_WRITE) ] = {
403                 [ C(RESULT_ACCESS) ] = 0,
404                 [ C(RESULT_MISS)   ] = 0,
405         },
406         [ C(OP_PREFETCH) ] = {
407                 [ C(RESULT_ACCESS) ] = 0,
408                 [ C(RESULT_MISS)   ] = 0,
409         },
410  },
411  [ C(L1I ) ] = {
412         [ C(OP_READ) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
414                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
415         },
416         [ C(OP_WRITE) ] = {
417                 [ C(RESULT_ACCESS) ] = -1,
418                 [ C(RESULT_MISS)   ] = -1,
419         },
420         [ C(OP_PREFETCH) ] = {
421                 [ C(RESULT_ACCESS) ] = 0,
422                 [ C(RESULT_MISS)   ] = 0,
423         },
424  },
425  [ C(L2  ) ] = {
426         [ C(OP_READ) ] = {
427                 [ C(RESULT_ACCESS) ] = 0,
428                 [ C(RESULT_MISS)   ] = 0,
429         },
430         [ C(OP_WRITE) ] = {
431                 [ C(RESULT_ACCESS) ] = 0,
432                 [ C(RESULT_MISS)   ] = 0,
433         },
434         [ C(OP_PREFETCH) ] = {
435                 [ C(RESULT_ACCESS) ] = 0,
436                 [ C(RESULT_MISS)   ] = 0,
437         },
438  },
439  [ C(DTLB) ] = {
440         [ C(OP_READ) ] = {
441                 [ C(RESULT_ACCESS) ] = 0,
442                 [ C(RESULT_MISS)   ] = 0,
443         },
444         [ C(OP_WRITE) ] = {
445                 [ C(RESULT_ACCESS) ] = 0,
446                 [ C(RESULT_MISS)   ] = 0,
447         },
448         [ C(OP_PREFETCH) ] = {
449                 [ C(RESULT_ACCESS) ] = 0,
450                 [ C(RESULT_MISS)   ] = 0,
451         },
452  },
453  [ C(ITLB) ] = {
454         [ C(OP_READ) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
456                 [ C(RESULT_MISS)   ] = 0x0085, /* Instr. fetch ITLB misses   */
457         },
458         [ C(OP_WRITE) ] = {
459                 [ C(RESULT_ACCESS) ] = -1,
460                 [ C(RESULT_MISS)   ] = -1,
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = -1,
464                 [ C(RESULT_MISS)   ] = -1,
465         },
466  },
467  [ C(BPU ) ] = {
468         [ C(OP_READ) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
470                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
471         },
472         [ C(OP_WRITE) ] = {
473                 [ C(RESULT_ACCESS) ] = -1,
474                 [ C(RESULT_MISS)   ] = -1,
475         },
476         [ C(OP_PREFETCH) ] = {
477                 [ C(RESULT_ACCESS) ] = -1,
478                 [ C(RESULT_MISS)   ] = -1,
479         },
480  },
481 };
482
483 /*
484  * AMD Performance Monitor K7 and later.
485  */
486 static const u64 amd_perfmon_event_map[] =
487 {
488   [PERF_COUNT_CPU_CYCLES]               = 0x0076,
489   [PERF_COUNT_INSTRUCTIONS]             = 0x00c0,
490   [PERF_COUNT_CACHE_REFERENCES]         = 0x0080,
491   [PERF_COUNT_CACHE_MISSES]             = 0x0081,
492   [PERF_COUNT_BRANCH_INSTRUCTIONS]      = 0x00c4,
493   [PERF_COUNT_BRANCH_MISSES]            = 0x00c5,
494 };
495
496 static u64 amd_pmu_event_map(int event)
497 {
498         return amd_perfmon_event_map[event];
499 }
500
501 static u64 amd_pmu_raw_event(u64 event)
502 {
503 #define K7_EVNTSEL_EVENT_MASK   0x7000000FFULL
504 #define K7_EVNTSEL_UNIT_MASK    0x00000FF00ULL
505 #define K7_EVNTSEL_EDGE_MASK    0x000040000ULL
506 #define K7_EVNTSEL_INV_MASK     0x000800000ULL
507 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
508
509 #define K7_EVNTSEL_MASK                 \
510         (K7_EVNTSEL_EVENT_MASK |        \
511          K7_EVNTSEL_UNIT_MASK  |        \
512          K7_EVNTSEL_EDGE_MASK  |        \
513          K7_EVNTSEL_INV_MASK   |        \
514          K7_EVNTSEL_COUNTER_MASK)
515
516         return event & K7_EVNTSEL_MASK;
517 }
518
519 /*
520  * Propagate counter elapsed time into the generic counter.
