2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
5 #include <linux/time.h>
6 #include <linux/reiserfs_fs.h>
7 #include <linux/reiserfs_acl.h>
8 #include <linux/reiserfs_xattr.h>
9 #include <linux/smp_lock.h>
10 #include <asm/uaccess.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/blkdev.h>
15 #include <linux/buffer_head.h>
16 #include <linux/quotaops.h>
19 ** We pack the tails of files on file close, not at the time they are written.
20 ** This implies an unnecessary copy of the tail and an unnecessary indirect item
21 ** insertion/balancing, for files that are written in one write.
22 ** It avoids unnecessary tail packings (balances) for files that are written in
23 ** multiple writes and are small enough to have tails.
25 ** file_release is called by the VFS layer when the file is closed. If
26 ** this is the last open file descriptor, and the file
27 ** small enough to have a tail, and the tail is currently in an
28 ** unformatted node, the tail is converted back into a direct item.
30 ** We use reiserfs_truncate_file to pack the tail, since it already has
31 ** all the conditions coded.
33 static int reiserfs_file_release(struct inode *inode, struct file *filp)
36 struct reiserfs_transaction_handle th;
38 int jbegin_failure = 0;
40 BUG_ON(!S_ISREG(inode->i_mode));
42 /* fast out for when nothing needs to be done */
43 if ((atomic_read(&inode->i_count) > 1 ||
44 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) ||
45 !tail_has_to_be_packed(inode)) &&
46 REISERFS_I(inode)->i_prealloc_count <= 0) {
50 mutex_lock(&inode->i_mutex);
51 reiserfs_write_lock(inode->i_sb);
52 /* freeing preallocation only involves relogging blocks that
53 * are already in the current transaction. preallocation gets
54 * freed at the end of each transaction, so it is impossible for
55 * us to log any additional blocks (including quota blocks)
57 err = journal_begin(&th, inode->i_sb, 1);
59 /* uh oh, we can't allow the inode to go away while there
60 * is still preallocation blocks pending. Try to join the
64 err = journal_join_abort(&th, inode->i_sb, 1);
67 /* hmpf, our choices here aren't good. We can pin the inode
68 * which will disallow unmount from every happening, we can
69 * do nothing, which will corrupt random memory on unmount,
70 * or we can forcibly remove the file from the preallocation
71 * list, which will leak blocks on disk. Lets pin the inode
72 * and let the admin know what is going on.
75 reiserfs_warning(inode->i_sb,
76 "pinning inode %lu because the "
77 "preallocation can't be freed",
82 reiserfs_update_inode_transaction(inode);
84 #ifdef REISERFS_PREALLOCATE
85 reiserfs_discard_prealloc(&th, inode);
87 err = journal_end(&th, inode->i_sb, 1);
89 /* copy back the error code from journal_begin */
93 if (!err && atomic_read(&inode->i_count) <= 1 &&
94 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
95 tail_has_to_be_packed(inode)) {
96 /* if regular file is released by last holder and it has been
97 appended (we append by unformatted node only) or its direct
98 item(s) had to be converted, then it may have to be
99 indirect2direct converted */
100 err = reiserfs_truncate_file(inode, 0);
103 mutex_unlock(&inode->i_mutex);
104 reiserfs_write_unlock(inode->i_sb);
108 static void reiserfs_vfs_truncate_file(struct inode *inode)
110 reiserfs_truncate_file(inode, 1);
113 /* Sync a reiserfs file. */
116 * FIXME: sync_mapping_buffers() never has anything to sync. Can
120 static int reiserfs_sync_file(struct file *p_s_filp,
121 struct dentry *p_s_dentry, int datasync)
123 struct inode *p_s_inode = p_s_dentry->d_inode;
127 BUG_ON(!S_ISREG(p_s_inode->i_mode));
128 n_err = sync_mapping_buffers(p_s_inode->i_mapping);
129 reiserfs_write_lock(p_s_inode->i_sb);
130 barrier_done = reiserfs_commit_for_inode(p_s_inode);
131 reiserfs_write_unlock(p_s_inode->i_sb);
132 if (barrier_done != 1 && reiserfs_barrier_flush(p_s_inode->i_sb))
133 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL);
134 if (barrier_done < 0)
136 return (n_err < 0) ? -EIO : 0;
139 /* I really do not want to play with memory shortage right now, so
140 to simplify the code, we are not going to write more than this much pages at
141 a time. This still should considerably improve performance compared to 4k
142 at a time case. This is 32 pages of 4k size. */
143 #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE
145 /* Allocates blocks for a file to fulfil write request.
146 Maps all unmapped but prepared pages from the list.
147 Updates metadata with newly allocated blocknumbers as needed */
148 static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */
149 loff_t pos, /* Writing position */
150 int num_pages, /* number of pages write going
152 int write_bytes, /* amount of bytes to write */
153 struct page **prepared_pages, /* array of
156 int blocks_to_allocate /* Amount of blocks we
158 fit the data into file
162 struct cpu_key key; // cpu key of item that we are going to deal with
163 struct item_head *ih; // pointer to item head that we are going to deal with
164 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with
165 __le32 *item; // pointer to item we are going to deal with
166 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
167 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored.
168 reiserfs_blocknr_hint_t hint; // hint structure for block allocator.
169 size_t res; // return value of various functions that we call.
170 int curr_block; // current block used to keep track of unmapped blocks.
171 int i; // loop counter
172 int itempos; // position in item
173 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in
175 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */
176 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created.
177 int modifying_this_item = 0; // Flag for items traversal code to keep track
178 // of the fact that we already prepared
179 // current block for journal
180 int will_prealloc = 0;
181 RFALSE(!blocks_to_allocate,
182 "green-9004: tried to allocate zero blocks?");
184 /* only preallocate if this is a small write */
185 if (REISERFS_I(inode)->i_prealloc_count ||
186 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) &&
188 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize))
190 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize;
192 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) *
193 sizeof(b_blocknr_t), GFP_NOFS);
194 if (!allocated_blocks)
197 /* First we compose a key to point at the writing position, we want to do
198 that outside of any locking region. */
199 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ );
201 /* If we came here, it means we absolutely need to open a transaction,
202 since we need to allocate some blocks */
203 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that.
204 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough
207 reiserfs_update_inode_transaction(inode);
209 /* Look for the in-tree position of our write, need path for block allocator */
210 res = search_for_position_by_key(inode->i_sb, &key, &path);
211 if (res == IO_ERROR) {
216 /* Allocate blocks */
217 /* First fill in "hint" structure for block allocator */
218 hint.th = th; // transaction handle.
219 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine.
220 hint.inode = inode; // Inode is needed by block allocator too.
221 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator.
222 hint.key = key.on_disk_key; // on disk key of file.
223 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already.
224 hint.formatted_node = 0; // We are allocating blocks for unformatted node.
225 hint.preallocate = will_prealloc;
227 /* Call block allocator to allocate blocks */
229 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
230 blocks_to_allocate, blocks_to_allocate);
231 if (res != CARRY_ON) {
232 if (res == NO_DISK_SPACE) {
233 /* We flush the transaction in case of no space. This way some
234 blocks might become free */
235 SB_JOURNAL(inode->i_sb)->j_must_wait = 1;
236 res = restart_transaction(th, inode, &path);
240 /* We might have scheduled, so search again */
242 search_for_position_by_key(inode->i_sb, &key,
244 if (res == IO_ERROR) {
249 /* update changed info for hint structure. */
251 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
254 if (res != CARRY_ON) {
255 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
260 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC;
266 // Too bad, I have not found any way to convert a given region from
267 // cpu format to little endian format
270 for (i = 0; i < blocks_to_allocate; i++)
271 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]);
275 /* Blocks allocating well might have scheduled and tree might have changed,
276 let's search the tree again */
277 /* find where in the tree our write should go */
278 res = search_for_position_by_key(inode->i_sb, &key, &path);
279 if (res == IO_ERROR) {
281 goto error_exit_free_blocks;
284 bh = get_last_bh(&path); // Get a bufferhead for last element in path.
285 ih = get_ih(&path); // Get a pointer to last item head in path.
286 item = get_item(&path); // Get a pointer to last item in path
288 /* Let's see what we have found */
289 if (res != POSITION_FOUND) { /* position not found, this means that we
290 might need to append file with holes
292 // Since we are writing past the file's end, we need to find out if
293 // there is a hole that needs to be inserted before our writing
294 // position, and how many blocks it is going to cover (we need to
295 // populate pointers to file blocks representing the hole with zeros)
300 * if ih is stat data, its offset is 0 and we don't want to
301 * add 1 to pos in the hole_size calculation
303 if (is_statdata_le_ih(ih))
305 hole_size = (pos + item_offset -
307 (get_inode_item_key_version(inode),
308 &(ih->ih_key)) + op_bytes_number(ih,
312 >> inode->i_sb->s_blocksize_bits;
316 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time.
317 /* area filled with zeroes, to supply as list of zero blocknumbers
318 We allocate it outside of loop just in case loop would spin for
319 several iterations. */
320 char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway.
323 goto error_exit_free_blocks;
325 memset(zeros, 0, to_paste * UNFM_P_SIZE);
328 min_t(__u64, hole_size,
329 MAX_ITEM_LEN(inode->i_sb->
332 if (is_indirect_le_ih(ih)) {
333 /* Ok, there is existing indirect item already. Need to append it */
334 /* Calculate position past inserted item */
335 make_cpu_key(&key, inode,
337 (get_inode_item_key_version
346 reiserfs_paste_into_item(th, &path,
356 goto error_exit_free_blocks;
358 } else if (is_statdata_le_ih(ih)) {
359 /* No existing item, create it */
360 /* item head for new item */
361 struct item_head ins_ih;
363 /* create a key for our new item */
364 make_cpu_key(&key, inode, 1,
367 /* Create new item head for our new item */
368 make_le_item_head(&ins_ih, &key,
373 0 /* free space */ );
375 /* Find where such item should live in the tree */
377 search_item(inode->i_sb, &key,
379 if (res != ITEM_NOT_FOUND) {
380 /* item should not exist, otherwise we have error */
381 if (res != -ENOSPC) {
382 reiserfs_warning(inode->
384 "green-9008: search_by_key (%K) returned %d",
390 goto error_exit_free_blocks;
393 reiserfs_insert_item(th, &path,
398 reiserfs_panic(inode->i_sb,
399 "green-9011: Unexpected key type %K\n",
404 goto error_exit_free_blocks;
406 /* Now we want to check if transaction is too full, and if it is
407 we restart it. This will also free the path. */
408 if (journal_transaction_should_end
409 (th, th->t_blocks_allocated)) {
411 restart_transaction(th, inode,
420 /* Well, need to recalculate path and stuff */
421 set_cpu_key_k_offset(&key,
422 cpu_key_k_offset(&key) +
426 search_for_position_by_key(inode->i_sb,
428 if (res == IO_ERROR) {
431 goto error_exit_free_blocks;
433 bh = get_last_bh(&path);
435 item = get_item(&path);
436 hole_size -= to_paste;
441 // Go through existing indirect items first
442 // replace all zeroes with blocknumbers from list
443 // Note that if no corresponding item was found, by previous search,
444 // it means there are no existing in-tree representation for file area
445 // we are going to overwrite, so there is nothing to scan through for holes.