521  * Can only be executed on the CPU where the counter is active.
522  * Returns the delta events processed.
523  */
524 static u64
525 x86_perf_counter_update(struct perf_counter *counter,
526                         struct hw_perf_counter *hwc, int idx)
527 {
528         int shift = 64 - x86_pmu.counter_bits;
529         u64 prev_raw_count, new_raw_count;
530         s64 delta;
531
532         /*
533          * Careful: an NMI might modify the previous counter value.
534          *
535          * Our tactic to handle this is to first atomically read and
536          * exchange a new raw count - then add that new-prev delta
537          * count to the generic counter atomically:
538          */
539 again:
540         prev_raw_count = atomic64_read(&hwc->prev_count);
541         rdmsrl(hwc->counter_base + idx, new_raw_count);
542
543         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
544                                         new_raw_count) != prev_raw_count)
545                 goto again;
546
547         /*
548          * Now we have the new raw value and have updated the prev
549          * timestamp already. We can now calculate the elapsed delta
550          * (counter-)time and add that to the generic counter.
551          *
552          * Careful, not all hw sign-extends above the physical width
553          * of the count.
554          */
555         delta = (new_raw_count << shift) - (prev_raw_count << shift);
556         delta >>= shift;
557
558         atomic64_add(delta, &counter->count);
559         atomic64_sub(delta, &hwc->period_left);
560
561         return new_raw_count;
562 }
563
564 static atomic_t active_counters;
565 static DEFINE_MUTEX(pmc_reserve_mutex);
566
567 static bool reserve_pmc_hardware(void)
568 {
569         int i;
570
571         if (nmi_watchdog == NMI_LOCAL_APIC)
572                 disable_lapic_nmi_watchdog();
573
574         for (i = 0; i < x86_pmu.num_counters; i++) {
575                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
576                         goto perfctr_fail;
577         }
578
579         for (i = 0; i < x86_pmu.num_counters; i++) {
580                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
581                         goto eventsel_fail;
582         }
583
584         return true;
585
586 eventsel_fail:
587         for (i--; i >= 0; i--)
588                 release_evntsel_nmi(x86_pmu.eventsel + i);
589
590         i = x86_pmu.num_counters;
591
592 perfctr_fail:
593         for (i--; i >= 0; i--)
594                 release_perfctr_nmi(x86_pmu.perfctr + i);
595
596         if (nmi_watchdog == NMI_LOCAL_APIC)
597                 enable_lapic_nmi_watchdog();
598
599         return false;
600 }
601
602 static void release_pmc_hardware(void)
603 {
604         int i;
605
606         for (i = 0; i < x86_pmu.num_counters; i++) {
607                 release_perfctr_nmi(x86_pmu.perfctr + i);
608                 release_evntsel_nmi(x86_pmu.eventsel + i);
609         }
610
611         if (nmi_watchdog == NMI_LOCAL_APIC)
612                 enable_lapic_nmi_watchdog();
613 }
614
615 static void hw_perf_counter_destroy(struct perf_counter *counter)
616 {
617         if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
618                 release_pmc_hardware();
619                 mutex_unlock(&pmc_reserve_mutex);
620         }
621 }
622
623 static inline int x86_pmu_initialized(void)
624 {
625         return x86_pmu.handle_irq != NULL;
626 }
627
628 static inline int
629 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
630 {
631         unsigned int cache_type, cache_op, cache_result;
632         u64 config, val;
633
634         config = attr->config;
635
636         cache_type = (config >>  0) & 0xff;
637         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
638                 return -EINVAL;
639
640         cache_op = (config >>  8) & 0xff;
641         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
642                 return -EINVAL;
643
644         cache_result = (config >> 16) & 0xff;
645         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
646                 return -EINVAL;
647
648         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
649
650         if (val == 0)
651                 return -ENOENT;
652
653         if (val == -1)
654                 return -EINVAL;
655
656         hwc->config |= val;
657
658         return 0;
659 }
660
661 /*
662  * Setup the hardware configuration for a given attr_type
663  */
664 static int __hw_perf_counter_init(struct perf_counter *counter)
665 {
666         struct perf_counter_attr *attr = &counter->attr;
667         struct hw_perf_counter *hwc = &counter->hw;
668         int err;
669
670         if (!x86_pmu_initialized())
671                 return -ENODEV;
672
673         err = 0;
674         if (!atomic_inc_not_zero(&active_counters)) {
675                 mutex_lock(&pmc_reserve_mutex);
676                 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
677                         err = -EBUSY;
678                 else
679                         atomic_inc(&active_counters);
680                 mutex_unlock(&pmc_reserve_mutex);
681         }
682         if (err)
683                 return err;
684
685         /*
686          * Generate PMC IRQs:
687          * (keep 'enabled' bit clear for now)
688          */
689         hwc->config = ARCH_PERFMON_EVENTSEL_INT;
690
691         /*
692          * Count user and OS events unless requested not to.