446 for (curr_block = 0, itempos = path.pos_in_item;
447 curr_block < blocks_to_allocate && res == POSITION_FOUND;) {
450 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) {
451 /* We run out of data in this indirect item, let's look for another
453 /* First if we are already modifying current item, log it */
454 if (modifying_this_item) {
455 journal_mark_dirty(th, inode->i_sb, bh);
456 modifying_this_item = 0;
458 /* Then set the key to look for a new indirect item (offset of old
459 item is added to old item length */
460 set_cpu_key_k_offset(&key,
462 (get_inode_item_key_version(inode),
467 /* Search ofor position of new key in the tree. */
469 search_for_position_by_key(inode->i_sb, &key,
471 if (res == IO_ERROR) {
473 goto error_exit_free_blocks;
475 bh = get_last_bh(&path);
477 item = get_item(&path);
478 itempos = path.pos_in_item;
479 continue; // loop to check all kinds of conditions and so on.
481 /* Ok, we have correct position in item now, so let's see if it is
482 representing file hole (blocknumber is zero) and fill it if needed */
483 if (!item[itempos]) {
484 /* Ok, a hole. Now we need to check if we already prepared this
485 block to be journaled */
486 while (!modifying_this_item) { // loop until succeed
487 /* Well, this item is not journaled yet, so we must prepare
488 it for journal first, before we can change it */
489 struct item_head tmp_ih; // We copy item head of found item,
490 // here to detect if fs changed under
491 // us while we were preparing for
493 int fs_gen; // We store fs generation here to find if someone
494 // changes fs under our feet
496 copy_item_head(&tmp_ih, ih); // Remember itemhead
497 fs_gen = get_generation(inode->i_sb); // remember fs generation
498 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing.
499 if (fs_changed(fs_gen, inode->i_sb)
500 && item_moved(&tmp_ih, &path)) {
501 // Sigh, fs was changed under us, we need to look for new
502 // location of item we are working with
504 /* unmark prepaerd area as journaled and search for it's
506 reiserfs_restore_prepared_buffer(inode->
510 search_for_position_by_key(inode->
514 if (res == IO_ERROR) {
516 goto error_exit_free_blocks;
518 bh = get_last_bh(&path);
520 item = get_item(&path);
521 itempos = path.pos_in_item;
524 modifying_this_item = 1;
526 item[itempos] = allocated_blocks[curr_block]; // Assign new block
532 if (modifying_this_item) { // We need to log last-accessed block, if it
533 // was modified, but not logged yet.
534 journal_mark_dirty(th, inode->i_sb, bh);
537 if (curr_block < blocks_to_allocate) {
538 // Oh, well need to append to indirect item, or to create indirect item
539 // if there weren't any
540 if (is_indirect_le_ih(ih)) {
541 // Existing indirect item - append. First calculate key for append
542 // position. We do not need to recalculate path as it should
543 // already point to correct place.
544 make_cpu_key(&key, inode,
545 le_key_k_offset(get_inode_item_key_version
549 inode->i_sb->s_blocksize),
552 reiserfs_paste_into_item(th, &path, &key, inode,
553 (char *)(allocated_blocks +
556 (blocks_to_allocate -
559 goto error_exit_free_blocks;
561 } else if (is_statdata_le_ih(ih)) {
562 // Last found item was statdata. That means we need to create indirect item.
563 struct item_head ins_ih; /* itemhead for new item */
565 /* create a key for our new item */
566 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one,
571 /* Create new item head for our new item */
572 make_le_item_head(&ins_ih, &key, key.version, 1,
574 (blocks_to_allocate -
575 curr_block) * UNFM_P_SIZE,
576 0 /* free space */ );
577 /* Find where such item should live in the tree */
578 res = search_item(inode->i_sb, &key, &path);
579 if (res != ITEM_NOT_FOUND) {
580 /* Well, if we have found such item already, or some error
581 occured, we need to warn user and return error */
582 if (res != -ENOSPC) {
583 reiserfs_warning(inode->i_sb,
584 "green-9009: search_by_key (%K) "
589 goto error_exit_free_blocks;
591 /* Insert item into the tree with the data as its body */
593 reiserfs_insert_item(th, &path, &key, &ins_ih,
595 (char *)(allocated_blocks +
598 reiserfs_panic(inode->i_sb,
599 "green-9010: unexpected item type for key %K\n",
603 // the caller is responsible for closing the transaction
604 // unless we return an error, they are also responsible for logging
609 * cleanup prellocation from previous writes
610 * if this is a partial block write
612 if (write_bytes & (inode->i_sb->s_blocksize - 1))
613 reiserfs_discard_prealloc(th, inode);
614 reiserfs_write_unlock(inode->i_sb);
616 // go through all the pages/buffers and map the buffers to newly allocated
617 // blocks (so that system knows where to write these pages later).
619 for (i = 0; i < num_pages; i++) {
620 struct page *page = prepared_pages[i]; //current page
621 struct buffer_head *head = page_buffers(page); // first buffer for a page
622 int block_start, block_end; // in-page offsets for buffers.