693          */
694         if (!attr->exclude_user)
695                 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
696         if (!attr->exclude_kernel)
697                 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
698
699         if (!hwc->sample_period) {
700                 hwc->sample_period = x86_pmu.max_period;
701                 atomic64_set(&hwc->period_left, hwc->sample_period);
702         }
703
704         counter->destroy = hw_perf_counter_destroy;
705
706         /*
707          * Raw event type provide the config in the event structure
708          */
709         if (attr->type == PERF_TYPE_RAW) {
710                 hwc->config |= x86_pmu.raw_event(attr->config);
711                 return 0;
712         }
713
714         if (attr->type == PERF_TYPE_HW_CACHE)
715                 return set_ext_hw_attr(hwc, attr);
716
717         if (attr->config >= x86_pmu.max_events)
718                 return -EINVAL;
719         /*
720          * The generic map:
721          */
722         hwc->config |= x86_pmu.event_map(attr->config);
723
724         return 0;
725 }
726
727 static void intel_pmu_disable_all(void)
728 {
729         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
730 }
731
732 static void amd_pmu_disable_all(void)
733 {
734         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
735         int idx;
736
737         if (!cpuc->enabled)
738                 return;
739
740         cpuc->enabled = 0;
741         /*
742          * ensure we write the disable before we start disabling the
743          * counters proper, so that amd_pmu_enable_counter() does the
744          * right thing.
745          */
746         barrier();
747
748         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
749                 u64 val;
750
751                 if (!test_bit(idx, cpuc->active_mask))
752                         continue;
753                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
754                 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
755                         continue;
756                 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
757                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
758         }
759 }
760
761 void hw_perf_disable(void)
762 {
763         if (!x86_pmu_initialized())
764                 return;
765         return x86_pmu.disable_all();
766 }
767
768 static void intel_pmu_enable_all(void)
769 {
770         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
771 }
772
773 static void amd_pmu_enable_all(void)
774 {
775         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
776         int idx;
777
778         if (cpuc->enabled)
779                 return;
780
781         cpuc->enabled = 1;
782         barrier();
783
784         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
785                 u64 val;
786
787                 if (!test_bit(idx, cpuc->active_mask))
788                         continue;
789                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
790                 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
791                         continue;
792                 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
793                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
794         }
795 }
796
797 void hw_perf_enable(void)
798 {
799         if (!x86_pmu_initialized())
800                 return;
801         x86_pmu.enable_all();
802 }
803
804 static inline u64 intel_pmu_get_status(void)
805 {
806         u64 status;
807
808         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
809
810         return status;
811 }
812
813 static inline void intel_pmu_ack_status(u64 ack)
814 {
815         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
816 }
817
818 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
819 {
820         int err;
821         err = checking_wrmsrl(hwc->config_base + idx,
822                               hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
823 }
824
825 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
826 {
827         int err;
828         err = checking_wrmsrl(hwc->config_base + idx,
829                               hwc->config);
830 }
831
832 static inline void
833 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
834 {
835         int idx = __idx - X86_PMC_IDX_FIXED;
836         u64 ctrl_val, mask;
837         int err;
838
839         mask = 0xfULL << (idx * 4);
840
841         rdmsrl(hwc->config_base, ctrl_val);
842         ctrl_val &= ~mask;
843         err = checking_wrmsrl(hwc->config_base, ctrl_val);
844 }
845
846 static inline void
847 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
848 {
849         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
850                 intel_pmu_disable_fixed(hwc, idx);
851                 return;
852         }
853
854         x86_pmu_disable_counter(hwc, idx);
855 }
856
857 static inline void
858 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
859 {
860         x86_pmu_disable_counter(hwc, idx);
861 }
862
863 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
864
865 /*
866  * Set the next IRQ period, based on the hwc->period_left value.
867  * To be called with the counter disabled in hw:
868  */
869 static int
870 x86_perf_counter_set_period(struct perf_counter *counter,
871                              struct hw_perf_counter *hwc, int idx)
872 {
873         s64 left = atomic64_read(&hwc->period_left);
874         s64 period = hwc->sample_period;
875         int err, ret = 0;
876
877         /*
878          * If we are way outside a reasoable range then just skip forward:
879          */
880         if (unlikely(left <= -period)) {
881                 left = period;
882                 atomic64_set(&hwc->period_left, left);
883                 ret = 1;
884         }
885
886         if (unlikely(left <= 0)) {
887                 left += period;
888                 atomic64_set(&hwc->period_left, left);
889                 ret = 1;
890         }
891         /*
892          * Quirk: certain CPUs dont like it if just 1 event is left:
893          */
894         if (unlikely(left < 2))
895                 left = 2;
896
897         if (left > x86_pmu.max_period)
898                 left = x86_pmu.max_period;
899
900         per_cpu(prev_left[idx], smp_processor_id()) = left;
901
902         /*
903          * The hw counter starts counting from this counter offset,
904          * mark it to be able to extra future deltas:
905          */
906         atomic64_set(&hwc->prev_count, (u64)-left);
907
908         err = checking_wrmsrl(hwc->counter_base + idx,
909                              (u64)(-left) & x86_pmu.counter_mask);
910
911         return ret;
912 }
913
914 static inline void
915 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
916 {
917         int idx = __idx - X86_PMC_IDX_FIXED;
918         u64 ctrl_val, bits, mask;
919         int err;
920
921         /*
922          * Enable IRQ generation (0x8),
923          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
924          * if requested:
925          */
926         bits = 0x8ULL;
927         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
928                 bits |= 0x2;
929         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
930                 bits |= 0x1;
931         bits <<= (idx * 4);
932         mask = 0xfULL << (idx * 4);
933
934         rdmsrl(hwc->config_base, ctrl_val);
935         ctrl_val &= ~mask;
936         ctrl_val |= bits;
937         err = checking_wrmsrl(hwc->config_base, ctrl_val);
938 }
939
940 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
941 {
942         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
943                 intel_pmu_enable_fixed(hwc, idx);
944                 return;
945         }
946
947         x86_pmu_enable_counter(hwc, idx);
948 }
949
950 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
951 {
952         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
953
954         if (cpuc->enabled)
955                 x86_pmu_enable_counter(hwc, idx);
956         else
957                 x86_pmu_disable_counter(hwc, idx);
958 }
959
960 static int
961 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
962 {
963         unsigned int event;
964
965         if (!x86_pmu.num_counters_fixed)
966                 return -1;
967
968         event = hwc->config & ARCH_PERFMON_EVENT_MASK;
969
970         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
971                 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
972         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
973                 return X86_PMC_IDX_FIXED_CPU_CYCLES;
974         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
975                 return X86_PMC_IDX_FIXED_BUS_CYCLES;
976
977         return -1;
978 }
979
980 /*
981  * Find a PMC slot for the freshly enabled / scheduled in counter:
982  */
983 static int x86_pmu_enable(struct perf_counter *counter)
984 {
985         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
986         struct hw_perf_counter *hwc = &counter->hw;
987         int idx;
988
989         idx = fixed_mode_idx(counter, hwc);
990         if (idx >= 0) {
991                 /*
992                  * Try to get the fixed counter, if that is already taken
993                  * then try to get a generic counter:
994                  */
995                 if (test_and_set_bit(idx, cpuc->used_mask))
996                         goto try_generic;
997
998                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
999                 /*
1000                  * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1001                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1002                  */
1003                 hwc->counter_base =
1004                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1005                 hwc->idx = idx;
1006         } else {
1007                 idx = hwc->idx;
1008                 /* Try to get the previous generic counter again */
1009                 if (test_and_set_bit(idx, cpuc->used_mask)) {
1010 try_generic:
1011                         idx = find_first_zero_bit(cpuc->used_mask,
1012                                                   x86_pmu.num_counters);
1013                         if (idx == x86_pmu.num_counters)
1014                                 return -EAGAIN;
1015
1016                         set_bit(idx, cpuc->used_mask);
1017                         hwc->idx = idx;
1018                 }
1019                 hwc->config_base  = x86_pmu.eventsel;
1020                 hwc->counter_base = x86_pmu.perfctr;
1021         }
1022
1023         perf_counters_lapic_init();
1024
1025         x86_pmu.disable(hwc, idx);
1026
1027         cpuc->counters[idx] = counter;
1028         set_bit(idx, cpuc->active_mask);
1029
1030         x86_perf_counter_set_period(counter, hwc, idx);
1031         x86_pmu.enable(hwc, idx);
1032
1033         return 0;
1034 }
1035
1036 static void x86_pmu_unthrottle(struct perf_counter *counter)
1037 {
1038         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1039         struct hw_perf_counter *hwc = &counter->hw;
1040