624 if (!page_buffers(page))
625 reiserfs_panic(inode->i_sb,
626 "green-9005: No buffers for prepared page???");
628 /* For each buffer in page */
629 for (bh = head, block_start = 0; bh != head || !block_start;
630 block_start = block_end, bh = bh->b_this_page) {
632 reiserfs_panic(inode->i_sb,
633 "green-9006: Allocated but absent buffer for a page?");
634 block_end = block_start + inode->i_sb->s_blocksize;
635 if (i == 0 && block_end <= from)
636 /* if this buffer is before requested data to map, skip it */
638 if (i == num_pages - 1 && block_start >= to)
639 /* If this buffer is after requested data to map, abort
640 processing of current page */
643 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it
644 map_bh(bh, inode->i_sb,
645 le32_to_cpu(allocated_blocks
653 RFALSE(curr_block > blocks_to_allocate,
654 "green-9007: Used too many blocks? weird");
656 kfree(allocated_blocks);
659 // Need to deal with transaction here.
660 error_exit_free_blocks:
663 for (i = 0; i < blocks_to_allocate; i++)
664 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]),
668 if (th->t_trans_id) {
670 // update any changes we made to blk count
671 mark_inode_dirty(inode);
673 journal_end(th, inode->i_sb,
674 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
675 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));
679 reiserfs_write_unlock(inode->i_sb);
680 kfree(allocated_blocks);
685 /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */
686 static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */
687 size_t num_pages /* amount of pages */ )
689 int i; // loop counter
691 for (i = 0; i < num_pages; i++) {
692 struct page *page = prepared_pages[i];
694 try_to_free_buffers(page);
696 page_cache_release(page);
700 /* This function will copy data from userspace to specified pages within
701 supplied byte range */
702 static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */
703 int num_pages, /* Number of pages affected */
704 int write_bytes, /* Amount of bytes to write */
705 struct page **prepared_pages, /* pointer to
709 const char __user * buf /* Pointer to user-supplied
713 long page_fault = 0; // status of copy_from_user.
714 int i; // loop counter.
715 int offset; // offset in page
717 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
719 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
720 struct page *page = prepared_pages[i]; // Current page we process.
722 fault_in_pages_readable(buf, count);
724 /* Copy data from userspace to the current page */
726 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data.
727 /* Flush processor's dcache for this page */
728 flush_dcache_page(page);
731 write_bytes -= count;
734 break; // Was there a fault? abort.
737 return page_fault ? -EFAULT : 0;
740 /* taken fs/buffer.c:__block_commit_write */
741 int reiserfs_commit_page(struct inode *inode, struct page *page,
742 unsigned from, unsigned to)
744 unsigned block_start, block_end;
747 struct buffer_head *bh, *head;
748 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT;
750 int logit = reiserfs_file_data_log(inode);
751 struct super_block *s = inode->i_sb;
752 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
753 struct reiserfs_transaction_handle th;
757 blocksize = 1 << inode->i_blkbits;
760 reiserfs_write_lock(s);
761 ret = journal_begin(&th, s, bh_per_page + 1);
763 goto drop_write_lock;
764 reiserfs_update_inode_transaction(inode);
766 for (bh = head = page_buffers(page), block_start = 0;
767 bh != head || !block_start;
768 block_start = block_end, bh = bh->b_this_page) {
770 new = buffer_new(bh);
771 clear_buffer_new(bh);
772 block_end = block_start + blocksize;
773 if (block_end <= from || block_start >= to) {
774 if (!buffer_uptodate(bh))
777 set_buffer_uptodate(bh);
779 reiserfs_prepare_for_journal(s, bh, 1);
780 journal_mark_dirty(&th, s, bh);
781 } else if (!buffer_dirty(bh)) {
782 mark_buffer_dirty(bh);
783 /* do data=ordered on any page past the end
784 * of file and any buffer marked BH_New.
786 if (reiserfs_data_ordered(inode->i_sb) &&
787 (new || page->index >= i_size_index)) {
788 reiserfs_add_ordered_list(inode, bh);
794 ret = journal_end(&th, s, bh_per_page + 1);
796 reiserfs_write_unlock(s);
799 * If this is a partial write which happened to make all buffers
800 * uptodate then we can optimize away a bogus readpage() for
801 * the next read(). Here we 'discover' whether the page went
802 * uptodate as a result of this (potentially partial) write.
805 SetPageUptodate(page);
809 /* Submit pages for write. This was separated from actual file copying
810 because we might want to allocate block numbers in-between.
811 This function assumes that caller will adjust file size to correct value. */
812 static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */
813 size_t num_pages, /* Number of pages to write */
814 size_t write_bytes, /* number of bytes to write */
815 struct page **prepared_pages /* list of pages */
818 int status; // return status of block_commit_write.
819 int retval = 0; // Return value we are going to return.
820 int i; // loop counter
821 int offset; // Writing offset in page.
822 int orig_write_bytes = write_bytes;
825 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
827 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
828 struct page *page = prepared_pages[i]; // Current page we process.
831 reiserfs_commit_page(inode, page, offset, offset + count);
833 retval = status; // To not overcomplicate matters We are going to
834 // submit all the pages even if there was error.