1041         if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1042                                 cpuc->counters[hwc->idx] != counter))
1043                 return;
1044
1045         x86_pmu.enable(hwc, hwc->idx);
1046 }
1047
1048 void perf_counter_print_debug(void)
1049 {
1050         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1051         struct cpu_hw_counters *cpuc;
1052         unsigned long flags;
1053         int cpu, idx;
1054
1055         if (!x86_pmu.num_counters)
1056                 return;
1057
1058         local_irq_save(flags);
1059
1060         cpu = smp_processor_id();
1061         cpuc = &per_cpu(cpu_hw_counters, cpu);
1062
1063         if (x86_pmu.version >= 2) {
1064                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1065                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1066                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1067                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1068
1069                 pr_info("\n");
1070                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1071                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1072                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1073                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1074         }
1075         pr_info("CPU#%d: used:       %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1076
1077         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1078                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1079                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1080
1081                 prev_left = per_cpu(prev_left[idx], cpu);
1082
1083                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1084                         cpu, idx, pmc_ctrl);
1085                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1086                         cpu, idx, pmc_count);
1087                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1088                         cpu, idx, prev_left);
1089         }
1090         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1091                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1092
1093                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1094                         cpu, idx, pmc_count);
1095         }
1096         local_irq_restore(flags);
1097 }
1098
1099 static void x86_pmu_disable(struct perf_counter *counter)
1100 {
1101         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1102         struct hw_perf_counter *hwc = &counter->hw;
1103         int idx = hwc->idx;
1104
1105         /*
1106          * Must be done before we disable, otherwise the nmi handler
1107          * could reenable again:
1108          */
1109         clear_bit(idx, cpuc->active_mask);
1110         x86_pmu.disable(hwc, idx);
1111
1112         /*
1113          * Make sure the cleared pointer becomes visible before we
1114          * (potentially) free the counter:
1115          */
1116         barrier();
1117
1118         /*
1119          * Drain the remaining delta count out of a counter
1120          * that we are disabling:
1121          */
1122         x86_perf_counter_update(counter, hwc, idx);
1123         cpuc->counters[idx] = NULL;
1124         clear_bit(idx, cpuc->used_mask);
1125 }
1126
1127 /*
1128  * Save and restart an expired counter. Called by NMI contexts,
1129  * so it has to be careful about preempting normal counter ops:
1130  */
1131 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1132 {
1133         struct hw_perf_counter *hwc = &counter->hw;
1134         int idx = hwc->idx;
1135         int ret;
1136
1137         x86_perf_counter_update(counter, hwc, idx);
1138         ret = x86_perf_counter_set_period(counter, hwc, idx);
1139
1140         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1141                 intel_pmu_enable_counter(hwc, idx);
1142
1143         return ret;
1144 }
1145
1146 static void intel_pmu_reset(void)
1147 {
1148         unsigned long flags;
1149         int idx;
1150
1151         if (!x86_pmu.num_counters)
1152                 return;
1153
1154         local_irq_save(flags);
1155
1156         printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1157
1158         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1159                 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1160                 checking_wrmsrl(x86_pmu.perfctr  + idx, 0ull);
1161         }
1162         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1163                 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1164         }
1165
1166         local_irq_restore(flags);
1167 }
1168
1169
1170 /*
1171  * This handler is triggered by the local APIC, so the APIC IRQ handling
1172  * rules apply:
1173  */
1174 static int intel_pmu_handle_irq(struct pt_regs *regs)
1175 {
1176         struct cpu_hw_counters *cpuc;
1177         struct cpu_hw_counters;
1178         int bit, cpu, loops;
1179         u64 ack, status;
1180
1181         cpu = smp_processor_id();
1182         cpuc = &per_cpu(cpu_hw_counters, cpu);
1183
1184         perf_disable();
1185         status = intel_pmu_get_status();
1186         if (!status) {
1187                 perf_enable();
1188                 return 0;
1189         }
1190
1191         loops = 0;
1192 again:
1193         if (++loops > 100) {
1194                 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1195                 perf_counter_print_debug();
1196                 intel_pmu_reset();
1197                 perf_enable();
1198                 return 1;
1199         }
1200
1201         inc_irq_stat(apic_perf_irqs);
1202         ack = status;
1203         for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1204                 struct perf_counter *counter = cpuc->counters[bit];
1205
1206                 clear_bit(bit, (unsigned long *) &status);
1207                 if (!test_bit(bit, cpuc->active_mask))
1208                         continue;
1209
1210                 if (!intel_pmu_save_and_restart(counter))