835 // we only remember error status to report it on
837 write_bytes -= count;
839 /* now that we've gotten all the ordered buffers marked dirty,
840 * we can safely update i_size and close any running transaction
842 if (pos + orig_write_bytes > inode->i_size) {
843 inode->i_size = pos + orig_write_bytes; // Set new size
844 /* If the file have grown so much that tail packing is no
845 * longer possible, reset "need to pack" flag */
846 if ((have_large_tails(inode->i_sb) &&
847 inode->i_size > i_block_size(inode) * 4) ||
848 (have_small_tails(inode->i_sb) &&
849 inode->i_size > i_block_size(inode)))
850 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
851 else if ((have_large_tails(inode->i_sb) &&
852 inode->i_size < i_block_size(inode) * 4) ||
853 (have_small_tails(inode->i_sb) &&
854 inode->i_size < i_block_size(inode)))
855 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
857 if (th->t_trans_id) {
858 reiserfs_write_lock(inode->i_sb);
859 // this sets the proper flags for O_SYNC to trigger a commit
860 mark_inode_dirty(inode);
861 reiserfs_write_unlock(inode->i_sb);
863 reiserfs_write_lock(inode->i_sb);
864 reiserfs_update_inode_transaction(inode);
865 mark_inode_dirty(inode);
866 reiserfs_write_unlock(inode->i_sb);
871 if (th->t_trans_id) {
872 reiserfs_write_lock(inode->i_sb);
874 mark_inode_dirty(inode);
875 status = journal_end(th, th->t_super, th->t_blocks_allocated);
878 reiserfs_write_unlock(inode->i_sb);
883 * we have to unlock the pages after updating i_size, otherwise
884 * we race with writepage
886 for (i = 0; i < num_pages; i++) {
887 struct page *page = prepared_pages[i];
889 mark_page_accessed(page);
890 page_cache_release(page);
895 /* Look if passed writing region is going to touch file's tail
896 (if it is present). And if it is, convert the tail to unformatted node */
897 static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */
898 loff_t pos, /* Writing position */
899 int write_bytes /* amount of bytes to write */
902 INITIALIZE_PATH(path); // needed for search_for_position
903 struct cpu_key key; // Key that would represent last touched writing byte.
904 struct item_head *ih; // item header of found block;
905 int res; // Return value of various functions we call.
906 int cont_expand_offset; // We will put offset for generic_cont_expand here
907 // This can be int just because tails are created
908 // only for small files.
910 /* this embodies a dependency on a particular tail policy */
911 if (inode->i_size >= inode->i_sb->s_blocksize * 4) {
912 /* such a big files do not have tails, so we won't bother ourselves
913 to look for tails, simply return */
917 reiserfs_write_lock(inode->i_sb);
918 /* find the item containing the last byte to be written, or if
919 * writing past the end of the file then the last item of the
920 * file (and then we check its type). */
921 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY,
923 res = search_for_position_by_key(inode->i_sb, &key, &path);
924 if (res == IO_ERROR) {
925 reiserfs_write_unlock(inode->i_sb);
930 if (is_direct_le_ih(ih)) {
931 /* Ok, closest item is file tail (tails are stored in "direct"
932 * items), so we need to unpack it. */
933 /* To not overcomplicate matters, we just call generic_cont_expand
934 which will in turn call other stuff and finally will boil down to
935 reiserfs_get_block() that would do necessary conversion. */
937 le_key_k_offset(get_inode_item_key_version(inode),
940 res = generic_cont_expand(inode, cont_expand_offset);
944 reiserfs_write_unlock(inode->i_sb);
948 /* This function locks pages starting from @pos for @inode.
949 @num_pages pages are locked and stored in
950 @prepared_pages array. Also buffers are allocated for these pages.
951 First and last page of the region is read if it is overwritten only
952 partially. If last page did not exist before write (file hole or file
953 append), it is zeroed, then.
954 Returns number of unallocated blocks that should be allocated to cover
956 static int reiserfs_prepare_file_region_for_write(struct inode *inode
957 /* Inode of the file */ ,
958 loff_t pos, /* position in the file */
959 size_t num_pages, /* number of pages to
961 size_t write_bytes, /* Amount of bytes to be
964 struct page **prepared_pages /* pointer to array
969 int res = 0; // Return values of different functions we call.
970 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages.
971 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page
972 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;
973 /* offset of last modified byte in last
975 struct address_space *mapping = inode->i_mapping; // Pages are mapped here.
976 int i; // Simple counter
977 int blocks = 0; /* Return value (blocks that should be allocated) */
978 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead
980 unsigned block_start, block_end; // Starting and ending offsets of current
981 // buffer in the page.
982 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if
983 // Page appeared to be not up
984 // to date. Note how we have
985 // at most 2 buffers, this is
986 // because we at most may
987 // partially overwrite two
988 // buffers for one page. One at // the beginning of write area
989 // and one at the end.
990 // Everything inthe middle gets // overwritten totally.