1211                         continue;
1212
1213                 if (perf_counter_overflow(counter, 1, regs, 0))
1214                         intel_pmu_disable_counter(&counter->hw, bit);
1215         }
1216
1217         intel_pmu_ack_status(ack);
1218
1219         /*
1220          * Repeat if there is more work to be done:
1221          */
1222         status = intel_pmu_get_status();
1223         if (status)
1224                 goto again;
1225
1226         perf_enable();
1227
1228         return 1;
1229 }
1230
1231 static int amd_pmu_handle_irq(struct pt_regs *regs)
1232 {
1233         int cpu, idx, handled = 0;
1234         struct cpu_hw_counters *cpuc;
1235         struct perf_counter *counter;
1236         struct hw_perf_counter *hwc;
1237         u64 val;
1238
1239         cpu = smp_processor_id();
1240         cpuc = &per_cpu(cpu_hw_counters, cpu);
1241
1242         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1243                 if (!test_bit(idx, cpuc->active_mask))
1244                         continue;
1245
1246                 counter = cpuc->counters[idx];
1247                 hwc = &counter->hw;
1248
1249                 val = x86_perf_counter_update(counter, hwc, idx);
1250                 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1251                         continue;
1252
1253                 /* counter overflow */
1254                 handled = 1;
1255                 inc_irq_stat(apic_perf_irqs);
1256                 if (!x86_perf_counter_set_period(counter, hwc, idx))
1257                         continue;
1258
1259                 if (perf_counter_overflow(counter, 1, regs, 0))
1260                         amd_pmu_disable_counter(hwc, idx);
1261         }
1262
1263         return handled;
1264 }
1265
1266 void smp_perf_pending_interrupt(struct pt_regs *regs)
1267 {
1268         irq_enter();
1269         ack_APIC_irq();
1270         inc_irq_stat(apic_pending_irqs);
1271         perf_counter_do_pending();
1272         irq_exit();
1273 }
1274
1275 void set_perf_counter_pending(void)
1276 {
1277         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1278 }
1279
1280 void perf_counters_lapic_init(void)
1281 {
1282         if (!x86_pmu_initialized())
1283                 return;
1284
1285         /*
1286          * Always use NMI for PMU
1287          */
1288         apic_write(APIC_LVTPC, APIC_DM_NMI);
1289 }
1290
1291 static int __kprobes
1292 perf_counter_nmi_handler(struct notifier_block *self,
1293                          unsigned long cmd, void *__args)
1294 {
1295         struct die_args *args = __args;
1296         struct pt_regs *regs;
1297
1298         if (!atomic_read(&active_counters))
1299                 return NOTIFY_DONE;
1300
1301         switch (cmd) {
1302         case DIE_NMI:
1303         case DIE_NMI_IPI:
1304                 break;
1305
1306         default:
1307                 return NOTIFY_DONE;
1308         }
1309
1310         regs = args->regs;
1311
1312         apic_write(APIC_LVTPC, APIC_DM_NMI);
1313         /*
1314          * Can't rely on the handled return value to say it was our NMI, two
1315          * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1316          *
1317          * If the first NMI handles both, the latter will be empty and daze
1318          * the CPU.
1319          */
1320         x86_pmu.handle_irq(regs);
1321
1322         return NOTIFY_STOP;
1323 }
1324
1325 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1326         .notifier_call          = perf_counter_nmi_handler,
1327         .next                   = NULL,
1328         .priority               = 1
1329 };
1330
1331 static struct x86_pmu intel_pmu = {
1332         .name                   = "Intel",
1333         .handle_irq             = intel_pmu_handle_irq,
1334         .disable_all            = intel_pmu_disable_all,
1335         .enable_all             = intel_pmu_enable_all,
1336         .enable                 = intel_pmu_enable_counter,
1337         .disable                = intel_pmu_disable_counter,
1338         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1339         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1340         .event_map              = intel_pmu_event_map,
1341         .raw_event              = intel_pmu_raw_event,
1342         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1343         /*
1344          * Intel PMCs cannot be accessed sanely above 32 bit width,
1345          * so we install an artificial 1<<31 period regardless of
1346          * the generic counter period:
1347          */
1348         .max_period             = (1ULL << 31) - 1,
1349 };
1350
1351 static struct x86_pmu amd_pmu = {
1352         .name                   = "AMD",
1353         .handle_irq             = amd_pmu_handle_irq,
1354         .disable_all            = amd_pmu_disable_all,
1355         .enable_all             = amd_pmu_enable_all,
1356         .enable                 = amd_pmu_enable_counter,
1357         .disable                = amd_pmu_disable_counter,
1358         .eventsel               = MSR_K7_EVNTSEL0,
1359         .perfctr                = MSR_K7_PERFCTR0,
1360         .event_map              = amd_pmu_event_map,
1361         .raw_event              = amd_pmu_raw_event,
1362         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
1363         .num_counters           = 4,
1364         .counter_bits           = 48,
1365         .counter_mask           = (1ULL << 48) - 1,
1366         /* use highest bit to detect overflow */
1367         .max_period             = (1ULL << 47) - 1,
1368 };
1369
1370 static int intel_pmu_init(void)
1371 {
1372         union cpuid10_edx edx;
1373         union cpuid10_eax eax;
1374         unsigned int unused;
1375         unsigned int ebx;
1376         int version;
1377
1378         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
1379                 return -ENODEV;
1380
1381         /*
1382          * Check whether the Architectural PerfMon supports
1383          * Branch Misses Retired Event or not.
1384          */
1385         cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1386         if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1387                 return -ENODEV;
1388
1389         version = eax.split.version_id;
1390         if (version < 2)
1391                 return -ENODEV;
1392
1393         x86_pmu                         = intel_pmu;
1394         x86_pmu.version                 = version;
1395         x86_pmu.num_counters            = eax.split.num_counters;
1396         x86_pmu.counter_bits            = eax.split.bit_width;
1397         x86_pmu.counter_mask            = (1ULL << eax.split.bit_width) - 1;
1398
1399         /*
1400          * Quirk: v2 perfmon does not report fixed-purpose counters, so
1401          * assume at least 3 counters:
1402          */
1403         x86_pmu.num_counters_fixed      = max((int)edx.split.num_counters_fixed, 3);
1404
1405         rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1406
1407         /*
1408          * Install the hw-cache-events table:
1409          */
1410         switch (boot_cpu_data.x86_model) {
1411         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1412         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1413         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1414         case 29: /* six-core 45 nm xeon "Dunnington" */
1415                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1416                        sizeof(hw_cache_event_ids));
1417
1418                 pr_cont("Core2 events, ");
1419                 break;
1420         default:
1421         case 26:
1422                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1423                        sizeof(hw_cache_event_ids));
1424
1425                 pr_cont("Nehalem/Corei7 events, ");
1426                 break;
1427         case 28:
1428                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1429                        sizeof(hw_cache_event_ids));
1430
1431                 pr_cont("Atom events, ");
1432                 break;
1433         }
1434         return 0;
1435 }
1436
1437 static int amd_pmu_init(void)
1438 {
1439         x86_pmu = amd_pmu;
1440
1441         switch (boot_cpu_data.x86) {
1442         case 0x0f:
1443         case 0x10:
1444         case 0x11:
1445                 memcpy(hw_cache_event_ids, amd_0f_hw_cache_event_ids,
1446                        sizeof(hw_cache_event_ids));
1447
1448                 pr_cont("AMD Family 0f/10/11 events, ");
1449                 break;
1450         }
1451         return 0;
1452 }
1453
1454 void __init init_hw_perf_counters(void)
1455 {
1456         int err;
1457
1458         pr_info("Performance Counters: ");
1459
1460         switch (boot_cpu_data.x86_vendor) {
1461         case X86_VENDOR_INTEL:
1462                 err = intel_pmu_init();
1463                 break;
1464         case X86_VENDOR_AMD:
1465                 err = amd_pmu_init();
1466                 break;
1467         default:
1468                 return;
1469         }
1470         if (err != 0) {
1471                 pr_cont("no PMU driver, software counters only.\n");
1472                 return;
1473         }
1474
1475         pr_cont("%s PMU driver.\n", x86_pmu.name);
1476
1477         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1478                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1479                 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1480                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1481         }
1482         perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1483         perf_max_counters = x86_pmu.num_counters;
1484
1485         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1486                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1487                 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1488                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1489         }
1490
1491         perf_counter_mask |=
1492                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1493
1494         perf_counters_lapic_init();
1495         register_die_notifier(&perf_counter_nmi_notifier);
1496
1497         pr_info("... version:                 %d\n",     x86_pmu.version);
1498         pr_info("... bit width:               %d\n",     x86_pmu.counter_bits);
1499         pr_info("... generic counters:        %d\n",     x86_pmu.num_counters);
1500         pr_info("... value mask:              %016Lx\n", x86_pmu.counter_mask);
1501         pr_info("... max period:              %016Lx\n", x86_pmu.max_period);
1502         pr_info("... fixed-purpose counters:  %d\n",     x86_pmu.num_counters_fixed);
1503         pr_info("... counter mask:            %016Lx\n", perf_counter_mask);
1504 }
1505
1506 static inline void x86_pmu_read(struct perf_counter *counter)
1507 {
1508         x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1509 }