992 struct cpu_key key; // cpu key of item that we are going to deal with
993 struct item_head *ih = NULL; // pointer to item head that we are going to deal with
994 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with
995 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
996 __le32 *item = NULL; // pointer to item we are going to deal with
997 int item_pos = -1; /* Position in indirect item */
1000 reiserfs_warning(inode->i_sb,
1001 "green-9001: reiserfs_prepare_file_region_for_write "
1002 "called with zero number of pages to process");
1006 /* We have 2 loops for pages. In first loop we grab and lock the pages, so
1007 that nobody would touch these until we release the pages. Then
1008 we'd start to deal with mapping buffers to blocks. */
1009 for (i = 0; i < num_pages; i++) {
1010 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page
1011 if (!prepared_pages[i]) {
1013 goto failed_page_grabbing;
1015 if (!page_has_buffers(prepared_pages[i]))
1016 create_empty_buffers(prepared_pages[i],
1017 inode->i_sb->s_blocksize, 0);
1020 /* Let's count amount of blocks for a case where all the blocks
1021 overwritten are new (we will substract already allocated blocks later) */
1023 /* These are full-overwritten pages so we count all the blocks in
1024 these pages are counted as needed to be allocated */
1026 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1028 /* count blocks needed for first page (possibly partially written) */
1029 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */
1031 /* Now we account for last page. If last page == first page (we
1032 overwrite only one page), we substract all the blocks past the
1033 last writing position in a page out of already calculated number
1035 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) -
1036 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits);
1037 /* Note how we do not roundup here since partial blocks still
1038 should be allocated */
1040 /* Now if all the write area lies past the file end, no point in
1041 maping blocks, since there is none, so we just zero out remaining
1042 parts of first and last pages in write area (if needed) */
1043 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) {
1044 if (from != 0) { /* First page needs to be partially zeroed */
1045 char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0);
1046 memset(kaddr, 0, from);
1047 kunmap_atomic(kaddr, KM_USER0);
1049 if (to != PAGE_CACHE_SIZE) { /* Last page needs to be partially zeroed */
1051 kmap_atomic(prepared_pages[num_pages - 1],
1053 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
1054 kunmap_atomic(kaddr, KM_USER0);
1057 /* Since all blocks are new - use already calculated value */
1061 /* Well, since we write somewhere into the middle of a file, there is
1062 possibility we are writing over some already allocated blocks, so
1063 let's map these blocks and substract number of such blocks out of blocks
1064 we need to allocate (calculated above) */
1065 /* Mask write position to start on blocksize, we do it out of the
1066 loop for performance reasons */
1067 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1);
1068 /* Set cpu key to the starting position in a file (on left block boundary) */
1069 make_cpu_key(&key, inode,
1070 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)),
1071 TYPE_ANY, 3 /*key length */ );
1073 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key()
1074 for (i = 0; i < num_pages; i++) {
1076 head = page_buffers(prepared_pages[i]);
1077 /* For each buffer in the page */
1078 for (bh = head, block_start = 0; bh != head || !block_start;
1079 block_start = block_end, bh = bh->b_this_page) {
1081 reiserfs_panic(inode->i_sb,
1082 "green-9002: Allocated but absent buffer for a page?");
1083 /* Find where this buffer ends */
1084 block_end = block_start + inode->i_sb->s_blocksize;
1085 if (i == 0 && block_end <= from)
1086 /* if this buffer is before requested data to map, skip it */
1089 if (i == num_pages - 1 && block_start >= to) {
1090 /* If this buffer is after requested data to map, abort
1091 processing of current page */
1095 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
1096 /* This is optimisation for a case where buffer is mapped
1097 and have blocknumber assigned. In case significant amount
1098 of such buffers are present, we may avoid some amount
1099 of search_by_key calls.
1100 Probably it would be possible to move parts of this code
1101 out of BKL, but I afraid that would overcomplicate code
1102 without any noticeable benefit.
1105 /* Update the key */
1106 set_cpu_key_k_offset(&key,
1107 cpu_key_k_offset(&key) +
1108 inode->i_sb->s_blocksize);
1109 blocks--; // Decrease the amount of blocks that need to be
1111 continue; // Go to the next buffer
1114 if (!itembuf || /* if first iteration */
1115 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the
1116 current unformatted_item */
1117 /* Try to find next item */
1119 search_for_position_by_key(inode->i_sb,
1121 /* Abort if no more items */
1122 if (res != POSITION_FOUND) {
1123 /* make sure later loops don't use this item */
1129 /* Update information about current indirect item */
1130 itembuf = get_last_bh(&path);
1132 item = get_item(&path);
1133 item_pos = path.pos_in_item;
1135 RFALSE(!is_indirect_le_ih(ih),
1136 "green-9003: indirect item expected");
1139 /* See if there is some block associated with the file
1140 at that position, map the buffer to this block */
1141 if (get_block_num(item, item_pos)) {
1142 map_bh(bh, inode->i_sb,
1143 get_block_num(item, item_pos));
1144 blocks--; // Decrease the amount of blocks that need to be
1148 /* Update the key */
1149 set_cpu_key_k_offset(&key,
1150 cpu_key_k_offset(&key) +
1151 inode->i_sb->s_blocksize);
1154 pathrelse(&path); // Free the path
1155 reiserfs_write_unlock(inode->i_sb);
1157 /* Now zero out unmappend buffers for the first and last pages of
1158 write area or issue read requests if page is mapped. */
1159 /* First page, see if it is not uptodate */
1160 if (!PageUptodate(prepared_pages[0])) {
1161 head = page_buffers(prepared_pages[0]);
1163 /* For each buffer in page */
1164 for (bh = head, block_start = 0; bh != head || !block_start;
1165 block_start = block_end, bh = bh->b_this_page) {
1168 reiserfs_panic(inode->i_sb,
1169 "green-9002: Allocated but absent buffer for a page?");
1170 /* Find where this buffer ends */
1171 block_end = block_start + inode->i_sb->s_blocksize;
1172 if (block_end <= from)
1173 /* if this buffer is before requested data to map, skip it */
1175 if (block_start < from) { /* Aha, our partial buffer */
1176 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1177 issue READ request for it to
1179 ll_rw_block(READ, 1, &bh);
1181 } else { /* Not mapped, zero it */
1183 kmap_atomic(prepared_pages[0],
1185 memset(kaddr + block_start, 0,
1186 from - block_start);
1187 kunmap_atomic(kaddr, KM_USER0);
1188 set_buffer_uptodate(bh);
1194 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */
1195 if (!PageUptodate(prepared_pages[num_pages - 1]) ||
1196 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) >
1197 (inode->i_size >> PAGE_CACHE_SHIFT)) {
1198 head = page_buffers(prepared_pages[num_pages - 1]);
1200 /* for each buffer in page */
1201 for (bh = head, block_start = 0; bh != head || !block_start;
1202 block_start = block_end, bh = bh->b_this_page) {
1205 reiserfs_panic(inode->i_sb,
1206 "green-9002: Allocated but absent buffer for a page?");
1207 /* Find where this buffer ends */
1208 block_end = block_start + inode->i_sb->s_blocksize;
1209 if (block_start >= to)
1210 /* if this buffer is after requested data to map, skip it */
1212 if (block_end > to) { /* Aha, our partial buffer */
1213 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1214 issue READ request for it to
1216 ll_rw_block(READ, 1, &bh);
1218 } else { /* Not mapped, zero it */
1220 kmap_atomic(prepared_pages
1223 memset(kaddr + to, 0, block_end - to);
1224 kunmap_atomic(kaddr, KM_USER0);
1225 set_buffer_uptodate(bh);
1231 /* Wait for read requests we made to happen, if necessary */
1232 while (wait_bh > wait) {
1233 wait_on_buffer(*--wait_bh);
1234 if (!buffer_uptodate(*wait_bh)) {
1241 failed_page_grabbing:
1244 reiserfs_unprepare_pages(prepared_pages, num_pages);
1248 /* Write @count bytes at position @ppos in a file indicated by @file
1249 from the buffer @buf.
1251 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
1252 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was
1253 written for (ext2/3). This is for several reasons:
1255 * It has no understanding of any filesystem specific optimizations.
1257 * It enters the filesystem repeatedly for each page that is written.
1259 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key
1260 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time
1261 * to reiserfs which allows for fewer tree traversals.
1263 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks.
1265 * Asking the block allocation code for blocks one at a time is slightly less efficient.
1267 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to
1268 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make
1269 things right finally.
1271 Future Features: providing search_by_key with hints.
1274 static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */
1275 const char __user * buf, /* pointer to user supplied data
1277 size_t count, /* amount of bytes to write */
1278 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to
1279 * new current position before returning. */
1282 size_t already_written = 0; // Number of bytes already written to the file.
1283 loff_t pos; // Current position in the file.
1284 ssize_t res; // return value of various functions that we call.
1286 struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to.
1287 /* To simplify coding at this time, we store
1288 locked pages in array for now */
1289 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME];
1290 struct reiserfs_transaction_handle th;
1293 /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items
1294 * lying around (most of the disk, in fact). Despite the filesystem
1295 * now being a v3.6 format, the old items still can't support large
1296 * file sizes. Catch this case here, as the rest of the VFS layer is
1297 * oblivious to the different limitations between old and new items.
1298 * reiserfs_setattr catches this for truncates. This chunk is lifted
1299 * from generic_write_checks. */
1300 if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 &&
1301 *ppos + count > MAX_NON_LFS) {
1302 if (*ppos >= MAX_NON_LFS) {
1303 send_sig(SIGXFSZ, current, 0);
1306 if (count > MAX_NON_LFS - (unsigned long)*ppos)
1307 count = MAX_NON_LFS - (unsigned long)*ppos;
1310 if (file->f_flags & O_DIRECT) { // Direct IO needs treatment
1311 ssize_t result, after_file_end = 0;
1312 if ((*ppos + count >= inode->i_size)
1313 || (file->f_flags & O_APPEND)) {
1314 /* If we are appending a file, we need to put this savelink in here.
1315 If we will crash while doing direct io, finish_unfinished will
1316 cut the garbage from the file end. */
1317 reiserfs_write_lock(inode->i_sb);
1319 journal_begin(&th, inode->i_sb,
1320 JOURNAL_PER_BALANCE_CNT);
1322 reiserfs_write_unlock(inode->i_sb);
1325 reiserfs_update_inode_transaction(inode);
1326 add_save_link(&th, inode, 1 /* Truncate */ );
1329 journal_end(&th, inode->i_sb,
1330 JOURNAL_PER_BALANCE_CNT);
1331 reiserfs_write_unlock(inode->i_sb);
1335 result = do_sync_write(file, buf, count, ppos);
1337 if (after_file_end) { /* Now update i_size and remove the savelink */
1338 struct reiserfs_transaction_handle th;
1339 reiserfs_write_lock(inode->i_sb);
1340 err = journal_begin(&th, inode->i_sb, 1);
1342 reiserfs_write_unlock(inode->i_sb);
1345 reiserfs_update_inode_transaction(inode);
1346 mark_inode_dirty(inode);
1347 err = journal_end(&th, inode->i_sb, 1);
1349 reiserfs_write_unlock(inode->i_sb);
1352 err = remove_save_link(inode, 1 /* truncate */ );
1353 reiserfs_write_unlock(inode->i_sb);
1361 if (unlikely((ssize_t) count < 0))
1364 if (unlikely(!access_ok(VERIFY_READ, buf, count)))
1367 mutex_lock(&inode->i_mutex); // locks the entire file for just us
1371 /* Check if we can write to specified region of file, file
1372 is not overly big and this kind of stuff. Adjust pos and
1374 res = generic_write_checks(file, &pos, &count, 0);
1381 res = remove_suid(file->f_dentry);
1385 file_update_time(file);
1387 // Ok, we are done with all the checks.