1510
1511 static const struct pmu pmu = {
1512         .enable         = x86_pmu_enable,
1513         .disable        = x86_pmu_disable,
1514         .read           = x86_pmu_read,
1515         .unthrottle     = x86_pmu_unthrottle,
1516 };
1517
1518 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1519 {
1520         int err;
1521
1522         err = __hw_perf_counter_init(counter);
1523         if (err)
1524                 return ERR_PTR(err);
1525
1526         return &pmu;
1527 }
1528
1529 /*
1530  * callchain support
1531  */
1532
1533 static inline
1534 void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
1535 {
1536         if (entry->nr < MAX_STACK_DEPTH)
1537                 entry->ip[entry->nr++] = ip;
1538 }
1539
1540 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1541 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1542
1543
1544 static void
1545 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1546 {
1547         /* Ignore warnings */
1548 }
1549
1550 static void backtrace_warning(void *data, char *msg)
1551 {
1552         /* Ignore warnings */
1553 }
1554
1555 static int backtrace_stack(void *data, char *name)
1556 {
1557         /* Don't bother with IRQ stacks for now */
1558         return -1;
1559 }
1560
1561 static void backtrace_address(void *data, unsigned long addr, int reliable)
1562 {
1563         struct perf_callchain_entry *entry = data;
1564
1565         if (reliable)
1566                 callchain_store(entry, addr);
1567 }
1568
1569 static const struct stacktrace_ops backtrace_ops = {
1570         .warning                = backtrace_warning,
1571         .warning_symbol         = backtrace_warning_symbol,
1572         .stack                  = backtrace_stack,
1573         .address                = backtrace_address,
1574 };
1575
1576 static void
1577 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1578 {
1579         unsigned long bp;
1580         char *stack;
1581         int nr = entry->nr;
1582
1583         callchain_store(entry, instruction_pointer(regs));
1584
1585         stack = ((char *)regs + sizeof(struct pt_regs));
1586 #ifdef CONFIG_FRAME_POINTER
1587         bp = frame_pointer(regs);
1588 #else
1589         bp = 0;
1590 #endif
1591
1592         dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
1593
1594         entry->kernel = entry->nr - nr;
1595 }
1596
1597
1598 struct stack_frame {
1599         const void __user       *next_fp;
1600         unsigned long           return_address;
1601 };
1602
1603 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1604 {
1605         int ret;
1606
1607         if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
1608                 return 0;
1609
1610         ret = 1;
1611         pagefault_disable();
1612         if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
1613                 ret = 0;
1614         pagefault_enable();
1615
1616         return ret;
1617 }
1618
1619 static void
1620 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1621 {
1622         struct stack_frame frame;
1623         const void __user *fp;
1624         int nr = entry->nr;
1625
1626         regs = (struct pt_regs *)current->thread.sp0 - 1;
1627         fp   = (void __user *)regs->bp;
1628
1629         callchain_store(entry, regs->ip);
1630
1631         while (entry->nr < MAX_STACK_DEPTH) {
1632                 frame.next_fp        = NULL;
1633                 frame.return_address = 0;
1634
1635                 if (!copy_stack_frame(fp, &frame))
1636                         break;
1637
1638                 if ((unsigned long)fp < user_stack_pointer(regs))
1639                         break;
1640
1641                 callchain_store(entry, frame.return_address);
1642                 fp = frame.next_fp;
1643         }
1644
1645         entry->user = entry->nr - nr;
1646 }
1647
1648 static void
1649 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1650 {
1651         int is_user;
1652
1653         if (!regs)
1654                 return;
1655
1656         is_user = user_mode(regs);
1657
1658         if (!current || current->pid == 0)
1659                 return;
1660
1661         if (is_user && current->state != TASK_RUNNING)
1662                 return;
1663
1664         if (!is_user)
1665                 perf_callchain_kernel(regs, entry);
1666
1667         if (current->mm)
1668                 perf_callchain_user(regs, entry);
1669 }
1670
1671 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1672 {
1673         struct perf_callchain_entry *entry;
1674
1675         if (in_nmi())
1676                 entry = &__get_cpu_var(nmi_entry);
1677         else
1678                 entry = &__get_cpu_var(irq_entry);
1679
1680         entry->nr = 0;
1681         entry->hv = 0;
1682         entry->kernel = 0;
1683         entry->user = 0;
1684
1685         perf_do_callchain(regs, entry);
1686
1687         return entry;
1688 }