1389 // Now we should start real work
1391 /* If we are going to write past the file's packed tail or if we are going
1392 to overwrite part of the tail, we need that tail to be converted into
1394 res = reiserfs_check_for_tail_and_convert(inode, pos, count);
1399 /* This is the main loop in which we running until some error occures
1400 or until we write all of the data. */
1401 size_t num_pages; /* amount of pages we are going to write this iteration */
1402 size_t write_bytes; /* amount of bytes to write during this iteration */
1403 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */
1405 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */
1406 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial
1409 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT);
1410 /* convert size to amount of
1412 reiserfs_write_lock(inode->i_sb);
1413 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME
1414 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) {
1415 /* If we were asked to write more data than we want to or if there
1416 is not that much space, then we shorten amount of data to write
1417 for this iteration. */
1419 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME,
1420 reiserfs_can_fit_pages(inode->i_sb));
1421 /* Also we should not forget to set size in bytes accordingly */
1422 write_bytes = (num_pages << PAGE_CACHE_SHIFT) -
1423 (pos & (PAGE_CACHE_SIZE - 1));
1424 /* If position is not on the
1425 start of the page, we need
1426 to substract the offset
1429 write_bytes = count;
1431 /* reserve the blocks to be allocated later, so that later on
1432 we still have the space to write the blocks to */
1433 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1437 reiserfs_write_unlock(inode->i_sb);
1439 if (!num_pages) { /* If we do not have enough space even for a single page... */
1441 inode->i_size + inode->i_sb->s_blocksize -
1442 (pos & (inode->i_sb->s_blocksize - 1))) {
1444 break; // In case we are writing past the end of the last file block, break.
1446 // Otherwise we are possibly overwriting the file, so
1447 // let's set write size to be equal or less than blocksize.
1448 // This way we get it correctly for file holes.
1449 // But overwriting files on absolutelly full volumes would not
1450 // be very efficient. Well, people are not supposed to fill
1451 // 100% of disk space anyway.
1453 min_t(size_t, count,
1454 inode->i_sb->s_blocksize -
1455 (pos & (inode->i_sb->s_blocksize - 1)));
1457 // No blocks were claimed before, so do it now.
1458 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1466 /* Prepare for writing into the region, read in all the
1467 partially overwritten pages, if needed. And lock the pages,
1468 so that nobody else can access these until we are done.
1469 We get number of actual blocks needed as a result. */
1470 res = reiserfs_prepare_file_region_for_write(inode, pos,
1475 reiserfs_release_claimed_blocks(inode->i_sb,
1482 blocks_to_allocate = res;
1484 /* First we correct our estimate of how many blocks we need */
1485 reiserfs_release_claimed_blocks(inode->i_sb,
1489 s_blocksize_bits)) -
1490 blocks_to_allocate);
1492 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */
1493 /* Fill in all the possible holes and append the file if needed */
1495 reiserfs_allocate_blocks_for_region(&th, inode, pos,
1499 blocks_to_allocate);
1502 /* well, we have allocated the blocks, so it is time to free
1503 the reservation we made earlier. */
1504 reiserfs_release_claimed_blocks(inode->i_sb,
1505 blocks_to_allocate);
1507 reiserfs_unprepare_pages(prepared_pages, num_pages);
1511 /* NOTE that allocating blocks and filling blocks can be done in reverse order
1512 and probably we would do that just to get rid of garbage in files after a
1515 /* Copy data from user-supplied buffer to file's pages */
1517 reiserfs_copy_from_user_to_file_region(pos, num_pages,
1519 prepared_pages, buf);
1521 reiserfs_unprepare_pages(prepared_pages, num_pages);
1525 /* Send the pages to disk and unlock them. */
1527 reiserfs_submit_file_region_for_write(&th, inode, pos,
1534 already_written += write_bytes;
1536 *ppos = pos += write_bytes;
1537 count -= write_bytes;
1538 balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages);
1541 /* this is only true on error */
1542 if (th.t_trans_id) {
1543 reiserfs_write_lock(inode->i_sb);
1544 err = journal_end(&th, th.t_super, th.t_blocks_allocated);
1545 reiserfs_write_unlock(inode->i_sb);
1552 if (likely(res >= 0) &&
1553 (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))))
1554 res = generic_osync_inode(inode, file->f_mapping,
1555 OSYNC_METADATA | OSYNC_DATA);
1557 mutex_unlock(&inode->i_mutex);
1558 reiserfs_async_progress_wait(inode->i_sb);
1559 return (already_written != 0) ? already_written : res;
1562 mutex_unlock(&inode->i_mutex); // unlock the file on exit.
1566 const struct file_operations reiserfs_file_operations = {
1567 .read = do_sync_read,
1568 .write = reiserfs_file_write,
1569 .ioctl = reiserfs_ioctl,
1570 #ifdef CONFIG_COMPAT
1571 .compat_ioctl = reiserfs_compat_ioctl,
1573 .mmap = generic_file_mmap,
1574 .open = generic_file_open,
1575 .release = reiserfs_file_release,
1576 .fsync = reiserfs_sync_file,
1577 .sendfile = generic_file_sendfile,
1578 .aio_read = generic_file_aio_read,
1579 .aio_write = generic_file_aio_write,
1580 .splice_read = generic_file_splice_read,
1581 .splice_write = generic_file_splice_write,
1584 struct inode_operations reiserfs_file_inode_operations = {
1585 .truncate = reiserfs_vfs_truncate_file,
1586 .setattr = reiserfs_setattr,
1587 .setxattr = reiserfs_setxattr,
1588 .getxattr = reiserfs_getxattr,
1589 .listxattr = reiserfs_listxattr,
1590 .removexattr = reiserfs_removexattr,
1591 .permission = reiserfs_permission,